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Abstract

A cooperative game with transferable utilities ~or simply a TU-game- describes a sit-
uation in which players can obtain certain payoffs by cooperation. A solution concept
for these games is a function which assigns to every such a game a distribution of
payoffs over the players in the game. Well-known solution concepts for TU-games are
the Shapley value and the Banzhaf value. The Shapley value is efficient, i.e. the total
payoff is equal to the worth of the ‘grand coalition’, but the Banzhaf value is not effi-
cient. An alternative type of solution is the concept of share functions, being functions
which assign to every player in a TU-game its share in the worth of the grand coalition.
The Shapley (respectively Banzhaf) share function is the share function giving to each
player his Shapley (Banzhaf) value divided by the sum of the Shapley (Banzhaf) values
over all players.

In this paper we consider cooperative games in which the players are organized
into a coalition structure being a finite partition of the set of players. A value function
for games in coalition structure has been proposed by Owen. The Owen value can
be considered as a direct generalization of the Shapley value to games in coalition
structure. We define the Owen share function as the share function for games in
coalition structure giving to each player his Owen value divided by the sum of the
Owen values over all players. We then show that this Owen share function satisfies a
multiplicity property, namely that the Owen share of a player in a coalition within the
coalition structure is equal to the product of the Shapley share of the coalition in a
first level game between the coalitions within the coalition structure and the Shapley
share of the player in a second level game between the players within the coalition.
We show that analogously a Banzhaf share function for games with coalition structure
can be obtained by defining the share of a player in some coalition as the product
of the Banzhaf share of the coalition in a first level game between the coalitions and
the Banzhaf share of the player in a second level game between the players within the
coalition. The application of the coalition structure share functions to simple majority
games shows some appealing properties of these functions.



1 Introduction

A situation in which a finite set of n agents can obtain certain payoffs by cooperation
can be described by a cooperative game with transferable utilities —or simply a TU-
game- being a pair (V,v), where the finite set of players N is defined by the set
N = {1,...,n} representing the agents and where v:2¥ — R such that v(d) = 0 is
the characteristic function yielding for any subset S of N the payoff v(S) that can be
achieved by coalition S. Throughout the paper we use the notation |S| for the number
of players in coalition S C N.

In this paper we only consider monotone TU-games. A TU-game (N,v) is
monotone if v(E) < v(F) for all E C F C N. The class of all monotone TU-games
is denoted by G. Note that null games (N, v°) defined by v°(E) = 0 for all £ C N
are monotone. In many applications we may restrict ourselves to the subclass G° =
{(N,v) € G | v £ 7} of all monotone non-null games. Observe that »(N) > 0 for any
(N,v) € G°. The restriction of a game (N, v) € G to a coalition 7' C N is the |T'|-player
game (T, vr) with the characteristic function vr on T' defined by vr(E) = v(E) for all
BecT.

A walue function for monotone games is a function f that assigns to every n-
player game (N,v) € G an n-dimensional real vector f(N,v) € R". This vector can
be seen as a distribution of payoffs over the individual players in the game. Two
well-known value functions are the Shapley value (Shapley (1953)) and the Banzhaf
value (Banzhaf (1965)). A solution concept f is called efficient if for every TU-game
(V,v) it exactly distributes the payoff that can be obtained by the ‘grand coalition’
N consisting of all players, i.e. if for every TU-game (NV,v) it holds that the sum of
the components of f(N,v) is equal to v(N). The Shapley value is indeed efficient,
but the Banzhaf value is not. To apply the latter concept in distributing v(N) we
can use the normalized Banzhaf value which distributes the value v(N) of the grand
coalition proportional to the Banzhaf values of the players. For a characterization of
the normalized Banzhaf value we refer to van den Brink and van der Laan (1995).

A new type of solution concepts has been introduced in van der Laan and van

den Brink (1998), namely the concept of share functions. A share function assigns to



every player in a TU-game (NN,v) his share in the worth of the grand coalition. In
their paper van der Laan and van den Brink provide an axiomatic characterization of
a class of share functions containing the Shapley share function and the Banzhaf share
function as special cases. The Shapley (respectively Banzhaf) share function is the
share function satisfying that for any player the share of this player multiplied with
the payoff of the grand coalition is equal to the payoff of this player assigned to him
by the Shapley value (respectively the normalized Banzhaf value).

Share functions yield a distribution of the worth of the grand coalition reflecting
the individual bargaining position of the players. In this paper we consider situations
in which the grand coalition forms in order to maximize the total payoff, but in which
the players are also organized into smaller coalitions. These coalitions form a coalition
structure being a finite partition into disjunct subsets of the player set N and are
assumed to be given exogenously. As motivated by Winter (1989), the coalitions can
be seen as pressure groups for the division of v(N). So, to divide the value of the grand
coalition over all players, first this value is distributed over the coalitions in the a priori
given coalition structure and then the payoff assigned to a coalition is distributed over
all its players.

For games in a priori given coalition structure P = {P,,..., P,,} of m coalitions
several value functions have been proposed in the literature. The Aumann-Dreze value
assigns to any player in a coalition P, € P the Shapley value of the restriction of
the game (/V,v) to coalition P, see Aumann and Dreze (1974). Under this value
concept, the total value of the players within a coalition Py is equal to the worth of
this coalition and therefore the total payoff is equal to Y_7-, v(P), which need not to be
equal to v(/V). According to the Aumann-Dreze value, the payoff to a player ¢ in some
coalition P does not depend upon his contribution to any coalition containing players
outside P;. In fact, it is supposed that the grand coalition is not formed but that
the players agree to disagree and are satisfied with cooperation within the coalitions
Py, k = 1,...,m. However, one can imagine many situations in which players form
coalitions within the grand coalition. In such situations it is very reasonable that
also the outside opportunities of the members of a coalition have to be taken into

account. As argued by e.g. Hart and Kurz (1983) the existence of a coalition structure



implies a two-level interaction between the players. Firstly, the worth of the grand
coalition is distributed amongst the coalitions; secondly the payoff to each coalition is
distributed amongst the players within this coalition. The outcome of such a two-level
interaction is reflected by the so-called coalition structure value introduced by Owen
(1977). The Owen coalition structure value has the property that the total payoff of
the players in a coalition Py is equal to the Shapley value of the coalition Py, when this
coalition is considered to be a player in the first level game between the coalitions. As a
consequence we have that the Owen value can be considered as a direct generalization
of the Shapley value to games in coalition structure.

Analogously to the Owen generalization of the Shapley value, in this paper we
want to generalize the Banzhaf value for games in coalition structure by applying the
idea of share functions as introduced in van der Laan and van den Brink (1998). To
do so we will redefine the Owen value as a coalition structure share function. We then
show that the Owen share of a player ¢ € F4 1n the worth of the grand coalition is equal
to the Shapley share of coalition Py in the first level game between the coalitions times
the Shapley share of player 7 in an appropriately defined second level game between
the players in Py. In the same way we will define the Banzhaf share of a player i € Py
in the worth of the grand coalition as the Banzhaf share of coalition P in the first
level game times the Banzhaf share of player ¢ in an appropriately defined second level
game.

This paper is organized as follows. In the next section we recall the concept of
share functions and state the main result given in van der Laan and van den Brink
(1998). In section 3 we consider games in coalition structure and redefine the Owen
values for games in coalition structure as a share function. We show that this Owen
share function satisfies the above mentioned multiplicity property. Analogously we
define a Banzhaf share function for games in coalition structure and show some of its
properties. Finally in section 4 we apply the Owen and the Banzhaf coalition structure
share function to simple majority games in coalition structure. This application of the

coalition structure share functions shows some appealing properties of these functions.



2 Share functions

In this section we recall the concept of share functions as introduced in van der Laan
and van den Brink (1998). First, given a game (N,v) € G, forall E C N and alli € E,
let mi(N,v) = v(E)—v(E \ {t}) be the marginal contribution of player i to coalition
E in game (N,v). Then the well-known Shapley value »° and the Banzhaf value 72
on the class G of monotone games are the functions defined by

(IE] = D'(n — |E]!

Pi(Nv) =Y T mi(N,v), 1€ N,
ECN L
E>3i
respectively,
b . .
5,-8(N,v) = Z %—_lmE(N,v), 1€ N.
B

The Shapley value is characterized by the well-known axioms of efficiency, linearity,
the dummy player property and anonymity. Axiomatizations of the Banzhaf value
have been given by e.g. Lehrer (1988) and Haller (1994). In the latter contribution it
has been shown that the Banzhaf value satisfies linearity, the dummy player property,
anonymity and the proxy agreement property. The latter property says that the sum
of the payoffs of two players does not change if one of them acts as a proxy for the
other. Since the Banzhaf value is not efficient, this value is not adequate in allocating
the value v(N) of the ‘grand coalition’. More precisely, summation over all components

of the vector ZZ(N,v) gives
1

Zv,a (No)=3 > — L 2(N,v) = AT 3" (2lE| = n)v(E),

teN iEN bi_ca:l = EcN
which is generically not equal to v(/V). Note that " pcn(2|E| — n)v(E) > 0 and hence
Tien B2(N,v) > 0 when (N,v) € G° Since Z(N,1°) = 0 for all i € N, we have that
72 satisfies efficiency on the subclass of null games. To divide the worth of the grand
coalition according to the Banzhaf value, on the class of non-null games we have to
replace the Banzhaf value by the normalized Banzhaf value, being the value function
B given by

n—1 V
o) @%(N,v), i € N, (N,v) € G°.

w N = e E)




The normalized Banzhaf value ©®(V,v) is an efficient value function that distributes
the worth v(V) of the grand coalition proportional to the Banzhaf values of the players.
The normalized Banzhaf value satisfies anonymity. However, it does not satisfy linear-
ity, the dummy player property and the proxy agreement property. An axiomatization
of the normalized Banzhaf value has been given in van den Brink and van der Laan
(1995).

An alternative approach to divide the worth of the grand coalition amongst its
players is given by the concept of share function introduced by van der Laan and van
den Brink (1998). A share function assigns to each player his share in the worth of the
grand coalition, i.e. a share function on the class G of monotone games is a function p
on G giving player i € N the share p;(/V,v) in the worth v(/N) of the grand coalition.
We now state the following properties for share functions. First, a share function p on
G satisfies the efficient shares property if the shares assigned to the players sum up
to one for all (V,v) € G, i.e. ey pi(N,v) = 1. Second, p satisfies the null player
property ' on G if for every (N, v) € G° and every null player 7 in (N, v) it holds that
pi(N,v) = 0. Third, p satisfies symmetry if for every (N,v) € G and every pair ¢, j of
symmetric players * in (N,v) it holds that p;(NV,v) = p;(N,v). Finally, let be given
some some real-valued function g: G — IR. Then p satisfies p-linearity on G if for every
pair of games (V,v), (N,w) € G and real numbers a, b such that (N, av+ bw) € G it
holds that * u(N,av + bw)p(N,av + bw) = au(N,v)p(N,v) + bu(N,w)p(N,w).

The last property is a generalization of the familiar linearity property which is
obtained by taking u(N,v) = 1 for all (N,v) € G. A function p:G — R is called
positive on G if p(N,v°) = 0 and p(N,v) > 0 for every (N,v) € G°. We call y linear
on G if for every pair of games (N,v), (N,w) € G and real numbers a, b such that
(N,av+bw) € G it holds that u(NV, av + bw) = ap(V,v) + bu(N, w). Finally, we call g

symmetric on G if for every (N,v) € G, every pair of symmetric players ¢, j in (N,v),

'Player i € N is a null player in (N, v) if v(E) = v(E\{i}) for all E C N. The null player property
is only assumed to hold on G, because in a null game (N, v°) irrespective of the shares all players get
a zero payoff when multiplying the shares with v*(N) = 0.

2Players i,j € N are symmetric in (N,v) € G if w(E U {i}) = v(E U {j}) for all E C N with
En{ij}=0

3For a pair of games (N, v), (N, w) € G and real numbers a, b, the game (N, av + bw) is given by
(av + bw)(E) = av(E) + bw(E) for all EC N.



and every £ C N such that {3,j} C E and (E\ {i},ve\(y), (E\ {i}ve\(;) € G it
holds that u(£\ {i}, ve\ti) = w(E£\{j},ve\(})- The following result follows from van
der Laan and van den Brink (1998).

Theorem 2.1
Let p:G — R be positive, symmetric and linear on G. Then there exists a unique share
function p* on G satisfying the property of efficient shares, the null player property,

symmetry and p-linearity on G.

The proof of the theorem goes along the lines of the proof of a slightly different result
in van der Laan and van den Brink (1998), see also van den Brink and van der Laan
(1998).* Two specific examples of share functions are the Shapley share function and

the Banzhaf share function.

Definition 2.2 (Shapley and Banzhaf share function)
(i) The Shapley share function p¥ on G is defined by p¥(N,v) = &) ;e N,

v(N) 7’
(N,v) € G° and pJ(N,v) = I%’ 1 € N, when v =1°.
B(n
(ii) The Banzhaf share function p? on G is defined by pP(N,v) = fﬁ%il) =

2{n—1) =B z 0 B( N\ — L. &
L CIEE) P (N,v), i € N, (N,v) € G° and pP(N,v) = Wt € N, when
0

v=u-.

In van der Laan and van den Brink (1998) it is shown that the unique share function
satisfying the properties stated in Theorem 2.1 is the Shapley share function when u
is defined as p:G — R given by p¥(N,v) = v(N), respectively the Banzhaf share
function when p is defined as u®:G — R given by pB(N,v) = = Lecen(2|E| —
n)v(E).

For null games the concept of share function is in itself not very interesting,
because in such a game any player gets a payoff of zero irrespective of the shares.
Moreover, in many applications we may restrict ourselves to monotone non-null games.

However, in the next section we apply the concept of share functions to games in

“Observe that for a null game (V,v°) the axioms of symmetry and efficiency imply that for any u
we must have that p¥(N,v%) = F%T’ forallie N.



coalition structure. For such games the payoff of a player can be seen as the result of a
first level game between coalitions and a second level gamel between the players within
a coalition. In such a set-up we have to deal with null games, which may appear on
the second level, even when the game itself is a non-null game. Therefore we extended
the concept of share functions to null games by giving all players an equal share when

v =1

3 Coalition structure share functions

The share functions defined in the previous section yield a distribution of the worth
of the grand coalition reflecting the individual bargaining position of the players. In
many situations however, it is reasonable to suppose that players form coalitions which
decide to act together against the other players in bargaining over v(V). In this section
we consider situations in which the players are organized in a priori given coalition
structure.

A coalition structure is a finite partition P = {P,..., P,} of m non-empty,
disjoint subsets of the player set N, i.e. Ul ;P = N and kNP, =0 forall k, £ €
{1,...,m}, k # €. In the following the set of coalitions in the coalition structure is
denoted by M = {1,...,m}. Furthermore, a game (/V,v) € G in coalition structure
P is denoted by (N,v, P) and the collection of all coalition structures by P. The
collection of all monotone games in coalition structure is denoted by G(P). A coalition
structure value (CS-value) function 6 on the set G(P) of games assigns a payoff to
any player for every game in coalition structure (V,v, P) € G(P). The Aumann-Dreze
value assigns to any player in a coalition P; € P his Shapley value of the restriction
of the game (N,v) to Pr. Under this value concept, the total value of the players
within a coalition P is equal to the worth of this coalition. So, the players in P
ignore the foregone opportunities of forming coalitions with the players not in P;. As
already argued by Aumann and Dreze, it is very reasonable that in many situations
also the outside opportunities of the members of a coalition are taken into account.
Hart and Kurz (1983) argue that the existence of a coalition structure implies a two-

level interaction between the players. The outcome of such a two-level interaction is



reflected by the CS-value introduced by Owen (1977). The Owen Coalition Structure
value (Owen CS-value) 8° on G(P) is defined by

. [L|'(m — |L]| = DI(IE] = DI(|Pe| = | E])!
o?(N’U'P) - Eu:;k m! | P!
L3k E3:

(v(EUP(L))—v((E\{i})UP(L)), t€ P, ke M, (1)

where P(L) = UjerP;. We remark that the Owen CS-value reduces to the Shapley
value when P = {{N}} or when P = {{i},7 € N}. In fact, the weight assigned to
the marginal contribution of player : € E C P to the coalition P(L)U E, k & L, is
the product of the Shapley weight of coalition P when k enters L and the Shapley
weight of player ¢ when ¢ enters coalition £ C Px. So, the weights reflect the fact that
first coalitions enter subsequently in a random order and that within each coalition the
players enter subsequently in a random order. From this it [ollows that the Owen CS-
value has the property that the total payoff of the players in P is equal to the Shapley
value of coalition P in the first level game between the coalitions. More precisely, for
given game (N,v, P) € G(P), with P = {Py,..., P}, M = {1,...,m}, the m-player
game (M, vF) € G is defined by

vP(L) = v(P(L)), LC M,

i.e. for coalition structure P = {P,..., P,.}, the game (M, v") is the m-player game
between the coalitions induced by the game (N, v, P). Observe that v¥(M) = v(N).
Now, let 7 (M, vF) be the Shapley value assigned to coalition k, k € M, in the game
(M,v"). Then, for all k € M, it follows from equation (1) by summing up over all
components ¢ € Py that Ycp, 02(N,v, P) = @i (M,vF). Since by the efficiency of
the Shapley value Yierr 02 (M, vF) = vP(M) = v(N), it follows that also the Owen
CS-value is efficient.

The discussion above shows that the Owen CS-value can be considered as a di-
rect generalization of the Shapley value to games with coalition structure. The Owen
CS-value satisfies the consistency property that the total payoff to the players in a
coalition Py is equal to the payoff of player k£ when applying the same value concept to



the m-player game (M, v*,Q), being the induced game (M,v") in coalition structure
@ = {{M}}. For an axiomatization of the Owen CS-value we refer to Owen (1977),
Hart and Kurz (1983) and Winter (1989). Winter shows that the Owen CS-value is the
unique coalition structure value function satisfying the axioms of efficiency, null player
property, additivity with respect to any two games (V,v, P) and (N, w, P) for given
P € P, the symmetric players property and coalitional symmetry. The latter property
means that when two coalitions P; and P; are symmetric players in the induced game
(M, o), then the total payoff of the players in coalition P; is equal to the total pay-
off to the players in coalition P;. Clearly this property is implied by the consistency
property and the symmetric players property.

Analogously to the generalization of the Shapley value, in the remaining of this section
we want to generalize the Banzhaf value for games with coalition structure by applying
the idea of share [unctions as discussed in section 2. Therelore we first define the Owen
CS-share function as the share of player 7 in the worth of v(NV) according to the Owen
CS-value, i.e. this is the function ¥© given by

6°(N,v, P)

1,0 =
WO(Nv, P) = S,

t€ P, keM,

and reformulate the Owen CS-share of a player i as the product of two Shapley shares.
To do so, for L C M and k ¢ L we define the | P|-player game (P, v"*L) by

vPeLl(E) = v(EU P(L)) — v(P(L)), E C P, (2)

i.e. the game (P, v™ ") assigns to each coalition E of P the marginal contribution of
E to the union P(L) of the coalitions P;, j € L. Furthermore, for k € M, we define
the | Pi|-player game (P, v*) by

o(E) =Y MUH‘L(E), EcCPh, (3)

i.e. the game (P, v*) is a weighted sum of the games (Py,v™*%), L € M, where
the weight of the game (Py,v"*L) is equal to the Shapley weight assigned to coalition
k € M if this coalition joins the collection L C M of coalitions. We now have the

9



following lemma, where p¥(P;,v"*) is the Shapley share of player i € Py in the game
(P, vP*) and pf(M,v") the Shapley share of coalition Pj in the game (M, vF).

Lemma 3.1
Let be given a game (N,v,P) € G(P) with P = {Py,...,P,} and M = {1,...,m}.
Then the Owen CS-share of player i in Py is equal to the product of the Shapley share

of player i in the game (Py,v™) and the Shapley share of coalition k in the game
(M, vP), ie.

YO(N,v, P) = pf(Pe,v™) - pf(M,vF), i€ P, ke M.

Proof.
From equations (2) and (3) it follows that

Ry = 3 [Hm =11 -1

m!

(v(Pe U P(L)) — v(P(L)))

=5 |L|{(m — | L] - 1)!

m!

(v"({k}u L) - vP(L))

L)\ (m— |L]| — 1)
=y Lm0 e (M, 07) = o3, o). ()
LeMm m.
L;k

So, the value vf(P;) is equal to the Shapley value of coalition Py in the game (M, vF).
Using the definition of the games ( Py, v"*L) as given in equation (2), we now rewrite
equation (1) as

aio(lV,U,P) = Z Z ILI'(TTZ = 'LI ik 1)' (IEI o 1)'(|Pk' = |E|)!mi;(Pk,'UPk'L)

i T, m! | Pe]!
E>i
L' (m—|L| = 1)!
- Z Mcpﬂﬂ,v”""‘), i€P, ke M. (5)
LCM m'
L3k

10



So, for given k € M, the Owen CS-value to player i € P; is a weighted sum of the
Shapley values of player i in the games (P, v"*). Because of the linearity property
of the Shapley value it follows with (3) that

0°(N,v, P) = ¢i (P, v™*), i€ P, ke M. (6)
From the equations (4) and (6) and the fact van v(N) = v”(M) we obtain that

0°(N,v, P) N @5 (P, v™) vPx(Py)

. - .
VN P) =Ty T = TR By e

S(p, mE S P
‘rg'(}kvv k) L,?k(M,v ) S P S Py

= . = p? (P, k). :
vPr(Py) vP(M) P (Pe,v™) - p(M,v7), i€ P, k€M

O

Considering the game (M, v"’) as the first level game between the coalitions in P and
the game (P, v*) as the game on the second level between the players in Py, the
lemma shows that the Owen CS-share of player ¢ in Py is equal to the Shapley share
of player ¢ in the second level game times the Shapley share of coalition Py in the
first level game. We use this multiplicity property of the Owen CS-share function to
obtain a Banzhaf-type coalition structure share function. To do so as a first step we
replace in equation (1) the two-level Shapley weights by the corresponding two-level
Banzhaf weights. In the Banzhaf value each marginal contribution has an equal weight.
Generalizing this to games in coalition structure we have to assign equal weights to
each marginal contribution of a coalition within the coalition structure and within
such a coalition equal weights to each marginal contribution of the players within that
coalition. Doing so, we obtain the value function 6 on G(P) defined by
6,(N,v,P) = 3 ¥ 270 2=0RI=) (o(BU P(L)) - w((E \ {i}) U P(L)))

LCM ECP;
L3k E>3:

= Y ¥ om0 gr Al (P ™), ig B, kEM. (7
LCM ECPy,
L3k E3

11



Analogously to the second part of equation (5) this reduces to

Gi(N, v, Py = Y 27tm-UgB( P, vPE), i€ P, ke M, (8)
LcMm
L3k
i.e. the value of a player i € Py is a weighted sum of the Banzhaf values of player i in

the games (Py,v™ L), k € M. Since the Banzhaf value is linear it follows that
0:(N,v, P) =3P (P:,7™), i€ P, keM, (9)
where the |P;|-player game (Pi, o), k € M, is defined by
v (By =Y 27"-UyMl(E), BB, (10)

ist
Observe that analogously to the game ( Py, vF*), the game (P, ) is a weighted sum
of the games (P, vL), L C M, where the weight of the game (P, vF*L) is equal to
the Banzhaf weight assigned to coalition £ € M if this coalition joins the collection
L C M of coalitions.

The Banzhaf-type value 6;(/V,v, P) as defined in equation (9) is similar to the
expression of the Owen CS-value as given in equation (6). However, the Banzhaf value
is not efficient and so is not the value function  on G(P) as defined above. Moreover,
6 is not consistent in the sense that 6 does not satisfy the property that the total value
of the players in a coalition Py is equal to the Banzhaf value of coalition P, in the
game (M, vF). However, by applying a similar multiplicity property as satisfied by the
Owen CS-share function we can define a two-level normalization of 8 as an efficient
and consistent Banzhaf CS-share function. Therefore, let pP(P;,7™) be the Banzhaf
share of player i € Py in the game (P, 7"*) and let pP(M,v”) be the Banzhaf share
of coalition Py in the game (M, v"). Then analogously to the multiplicity property of
the Owen CS-share function we define a Banzhaf-type CS-share function on G(P).

Definition 3.2 (Banzhaf Coalition Structure share function)
The Banzhaf Coalition Structure share function is the function %2 on G(P)

given by

vE(N,v, P) = pP (P, o) - pf (M, vF), i€ P, ke M.
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Thus, the Banzhaf CS-share of player ¢ in P; is defined as the the Banzhaf share of
player  in the second level game ( Py, 5*) between the players in P, times the Banzhaf
share of coalition P in the first level game (M,v") between the coalitions in P. Clearly,
multiplying this share with the worth v(/V) of the grand coalition we obtain a CS-value
function satisfying both the efficiency and the consistency property. More precisely we

have the following corollary.

Corollary 3.3 (Efficiency and consistency properties)
Efficiency: Ty ¥2(N,v,P) = 1.

Consistency:

(i) Tiep w2 (N,v, P) = pP(M,v%).

(ii) ¥B(N,v, P) = pB(N,v) when P = {{N}}.

(iii) vP(N,v, P) = pB(N,v) when P = {{i}, i € N}.

The first consistency property says that the sum of the Banzhaf CS-shares of the players
in a coalition P is equal to the Banzhaf share of coalition Py in the game (M, v*) and
follows immediately from the definition of ¥#. The last two consistency properties
say that the Banzhaf CS-share function is equal to the Banzhaf share function when
P = {{N}} or when P = {{i}, i € N} and follow immediately from the fact that in
these cases one of the two shares in the product is equal to one. So, 1B can be seen as
a generalization of the Banzhaf share function p? to games in coalition structure.
According to the properties of the Banzhaf share function the Banzhaf CS-share
function satisfies also the null player property and the symmetry property. So a null
player receives a share equal to zero, but also the sum of the shares of the players
in a coalition being a null player in the game (M,vF) is equal to zero. Also the
symmetry property holds for both two symmetric players within the same coalition
and for two symmetric coalitions in the game (M, v"). The Banzhaf CS-share function
is not additive. However, for given (N, v, P) and (N,w, P), let (N, z, P) be given by
z = v+ w. Then we have that z = vP 4+ w® and that for k € M it holds that
7P = vP + w". Since according to Theorem 2.1 the Banzhaf share function is uB-
linear, it follows that the Banzhaf CS-share of player i € Py in the game (I, z, P) can be
computed when we know his Banzhaf CS-shares in the games (Py,7™*) and (P, w"*)

13



and the Banzhaf shares of coalition Py in the games (M,vF) and (M,w"). So, the
Banzhaf CS-share function satisfies the axioms of efficiency, null player property, the
symmetric players property, coalitional symmetry property and can be decomposed
into two pB-additive share functions. From Theorem 2.1 it follows straightforwardly
that the Banzhaf CS-share function is the unique CS-share function satisfying all these

properties.

4 CS-share functions for simple games

In this section we consider the class of simple games. A game is called simple if
v(E) € {0,1} for any E C N. In a simple game a coalition is called winning when
its value equals one and losing otherwise. An example of such a game is a weighted
voting game, in which a coalition has the power to decide, and hence is winning, when
it holds a certain number of votes. In such games it is common practice that the grand
coalition will not form. For example, in parliament usually not the grand coalition
N = {l,...,n} of all parties will form, but a coalition of parties just having enough
seats to take the majority. However, in forming such a winning or majority coalition
often the question arises about the relative power of each party within the coalition.
For instance, in the Dutch parliamentary system the parties in a majority coalition
C C N forming the government not only have to agree on issues, but also on the
division of the ministries between the governmental parties. This division is usually
based on the number of seats within the coalition, i.e. the payoff to party i € C' (in
terms of ministries occupied by this party) is proportional to its number of seats within
the coalition. Another rule to determine the number of ministries of each party in the
majority coalition could be the Aumann-Dréze value of the original game restricted
to the majority coalition C. Because in this case v(C') = v(N) = 1, we have indeed
that the AD-values of the players in C' sum up to one. However, in both cases the
division over the parties does not take into account the opportunities of the majority
parties of breaking away and forming another majority coalition with parties not in C.
To reflect these opportunities in determining the relative power of the governmental

parties within the coalition we may consider the Owen and Banzhaf CS-share functions.
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To do so we have to consider the question about the coalition structure with respect
to the parties outside the majority coalition forming the government.

We consider a weighted voting game (V,v) in which each player has a number
of votes or seats, for instance each player represents a party in parliament. Let the
integer number s;, ¢ € N, be the number of votes of player i. A coalition has the
majority (is winning) if it has at least some prespecified integer number W > 3 T ien Si
of votes. So, the game is proper, i.e. when E C N is a majority coalition having value
1, then the complement N \ E is losing. Moreover, for any subset F of N\ E we have
that v(F) = 0 and v(E U F) = 1. Observe that in general there are many winning
coalitions.

Let C be a majority coalition and suppose that the members of C' indeed agree
to cooperate, for instance in forming the government. To assign the CS-shares to
each player (i.e. each party in the parliament) when C is formed, we may consider
two opposite possibilities with respect to the coalition structure of the parties outside
C. The first possibility is that all players not in C stay alone and do not cooperate
together. In this case we have the coalition structure P = {C, {h}remc} of m =
n —|C[+1 coalitions, namely the majority coalition C and the n — |C| parties not in
C'. The opposite situation is that the members not in C join together in order to form
an as powerful as possible opposition against C. This yields the coalition structure
@ ={C, N\ C} of m = 2 coalitions.

We first consider coalition structure P. Let h be a player not in C. Since C
is winning we have that {h} is a null player in the induced game (M,v") and hence
V(N v, P) = YB(N,v,P) = 0. So any player outside C' has zero power within the
coalition structure P. Consequently it follows that for both the Banzhaf and Owen
CS-share function the share of coalition C in the game (M,v") is equal to one, i.e.
PE(M,0F) = pB(M,vP) = 1.

In case of the Banzhaf CS-share function it follows for i € C that %:B(N, v, P) =
pB(C.7°) with the game (C, %) as the game (Px, o) as defined in equation (10) with
Py = C,ie (C,7°) is a weighted sum of all |C|-player games (G5, L.c N\E,
given by

vc‘L(E) = U(L U E) — U(L) = U(LU E)’ EcC.
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Remark that L C N\C is losing and thus v(L) = 0. Now, due to the coalition structure
P = {C,{h}ren\c} equation (7) reduces for i € C' to

0:(N,v,P)= 3 3 2-(lCD . =€t (N, v)
LcN\CEcC

= 3 270 Umi (N, v).
LUECN
1€LUE

So, the Banzhaf value 32(C,7°) = 6;(N, v, P), see equation (9), of a player i € C in
the game (C,7°) is the weigthed sum of all his marginal contributions with all weights

equal to 2=(*=1) and thus,
$r(C,5°) =2P(N,v), i€C,

i.e. the Banzhaf value of a player ¢ € C in the game (C,7°) is equal to the Banzhaf

value in the game (V,v) without coalition structure. The only difference is that in the
coalition stucture game the value of the players outside C is zero, while they may have
positive value in the game without coalition structure. Normalizing the values of the
players in C to one we obtain that
__p(N,v)

T Tiec PB(N,v)’

with pB(V,v) the Banzhaf share function of the game (N, v). So, under the coalition

bB(N,v, P) = pB(C,7°) when i € C,

structure P the Banzhaf CS-share or power of the members within the majority coali-
tion ' follows immediately from normalizing the Banzhaf shares of the members of the
coalition in the game without coalition structure to one. When applying this result
to the problem of determining the number of ministries to each party in a winning

governmental coalition C' of the parliament we simply obtain that the number of min-
22 (Nw)

c Py (Nw)
the number of ministries, which gives a simple rule for the distribution of the number

istries occupied by a party 7 € C should approximately be equal to times
of ministries over the parties in the coalition. Observe that this distribution may differ
considerably from the usual distribution as mentioned in the beginning of this section.
In general the distribution proportional to the number of seats in the parliament is in

favor of the smaller parties within the government.
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In case of the Owen CS-share we get for ¢ € C that p2(N,v, P) = p7(C,v°)
with the game (C,v€) as the game (P, v'*) defined in equation (3) with P, = C,
ie. (C,v%) is a weighted sum of all |C|-player games (C,v®F), L ¢ N\ C. So,
the Owen CS-share of a player ¢« € C is a weighted sum of the Shapley shares of
the |C|-player games (C,v®F), L C N\ C. Looking to the weights of the marginal
contributions of the players, remark that the Owen CS-value function is efficient and
that v(N) = 1. Therefore we also have that ¥°(N,v, P) = 8°(N,v, P) and due to
the coalition structure P = {C, {h}ien\c}, the formula for 62 (N,v, P) as given in
equation (1) reduces for z € C to
0O(N,0,P)= 3 |L|'(n — |C] — |LD! (1E] = DI(IC| — |E])!
LCN\C ECC (n—1|C|+1)! Ic!

Hence, for : € C' the Owen CS-share is a weighted sum of all marginal contributions

mLuE(N v)

of player i. However, due to the coalition structure the weights differ from the stan-
dard Shapley weights of the marginal contributions. Therefore, for : € C, generically
YO (N,v, P) # E% Consequently, the Owen CS-shares of the players in C do
not follow from normahzmg the sum of the Shapley shares in the game (V,v) of the
players in C to one, as is the case for the Banzhaf CS-shares. This maybe makes the
Owen CS-share function less attractive compared to the Banzhaf CS-shares for sim-
ple games with a coalition structure containing one majority coalition and the other
players as singletons. In fact, analogously to the formula for 62(N, v, P) as given in
equation (5) it follows that

0N, Py = Y =IO~ L))

G eTa e, iec ()
LCN\C :

So, the Owen CS-shares are a weighted sum of the Shapley shares in the games (C, v“'*)

I

L c N\ C. We summarize the results stated above in the following theorem.

Theorem 4.1 Let (N,v) € G be a simple game and let P = {C, {h}ren\c} be a
coalition structure with C C N a majority coalition. Then the Banzhaf CS-shares are
given by

pB(N ) f
4B, Py= | Darfiioy YEEG
0 ifigC.
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The Owen CS-shares are given by

WOV, Py = | Zreme HESERREI(C,0), ifiec,
S 0 ifigC.

Example 4.2

We consider a weigthed majority game (N,v) with N = {1,2,3,4}. The number
of votes is given by s = (7,4,2,1) with s; the number of votes of player i € N.
Eight votes are needed to have the majority. Hence v(S) = 1if 1 € S and |S| > 2,
v(S) = 0 otherwise. Without coalition structure the Shapley and Banzhaf shares of
the players are given by p5(N,v) = (2, &, &, )7 and pP(NV,v) = (llo, = a5 s
For the game in coalition structure P = {{1,2}, {3}, {4}}, the Banzhaf CS-shares
are zero for the players 3 and 4. For the players 1 and 2 these shares follow from
normalizing the sum of the Banzhaf shares of the players 1 and 2 to one. Hence
VB(N,v,P) = (g, 5, 0, 0)7. Also the Owen CS-shares are zero for the players 3 and
4. The Owen CS-shares of the players 1 and 2 are a weighted sum of their Shapley
shares in the four 2-player games (C,v%L) with C = {1,2} the majority coalition
and L C {3,4}. The characteristic functions of these games and the Shapley shares
of the two players in these games are given in Table 1. With formula (11) it follows
that the Owen CS-shares of the players 1 and 2 are equal to 2, respectively (1—;, so that

6
vO(N,v,P) = (2, L, 0, 0)T. Observe that

6 6
PN L _1_ y9(N,v, P)
pf("v~ U) - 9 5 w?(N,v,P)'
and that

A(N.v) 1 _yB(N,v,P)

pP(N,v) — 77 ¥B(N,v,P)

We now consider coalition structure @ = {C, N\ C} of two coalitions. Let C' be
the first player in the induced game (M, v?) and let N\ C be the second player in this
game. Since v(C) = v(N) =1 and v(N \ C) = 0 we have that the coalition N \ C is a
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S  {1,2} [[v7%(S) [ vFTI(S) [ OH(S) [ vTA(S)
0 0 0 0 0
{1} 0 1 1 1
{2} 0 0 0 0
{1,2} 1 1 1 1
W I 1 1 1
o5 2 0 0 0

Table 1: Characteristic functions and Shapley shares

null player in the game (M, v?) and henee p5 (M, v9) — pB(M,v?) — 0, so that the sum
of the shares of the players not in C' is equal to zero. Since all marginal contributions
are nonnegative and in both the Banzhaf CS-share function and the Owen CS-share
function the weights of these contributions are nonnegative, it follows immediately that
each player gets a nonnegative share. Hence, ¥2(N,v,Q) = ¥P(N,v,Q) = 0 for all
i € C. Consequently it also follows that pj(M,v?) = pP(M,v?) = 1, i.e. for both
the Banzhaf and Owen CS-share function the sum of the shares of the players in the
winning coalition C' is equal to one.

In case of the Owen CS-share function we get for i € C that ¥2(N,v,Q) =
p2(C,v®) with the game (C,vC) as the game ( Py, v*) defined in the equation (3) with
P, = C. Since the Owen CS-value function is efficient and because v(N) = 1, it follows
that p?(C,v%) = p¥(C,v°) = 0°(N,v,Q), i € C. Due to the coalition structure
Q = {C, N\ C}, the formula for 82(N,v, P) as given equation (1) reduces for : € C
to

1 (£ =DXlc] - |E])!

(0,0 = — - mi(N,v
o3 (C,v°) ECZCQ Tl e(N,v) +
1 (E-DiCI-ED ;
N\CCE2 |C|| mE(N7v)
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y 1
= SPf(CVO%) 4 e8(CPM), e,

where v©%(E) = v(E), E C C and v®M\°(E) = v(EU (N \ C)), E C C. Hence
the Owen CS-value of a player ¢ € C' under coalition structure @ is the mean of the
two Shapley values of i in the games (C,v%?) and (C,v®N\C). In the first game we
consider all marginal contributions of a player € C to coalitions not containing any
of the players outside C, in the second game we consider all marginal contributions of
a player 1 € C to coalitions containing all the players not in C. Observe that both
Shapley values get an equal weight 3. Since also v“?(C) = vN\°(C) = 1, in both
games the Shapley values are equal to the Shapley shares and we finally obtain that

(‘V U)Q) _px (C vCG) 3 2P (C vCN\C)Y 1€ Ca

so that the Owen CS-share is the mean of the two Shapley shares.
In case of the Banzhaf CS-share function we get for ¢ € C that Y2(N,v,Q) =
pB(C,7°) with the game (C,7°) as the game (P;,7*) as defined in equation (10)
SB(05C
with P, = C. Clearly, p?(C,7°) = Eh_vlc(—gnb‘#’ 1 € C. Using the special form
of the coalition structure and observing that m = 2 it follows that the expression of

the unnormalized Banzhaf CS-value 2(C,5¢) = 6;(N,v,Q) as given in equation (8)
reduces to
ZB(C,7%) = 3 L.oternninv) 4 Z L2~ UC i (N, v)
Ece 2 mceE 2
1 1
= SPP(C0) + 57P(CvMY), el

So, the unnormalized Banzhaf CS-value of a player 7 € C under coalition structure
Q is the mean of the two Banzhaf values of 7 in the games (C,v®?) and (C,vSN\%).
The Banzhaf CS-shares of the players in C follow by normalizing the sum of the values
78(C,v°), i € C, to one, which results in
1

- B =
B (C,7%)

wa(‘vavQ =P (C

1

B(C, —c)< uB(C,v")pP(C,v?) + uB(C vON\C) ;B (C,UC-N\C))
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= gacee (K(C o (C o) 4 PO\ )B(0,0019)).
So, the Banzhaf CS-share is a weighted sum of the two Banzhaf shares with the weights
determined by the values of function 2. Since the Owen CS-shares are simply the
mean of the two Shapley shares this maybe makes the Banzhaf CS-share function less
attractive compared to the Owen CS-shares for simple games with a coalition structure
consisting of one majority coalition and one opposing coalition containing the other

players. Again the results are summarized in the following theorem.

Theorem 4.3 Let (N,v) € G be a simple game and let Q = {C, N\ C} be a coalition
structure with C' C N a majority coalition. Then the Owen CS-shares are given by

O(N,v,Q) = | 3#T(Cv) +303(C0M), ifieC,
St 0 ifi g C.
The Banzhaf CS-shares are given by
uB(CwE)pB (CuC ) 4+uB (CuCN\E)B(CEN\C) .
BP0, Q) = RGP s
0 ifigC.

Observe that analogously to the formula for the Banzhaf CS-shares the Owen CS-shares
can also be written as

1S (CC9)8(CuC®)+uS (CuCN\C)pS(C1EN\C) i
¥2(N,v,Q) = 25(C°) v #EET,
0 ifi g C.

Since p5(C,v9?) = uS(C,vON\C) = 45(C,7°) = 1 and because for simple games the
Shapley share function is equal to the Shapley value function this expression reduces

to the expression as given in the theorem.

Example 4.4
We consider again the weigthed majority game (N, v) of Example 4.2 and now consider
the coalition structure @ = {{1,2}, {3,4}}. Again the Owen and Banzhaf CS-shares
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are zero for the players 3 and 4. The Owen CS-shares of the players 1 and 2 are the
mean of their Shapley shares of the two 2-player games (C,v%?) and (C,v"\C) with
C = {1,2}. From Table 1 it follows immediately that the Owen CS-shares of the
players 1 and 2 are equal to 2, respectively %, so that YO(N,v,Q) = (%, 2, 0,007,
Analogously the unnormalized Banzhaf values of the players 1 and 2 are the mean of
their unnormalized Banzhaf values in the two 2-player games (C,v?) and (C,»N\)
with C' = {1,2}. Since for two player games the unnormalized Banzhaf value is equal
to the Shapley value, in this case the unnormalized Banzhaf value is efficient and hence

it follows immediately that also %(N, v,Q) = (%, %, 0, 0)7.
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