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A SIMPLICIAL ALGORITHM FOR COI~IPUTING
ROBUST STATIONARY POINTS OF A CONTINUOUS

FUNCTION ON THE UNIT SIMPLEX

Zaifu l~ang'

-lbstroct :Z simplicial algorithm is proposed to compute a robust sta-
tiunar~ point of a continuous function f from the (n - 1)-dimensional
unit simples S"-' into R". The concept of robust stationar}~ point is
a refinement of the concept of stationar}~ point of f on S"-'. Starting
from an arbitrari]} chosen interior point t~ in S"-', the algorithm gen-
erates a piece~cise linear path oí points in S"-'. This path is followed
b}~ alternating linear programming picot steps and replacement steps in
a specific simplicial subdi~~ision of the relati~.e interior of S"-'. In this
~ca~- an approximate robust stationar}~ point of anq gi~-en a prior cho-
sen accuracc is reached tcithin a finite number of steps. The algorithm
lea~es the starting point alon~ one out of n! ra~.s. ~1'hen the path ap-
proaches the boundan of ~"-'. the mesh size of the triangulation goes
to zero. This makes the alaorithm different from all simplicial restart
algorithms and homotop} algorithms know~n so far. Roughly speaking.
the aloorithm is a combination of a restart and a homotopy~ algorithm.
Hot~e~-er the aleorithm does not need an extra dimension as homotopy
aigorithms do. Some esamples are discussed.

l~cyu~nrds: Rob~.,st ~tationar~ point. ~ariational inequalit~-, simplicial
algorithrn. ~ubdi~.ision, piecc~cise linear approzimatíon.

1 Introduction
Let the ~n - I i-dirnensional unit simplez S"-' be defined b}~

S'-' -{ r E Rt j~ r, - 1}.

~ U~~partment of Econometnts. 'Iilburg Cnnersity. Postbox 901~3. .í000 LE Tilburg. The
~Nthcriands
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'.i~e assume that j: ti"-' -. R'' is a continuous tunction. Then the stationan~
point proble;n or ~ariational ineyualit} problem for j on S"-' is to find a point
T' E ~"-' such that

~I~ -.T~Tj(~~~ ~ ~

for an~' point r in ~`-'. ~~e call r' a stationar~~ point of j on SR-r It is ~cell
kno~~~n that this problem is eyuicalent to the E3rou~ti.er fixed point problem on S"-r
(see e.g Ea~'es ;it).

To compute a fixed point or a stationan point of a continuous function on
S"-'. se~eral simplicial algorithms ha~e been deceloped (Scarf [17, 18], Kuhn [11],
Ea~es (~',. }~uhn and `[acliinnon [12]. ~an der Laan and Talman [13. 1~]. Doup
and Talman ;51. and Doup. ~an der Laan and Talman [6]). Todd [21] and Doup (~l,
presented an excellent sune~ on the de~-elopment of simplicial algorithms. In a
simplicial subdi~ ision of ~"-' such algorithms search for a simplex w-hich procides
an approximate solution, b} generating a sequence of adjacent simplices. The sim-
plex rtiith ~~hich the algorithm terminates is found ~ti.ithin a finite number of steps.
The so-called ~.ariable dimension restart algorithm, originated in ~~an der Laan and
Talman [13]. can be started in an arbitraril}- chosen grid point of the subdicision
and eenerates a seyuence of adjacent simplices of ~-ar}~ing dimension. ~~'hen the
end simplex does not }'ield an approximate solution ~sith a satisfactory accurac}-,
the algorithm can be restarted at the approximate solution ~~.ith a finer triangula-
tion in the hope of finding a better approximate solution nithin a small number of
iterations.

The concept of robust stationar~ point is a refinement of the concept oí sta-
tionarc point on the unit simplez and essentiall}- moti~~ated from economic equi-
librium problems. noncooperati~e garnes. biolog~~ and enaineering applications (see
e.g. `Icerson í 16 . l~amamoto ,;'?'?'.. and also ~ an Damme (2]). Because a continuous
function from ~"-' into R'' ma~. ha~~e multiple stationar~~ points and some of them
are undesirable. ~ce need to refine. the concept of ~tationar} point.

In this paper ~ce propose a simplicial algorithm to compute a robust stationar}
point. Startin; from an arbitraril~ chosen interior point r in S"-r. the algorithm
generates a piece~~ise linear path of poinrs in ti"-'. This path is traced b}- alternat-
ing linear programming pi~'ot steps to follo~~ a!inear piece of the path and replace-
ment steps in a sirnplicial subdi~ ision of the relatice interior of ~''-'. ~',~ithin a finite
number of function eialuations and linear proeramrning pi~.ot steps the algorithm
finds an approximate robust stationan point of an~- a prior chosen accurac}-. The
path Qenerated b~ the aloorithm corresponds to a sequence of ~-robust stationan-
points of the piece~~ise linear approximation j of f ~~ith respect to the underl~ing
simplicial subdi~ ision. ~chere 0 G fI G 1. This simplicial subdicision diifers from
other triangulations of ~`-'. ~~~e call it the P-triangulation. ~~hen the ~~ariable
B goes to zero. the mesh size of the triangulation com.erges to zero. This makes
the algorithm different from all other simplicial algorithms. Roughl} speaking, the
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algorithm is a combination of a sirnplicial restart algorithm and a homotop}' algo-
rithm. Ho~~~e~er. it shuuld be mentioned that the algorithm does not need an extra
dimen~ion as homotop~- algorithms do.

.~lthough it mac not be apparent from the arguments of this paper, the algo-
rithm is irnplicitl}' related to the procedure proposed bc Yamamoto [22] for the
determination of a proper `ash eyuilibrium of finite-person games. How~e~er, the
reader can easil~ see the difference bet~ceen the procedure and the algorithm.

The remainder of this paper is summarized next. In Section 2 we introduce the
definition oí a robust stationar}' point and prove the existence of a robust stationar~.
point for a continuous function on the unit simplex. [n Section 3~~.e specify the
P-triangulation oí the unit simplex. In Section -1 ~ce give a detailed description of
the algorithm. Section 5 is de~~oted to some numerical examples.

2 The concept of robust stationary point
In this section ~~~e first gi~e the definition of a robust stationary point and then shoK-
the nonemptiness of the set of robust stationary points of a continuous function on
the unit simplez. Let a function f: Sn-' -. ~ be given and :V the set of the
inteQers { 1..... n }.

Definition 2.1 For giz~en B~ 0 the point r E S"-' is a B-robust stationary
point of f if

(1J r is a re(atire interiorpotnt of S"-';

(?J rk G Br; tf f;l r) G f,(rl. for k.(. 1 G k. ( G n.

Definition 2.2 I poiat r' E ti''-' zs a robust stationary point of f on Sn-' if
there erist ~equences {(l. }~ nf posit:re numbers and { r(B~) }~ oJB~-robust station-
ary points ri8.~ of f such thnt

lim 0; - 0 and lim r1t7~) - r'..-. -x

~`,~e remark tnat if a stationar~ point r' of f ]ies in the relati~-e interior of S"-'.
then r' must be a robust stationar~- point ot f. Some examples gi~en in Section 5
tcill demonstrate that the concept of robust stationan point is a refinement of the
concept of stationar~ point.

Lemma 2.3 let f: ti'"`-' ~ R'' be a continuous function. If r' E Sr-t is a
robust stationary point of f. then r' is also a stationary point of f.



Proof: "~e onl~ need to consider t~co cases. If r' lies in the relative interior of
~"-i it implies that f,(r') - J.(r') for i, j E ~-. Hence tice ha~.e

(r' - r)rf(r~) - ~(r; - rJÏ~(r') - 0

Eor an~ r E S"-~. [t means that r' is a stationar}- point of f. On the other hand, if
r' is on the boundar~. of S"-~. there exists a proper subset J of -`- such that r~ - 0
for j E J. [t follo~~~s from Definitions 2.1 and'2.2 that f,(r') - f~(r') for i, j E:`-`J
and f,(r') ~ f~(r') for i E ~~J and j E J. ~ow~ for given l E .~'~J, we have

(r' - rlrf(r-) - ~ (r, - r~)f~(r-) - ~ r~fi(r~) ? ~(r~ - r~)fi(r') - 0
~E ~-`J ~EJ ~-1

for an~- r E J"-~. It also implies that r' is a stationar}. point of f. t]

Theorem 2.9 Let f : S"-' ~ R" be a continuous function. Then j has at
least one robust stationary point in S"-~.

Proof: `,~'e first sho~ti- that there exists at least one B-robust stationary point, for
an~~ B. 0 G B G 1. Gi~.en such a B, let 6 - '-B" and define

S(B)-{rES"-t~,r,16. i-1.....n}.

It is clear that ti(Bi is a nonempt~~. con~ex. compact subset of S"-~. ~t~e further
define a set-~-alued correspondence F on S(B) b~~

F~r) -{ y E S(B) ~ if f,(r) G f~(r) then y, G By~ for any i, j}. r E S(B).

FÍ r) is ob~.iousl~. a closed con~'ex set for e~~er}~ r E S(B). Gicen r E S(B) and
i E{ 1..... n}. let ,! i i be the number of fs such that f,(r) G f~(r) and let

y~ - 9~~,,, ~ B,t,i

;-t

Then y; ) F for i- 1..... n. Hence y' E F(r) and therefore F(rj is nonempt~.
`loreo~er the continuit~ of f guarantees that F is upper semicontinuous. Thus F-
satisíies all conditions of the I~akutani fixed point theorem and so there exists a
point r(B~ E S~BI such that rr,'BI E F(rI B)). It is easil}~ seen that r(B) is a B-robust
stationar~. point of f.

So for e~-er~ 0 G B G 1, ( has a B-robust stationar}~ point r(B). `oK. let
us take a seyuence { B, }~~ of numbers bet~~.een 0 and 1 converging to zero and a
seyuence of B~-robust stationar~' points oí j. Since S"-1 is a compact set, there
exists a subsequence con~'erging to a cluster point r" E Sn-1. Clearly. r' is a robust
stationan- point of f. p

In the subsequent sections n-e ~tiill design an algorithm to compute a robust
stationar~- point.
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3 The P-triangulation of the unit simplex
~~~e first introduce ~orne notations to be used below~. Z and Zo represent the set
uf positi,:e integers and the set of nonnegati~-e integers. respecti~.elc. The i-th unit
~ector in R~ is denoted b~. e(il, i E.~~. ~foreover, J C.~~ denotes a proper subset
J of ~'. Let c be a point in the relati~.e interior of tin-'. The point r~.ill be the
starting point of the alaorithm. `~~e define a'..ector p E ti''-' b}~

p, - c~~,, for i E.~~

pt? pm. for lC m

~~'here ( jr. jz.. . j,, j is a permutation of ( 1.2..... n ). For t E [0, 1~. let

P~(t) - P~t~-~I ~ P~N-'. for i E J'.
]E~

It is readil}~ seen that p~jtl ~ p~(t) ~ .. . ~ p„(t) for t E [0, 1~.

Definition 3.1
For t E~~,0. l:. the set .-f(1) is defined 6y

.-í~t~-{rER" ~~~~~,-1
E~

t

~r,G~p,,lt)Jorany JC.~-u~ithk-lJ~}.
:EJ - ,-l

[t is easil~ seen that .fi0i - tin-' and that if c is the barccenter of ti"-', then
-1(1 i-{ r~ }. ~lore Qenerall~' for e~-en t E 10. lj ~ce ha~~e that c E:1(f) and t~ is a
cerre~ of .-ii 1 i. V~~reo~~er .-i( t j is a pol}'tope for ecery t E(0. 1~.

For J C ~~ and t E ~~0. 1; . ~ce define a~J) and 6J(t) by

atJ) -~~E.1E(.Ï)'

b~(t) - L;-~P~(t) rrith l- ~J~.

LctZ- {1 -;l~.l......1.,) ~0~ l~ C...C Im, C~}. ~~~esa~-that l EZ
contorms to J E Z. if it holds that ecen- component oí ! is also a component of J.
For 1 E Z and a positi~e integer k. let

F~ k. I ~ -{ r E.d~'~-` i ~~ aT I I J.r - br t'j-4 i for e~~er~~ i E { 1. 2...., m}}.

Then Fi k. !1 i. a face. of .il''-k i rr-ith dimension equal to n- 1 - rn. For 1 E Z. let

F(0. 1: I~-{.r r- nt~ i( 1 - a)w for some z E F(1,1) and some a E[0, lj }
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and for k E Z

F(k.k-~l:l)-{r'i r-ay-:-(1-a)~ forsomeyEF(k,l),
some ~ E F(k t 1.1), and some a E,0. 1~ }.

Fieure 1 sho~cs the subdi~-ision of ~"-' for n- 3 and v-(1~2, 1~3. 1~6)T.

Figure L The subdi~~ision of ti'`-t tor n- 3 and t,. -(1~2, 1~3, 1~6)r.

For I E Z. ~ce denote the union of F(k. k f 1; l) o~-er all k- 0. 1.... b~- F(I ).
~otice that the dimension oF F( I) is eyual to t- n- m. .~ simplicial subdivision
underl~-ing the algorithm must be such that es.en- set F(k, k t 1: 1) is subdi~-ided
into t-dimensional simplices. Such a triangulation can be described as follows. For
I E Z. ~~-e denote t~(0. !) - c and for k E Z. let v(k, I) be a relative interior point
(e.g. the bart`centerl of Ff k. I). For 1 E Z, if I consists of n- 1 components, then
Fl k.ll is a~~ertex of .-1(2-k). For general 1 E Z, let F(k.I(n - 1)) be a vertex of
F( k. I l. i.e. 1( n- 1) has n-1 components and 1 conforms to 1( n -1). ~loreover let
(Jt. Ji..... J~) --; Ll. 1(n - 1)1 be a conformation of I and 1(n -1), where t- n- m,
i.e., J~ - I(n - 1 l. Jk E Z for k- 2...., t- 1. J, - 1. Jk conforms to Jk-r and
has one component less than Jk-t for k- 2...., t. For given k E Zo. I E Z and
~ll.l(n-11).thesubset Ftk.k;-l:l.-;íl.I(n-lj))ofF(k,ktl:l)isdefinedto
be the con~~ex hull of rlk.J~j. t ík.J;)..... t~(k.J:). c~(kt I.Jrj. r('k t I.J2)...., and
t(k- 1.J,). so

Fik.d--1:l.-.il.I~n-l~~i - {rEti"-t ; r-e('k.l(n-1))to4o
.-i

` ~ 0~9,~10).
-~

0 Co ~ 1. and OCa,-t C...Cat C 1}

n'here yo - r t~l k- 1. J, t- t~i k. Ji I l. and for j - I...., t- l. 0 C a C 1.

9-,IO)-oit~iktl.J..~!-rik~-1.J;i)ti,1-n)(r(k.J;,r)-rlk.J~)).

The dimension of Fi k. k t 1: l. -; í l. !1 a - 11)) is equal to t and F(k. k-~ 1; 1) is
the ur.ion of Fik.k- l:l.-;rl.l(n- 1))) o~-er all conformations-,(Ll(n - 1)1 and
o~ er all index sets I f n- 1 t conformed b~- l.

[.et d be an arbitran positi~e integer.

Definition 3.2 For qiren k E Zo. I c' Z and -.(l.l(n - I)). the set Ca(k.k f
1: l. -.! 1. 11 a- 11 i 1 i~~ the collection oJ t-.~implices ola. r. 1 a~ith certices yt .....y~tt
in F(k.kT 1:1.-,(l.lfn- 1))) such that .
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(l! rt' - rík. ltn - 1)) ~ a(U;d-tqo ~ r~-i al!)q~(a(0)~d)~(a(0) f kd) u~here a-
tai0).a(1 ~.....aln -?I)T is a rector of integfrs such lhat 0 e a(0) C d- 1
andain-2i-...-al,t)-~Cu(t-1) G...Ga(2)Ca(1) Ca(Ol~-kd:

?; ?-(-r..... -,'~ rs a pr rmutation o ( 0. I..... t- 1) such that s C s' ijJor some
q E { 0. 1..... t-?} rl hold~ that -, - q. -- q f 1, a(q) - a(q -~ 1) in case
q? 1. andal0jtkd-a(1) tn ca.ieq-0:~

!d! !et i be auch that -, - 0. Then

J'`t - y' Y q,.(a(O)~d)~(a(O) f kd). j- 1..... i- 1.
y~tt - t~(k.l(n - 1)) T(a(~) f 1)d-'qo

r-t
t~a(j)q~((a(0)f 1)~d)~(a(0) f 1 f kd)

,-t

~~ 4-,((a(~) f 1)~d)~(a(0) f 1-~ kd),
,-t

y:}t - q' t qr,((a(o) t 1)Id)~(a(o) t 1 t kd). i ~ j ~ r.

The set Cs(k.k t 1:1.-;fl.l(n - 1))) is a simplicial subdi~~ision of F(k.k f
1:I,-,(!.l(n-1)))tcitharidsized-t. ~Ioreo~~er.theunionGd(k.k-~-1:1)ofGd(k.kt
1: l. -.( l. ll ~t - 11)1 o~er all conformations -r( l. I(n - 1 j) and 1( n- 1) conformed b~~ I
is a simplicial subdi~ ision of F( k, kt ]:!), and the union Ga( k. kt 1) of Cd( k, k-~ 1: I)
o~-er all sets 1 E Z induces a triangulation of A!2-k-')`.-~(2-k). Taking the union
G'í k~ uf G'i j. j - 1 i o~er j - 0. 1...., k- 1. tce obtain a simplicial subdi~ ision
of .1~'?-"j t~:itit arid sizc~ d-'. The union of G~(k) o~.er all k E Zo'is a simplicial
subdi~'ision of the relati~'e interior of ~'"t and is called the P-triangulation of S'''
~~rt6 grid size d-'. Obser~-e that for 1 E Z the union G~(I) of G~(k.k f 1:1) o~~er
k- 0. 1..... is a simplicial subdi~.ision of the set Fí 1). The P-triangulation of S"-'
for n-:3. d-? and c-( 1~ 3. 1,t:3. 1j31 is illustrated in Eigure 2.

E igure 2. The P-triangulation of ti''-r for n -:3. d- 3 and r-(1j.3. 1~3. 1~3).

.`s norm tce use the Euclidean norm II i in R". For a set B in R". ~ce define
the diameter of B b~

diarni Bl - sup{ ~~, ',yt - y~i, i yt .Y~ E B}.

I hen tor gi~en k E Zo the mesh size of G'( k. k~ 1) is equal to

. rk,e - sup{ diam(a) ; o E G~(k, k f 1) }.

`o~c tie ha~e the follo~cine propectc.

Lemma 3.3 Fnr thc P-triangulation of ti"-t u~ith grid sire d-t. it holds that

lim bK.~ - 0.
k-x



4 The algorithm

[n thi~ ~ection ~~e~ ~;:~~ uss ho~~ to operate the algorithm in the P-triangulation of
~''-' to approsimate a robust stationan~ point of a eontinuous function on S"-'.
Startina at the nuint c, rhe al~rurithrn r~ill generatea sequenceof adjacent simplices
of the P-triangularion in the set F(f ) ha~ing I-complete common facets. for ~aning
f E Z.

Definition 4.1
Lrt 6r yn~Fr; the Junction f:~R-' -y R". For giren 1-(Ir.....lm) E I and

- t-1 ort. uhrrr t- n-m. an s-simplero u~ith rerticesyt. .., y't' is I-complete
,f the .~ystem nf linrar cqaat,ons

~ -~, ~ Jll ~) ~ - ~ p, ~ a(~') ~ - 3 ~ ~ ~ - ~ ~ ~ (-3.1):-;
u~here e i.~ an n-rrctor of I~s, has a solution ~~, i- 1.....s T 1, p~, j - 1,...,m,
and 3' u~tth ,1' ~ 0. i- 1......; t l. and tr~ 1 0, j - 1...., m.

-', solution .t; . i- 1. .....~ - I, p, , j - 1. .... m, and 3' will be denoted b}-
(a', p'..i' 1. For .. - t- 1~~'e assume that the s}.stem (.1.1) has a unique solution
~~ ith .` ~ 1 0. i- 1..... t. ancl u" ~ 0. j- I...., m, and that for s- t at most one
~~ariable of (.1'. t,'t is eyual to zcro Í nondegenerac}- assumption).

The al;oritiun starrs to lea~e the point r in one out of n! directions. This direc-
rion is uniyuel~ determined b} J(r). Becauseof the nondegenerac}~ assumption, all
components of the ~'ector f i r ~ are different. Let (ir..... ar) be a permutation of the
set 11.....,, i sucit that (,. ~ r i~... 7 f,,,r rj. Then the 0-dimensional simplex { r}
is I~-complete ~cith I" - i f~ ..... l,-~ )~~-here lo -{ it..... i~ } for j- 1..... n- 1.
`loreo~'er. { r} is a facet oi a uniyue 1-simplex o-o in F(Io). ~chere ao - a(a.-)
~~ith o- 0 and -- ~Oi. Since for gi~en I E T an I-complete t-simplex has at
most t~co I-cornplete facets and a facet of a t-simplex in F(f) is a facet of at most
one other I-simplex in f~~ I~. ~~e obtain that the l-complete t-simplices o(a. r, j in
Ft I i. determine seyuences of adjacent t-simplices in F(!) rcith I-complete common
facets. .~s described belu~c. the seyuences of the f-complete t-simplices in F(f)
can be uniquel~ linked toeether for ~ar~ing I E Z to obtain sequences of adjacent
~implices of iar~ ine dimension. l~nder the nondegenerac} assumption, one of these
seyuences starts ~cith oo in Fi f"1 and is follo~~.ed bc the algorithm, so starting at
the point r. the alaorithm eenerates a unique sequence of f-complete adjacent t-
sirnplices in F~ 1~ of ~'ar~'ing uimension. ( n this ~~.a}- ~~ithin a finite number of steps
either thF aleorithrn reaches a ponit i in an ~ n- 1 j-dimensional simplex ior which
(,i "ri - j ~ri iur e~cr~ , and j E ~-. u.here ( is the piece~~~ise linear approximation
of J icith respect to the P-triangulation. or for k - 1.'~... the algorithm finds an
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I-complete ( t- 1)-simplex in F(k. !) for some I E Z. Suppose the latter case holds.
then r~'e ha~'e the follo~~in~ result.

Lemma 4.2 For k E Z and ! E Z. let o u~ith rertices yt...., yr be an I-complete
i t-1)-samplcr lying in F(k. ll. Let (a', p', 3') be the corresponding un:que solutioa
of sqstem Iv l). Then .r -~;-t .1~ y' is a 2-k-robust stationary point of the pieceu~ise
lrnear apprortmation f of f u~ith respect to the P-triangulation. .lloreocer. r is a
stat:oaary pornt of f oa .d(?-kj.

Proof: Since I-(It.lj....,lm) E Z. there exist It G l2 C... C Im such that

h - { lt.....il, }

!2 - i ir....~ fi,. a ,}1.....21z ~

Im - { 21..... Eim }

.~~lm - ~ llm}1,....2~ }.

Then it follo~~'s from equation ( t.l ) that

f„(ri-...-Ï~,,(r)-l~it...tpm~-3'

~ f~~,~~(r)-...-f~,,(T)-1~s-F...fp;~-F3'~

' f'~m :-~ (~) - ... - f„m(z) - pm t :3'
~ f,,m, ( r i - ... - f~~ (T ) - 3".

~~'here p; ~ 0 for r- I..... rtt. ` o~c it is not difficult to check that

r, C?-~r~ tchene~~er f,(a) G f~(.r).

(t means that r is a 2-k-robust stationar~' point of the piece~cise linear approi-
imation f of f ~~'ith respect to the P-trianoulation.

Uoreo~er. for each face F(k. I). 1 E Z. let F'i I Í be the set of all n-dimensional
~'ectors y such that ecer~' point o[ F(k, 1 } is a solution of the linear programming
problem

max yr.i subject to ,i E .-1(2-}).

Then the stationan' point problem for f on A12-k) is the problem of finding a
point r in .1(?-`~l such that ((rl E F'Ul for a minimum face F(k.l) of A(2-k)
rontainin~ r. Dualit~' theor~' impliesthat F"(11 -{ y ~ y-~~` t ll,a(!,)t3e. N, ~
0 1'or t- I..... nt, and .3 E R}. It follo~~s from equation (~.1) that f(r) E F'(1).
Hence .r is a stationan' point of J on .-1(2-k). t]

The nezt lemma sho~~'s that a?-K-robust stationar~' point of f is an approximate
'?-K-robust stationan point of f.
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Lemma 4.3 Lct qK,~ - sup{ diam( f(o)) ~ a E Gd(k - I. k) }. Let a 6e a 2-k-
robu~a statronary po~nt of fhe prccru~tse linear approrimation f of f u~ith respcct to
thc P-trianyulation obtaincd 6y the algorrthm. so ihat r E F(I, k) for some I E Z.
Thea firl Irrs rn N7e q;.;-ae!ghborhood of F'(I). :.e. there is a y E F'(l) such that
:~y -.~lsil', C rlk.i.

Yroof: Let yt.....y` be the ~~ertices of a It - 1)-simplex of Gd(k - 1, k) in F(k, I)
containing r. Then f(r) -~'.-,,1-f(y') lies in F'll). rchere ai...., a~ are concex
combination coe.~icients such that r-~`-! ~~y~. Therefore

Jiri- f(r~ill - ~'~ ~ a1Í(y') - Ï( r)~~
,`t

- ~~~~~~~(f(y')-f(r))~~
;-t

r
- ~.a~Í~~f(y')-f(r)~~

~-t

C ~K.i.

n

Since ~''-! is compact and f is continuous on h'-t. the error p~,~ tends to
zero as the mesh size r,.., Eoes to zero ~~hen k Qoes to infinitc. Let r" be a 2-k-
robust stationar~ puit!t of ( and qk.; the error in Lemma -1.3. Then the algorithm
Qenerates a sec{uencr~ j.r" h- 1.'?.... } uf approximate 2-k-robust stationarp points
uf ( ~chich t herefore has a cluster point r'. For simplicit~- of notation ~~~e can assume
that this sequence itselt ~on~'erges to r'. ~1e are no~c ready to state the follo~cing
corollar~'.

Corollary 4.4 Suppose a' 6e an approranatc 2-k-robust stationary point gen-
r ruttd by the ufgorillun. for k- 1.2. ... . 7i!en the sequence ( rr` ; k- 1. 2.... } has
a cluster pn!nt aad any clustcr pomt rs a robust stalionary pornt of f on S"-t.

Proof: The continuit~ oE f. the propertc of the P-triangulation and the compact-
ness of ~"-' impl}' that for an~ oi~en c~ 0. there esists a positi~-e integer .ll. such
that for k E 7 ~~ith k~ ll. there ís a 2-`-robust stationart. point ik E .-1(2-k) of
J ~~~hich is in.the e-neiahborhood of r'. On the other hand. since limk-,~rk - r'.
it immediateh follo~~s that

lim ik - r'.
K-X

Hence r' is a robust ~tationar~~ point of f on ~"-t.
C
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In case the algorithm terminates tt~ith an (n - 1)-dimensional simplex o~sith
~ertices yt..... y". then z -~;-r ~~ y' is a robust stationan. point of f. [f the
accurac~ of approximation is not satisfactor}~, the algorithm can be restarted at the
point i~~~ith a smaller grid size d"r to find a better approximate robust stationan~
point hopefull~ ~~ithin a small number of steps. ~~'ithout loss of generality ~ce
assume that the algorithm generates a seyuence { i" i h- 1.'?.... }, x.here ih is the
robust stationar~' point of f corresponding to the grid size dh r for an increasing
sequence of positi~.e integers { dF ~ h- 1.2... }. It is readily. seen that for eeer~~
k E Zo, the mesh size bk,~~ tends to zero as h goes to infinit}~. Therefore the
sequence { i` h- 1.2....} has a subsequence con~erging to a cluster point z'.
Clearlt'. Y is a robust stationar~~ point of f on Jn"t.

:~s described abo~~e. starting at the point r, the algorithm genera[es a unique
sequence of adjacent t-simplices Q(a. r) in F(1) for ~~ar}~ing I E Z of ~-arying di-
mension t- n- m. ~I~hen. ~cith respect to some a(a, -) tlith ~~ertices y', ..., y`t' in
some G~(k, k t 1; I. -; ( l. 1(rz - 1))) for some k E Zo and ti(1. I(n - 1)), the variable
aa, for some q. 1 C q C t f 1. becomes zero through a linear programming pivot
step in (-1.1). then the replacement step determines the unique t-simplex Q(á, r) in
F( k. k f 1: I. ~(1. I(n - 1) )) sharing w-ith a the common facet r opposite vertex
y~ unless this facet lies in the boundan- of F~I k, k~- 1; 1. ~(L I(n - 1))). If r does
not lie in the boundar}~ of the set Flk.k ~ 1: L~ÍL 1(n - 1)j). then ó(á,-) can be
obtained from a and r, as gi~en in Table 1. ~chere E(j - 1) is the j-th unit ~.ector
in R'-`. ~- 1..... n- 1.

Table 1. Parameters of r7 if the certex y~ of ~í a. r i is replaced.

q - 1 í- ....-~.-~) i a'- Fj-t)
1 C y G t- 1 i-i. .... -~"y. -,. - r-~. -~ ~.... - 1 a

y- t- 1 i-,. -~..... r~-i I '~ a- Ei -. Í

The alaorithm continues ~~.ith ~ b~' making a linear programming ( lp) pi~ot
step in ~d.ll r~.ith ifiylT.1)T. rchere y is the ~-ertex of ~ opposite the facet r.
[n case a facet - of a simplex in G'~j k, k-r 1: I. -; ( I. 1 i n- 1)1 I is not a facet of
another simplex in G'Ík.k-!- 1:1,-,iL1in- 111). then r lies in the boundar}' of
Flk.k ~ l:l.-.(l.lín - 1~)). .according to Definition 3.2 ~ce hace the follo~~.ing
lernma.

Lemma 4.5 Let oia.r) 6e o t-.amplertn Flk.k-1:1.-.fL1(n-1))). The facet
- aj ~ oppo~itF thF rerter y~. 1 C q C t r 1. lies in the boundary of this set if and
only tf one of thr (ofloiring ca.~es occur;:
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(ij 1 G q G t 1 1. r,a - h-~ 1. -;-~ - h Jor sorne h E{O.l,...,t - 2}, and
a~ h i - a(h ~- 1) in rasc h 1 1. and a(0) t kd - a(1) in case h - 0;

~rrl 9- t~ I. r~ - t- 1. and a(t - l j- 0:

(iii~ q- 1. -~ - 0, and a(0 i- d- 1:

(rr~j q-t t 1. -.-0. andal0)-0.

Suppose t he alRorithm oenerates the simplex o(a.'; ) as given in Lemma -l.,i and
~~ becornes zero after makin~ an lp pivot step in ( 4.1). Then the facet r of o
opposite to the ~ertex y' is I-cornplete. In case ( iii) the facet r lies in the face
Flk ~ l. I~ of .-1(3-k-t J and the algorithm reaches a 2-4-1-robust stationary point
i-~~-; `~'y' of J I~~ing in FI kY 1. 1). [f k is large enough, then i is an approximate
robust stationar} point of f. Otherw~ise. the algorithm proceeds with Q b}~ making
an lp pivot step in 1-1.1) with ( fT(g), llr. w'here y is the vertex of ó opposite the
facet r and á in F(k t 1, k t 2:1.~(L 1(n - 1))) is obtained according to Table 1.

In case ( it~) the facet r líes in the face F(k,l) of A(2-k) and the algorithm
continues w~ith á b~~ making an lp pi~-ot step in (4.1) with ( JT(y),1)T, where y is
the ~ertex of ó opposite the facet r and ó in F(k- I, k; I,7(1,1(n - 1))) is obtained
also from Table 1.

In case ( i~ and if h ~ l. the facet r is a facet of the t-simplex ó - o(a,-) in
F(k. k- 1: ! I l~~ing in the subset FI k, k t 1; 1. j( I. I(n - 1))) w~ith

-~I.I~R - I)1 - IJ,.....J,,.Publ.Jh;2.....J,),

rchere JFri E Z. Jh,~ ;E Pubi. is uniquel~~ determined b}- the properties that Jh.~
conforms to J.,. has one component less than Jh. and is conformed b~~ Jhr2. ]n
case Í: i and if h- 0. then r is a facet oí the t-simplex á- o(a, w j in F(k, k f
1: I. -. (1. I i n- 1 1 i i ~cith !l n- 1 I and -~ defined as follotics. Let J~ - 1( n- I)-
fl~.....1,-il. In case J; -~1~.....1,-z~. ~re ha~~e I(n - 1) -(h....,1„-~.1„-~) with
1~-~ - Ir-~U.~~l„-i. In case.l~ - ih.....1,-~). ]et 1(n-1) - llr.lz.....1„-~) ~cith
1, - l.`,,1,. Finali~ if J, -(I~...., h.lK~,.....1„-t) for some k E{ 1.....n - 3}.
~ce ha~e I(n - 1 ~ -~,h.....1;:. IK~~.l;..,.....1,.-tl ~sith Iktt - IkUlkfz`lktr. Then
-~~~1.1(n - 1i1 - tl(n - 1 ).Ji.....J.i. In both subcases of case ( i) the algorithm
continues w-ith makina a pi~'ot step in (~.1 ) w.ith ( JT(yj. 1)T, w-here y is the ~.ertex
of the new f-simplex á opposite the facet r.

In case í ii t the facet lies in the set F(k. k~- 1: J,-~ j of F(1). ~lore precisel}~, r is
the It-1)-simplexoia.zi in FIk.kTl:l.-.(l.lfn-1)~). w.here 1 - J~-i.7(LI(n-

1 ~)-( Ji. .... J,-~ i. ar.d -- t-~..... c,-~ i. Ihe al;orithm now proceeds with making
a pi~-ot step in i 1.1) ~~ ith l-a7i IF I.O lr. ~ti-here Ih is the unique component of Jt-1
but not of J~.
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F inallt~, if t hrou~h a linear programming pivot step in (-3.1), the variable ph
becomes 0 for some h E{ 1..... m}, then the algorithm terminates with the
approximate robust stationar} point i -~,a~y' of f if m- 1 and restarts
at the point i ~cith a smaller grid size in case the accurac~- is not satisfactory.
Other~~'ise. the simplez a(o.-) is a facet of a unique (t t 1)-simplex o in F(I)
r~~ith 1-(I,.....1;,-t.lf~~.....lm). ~lore preciselc, Q - o(a.-) lies in F(k,k ~
1:1.-~(I.lin - 111~. ~~~here -~(!.I(n - 1)1 - (-..1). and - - (rt,....r~,t). The al-
oorithm conrinues b~~ making a pi~-ot step in (~l.lj a-ith ( fT(y), 1)T. where y is the
~ ertex of T opposite the facet o. This concludes the description of hoa- the algorithm
~corks in the P-trianeulation of tin-'.

5 Examples
In the current sec tion ~ce gi~.e some examples to show the power of robust stationarv
point concept. Let us briefiy re~~iew the standard model of a pure exchange economy.
For detail. ~~~e refer to Debreu [3]. In such an economy there are, sap, n commodities
and a finite number oí consumers, each ha~-ing a vector of initial endowments.
Exchange of commodities are based on relati~e prices. :~ll consumers exchange
goods in order to maximize their utilit~~ under their initial wealth constraints. This
econom~ can be characterized by an excess demand function z: Rt~`{0} ---~ R~'
~~~hich satifies the follorcing standard conditions:

(i) - is a continuous function:

fii) :1.1p) - ~iP) for an~ ,1 1 0 and p E R~~{0} (homogeneit}-);

(iiit pr~tpl - 0 for p E R'~~{0} (~~alras~ la~cj.

The element p' E RY`{0} is an equilibrium price ~-ector if -(p') C 0. `ote that
homogeneit~ perrnits us to normalize the price ~ectors to the (rz - 1)-dimensional
unit simplez ~''-'. `o~c it is not hard to,ho~c that this problem is eyui~~alent to the
stationar~ point problem on ~''-1. ~1e present t~~~o examples. Exatnple I: there are
t~co oood,. The excess demand function is gi~-en bc ~(p) - i,p~p?(1 - p~). -p~pzll -
p~))T for p E ~'. Ihere are h~o equilibria (i.e. stationan. points) r-(1.0)T.
y-(0. 1 IT. Ho~~e~er onl} r is a robust stationan~ point. Example2: there are three
eoods. The ezress demand function is ~i~~en b~~ z(p) -(p~p3, ptp3, -pip~(1 f p3j)T
for p E`Z. The set of stationar}~ points is { p E S2~p3 - 0}. But z onl}~ has one
robust stationar}' point: p" - (1.O.OlT.

Finall~~. ~ce conclude ~cith one more esample: the function is defined b~~ J(r) -
i rt - rZ..rz -r r j. r3 ~ r~ )7 for r E S-. The set of stationar~~ points is

{(1~3.1~3..1~3)T.(1,O.U}r.(0.1.0)T.(0.0.1)T }.



1 ~1

IIorcet~er. j just has one robust stationan~ point: (1~3. 1~3. 1~3)T
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