

CentER
for
Economic Research

No. 9355
A SIMPLICIAL ALGORITHM FOR COMPUTING ROBUST STATIONARY POINTS OF A CONTINUOUS FUNCTION ON THE UNIT SIMPLEX

by Z. Yang

September 1993

A SIMPLICIAL ALGORITHM FOR COMPUTING ROBUST STATIONARY POINTS OF A CONTINUOUS FUNCTION ON THE UNIT SIMPLEX

Zaifu Yang ${ }^{1}$

Abstract

A simplicial algorithm is proposed to compute a robust stationary point of a continuous function f from the $(n-1)$-dimensional unit simplex S^{n-1} into R^{n}. The concept of robust stationary point is a refinement of the concept of stationary point of f on S^{n-1}. Starting from an arbitrarily chosen interior point v in S^{n-1}, the algorithm generates a piecewise linear path of points in S^{n-1}. This path is followed by alternating linear programming pivot steps and replacement steps in a specific simplicial subdivision of the relative interior of S^{n-1}. In this way an approximate robust stationary point of any given a prior chosen accuracy is reached within a finite number of steps. The algorithm leaves the starting point along one out of $n!$ rays. When the path approaches the boundary of S^{n-1}. the mesh size of the triangulation goes to zero. This makes the algorithm different from all simplicial restart algorithms and homotopy algorithms known so far. Roughly speaking, the algorithm is a combination of a restart and a homotopy algorithm. However the algorithm does not need an extra dimension as homotopy algorithms do. Some examples are discussed.

Keyurords: Robust stationary point, variational inequality, simplicial algorithm. subdivision. piecewise linear approximation.

1 Introduction

Let the ($n-1$)-dimensional unit simplex S^{n-1} be defined by

$$
S^{n-1}=\left\{x \in R_{+}^{n} \mid \sum_{i=1}^{n} x_{i}=1\right\} .
$$

[^0]We assume that $f: S^{n-1} \longrightarrow R^{n}$ is a continuous function. Then the stationary point problem or variational inequality problem for f on S^{n-1} is to find a point $x^{*} \in S^{n-1}$ such that

$$
\left(x^{*}-x\right)^{T} f\left(x^{*}\right) \geq 0
$$

for any point x in S^{n-1}. We call x^{*} a stationary point of f on S^{n-1}. It is well known that this problem is equivalent to the Brouwer fixed point problem on S^{n-1} (see e.g Eaves [7]).

To compute a fixed point or a stationary point of a continuous function on S^{n-1}. several simplicial algorithms have been developed (Scarf [17, 18], Kuhn [11], Eaves [8]. Kuhn and MacKinnon [12], van der Laan and Talman [13, 14], Doup and Talman [5]. and Doup. van der Laan and Talman [6]). Todd [21] and Doup [4] presented an excellent survey on the development of simplicial algorithms. In a simplicial subdivision of S^{n-1} such algorithms search for a simplex which provides an approximate solution, by generating a sequence of adjacent simplices. The simplex with which the algorithm terminates is found within a finite number of steps. The so-called variable dimension restart algorithm, originated in van der Laan and Talman [13], can be started in an arbitrarily chosen grid point of the subdivision and generates a sequence of adjacent simplices of varying dimension. When the end simplex does not yield an approximate solution with a satisfactory accuracy, the algorithm can be restarted at the approximate solution with a finer triangulation in the hope of finding a better approximate solution within a small number of iterations.

The concept of robust stationary point is a refinement of the concept of stationary point on the unit simplex and essentially motivated from economic equilibrium problems, noncooperative games. biology and engineering applications (see e.g. Myerson [16]. Yamamoto [22], and also van Damme [2]). Because a continuous function from S^{n-1} into R^{n} may have multiple stationary points and some of them are undesirable. we need to refine the concept of stationary point.

In this paper we propose a simplicial algorithm to compute a robust stationary point. Starting from an arbitrarily chosen interior point v in S^{n-1}. the algorithm generates a piecewise linear path of points in S^{n-1}. This path is traced by alternating linear programming pivot steps to follow a linear piece of the path and replacement steps in a simplicial subdivision of the relative interior of S^{n-1}. Within a finite number of function evaluations and linear programming pivot steps the algorithm finds an approximate robust stationary point of any a prior chosen accuracy. The path generated by the algorithm corresponds to a sequence of θ-robust stationary points of the piecewise linear approximation \bar{f} of f with respect to the underlying simplicial subdivision, where $0<\theta<1$. This simplicial subdivision differs from other triangulations of S^{n-1}. We call it the P-triangulation. When the variable θ goes to zero, the mesh size of the triangulation converges to zero. This makes the algorithm different from all other simplicial algorithms. Roughly speaking, the
algorithm is a combination of a simplicial restart algorithm and a homotopy algorithm. However. it should be mentioned that the algorithm does not need an extra dimension as homotopy algorithms do.

Although it may not be apparent from the arguments of this paper, the algorithm is implicitly related to the procedure proposed by Yamamoto [22] for the determination of a proper Nash equilibrium of finite-person games. However, the reader can easily see the difference between the procedure and the algorithm.

The remainder of this paper is summarized next. In Section 2 we introduce the definition of a robust stationary point and prove the existence of a robust stationary point for a continuous function on the unit simplex. In Section 3 we specify the P-triangulation of the unit simplex. In Section 4 we give a detailed description of the algorithm. Section 5 is devoted to some numerical examples.

2 The concept of robust stationary point

In this section we first give the definition of a robust stationary point and then show the nonemptiness of the set of robust stationary points of a continuous function on the unit simplex. Let a function $f: S^{n-1} \longrightarrow R^{n}$ be given and N the set of the integers $\{1, \ldots . n\}$.

Definition 2.1 For given $\theta>0$ the point $x \in S^{n-1}$ is a θ-robust stationary point of f if
(1) x is a relative interior point of S^{n-1};
(2) $x_{k} \leq \theta x_{l}$ if $f_{k}(x)<f_{l}(x)$. for $k, l, 1 \leq k, l \leq n$.

Definition 2.2 A point $x^{*} \in S^{n-1}$ is a robust stationary point of f on S^{n-1} if there exist sequences $\left\{\theta_{t}\right\}_{1}^{\infty}$ of positive numbers and $\left\{x\left(\theta_{t}\right)\right\}_{1}^{\infty}$ of θ_{t}-robust stationary points $x\left(\theta_{t}\right)$ of f such that

$$
\lim _{t \rightarrow x} \theta_{t}=0 \text { and } \lim _{t \rightarrow x} x\left(\theta_{t}\right)=x^{*}
$$

We remark that if a stationary point x^{*} of f lies in the relative interior of S^{n-1}, then x^{*} must be a robust stationary point of f. Some examples given in Section 5 will demonstrate that the concept of robust stationary point is a refinement of the concept of stationary point.

Lemma 2.3 Let $f: S^{n-1} \longrightarrow R^{n}$ be a continuous function. If $x^{*} \in S^{n-1}$ is a robust stationary point of f, then x^{*} is also a stationary point of f.

Proof: We only need to consider two cases. If x^{*} lies in the relative interior of S^{n-1}. it implies that $f_{i}\left(x^{*}\right)=f_{j}\left(x^{*}\right)$ for $i, j \in \lambda$. Hence we have

$$
\left(x^{*}-x\right)^{T} f\left(x^{*}\right)=\sum_{i=1}^{n}\left(x_{i}^{*}-x_{i}\right) f_{i}\left(x^{*}\right)=0
$$

for any $x \in S^{n-1}$. It means that x^{*} is a stationary point of f. On the other hand, if x^{*} is on the boundary of S^{n-1}, there exists a proper subset J of N such that $x_{j}^{*}=0$ for $j \in J$. It follows from Definitions 2.1 and 2.2 that $f_{i}\left(x^{*}\right)=f_{j}\left(x^{*}\right)$ for $i, j \in N \backslash J$ and $f_{i}\left(x^{*}\right) \geq f_{j}\left(x^{*}\right)$ for $i \in N \backslash J$ and $j \in J$. Now for given $l \in N \backslash J$, we have

$$
\left(x^{*}-x\right)^{T} f\left(x^{*}\right)=\sum_{i \in, N \backslash J}\left(x_{i}^{*}-x_{i}\right) f_{i}\left(x^{*}\right)-\sum_{j \in J} x_{j} f_{j}\left(x^{*}\right) \geq \sum_{i=1}^{n}\left(x_{i}^{*}-x_{i}\right) f_{l}\left(x^{*}\right)=0
$$

for any $x \in S^{n-1}$. It also implies that x^{*} is a stationary point of f.
Theorem 2.4 Let $f: S^{n-1} \longrightarrow R^{n}$ be a continuous function. Then f has at least one robust stationary point in S^{n-1}.
Proof: We first show that there exists at least one θ-robust stationary point, for any $\theta, 0<\theta<1$. Given such a θ, let $\delta=\frac{1}{n} \theta^{n}$ and define

$$
S(\theta)=\left\{x \in S^{n-1} \mid x_{1} \geq \delta, i=1, \ldots, n\right\} .
$$

It is clear that $S(\theta)$ is a nonempty: convex. compact subset of S^{n-1}. We further define a set-valued correspondence F on $S(\theta)$ by

$$
F(x)=\left\{y \in S(\theta) \mid \text { if } f_{i}(x)<f_{j}(x) \text { then } y_{i} \leq \theta y \text {, for any } i, j\right\}, x \in S(\theta) .
$$

$F(x)$ is obviously a closed convex set for every $x \in S(\theta)$. Given $x \in S(\theta)$ and $i \in\{1, \ldots . n\}$. let Δ (i) be the number of j 's such that $f_{1}(x)<f_{j}(x)$ and let

$$
y_{i}^{*}=\theta^{\Delta(1)} / \sum_{l=1}^{n} \theta^{\Delta(l)} .
$$

Then $y_{i}^{*} \geq \delta$ for $i=1 \ldots . n$. Hence $y^{*} \in F(x)$ and therefore $F(x)$ is nonempty. Moreover the continuity of f guarantees that F is upper semicontinuous. Thus F satisfies all conditions of the Kakutani fixed point theorem and so there exists a point $x(\theta) \in S(\theta)$ such that $x(\theta) \in F(x(\theta))$. It is easily seen that $x(\theta)$ is a θ-robust stationary point of f.

So for every $0<\theta<1 . f$ has a θ-robust stationary point $x(\theta)$. Now let us take a sequence $\left\{\theta_{t}\right\}_{1}^{\infty}$ of numbers between 0 and 1 converging to zero and a sequence of θ_{t}-robust stationary points of f. Since S^{n-1} is a compact set, there exists a subsequence converging to a cluster point $x^{*} \in S^{n-1}$. Clearly, x^{*} is a robust stationary point of f.

In the subsequent sections we will design an algorithm to compute a robust stationary point.

3 The P-triangulation of the unit simplex

We first introduce some notations to be used below. Z and Z_{0} represent the set of positive integers and the set of nonnegative integers, respectively. The i-th unit vector in R^{n} is denoted by $\epsilon(i), i \in \mathcal{N}$. Moreover, $J \subset N$ denotes a proper subset J of N. Let v be a point in the relative interior of S^{n-1}. The point v will be the starting point of the algorithm. We define a vector $p \in S^{n-1}$ by

$$
\begin{aligned}
& p_{i}=v_{i} . \text { for } i \in N \\
& p_{l} \geq p_{m}, \text { for } l \leq m
\end{aligned}
$$

where $\left(j_{1}, j_{2} \ldots \ldots j_{n}\right)$ is a permutation of $(1,2, \ldots, n)$. For $t \in[0,1]$, let

$$
p_{i}(t)=p_{i} t^{t^{-1}} / \sum_{J \in . V} p_{,} t^{j-1} . \text { for } i \in N \text {. }
$$

It is readily seen that $p_{1}(t) \geq p_{2}(t) \geq \ldots \geq p_{n}(t)$ for $t \in[0,1]$.

Definition 3.1

For $t \in[0.1]$, the set $A(t)$ is defined by

$$
\begin{array}{ll}
A(t)=\left\{x \in R^{n} \quad\right. & \sum_{i \in N} x_{1}=1 \\
& \left.\sum_{j \in J} x_{j} \leq \sum_{j=1}^{k} p_{j}(t) \text { for any } J \subset N \text { uith } k=|J|\right\} .
\end{array}
$$

It is easily seen that $A(0)=S^{n-1}$, and that if v is the barycenter of S^{n-1}, then $A(1)=\{r\}$. More generally for every $t \in[0.1]$ we have that $v \in A(t)$ and v is a vertex of $A(1)$. Moreover $A(t)$ is a polytope for every $t \in[0.1]$.

For $J \subset N$ and $t \in[0.1]$. we define $a(J)$ and $b_{J}(t)$ by

$$
\begin{aligned}
a(J) & =\sum_{j \in J} \epsilon(j) . \\
b_{J}(t) & =\sum_{J=1}^{l} p_{J}(t) \quad \text { with } l=|J| .
\end{aligned}
$$

Let $\mathcal{I}=\left\{I=\left(I_{1} \cdot I_{2}, \ldots . I_{m}\right) \mid \emptyset \neq I_{1} \subset \ldots \subset I_{m} \subset . V\right\}$. We say that $I \in \mathcal{I}$ conforms to $J \in \mathcal{I}$. if it holds that every component of I is also a component of J. For $I \in I$ and a positive integer k, let

$$
F(k . I)=\left\{x \in A\left(2^{-k}\right) \mid a^{T}\left(I_{t}\right) x=b_{l_{4}}\left(2^{-k}\right) \text { for every } \quad i \in\{1,2, \ldots, m\}\right\} .
$$

Then $F(k . l)$ is a face of $A\left(2^{-k}\right)$ with dimension equal to $n-1-m$. For $I \in I$. let

$$
F(0.1: I)=\{x \mid x=a v+(1-a) z \text { for some } z \in F(1, I) \text { and some } a \in[0,1]\}
$$

and for $k \in Z$

$$
\begin{array}{cc}
F(k, k+1: I)=\{x \mid & x=a y+(1-a) z \text { for some } y \in F(k, I), \\
& \text { some } z \in F(k+1, I), \text { and some } a \in[0,1]\} .
\end{array}
$$

Figure 1 shows the subdivision of S^{n-1} for $n=3$ and $v=(1 / 2,1 / 3,1 / 6)^{T}$.
Figure 1. The subdivision of S^{n-1} for $n=3$ and $v=(1 / 2,1 / 3,1 / 6)^{T}$.
For $I \in \mathcal{I}$. we denote the union of $F(k, k+1 ; I)$ over all $k=0,1, \ldots$ by $F(I)$. Notice that the dimension of $F(I)$ is equal to $t=n-m$. A simplicial subdivision underlying the algorithm must be such that every set $F(k, k+1 ; I)$ is subdivided into t-dimensional simplices. Such a triangulation can be described as follows. For $I \in I$. we denote $v(0 . I)=v$ and for $k \in Z$. let $v(k, I)$ be a relative interior point (e.g. the barycenter) of $F(k, I)$. For $I \in \mathcal{I}$, if I consists of $n-1$ components, then $F(k . I)$ is a vertex of $A\left(2^{-k}\right)$. For general $I \in I$, let $F(k, I(n-1))$ be a vertex of $F(k . I)$. i.e. $I(n-1)$ has $n-1$ components and I conforms to $I(n-1)$. Moreover let $\left(J_{1}, J_{2}, \ldots, J_{t}\right)=\gamma(I, I(n-1))$ be a conformation of I and $I(n-1)$, where $t=n-m$, i.e.. $J_{1}=I(n-1) . J_{k} \in \mathcal{I}$ for $k=2, \ldots, t-1, J_{t}=I, J_{k}$ conforms to J_{k-1} and has one component less than J_{k-1} for $k=2, \ldots, t$. For given $k \in Z_{0}, I \in \mathcal{I}$ and $\gamma(I, I(n-1))$, the subset $F(k, k+1: I \cdot \gamma(I . I(n-1)))$ of $F(k, k+1 ; I)$ is defined to be the convex hull of $v\left(k, J_{1}\right), v\left(k, J_{2}\right) \ldots . v\left(k, J_{t}\right), v\left(k+1, J_{1}\right), v\left(k+1, J_{2}\right), \ldots$, and $v\left(k+1\right.$. $\left.J_{t}\right)$. so

$$
\begin{aligned}
F(k \cdot k+1: I \cdot\{(I \cdot I(n-1))) & =\left\{x \in S^{n-1} \mid x=v(k, I(n-1))+\alpha q_{0}\right. \\
& +\sum_{j=1}^{t-1} \alpha_{,} q_{j}(\alpha) . \\
& \left.0 \leq \alpha \leq 1 . \text { and } 0 \leq \alpha_{t-1} \leq \ldots \leq \alpha_{1} \leq 1\right\}
\end{aligned}
$$

where $q_{0}=\left(v\left(k+1 . J_{1}\right)-v\left(k . J_{1}\right)\right)$. and for $j=1 \ldots . . t-1.0 \leq \alpha \leq 1$,

$$
q_{\jmath}(\alpha)=\alpha\left(v\left(k+1 . J_{2+1}\right)-v\left(k+1 . J_{j}\right)\right)+(1-\alpha)\left(v\left(k, J_{j+1}\right)-v\left(k, J_{\jmath}\right)\right) .
$$

The dimension of $F(k, k+1: I .-(I \cdot I(n-1)))$ is equal to t and $F(k, k+1 ; I)$ is the union of $F(k \cdot k+1: I \cdot(I . I(n-1)))$ over all conformations $\gamma(I, I(n-1))$ and over all index sets $I(n-1)$ conformed by I.

Let d be an arbitrary positive integer.
Definition 3.2 For given $k \in Z_{0}, I \in I$ and $\gamma(I . I(n-1))$, the set $G^{d}(k, k+$ 1:I. $\hat{(}(I . I(n-1))$) is the collection of t-simplices $\sigma(a, \pi)$ with vertices $y^{1} \ldots . . y^{t+1}$ in $F(k \cdot k+1: I .(I \cdot I(n-1)))$ such that.
(1) $y^{1}=2 \cdot(k \cdot I(n-1))+a(0) d^{-1} q_{0}+\sum_{j=1}^{t-1} a(j) q_{j}(a(0) / d) /(a(0)+k d)$ where $a=$ $(a(0) \cdot a(1) \ldots a(n-2))^{T}$ is a vector of integers such that $0 \leq a(0) \leq d-1$ and $a(n-2)=\ldots=a(t)=0 \leq a(t-1) \leq \ldots \leq a(2) \leq a(1) \leq a(0)+k d$;
(2) $\pi=\left(\pi_{1}, \ldots, \pi_{:}\right)$is a permutation of $(0,1 \ldots, t-1)$ such that $s<s^{\prime}$ if for some $q \in\{0.1 \ldots . . t-2\}$ it holds that $\pi_{s}=q, \pi_{s^{\prime}}=q+1, a(q)=a(q+1)$ in case $q \geq 1$, and $a(0)+k d=a(1)$ in case $q=0$;
(3) Let i be such that $\pi_{i}=0$. Then

$$
\begin{aligned}
y^{j+1} & =y^{2}+q_{\tau_{j}}(a(0) / d) /(a(0)+k d), j=1, \ldots, i-1, \\
y^{i+1} & =v(k \cdot I(n-1))+(a(0)+1) d^{-1} q_{0} \\
& +\sum_{j=1}^{t-1} a(j) q_{j}((a(0)+1) / d) /(a(0)+1+k d) \\
& +\sum_{j=1}^{i-1} q_{-},((a(0)+1) / d) /(a(0)+1+k d), \\
y^{j+1} & =y^{2}+q_{\tau_{j}}((a(0)+1) / d) /(a(0)+1+k d), i<j \leq t .
\end{aligned}
$$

The set $G^{d}(k, k+1: I, \gamma(I . I(n-1)))$ is a simplicial subdivision of $F(k, k+$ 1: $I, \gamma(I . I(n-1)))$ with grid size d^{-1}. Moreover, the union $G^{d}(k, k+1: I)$ of $G^{d}(k, k+$ 1: $I . \hat{\gamma}(I . I(n-1))$) over all conformations $\gamma(I . I(n-1))$ and $I(n-1)$ conformed by I is a simplicial subdivision of $F(k, k+1: I)$, and the union $G^{d}(k, k+1)$ of $G^{d}(k, k+1: I)$ over all sets $I \in I$ induces a triangulation of $A\left(2^{-k-1}\right) \backslash A\left(2^{-k}\right)$. Taking the union $G^{d}(k)$ of $G^{d}(j . j+1)$ over $j=0.1 \ldots . . k-1$. we obtain a simplicial subdivision of $A\left(2^{-k}\right)$ with grid size d^{-1}. The union of $G^{d}(k)$ over all $k \in Z_{0}{ }^{\circ}$ is a simplicial subdivision of the relative interior of S^{n-1} and is called the P-triangulation of S^{n-1} with grid size d^{-1}. Observe that for $I \in I$ the union $G^{d}(I)$ of $G^{d}(k, k+1: I)$ over $k=0.1 \ldots \ldots$ is a simplicial subdivision of the set $F(I)$. The P-triangulation of S^{n-1} for $n=3, d=2$ and $v=(1 / 3.1 / 3.1 / 3)$ is illustrated in Figure 2.
Figure 2. The P-triangulation of S^{n-1} for $n=3, d=2$ and $v=(1 / 3,1 / 3,1 / 3)$.
As norm we use the Euclidean norm $\|\cdot\|$ in R^{n}. For a set B in R^{n}. we define the diameter of B by

$$
\operatorname{diam}(B)=\sup \left\{\left\|y^{1}-y^{2}\right\| \mid y^{1} \cdot y^{2} \in B\right\} .
$$

Then for given $k \in Z_{0}$ the mesh size of $G^{1}(k . k+1)$ is equal to

$$
\varepsilon_{k, d}=\sup \left\{\operatorname{diam}(\sigma) \mid \sigma \in G^{d}(k, k+1)\right\} .
$$

Now we have the following property.
Lemma 3.3 For the P-triangulation of S^{n-1} with grid size d^{-1}. it holds that

$$
\lim _{k \rightarrow \infty} \delta_{k, d}=0 .
$$

4 The algorithm

In this section we discuss how to operate the algorithm in the P-triangulation of S^{n-1} to approximate a robust stationary point of a continuous function on S^{n-1}. Starting at the point r, the algorithm will generate a sequence of adjacent simplices of the P-triangulation in the set $F(I)$ having I-complete common facets, for varying $I \in \mathcal{I}$.

Definition 4.1
Let be given the function $f: S^{n-1} \longrightarrow R^{n}$. For given $I=\left(I_{1}, \ldots, I_{m}\right) \in \mathcal{I}$ and $s=t-1$ ort. where $t=n-m$. an s-simplex σ with vertices y^{1}, \ldots, y^{s+1} is I-complete if the system of linear equations

$$
\begin{equation*}
\sum_{i=1}^{s+1} \lambda_{i}\binom{f\left(y^{2}\right)}{1}-\sum_{j=1}^{m} \mu_{j}\binom{a\left(I_{j}\right)}{0}-\beta\binom{e}{0}=\binom{0}{1} \tag{4.1}
\end{equation*}
$$

where ϵ is an n-vector of 1 's, has a solution $\lambda_{i}^{*}, i=1, \ldots, s+1, \mu_{j}^{*}, j=1, \ldots, m$, and 3^{*} with $\lambda_{i}^{*} \geq 0, i=1, \ldots, s+1$, and $\mu_{j}^{*} \geq 0, j=1, \ldots, m$.

A solution $\lambda_{i}^{*} \cdot i=1, \ldots . s+1, \mu_{j}^{*}, j=1, \ldots, m$, and β^{*} will be denoted by $\left(\lambda^{*}, \mu^{*}, 3^{*}\right)$. For $s=t-1$ we assume that the system (4.1) has a unique solution with $\lambda_{i}^{*}>0, i=1 \ldots . . t$. and $\mu_{j}^{*}>0, j=1 \ldots . m$. and that for $s=t$ at most one variable of (λ^{*}, μ^{*}) is equal to zero (nondegeneracy assumption).

The algorithm starts to leave the point v in one out of $n!$ directions. This direction is uniquely determined by $f(c)$. Because of the nondegeneracy assumption, all components of the vector $f(c)$ are different. Let $\left(i_{1}, \ldots . i_{n}\right)$ be a permutation of the set $(1 \ldots, n)$ such that $f_{i,}(v)>\ldots>f_{\text {in }}(v)$. Then the 0 -dimensional simplex $\{v\}$ is I^{0}-complete with $I^{0}=\left(I_{1}^{0} \ldots . . I_{n-1}^{0}\right)$ where $I_{j}^{0}=\left\{i_{1}, \ldots, i,\right\}$ for $j=1, \ldots, n-1$. Moreover. $\{v\}$ is a facet of a unique 1 -simplex σ^{0} in $F\left(I^{0}\right)$, where $\sigma^{0}=\sigma(a, \pi)$ with $a=0$ and $\pi=(0)$. Since for given $I \in I$ an I-complete t-simplex has at most two I-complete facets and a facet of a t-simplex in $F(I)$ is a facet of at most one other t-simplex in $F(I)$, we obtain that the I-complete t-simplices $\sigma(a, \pi)$ in $F(I)$. determine sequences of adjacent t-simplices in $F(I)$ with I-complete common facets. As described below, the sequences of the I-complete t-simplices in $F(I)$ can be uniquely linked together for varying $I \in I$ to obtain sequences of adjacent simplices of varying dimension. Under the nondegeneracy assumption, one of these sequences starts with σ^{0} in $F\left(I^{0}\right)$ and is followed by the algorithm, so starting at the point τ. the algorithm generates a unique sequence of I-complete adjacent t simplices in $F(I)$ of varying dimension. In this way within a finite number of steps either the algorithm reaches a ponit \bar{x} in an $(n-1)$-dimensional simplex for which $\bar{f}_{i}(\bar{x})=f_{j}(\bar{x})$ for every i and $j \in \mathcal{M}$, where \bar{f} is the piecewise linear approximation of f with respect to the P-triangulation, or for $k=1.2 \ldots$ the algorithm finds an
I-complete $(t-1)$-simplex in $F(k . I)$ for some $I \in \mathcal{I}$. Suppose the latter case holds, then we have the following result.

Lemma 4.2 For $k \in Z$ and $I \in \mathcal{I}$, let σ with vertices y^{1}, \ldots, y^{t} be an I-complete ($t-1$)-simplex lying in $F(k, I)$. Let $\left(\lambda^{*}, \mu^{*}, 3^{*}\right)$ be the corresponding unique solution of system (4.1). Then $x=\sum_{i=1}^{t} \lambda_{i}^{*} y^{i}$ is a 2^{-k}-robust stationary point of the piecewise linear approximation \bar{f} of f with respect to the P-triangulation. Moreover, x is a stationary point of \bar{f} on $A\left(2^{-k}\right)$.
Proof: Since $I=\left(I_{1}, I_{2}, \ldots, I_{m}\right) \in \mathcal{I}$, there exist $l_{1}<l_{2}<\ldots<l_{m}$ such that

$$
\begin{aligned}
I_{1} & =\left\{i_{1}, \ldots, i_{l_{1}}\right\} \\
I_{2} & =\left\{i_{1}, \ldots, i_{i_{1}}, i_{l_{1}+1}, \ldots, i_{l_{2}}\right\} \\
& \ldots \ldots \\
I_{m} & =\left\{i_{1}, \ldots, i_{l_{m}}\right\} \\
\therefore \backslash I_{m} & =\left\{i_{l_{\mathrm{m}}+1}, \ldots, i_{n}\right\} .
\end{aligned}
$$

Then it follows from equation (4.1) that

$$
\begin{gathered}
\bar{f}_{i_{1}}(x)=\ldots=\bar{f}_{i_{1}}(x)=\mu_{1}^{*}+\ldots+\mu_{m}^{*}+\beta^{*} \\
>\bar{f}_{i_{1}+1}(x)=\ldots=\bar{f}_{i_{i_{2}}}(x)=\mu_{2}^{*}+\ldots+\mu_{m}^{*}+\beta^{*}> \\
\ldots \ldots \\
>\bar{f}_{i_{l m-1}+1}(x)=\ldots=\bar{f}_{i_{l m}}(x)=\mu_{m}^{*}+\beta^{*} \\
>\bar{f}_{i_{m+1}+1}(x)=\ldots=\bar{f}_{i_{n}}(x)=3^{*},
\end{gathered}
$$

where $\mu_{i}^{*}>0$ for $i=1 \ldots .$. . Now it is not difficult to check that

$$
x_{i} \leq 2^{-k} x_{j} \text { whenever } \bar{f}_{i}(x)<\bar{f}_{j}(x) .
$$

It means that x is a 2^{-k}-robust stationary point of the piecewise linear approximation \bar{f} of f with respect to the P-triangulation.

Moreover. for each face $F(k . I) . I \in \mathcal{I}$. let $F^{*}(I)$ be the set of all n-dimensional vectors y such that every point of $F(k, I)$ is a solution of the linear programming problem

$$
\max y^{T} \hat{x} \text { subject to } \hat{x} \in A\left(2^{-k}\right) .
$$

Then the stationary point problem for \bar{f} on $A\left(2^{-k}\right)$ is the problem of finding a point x in $A\left(2^{-k}\right)$ such that $f(x) \in F^{*}(I)$ for a minimum face $F(k, I)$ of $A\left(2^{-k}\right)$ containing x. Duality theory implies that $F^{*}(I)=\left\{y \mid y=\sum_{i=1}^{m} \mu_{i} a\left(I_{i}\right)+3 e, \mu_{\mathrm{i}} \geq\right.$ 0 for $i=1 \ldots . m$. and $3 \in R\}$. It follows from equation (4.1) that $\bar{f}(x) \in F^{*}(I)$. Hence x is a stationary point of \bar{f} on $A\left(2^{-k}\right)$.

The next lemma shows that a 2^{-k}-robust stationary point of \bar{f} is an approximate 2^{-k}-robust stationary point of f.

Lemma 4.3 Let $\quad \eta_{k, d}=\sup \left\{\operatorname{diam}(f(\sigma)) \mid \sigma \in G^{d}(k-1, k)\right\}$. Let x be a 2^{-k}. robust stationary point of the piecewise linear approximation \bar{f} of f with respect to the P-triangulation obtained by the algorithm, so that $x \in F(I, k)$ for some $I \in \mathcal{I}$. Then $f(x)$ lies in the $\eta_{k .1}-n \in i g h b o r h o o d ~ o f ~ F^{*}(I)$, i.e. there is a $y \in F^{*}(I)$ such that $\|y-f(x)\| \leq \eta_{k, d}$.

Proof: Let $y^{1} \ldots . y^{\prime}$ be the vertices of a $(t-1)$-simplex of $G^{d}(k-1, k)$ in $F(k, I)$ containing x. Then $\bar{f}(x)=\sum_{j=1}^{t} \lambda_{j}^{*} f\left(y^{2}\right)$ lies in $F^{*}(I)$, where $\lambda_{i}^{*} \ldots, \lambda_{t}^{*}$ are convex combination coefficients such that $x=\sum_{j=1}^{t} \lambda_{j}^{*} y^{j}$. Therefore

$$
\begin{aligned}
\|f(x)-f(x)\| & =\left\|\sum_{j=1}^{t} \lambda_{j}^{*} f\left(y^{j}\right)-f(x)\right\| \\
& =\left\|\sum_{j=1}^{t} \lambda_{j}^{*}\left(f\left(y^{j}\right)-f(x)\right)\right\| \\
& =\sum_{j=1}^{t} \lambda_{j}^{*}\left\|f\left(y^{2}\right)-f(x)\right\| \\
& \leq \eta_{k \cdot d}
\end{aligned}
$$

Since S^{n-1} is compact and f is continuous on S^{n-1}. the error $\eta_{k, d}$ tends to zero as the mesh size $\delta_{k . d}$ goes to zero when k goes to infinity. Let x^{k} be a 2^{-k}. robust stationary point of f and $\eta_{k .1}$ the error in Lemma 4.3. Then the algorithm generates a sequence $\left\{x^{\hbar}: h=1.2 \ldots\right\}$ of approximate 2^{-k}-robust stationary points of f which therefore has a cluster point x^{*}. For simplicity of notation we can assume that this sequence itself converges to x^{*}. We are now ready to state the following corollary:

Corollary 4.4 Suppose x^{k} be an approximate 2^{-k}-robust stationary point generated by the algorithm. for $k=1.2 \ldots$. Then the sequence $\left\{x^{k} \mid k=1,2 \ldots\right\}$ has a cluster point and any cluster point is a robust stationary point of f on S^{n-1}.

Proof: The continuity of f. the property of the P-triangulation and the compactness of S^{n-1} imply that for any given $\epsilon>0$. there exists a positive integer M, such that for $k \in Z$ with $k \geq M$. there is a 2^{-k}-robust stationary point $\bar{x}^{k} \in A\left(2^{-k}\right)$ of f which is in the ϵ-neighborhood of x^{k}. On the other hand, since $\lim _{k \rightarrow \infty} x^{k}=x^{*}$, it immediately follows that

$$
\lim _{k \rightarrow \infty} \bar{x}^{k}=x^{*}
$$

Hence x^{*} is a robust stationary point of f on S^{n-1}.

In case the algorithm terminates with an $(n-1)$-dimensional simplex σ with vertices $y^{1} \ldots \ldots y^{n}$. then $\bar{x}=\sum_{i=1}^{n} \lambda_{i}^{*} y^{i}$ is a robust stationary point of \bar{f}. If the accuracy of approximation is not satisfactory, the algorithm can be restarted at the point \bar{x} with a smaller grid size d^{-1} to find a better approximate robust stationary point hopefully within a small number of steps. Without loss of generality we assume that the algorithm generates a sequence $\left\{\bar{x}^{h} \mid h=1,2, \ldots\right\}$, where \bar{x}^{h} is the robust stationary point of \bar{f} corresponding to the grid size d_{h}^{-1} for an increasing sequence of positive integers $\left\{d_{h} \mid h=1.2 \ldots\right\}$. It is readily seen that for every $k \in Z_{0}$. the mesh size $\delta_{k, d_{h}}$ tends to zero as h goes to infinity. Therefore the sequence $\left\{\bar{x}^{h} \mid h=1.2 \ldots\right\}$ has a subsequence converging to a cluster point x^{*}. Clearly, x^{*} is a robust stationary point of f on S^{n-1}.

As described above. starting at the point v, the algorithm generates a unique sequence of adjacent t-simplices $\sigma(a, \pi)$ in $F(I)$ for varying $I \in I$ of varying dimension $t=n-m$. When, with respect to some $\sigma(a, \pi)$ with vertices y^{1}, \ldots, y^{t+1} in some $G^{d}(k, k+1 ; I, \gamma(I, I(n-1)))$ for some $k \in Z_{0}$ and $\gamma(I, I(n-1))$, the variable λ_{q}, for some $q, 1 \leq q \leq t+1$, becomes zero through a linear programming pivot step in (4.1), then the replacement step determines the unique t-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $F(k . k+1: I . \gamma(I . I(n-1)))$ sharing with σ the common facet τ opposite vertex y^{q} unless this facet lies in the boundary of $F(k, k+1: I, \gamma(I, I(n-1)))$. If τ does not lie in the boundary of the set $F(k, k+1: I \cdot \gamma(I \cdot I(n-1)))$. then $\bar{\sigma}(\bar{a}, \bar{\pi})$ can be obtained from a and π as given in Table 1. where $E(j-1)$ is the j-th unit vector in $R^{n-1}, j=1 \ldots . n-1$.

Table 1. Parameters of $\bar{\sigma}$ if the vertex y^{q} of $\sigma(a, \pi)$ is replaced.

	$\bar{\pi}$	\bar{a}
$q=1$	$\left(\pi_{2}, \ldots, \pi_{t}, \pi_{1}\right)$	$a+E\left(\pi_{1}\right)$
$1<q<t-1$	$\left(\pi_{1}, \ldots, \pi_{q-2}, \pi_{\imath}, \pi_{q-1}, \pi_{q+1} \ldots, \pi_{t}\right)$	a
$q=t-1$	$\left(\pi_{t}, \pi_{1}, \ldots, \pi_{t-1}\right)$	$a-E\left(\pi_{t}\right)$

The algorithm continues with $\bar{\sigma}$ by making a linear programming (lp) pivot step in (4.1) with $\left(f(\bar{y})^{T} .1\right)^{T}$. where \bar{y} is the vertex of $\bar{\sigma}$ opposite the facet τ. In case a facet τ of a simplex in $G^{d}(k, k+1: I \cdot \gamma(I . I(n-1)))$ is not a facet of another simplex in $G^{d}(k \cdot k+1: I . \gamma(I \cdot I(n-1)))$. then τ lies in the boundary of $F(k, k+1: I, \gamma(I . I(n-1)))$. According to Definition 3.2 we have the following lemma.

Lemma 4.5 Let $\sigma(a . \pi)$ be a t-simplex in $F(k \cdot k+1: I . \gamma(I . I(n-1)))$. The facet τ of σ opposite the vertex $y^{7}, 1 \leq q \leq t+1$. lies in the boundary of this set if and only if one of the following casts occurs:
(i) $1<q<t+1 \cdot \pi_{7}=h+1, \pi_{\imath-1}=h$ for some $h \in\{0,1, \ldots, t-2\}$, and $a(h)=a(h+1)$ in case $h \geq 1$, and $a(0)+k d=a(1)$ in case $h=0$;
(ii) $q=t+1, \pi_{t}=t-1$, and $a(t-1)=0$;
(iii) $q=1, \pi_{1}=0$, and $a(0)=d-1$;
(iv) $q=t+1, \pi_{t}=0$. and $a(0)=0$.

Suppose the algorithm generates the simplex $\sigma(a, \pi)$ as given in Lemma 4.5 and λ_{7} becomes zero after making an lp pirot step in (4.1). Then the facet τ of σ opposite to the vertex y^{\imath} is I-complete. In case (iii) the facet τ lies in the face $F(k+1 . I)$ of $A\left(2^{-k-1}\right)$ and the algorithm reaches a 2^{-k-1}-robust stationary point $\bar{x}=\sum_{i=2}^{t+1} \lambda_{i} y^{i}$ of \bar{f} lying in $F(k+1, I)$. If k is large enough, then \bar{x} is an approximate robust stationary point of f. Otherwise, the algorithm proceeds with $\bar{\sigma}$ by making an lp pivot step in (4.1) with $\left(f^{T}(\bar{y}), 1\right)^{T}$, where \bar{y} is the vertex of $\bar{\sigma}$ opposite the facet τ and $\bar{\sigma}$ in $F(k+1 . k+2: I, \gamma(I, I(n-1)))$ is obtained according to Table 1.

In case (iv) the facet τ lies in the face $F(k, I)$ of $A\left(2^{-k}\right)$ and the algorithm continues with $\bar{\sigma}$ by making an lp pivot step in (4.1) with $\left(f^{T}(\bar{y}), 1\right)^{T}$, where \bar{y} is the vertex of $\bar{\sigma}$ opposite the facet τ and $\bar{\sigma}$ in $F(k-1, k ; I, \gamma(I, I(n-1)))$ is obtained also from Table 1.

In case (i) and if $h \geq 1$. the facet τ is a facet of the t-simplex $\bar{\sigma}=\sigma(a, \pi)$ in $F(k, k+1: I)$ lying in the subset $F(k, k+1: I, \bar{\gamma}(I, I(n-1)))$ with

$$
\bar{F}(I . I(n-1))=\left(J_{1}, \ldots, J_{h} . \bar{J}_{h+1}, J_{h+2}, \ldots, J_{t}\right),
$$

where $\bar{J}_{h+1} \in \mathcal{I} . \bar{J}_{h+1} \neq J_{h+1}$. is uniquely determined by the properties that \bar{J}_{h+1} conforms to J_{h}. has one component less than J_{h}, and is conformed by J_{h+2}. In case (i) and if $h=0$, then τ is a facet of the t-simplex $\bar{\sigma}=\sigma(a, \pi)$ in $F(k, k+$ 1:I. $\bar{\gamma}(I \cdot \bar{I}(n-1)))$ with $\bar{I}(n-1)$ and $\bar{\gamma}$ defined as follows. Let $J_{1}=I(n-1)=$ $\left(I_{1}, \ldots . I_{n-1}\right)$. In case $J_{2}=\left(I_{1}, \ldots . I_{n-2}\right)$, we have $\bar{I}(n-1)=\left(I_{1}, \ldots, I_{n-2}, \bar{I}_{n-1}\right)$ with $\bar{I}_{n-1}=I_{n-2} \cup . \backslash \backslash I_{n-1}$. In case $J_{2}=\left(I_{2} \ldots . I_{n-1}\right)$. let $\bar{I}(n-1)=\left(\bar{I}_{1}, I_{2}, \ldots, I_{n-1}\right)$ with $\bar{I}_{1}=I_{2} \backslash I_{1}$. Finally if $J_{2}=\left(I_{1}, \ldots . I_{k}, I_{k+2}, \ldots . I_{n-1}\right)$ for some $k \in\{1, \ldots, n-3\}$, we have $\bar{I}(n-1)=\left(I_{1}, \ldots . I_{k} \cdot \bar{I}_{k+1} \cdot I_{k+2} \ldots . . I_{n-1}\right)$ with $\bar{I}_{k+1}=I_{k} \cup I_{k+2} \backslash I_{k+1}$. Then $\bar{j}(I . \bar{I}(n-1))=\left(\bar{I}(n-1) \cdot J_{2}, \ldots . J.\right)$. In both subcases of case (i) the algorithm continues with making a pivot step in (4.1) with $\left(f^{T}(\bar{y}), 1\right)^{T}$, where \bar{y} is the vertex of the new t-simplex $\bar{\sigma}$ opposite the facet τ.

In case (ii) the facet lies in the set $F\left(k \cdot k+1: J_{t-1}\right)$ of $F(I)$. More precisely, τ is the $(t-1)$-simplex $\sigma(a . \bar{\pi})$ in $F(k \cdot k+1: \bar{I} . \bar{\gamma}(\bar{I} . I(n-1)))$, where $\bar{I}=J_{t-1}, \bar{\gamma}(\bar{I} . I(n-$ 1)) $=\left(J_{1} \ldots . J_{t-1}\right)$, and $\bar{\pi}=\left(\pi_{1}, \ldots, \pi_{t-1}\right)$. The algorithm now proceeds with making a pirot step in (4.1) with $\left(-a^{T}\left(I_{h}\right) \cdot 0\right)^{T}$. where I_{h} is the unique component of J_{t-1} but not of J_{t}.

Finally: if through a linear programming pivot step in (4.1), the variable μ_{h} becomes 0 for some $h \in\{1 \ldots . m\}$, then the algorithm terminates with the approximate robust stationary point $\bar{x}=\sum_{i} \lambda_{i}^{*} y^{i}$ of f if $m=1$ and restarts at the point \bar{x} with a smaller grid size in case the accuracy is not satisfactory. Otherwise, the simplex $\sigma(a, \pi)$ is a facet of a unique $(t+1)$-simplex σ in $F(\bar{I})$ with $\bar{I}=\left(I_{1}, \ldots . I_{h-1} . I_{h+1}, \ldots . I_{m}\right)$. More precisely, $\bar{\sigma}=\sigma(a, \bar{\pi})$ lies in $F(k, k+$ 1: $\bar{I}, \bar{\gamma}(\bar{I} . I(n-1)))$. where $\bar{\gamma}(\bar{I} . I(n-1))=(\gamma, \bar{I})$, and $\bar{\pi}=\left(\pi_{1}, \ldots, \pi_{t}, t\right)$. The algorithm continues by making a pivot step in (4.1) with $\left(f^{T}(\bar{y}), 1\right)^{T}$, where \bar{y} is the vertex of $\bar{\sigma}$ opposite the facet σ. This concludes the description of how the algorithm works in the P-triangulation of S^{n-1}.

5 Examples

In the current section we give some examples to show the power of robust stationary point concept. Let us briefly review the standard model of a pure exchange economy. For detail, we refer to Debreu [3]. In such an economy there are, say, n commodities and a finite number of consumers, each having a vector of initial endowments. Exchange of commodities are based on relative prices. All consumers exchange goods in order to maximize their utility under their initial wealth constraints. This economy can be characterized by an excess demand function $z: R_{+}^{n} \backslash\{0\} \longrightarrow R^{n}$ which satifies the following standard conditions:
(i) z is a continuous function:
(ii) $z(\lambda p)=z(p)$ for any $\lambda>0$ and $p \in R_{+}^{n} \backslash\{0\}$ (homogeneity);
(iii) $p^{T} z(p)=0$ for $p \in R_{+}^{n} \backslash\{0\}$ (Walras law).

The element $p^{*} \in R_{+}^{n} \backslash\{0\}$ is an equilibrium price vector if $z\left(p^{*}\right) \leq 0$. Note that homogeneity permits us to normalize the price vectors to the $(n-1)$-dimensional unit simplex S^{n-1}. Now it is not hard to show that this problem is equivalent to the stationary point problem on S^{n-1}. We present two examples. Example 1: there are two goods. The excess demand function is given by $z(p)=\left(p_{1} p_{2}^{2}\left(1-p_{1}^{2}\right),-p_{1}^{2} p_{2}(1-\right.$ $\left.\left.p_{1}^{2}\right)\right)^{T}$ for $p \in S^{1}$. There are two equilibria (i.e. stationary points) $x=(1.0)^{T}$. $y=(0.1)^{T}$. However only x is a robust stationary point. Example 2: there are three goods. The excess demand function is given by $z(p)=\left(p_{2} p_{3}, p_{1} p_{3}^{2},-p_{1} p_{2}\left(1+p_{3}\right)\right)^{T}$ for $p \in S^{2}$. The set of stationary points is $\left\{p \in S^{2} \mid p_{3}=0\right\}$. But z only has one robust stationary point: $p^{*}=(1,0,0)^{T}$.

Finally: we conclude with one more example: the function is defined by $f(x)=$ $\left(x_{1}+x_{2} \cdot x_{2}+x_{3} \cdot x_{3}+x_{1}\right)^{T}$ for $x \in S^{2}$. The set of stationary points is

$$
\left\{(1 / 3,1 / 3,1 / 3)^{T} \cdot(1,0,0)^{T},(0,1,0)^{T},(0,0,1)^{T}\right\}
$$

However. f just has one robust stationary point: $(1 / 3,1 / 3,1 / 3)^{T}$.

Acknowledgement

I would like to thank Gerard van der Laan. Dolf Talman and Yoshi Yamamoto for their stimulating discussion. valuable comments and constructive suggestion. I am. however, solely responsible for all remaining errors. This research is part of the VF-program "Competition and Cooperation".

References

[1] E.L. Allgower and K. Georg. "Simplicial and continuation methods for approximating fixed points and solutions to systems of equations", SIAM Review 22 (1980) 28-85.
[2] E. van Damme. Stability and Perfection of Nash Equilibria, Springer-Verlag, Berlin. 1987.
[3] G. Debreu. Theory of Value, Yale University Press, New Haven, 1959.
[4] T.M. Doup. Simplicial Algorithms on the Simplotope, Lecture Notes in Economics and Mathematical Systems 318. Springer-Verlag, Berlin, 1988.
[5] T.M. Doup and A.J.J. Talman. A A new variable dimension simplicial algorithm to find equilibria on the product space of unit simplices", Mathematical Programming 37 (1987) 319-355.
[6] T.M1. Doup. G. van der Laan and A.J.J. Talman. "The ($2^{n+1}-2$)-ray algorithm: a new simplicial algorithm to compute economic equilibria", Math ϵ matical Proyramming 39 (1987) 211-252.
[7] B.C. Eaves. "On the basic theory of complementarity". Mathematical Programming 1 (1972) 68-7.
[8] B.C. Eaves. "Homotopies for computation of fixed points", Mathematical Programming 3 (1972) 1-22.
[9] B.C. Eaves and R. Saigal. "Homotopies for the computation of fixed points on unbounded region". Wathematical Programming 3 (1972) 225-237.
[10] M. Kojima and Y. Yamamoto. "Yariable dimension algorithms: basic theory, interpretation, and extensions of existing methods". Mathematical Programming 24 (1982) 17-215.
[11] H.W. Kuhn. ". Approximate search for fixed points", Computing Methods in Optimization Problems 2 (1969) 199-211.
[12] H.W. Kuhn and J.G. MacKinnon. "The Sandwish method for finding fixed points". Journal of Optimization Theory and Applications 17 (1975) 189-204.
[13] G. van der Laan and A.J.J. Talman. "A restart algorithm for computing fixed points without an extra dimension". Mathematical Programming 20 (1979) 3348.
[14] G. van der Laan and A.J.J. Talman, " An improvement of fixed point algorithms by using a good triangulation", Mathematical Programming 18 (1980) $274-285$.
[15] C.E. Lemke and J.T. Howson, " Equilibrium points of bimatrix games", SIAM Review 12 (1964) 413-423.
[16] R.B. Myerson, "Refinements of Nash equilibrium concepts", International Journal of Game Theory 8 (1978) 73-80.
[17] H. Scarf, " The approximation of fixed points of a continuous mapping", SIAM Journal of Applied Mathematics 15 (1967) 157-172.
[18] H. Scarf. The Computation of Economic Equilibria, Yale University Press, New Haven. 1973.
[19] A. Schrijver. Theory of Linear and Integer Programming. John Wiley \& Sons, New York. 1986.
[20] A.J.J. Talman and Y. Yamamoto. ". A simplicial algorithm for stationary point problems on polytopes". Mathematics of Operation Research 14 (1989) 383-399.
[21] M.J. Todd. The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical Systems 124. Springer-Verlag, Berlin, 1976.
[22] I: Yamamoto. "A path-following procedure to find a proper equilibrium of finite games". Report No. 90636-OR. Cniversity of Bonn (1990), to appear in International Journal of Game Theory.

Figure 1. The subdivision of S^{n-1} for $n=3$ and $v=(1 / 2,1 / 3,1 / 6)^{T}$.

Figure 2. The P-triangulation of S^{n-1} for $n=3, \alpha=2$ and $v=(1 / 3,1 / 3,1 / 3)$.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No. Author(s)
9221 S. Smulders and Th. van de Klundert

9222 H. Bester and
E. Petrakis

9223 A. van den Nouweland.
M. Maschler and
S. Tijs

9224 H. Suehiro
9225 H. Suehiro
9226 D. Friedman
9227 E. Bomhoff

9228 P. Borm, G.-J. Otten and H . Peters

9229 H.G. Bloemen and A. Kapteyn

9230 R. Beetsma and F. van der Ploeg

9231 G. Almekinders and
S. Eijffinger

9232 F. Vella and M. Verbeek

9233 P. de Bijl and S. Goyal

9234 J. Angrist and G. Imbens

9235 L. Meijdam. M. van de Ven and H . Verbon

9236 H. Houba and A. de Zeeuw

9237 A. Cameron and P. Trivedi

Title

Monopolistic Competition, Product Variety and Growth: Chamberlin vs. Schumpeter

Price Competition and Advertising in Oligopoly

Monotonic Games are Spanning Network Games

A "Mistaken Theories" Refinement
Robust Selection of Equilibria
Economically Applicable Evolutionary Games
Four Econometric Fashions and the Kalman Filter Alternative A Simulation Study

Core Implementation in Modified Strong and Coalition Proof Nash Equilibria

The Joint Estimation of a Non-Linear Labour Supply Function and a Wage Equation Using Simulated Response Probabilities

Does Inequality Cause Inflation? - The Political Economy of Inflation. Taxation and Govermment Debt

Daily Bundesbank and Federal Reserve Interventions - Do they Affect the Level and Unexpected Volatility of the DM/\$-Rate?

Estimating the Impact of Endogenous Union Choice on Wages U'sing Panel Data

Technological Change in Markets with Network Extemalities

Average Causal Response with Variable Treatment Intensity

Strategic Decision Making and the Dynamics of Government Debt

Strategic Bargaining for the Control of a Dynamic System in State-Space Form

Tests of Independence in Parametric Models: With Applications and Illustrations

No.	Author(s)	Title
9238	J. S. Pischke	Individual Income. Incomplete Information, and Aggregate Consumption
9239	A. Bloemen of Labour Supply with Job Offer Restrictions	

No.	Author(s)	Title		
9303	D. Karotkin and S. Nitzan	Some Peculiarities of Group Decision Making in Teams		
9304	A. Lusardi	Euler Equations in Micro Data: Merging Data from Two Samples		
9305	W. Güth	A Simple Justification of Quantity Competition and the CournotOligopoly Solution		
9306	B. Peleg and S. Tijs	The Consistency Principle For Games in Strategic Form		
9307	G. Imbens and A. Lancaster	Case Control Studies with Contaminated Controls		
9308	T. Ellingsen and K. Wämeryd	Foreign Direct Investment and the Political Economy of Protection		
9309	H. Bester	Price Commitment in Search Markets		
9310	T. Callan and A. van Soest	Female Labour Supply in Farm Households: Farm and Off-Farm Participation		
9311	M. Pradhan and A. van Soest	Formal and Informal Sector Employment in Urban Areas of Bolivia		
9312	Th. Nijman and E. Sentana	Marginalization and Contemporaneous Aggregation in Multivariate GARCH Processes		
9313	K. Wärneryd	Communication, Complexity, and Evolutionary Stability		
9314	O.P.Attanasio and M . Browning	Consumption over the Life Cycle and over the Business Cycle		
9315	F. C. Drost and B. J. M. Werker	A Note on Robinson`s Test of Independence		
9316	H. Hamers, P. Borm and S. Tijs	On Games Corresponding to Sequencing Situations with Ready Times		
9317	W. Güth	On Ultimatum Bargaining Experiments - A Personal Review		
9318	M.J.G. van Eijs	On the Determination of the Control Parameters of the Optimal Can-order Policy		
9319	S. Hurkens	Multi-sided Pre-play Communication by Burning Money		
9320	J.J.G. Lemmen and S.C.W. Eijffinger	The Quantity Approach to Financial Integration: The Feldstein-Horioka Criterion Revisited		
9321	A.L. Bovenberg and S. Smulders	Environmental Quality and Pollution-saving Technological Change in a Two-sector Endogenous Growth Model		
No.	Author(s)	Title		
:---	:---	:---		
9322	K.-E. Wärneryd	The Will to Save Money: an Essay on Economic Psychology		
9323	D. Talman,	The (2n-m-1 - 2)-Ray Algorithm: A New Variable Dimension		
	Y. Yamamoto and	Simplicial Algorithm For Computing Economic Equilibria on Z. Yang		
9324	H. Huizinga		\quad	The Financing and Taxation of U.S. Direct Investment
:---				
Abroad				
No.	Author(s)			
:---:	:---:			
9342	G.J. Almekinders			
9343	E.R. van Dam and W.H. Haemers			
9344	H. Carlsson and S. Dasgupta			
9345	F. van der Ploeg and A.L. Bovenberg			
9346	J.P.C. Blanc and R.D. van der Mei			
9347	J.P.C. Blanc			
9348	R.M.W.J. Beetsma and F. van der Ploeg			
9349	A. Simonovits			
9350	R.C. Douven and J.C. Engwerda			
9351	F. Vella and M. Verbeek			
9352	C. Meghir and G. Weber			
9353	V. Feltkamp			
9354	R.J. de Groof and M.A. van Tuij!			
9355	Z. Yang			

Title

Theories on the Scope for Foreign Exchange Market Intervention
Eigenvalues and the Diameter of Graphs

Noise-Proof Equilibria in Signaling Games

Environmental Policy, Public Goods and the Marginal Cost of Public Funds

The Power-series Algorithm Applied to Polling Systems with a Dormant Server

Performance Analysis and Optimization with the Powerseries Algorithm

Intramarginal Interventions, Bands and the Pattern of EMS Exchange Rate Distributions

Intercohort Heterogeneity and Optimal Social Insurance Systems
Is There Room for Convergence in the E.C.?

Estimating and Interpreting Models with Endogenous Treatment Effects: The Relationship Between Competing Estimators of the Union Impact on Wages

Intertemporal Non-separability or Borrowing Restrictions? A Disaggregate Analysis Using the US CEX Panel

Altemative Axiomatic Characterizations of the Shapley and Banzhaf Values

Aspects of Goods Market Integration. A Two-Country-Two -Sector Analysis

A Simplicial Algorithm for Computing Robust Stationary Points of a Continuous Function on the Unit Simplex
P.O. BOX 90153,5000 LE ILBURG, THE NETHERLANDS

Bibliotheek K. U. Brabant

17000011331288

[^0]: ${ }^{1}$ Department of Econometrics. Tilburg L'niversity, Postbox 90153, 5000 LE Tilburg. The Vetheriands

