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Abstract

This paper studies a class of delivery problems associated with the Chinese
postman problem and a corresponding class of delivery games. A delivery problem
in this class is determined by a connected undirected (directed, mixed) graph,
a cost function defined on its edges (arcs) and a special chosen vertex in that
graph which will be referred to as the post office. It is assumed that the edges
(arcs) in the graph arc owned by different individuals and the delivery game is
concerned with the allocation of the traveling costs incurred by the server, who
starts at the post office, and is expected to traverse all edges in the graph before
returning to the post office. A graph (/' is called Chinese postman-submodular, or,
for short, CP-submodular (CP-totally balanced, CP-balanced, respectively) if for
each delivery problem in which (7 is the underlying graph the associated delivery
game is submodular (totally balanced, balanced, respectively).

For undirected graphs we show that CP-submodular graphs as well CP-totally
balanced graphs turn out to be weakly cyclic graphs and conversely. An undirected
graph is CP-balanced if and only if this graph is a weakly Buler graph. Lor directed
graphs, CP-submodular graphs can be characterized by directed weakly cyclic
graphs. Further, it is proven that each directed connected graph is CP-balanced.
For mixed graphs it is shown that a graph is CP-submodular if and only if it is a
mixed weakly cyclic graph.

Finally, we note that undirected, directed and mixed weakly cyclic graphs can

be recognized in linear time.
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1 Introduction

A class of delivery games was introduced by Hamers of al. (1994) to analyze a cost
allocation problem which arises in some delivery problems on graphs. These delivery
problems are associated with the Chinese postman problem (Mei-Ko Kwan (1962), Fd-
monds and Johnson (1973)) and can be described as follows. A server is located at some
lixed vertex of a graph (7, to be referred to as the post office, and cach edge of (7 belongs
to a different player. The players need some service, e.g. mail delivery, and the nature of
this service requires the server Lo travel from the post ollice; and visits all edges (play
crs) before returning to the post office. The cost allocation problem associated with this
delivery problem is concerned with a fair allocation of the cost of a cheapest Chinese
postman tour in the graph. That is, the cost of a cheapest tour, which starts at the
post office, visits cach edpe of (7 at least. once and returns Lo the post olfice. Following
what is by now an established line of rescarch, Hamers ¢l al. (1994) formulated this cost
allocation problem as a cooperative game (N, e), referred to as a delivery game, where N
is the set of players (edges) in the graph, and ¢ : 2V 5 [ is the characteristic fnetion.

For cach S C N, ¢(S5) is the cost of a minimal (i.c. cheapest) S-tour, which starts at

the post office, visits cach edge in S at least once and returns to the post office. Solu-
tion concepts in cooperative game theory were then evaluated as possible cost allocation
schemes for the above delivery problem.

One of the most prominent solution concepts in cooperative game theory is the core
of a game. It consists of all vectors which distribute the cost of a cheapest N-tour among
the players in such way that no subset of players can be better off by seceding from the
rest of the players and act on their own behall. That is, a vector # is in the core of a
game (N,¢) il Yienyw, = ¢(N) and Yiesa; T e(S), forall S C N. A cooperative game

whose core is not empty is said to be balanced, and if the core of any subgame of it has

a nonempty core, it s said to be totally halanced.

In general, a delivery pame associated with an undirected graph conld have an empty
core. However, Hamers of al. (1994) has shown if a connected graph is a weakly Fuler
graph. then the associated delivery game is balanced. Here, a graph (/' is called a weakly
Euler graph if after the removal of the bridges in (7 the component are all Buler graphs
or singletons. Further, Hamers (1995) has shown that if a connected undirected graph
is weakly cyclic, that is, every edge therein is contained in at most one cycle, then
the associated delivery game is submodular.  That is, the characteristic funtion ¢ is
submodular.

In this paper we study the class of delivery games derived from undirected, directed
and mixed graphs. We define a graph to be Chinese Posttman-submodular, Chinese

Postman-totally balanced or Chinese Postman-balanced (or, for short, CP-submodular,



CP-totally balanced and CP-balanced), if the corresponding delivery game is submod-
ular, totally balanced, or balanced, respectively, for all edge costs and all locations of
the post office. We prove that an undirected graph (7 is CP-submodular if and only
il it is CP-totally balanced, which holds if and only il G is weakly cyclic. Further, a
undirected graph ' is CP-balanced if and only if (7 is a weakly Euler graph. In contrast
with the undirected case, we prove that any connected directed graph is CP-balanced.
Further, we prove that a delivery game induced by a directed graph is submodular if and
only if the directed graph is weakly cyclic. In a directed weakly cyclic graph each arc
is contained in exactly one circuit. For a connected mixed graph, (7 is CP-submodular
if and only if (7 is a mixed weakly cyclic graph. That is, cach arc or edge is contained
in at most one mixed circuit. Finally, we observe that undirected, directed and mixed
weakly cyclic graphs can be recognized in linear time.

Our ability to characterize submodular delivery games is significant because submod-
ular games are known to have nice properties, in the sense that some solution concepts for
these games coincide and others have intuitive description. For example, for submodular
games the Shapley value is the barycentre of the core (Shapley (1971)), the bargaining
sct and the core coincide, the kernel coincide with the nucleolus (Maschler et al. (1972))
and the 7-value (Tis (1981)) can be casily calculated. Some examples of submodular
games which were studied in the literature include airport games (Littlechild and Qwen
(1973)), tree ganes (Megiddo (1978), Granot el al. (1996)), sequencing games (Curiel et
al. (1989), Hamers et al. (1995)) and certain communication games (l/an de Nouweland
and Borm (1991).

Finally, we note that results obtained in this paper arc in similar vein to those derived
by Herer and Penn (1996) and D. Granot, F. Granot and W.R. Zhu (1996). Therein,
delivery games associated with the traveling salesman problem are investigated, and
directed and undirected graphs which give rise to submodular delivery games for any
edge costs and any starting vertex are characterized.

The paper is organized as follows. Section 2 introduces the delivery problem and the
associated delivery game. Section 3 investigates the delivery game when (7 is undirected,

and Section 1 is devoted to delivery games defined on directed graphs.

2 Delivery problems and delivery games

We present in this section a class of delivery problems associated with the Chinese post-
man problem and a corresponding class of delivery games. However, before a formal
description of the models is presented, we need to provide some background in coopera-

tive game theory and recall some elementary graph theoretical definitions.



A cooperalive (cost) game is a pair (N, ¢), where N is a finite sct of players, ¢ is a
mapping, ¢ : 2% — I, with ¢(@) = 0, and 2V is the collection of all subsets of V. A
subset of N will be sometimes referred to as a coalition. A function h : 2¥ — IR is said
to be subadditive il h(S) + h(T') > A(SUT) whenever SNT = @ and it is said to be

submodular il

K(T'U {3}) = W(T) < h(S U {5}) - A(S) (1)
for all j € N with S C T C N\{j}. Equivalently, A is submodular if
RS UT) +h(SNT) < h(S) + h(T) )

for all coalitions S,7" € 2V. A game (N, ¢) is submodular or concave if and only if the
map c: 2V — IR is submodular.

An allocation z = (z;);eny € IRV is a core-element if YienTi =¢(N) and T gz, <
¢(S) for all S € 2V. The core of a game (N, ¢) consists of all core elements. A game is
called balanced if its core is non-empty and it is Lolally balanced if for cach S C N, (S,cs)
is balanced, where eg is the restriction of ¢ to the family of subsets of S. It follows from
Shapley (1971) that concave games are totally balanced.

Let G = (V((), E(G)) be an undirected (directed) graph where V(G) and F(G)
denote the set of vertices and the set of edges (arcs) of G, respectively. An edge, {u,v},
in an undirected graph joins vertices u and v therein. If (u,v) is an arc from u to v in
a directed graph (digraph), we will refer to u and v as the tail and head of are (u,v),
respectively. A (directed) walk in G = (V(G), 1£((7)) is a finite sequence of vertices and
edges (arcs) of the form vy, ¢y, vy, ..., €k, Veyy with & > 0,v1,...,0641 € V(G),e1,...,c1 €
£(G) such that ¢; = {v;, 0,41} (¢; = (vj,v;41)) for all j € {1,...,k}. Such a walk is said
to be closed if v; = vy A (directed) path in (7 is a (directed) walk in which all vertices
(except, possibly v and vey;) and edges (arcs) are distinet. A closed (directed) path,
e, a path in which vy = vy, containing at least one edge (arc) is called a (directed)
circurt. An undirected (directed) graph (7 is conneeled if there is a (directed) path from
any vertex to any other vertex in G. An edge b € F(G) is called a bridge in a connected
graph (¢ = (V((7), E(G)) il the graph (V(G), E(G) — {b}) is not connected. The set of
bridges in G is denoted by B(().

Let G = (V((), E(()) be a connected undirected (directed) graph, and let vy € V
be an arbitrary vertex in V((7), which will sometimes be referred to as a post office of
(/. An S-tour associated with S C () is a closed walk that starts in the post office
vy, visits each edge (arc) in S at least once and returns to vo. Formally, we have:
Definition 2.1 Let G = (V(G), E(G),v) be a connected undirected (directed) graph
in which vo € V(G) is the post office. An S-lour in G is a closed (directed) walk
Vg, €1y Vs ooy Vo1, €k, Vo Such that S C {e; | j € {1,...,k}}.

The set of S-tours associated with S C F((/) is denoted by D(S).
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Let £ 1((7) — [0,00) be a travel cost function associated with edges (arcs) of (/.
The travel cost of an S-tour vy, ¢y, vy, ..., Vp_y, (5, 10 is naturally equal to Z;-‘:, iey).

The class of delivery problems we analyse in this paper and the corresponding class
of cost allocations problems arise naturally in ¢ when it is assumed that edges (arcs)
thercin belong to different players. ixplicitly, assume that cach edge (arc) in (7 belongs
to a different player and that a server, located at vy, is providing some service to players
in (7. The nature of this service in the delivery problem, which can be thought of as
mail delivery, requires that the server will travel along the edges (arcs) of G and return
Lo vy. The corresponding cost allocation problem is concerned with the allocation of the
cost of providing the service to the players.

Formally, let I' = (N(G), (V(G), E(G),vp),t,9) denote a delivery problem, where
N(G) is the set of players, (V(G), E(G), v) is a connected undirected (directed) graph
in which vy represents the post office, [((7) — 10, 00) assigns travel costs to the cdges
(arcs) and g = [/(()) — N((J) is a one-to-one correspondence between the edges (arcs)
and the players.

Definition 2.2 7he delivery game (N(G), ) corresponding Lo the delivery problem
I'= (N(G),(V(G), B(G),vp),t,9) is defined for all S C N(G) by
)= . ey 2 1€ ®

Clearly, ¢ is subadditive. Moreover, since the travel cost function is non-negative,
delivery games are also monotonic, i.e. ¢(S) < ¢(T) for all S C T C N(G).

A delivery game (N, ¢) associated with a delivery problem I' is totally balanced if
for each § C N(() the subgame (S,cs) is balanced. A graph ¢ is said to be Chinese
Postman-submodular, Chinese Postman-totally balanced or Chinese postman-balanced,
or, for short, CP-submodular, CP-totally balanced, or CP-balanced, if for cach delivery
problem I"in which (' is the underlying graph the associated delivery game is submodular,
totally balanced or balanced, respectively. Hence, if ¢ is CP-submodular, CP-totally
balanced or CP-balanced then for any choice of the travel cost function on ¢ and any
choice of the post-office in (7, the corresponding delivery game is submodular, totally

balanced, or balanced, respectively.

3 Weakly cyclic graphs, submodular graphs and to-
tally balanced graphs: the undirected case

We characterize in this section CP-submodular graphs and CP-totally balanced graphs,

when the underlying graph ¢ in the delivery problem is assumed to be undirected.



Iixplicitly, we prove that both CPP-submodular graphs and CP-totally balanced graphs
are weakly cyclic graphs, where an undirected graph is said to be weakly cyclic if it is
connected and every edge therein is contained in at most one circuit.

The first lemma shows that a necessary condition for a graph (7 to be CP-totally
balanced is that (¢ must be weakly cyclic.
Lemma 3.1 A CP-tolally balanced graph is weakly cyelic.
PROOF: Let (N(G),(GL00),t,9) be a delivery problem and suppose (7 is not weakly

cyclic. Then, (7 contains a connected subgraph (i* of the form shown in Figure 1.1.

Yo

Figure 1.1.

Let Sp, Sy and Sy be the set of players associated with the edge sets Fy, By, and Fy,
depicted in Figure 1.1, respectively. Let N((*) = §, U S, U Sy, Let vg, as indicated in
Figure 1.1, be the post office, and let ¢ be a travel cost function satislying 3.ep t(e) > 0
for j = 1,2,3 and {(e) is arbitrary large for e ¢ £, U I, U Es, and let t (N(G™),c) be the
subgame of (N((J),¢). We claim that with the above choice of vy and the cost function
t, the core of (N(G*),¢) is empty. Indeed, if the core is not empty, then there exists a
vector 2,z € RN such that?® z(N(G*)) = ¢(NV( /")) and

z(S1USy) < U(E) + 1(F)

z(Si1U8y) < (141 + t( 1) (4)

£(S3USy) < 1(Ey) + 1(Fs).
Summing the |l|((|lldllll(§ in (1) we obtain that

2(N(G)) < HEL) + U(Ey) + () < ((N(G")),
where the last strict inequality follows since ¢(£;) > 0 for 7 = 1,2,3. We have obtained
a contradiction, since it was assumed that z(N(G*)) = ¢(N(G™)), and we conclude that

(N(G™),¢) is not balanced. Consequently, (i is not CP-totally balanced. ]

Clearly, if (' is ("P-submodular, then (7 is also CP-totally balanced. Hence, from Lemma

3For a vector y € RN and § C N we let y(S) = Z,es ¥j-



3.1 it follows that a CP-submodular graph is weakly cyelic. The rest of this section is
essentially devoted to prove that a weakly cyclic connected undirected graph is CP-
submodular. First, we need 1o introduce some notation.

Let T be a delivery problem, let Q™ denote the edge set of a minimal Q-tour in I',
and let Q7 consists of all distinet edges in Q™. lor simplicity we will denote by ) the
player set corresponding to an edge st Q, instead of 9(@). Let (N,c) be the delivery
game corresponding to I'. Then, the definition of Q7 implics

«(Q) = ¢«(Q"). (5)
Forany @, R C N(G)let Q — R={j € N(G) | j € Q,j & R}. The following Lemma
describes two simple CP-submodular graphs.

Lemma 3.2

(i) If @ graph (i consisls of a single edge then G is CP-submodular.

(ir) If a graph (7 is a circuit then G is CP-submodular.

Proor: The proof of (i) is trivial. A proof of (ii) is given in Hamers (1995). For
completeness, we provide below an alternative proof for (ii).

Let T' = (N(G),(G,),1,9) be the delivery problem associated with ¢ and let
(N(G),¢) be the corresponding delivery game. We have to prove that e(S) + ¢(T) >
(SUT)+e(SNT) for all S, T C N((7). We distinguish two cases:

Case 1: There exist minimal S-tonr and T-tour in I’ such that S” N 7P = ¢.
Since S C SP and T'C T, it follows that SN T = @ and, consequently, ¢(SN7T) = 0.
Since ¢ is subadditive, ¢(S) + (7)) > ¢(SUT). Thus ¢(S) + «(T') > «(SUT) + oSNT).

Case 2: For every minimal S-tour and 7-tour in I, S” n1'P # 0.

Subcase 1: S” c 1P,

Then, o(SUT) = o(T), (SNT) < (S), and «(S) +¢(T) > «(SUT) + oSNT).
Subease 2: S ¢ T and I ¢ §7.

In this subcase cither SP and 1'” can be partitioned, P = SPUSD TR = TP gD
such that S € 1P, 1P C SP, and subcase | can be applied to prove submodularity.
Otherwise, we have in this subcase that SPUTP = N(G) and (SPNTP)U (SP - T°)u

(1" — SP) = N((}). Morcover, it casy to verify that in this instance:

oS)+e(T) = 3 aG)+ XS 2G)+ Y 23)

jesbary jesp_Tp JETD 8§D
> 2(N(()).
Clearly, e(SPUTP) = ¢(N(G)) and ¢(SNT') < ¢(N(()), which implies that (S)+e(T) >
c(SUT)+¢(SNT). )



We need to introduce some new notation. Lt I' = (N(G), (G, v),t ) be a de-
livery problem and let (N,e) be the corresponding delivery game.  For v € V()
let ¢(S;0) denote the cost of a minimal S tour in ¢ which also visits the vertex
v. Let {v,w} be an edge incident to vertex v in € — (V(G), E(G)). The wverter-
edge replacement in G wrt. v results in a new graph, denoted (., derived from ¢/
by placing a new vertex v* on the edge {v,w}. Thus G¥ = (V(G) U {v*}, E*(@))
where EU(() = BE(() U ({o, v}, {o7, wh)\({v,w})). The delivery problem derived from
"= (N((), (G 00), L, g), which corresponds to the vertex-edge replacement graph (", is
I = (N(G"), ((*, vy), 1", 9%), and will be referred to as the vertex-edge extension of .
Here, t*(¢) = i(e) for all ¢ € E(G\({v,w}), t*({v",w}) = t({v,w}), t*(v,v") = 0 and
g'(e) = g(e) for all e € E(GN\({v, w}),g*({v", w}) = 9({v,w}) , g”(v,v") = nv. Thus,
N(G¥) = N(G) U {n*}.

Recall that for simplicity, we denote by @ the player set corresponding to an edge set
Q. Therefore, consistent with our definition of 9", for S C E*(Q) such that {v,w}es
and {v,v"} € S, ¢(S) is the cost of a minimal (S\{v",w}) U ({v,w})-tour in G. Let
N" = N(G) U {n"} and let (N?,¢) be the delivery game corresponding to I'Y. Then it
is easy to verify that for all § C N(@)

"(SU{n"}) = ¢(S;v) and &5) =(5). (6)

For a subset Q) € N¥ we let @, = Q\{n"}. Further, recall that Q™ denotes the cdge
set of a minimal Q-tour in a graph and QP consists of all distinct edges in Q™. From
the definition of ¢ and QP it follows that

Q) = " (Q"). (7)
Therefore, for any Q C N
Q) = (QP) = (QP), (8)
where the first equality follows from (7) and the second equality follows from the second
equality in (6) if n" ¢ QP and, otherwise, if Q7 = QP u {n"}, we can use the first
equality in (6), since the vertex v is contained in 1 1
By the definition of I' and 1" it follows that, for any Q € N with n¥ ¢ Q

“«(Q)) = Q) (9)
and for any Q € NY with n” € ) we have that
Q) = "(Q") = Qi) > (Quiv), (10)

where the first equality holds by (8), the second equality by (6) and the inequality holds
since (Q, C Q!,’.

Lemma 3.3 If (; is CP-submodular then G is also CP-submodular.
Proor: Let (NV,¢”) be the delivery game corresponding to I' and let (N, ¢) be the

delivery game corresponding to I', with I' being the vertex-edge extension of I'. Let S



and 1" be arbitrary subsets in N'. Then

CS) ) = o(SP) 4 (1)
oS UTLY 48P riety
«((SPu ™)) + (($” n1P),)
((SUT))+c((SNT),)
= d(SUT)))+(SNT)D),

where the first equality holds by (8), the first inequality holds by the CP-submodularity

i

v

v

of (7, the second inequality holds by monotonicity and the last equality holds by (8)-
Two cases will be considered.
Case 1: n* € SNT.
Clearly, in this case also 1* € SU 7 and it follows that

ASUD))+e((SNTYP) > ((SUT);0) + (SN 1)y;v)

= d(SuT)+c(SNT),

where the inequality holds by (10) and the equality holds by (6).
Case 2: n” ¢ SNT.

Subcase 1: n* € SUT.

Then

((SUT))+e((SNTYP) > ((SUT)y;v)+e(SNT)
(SUT)+c(SNT),

where the inequality holds by (9) and (10) and the equality holds by (6).

Subcase 2: n" ¢ SUT.

Then

((SUT)+c((SNT)P) = «(SUT)+(SNT)
(SUT)+c(SNT),

where the first equality holds by (9) and the second cquality holds by (6).

Thus, we have proved that (NY,¢Y) is concave, which implies that the graph G is
p ) p graj

CP-submodular. m}

Let Gy = (V((h), E(GY)) and Gy = (V(Gy), E((3)) be two connected graphs with
V(G N V(Gy) =00 A L-sum of Gy and (7, is obtained by coalescing one vertex in (7,
with another vertex in (7. The newly formed vertex will be referred to as the 1-sum
vertex.

Lemma 3.4 Lel the graph () + Gy be a I-sum of the connected graphs G, and Gy If
Gy and Gy are CP-submodular, then G, + G, is also CP-submodular.
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Proor: Let I''= (N(G, + (), (G + Gyyv),t, g) be the delivery problem associated
with (/) + (73 and let (N(Gy + (73),¢) be the corresponding delivery game. We need
to show that (N(() + (3),¢) is submodular for each location vy € V(G + (/3). For
simplicity, we prove the result for vy € V().
For i = 1,2, let I'; = (N((.',),((:',,v,),t,.;((,-.,“r/,,;({,-')) and let (N((:',-),c(;‘) be the cor-
responding delivery game, with v, = vy and vy = v is the l-sum vertex in G,. Lor
SCN(G+G,), let S, = SON(G) and S, = SNN(Gy). Then, for any § C N(G,+Gy),

&(5) = fé 1) + ¢, (S2), where

Psy= b T S=g (11)

¢, (Siiv) il Sy £0.

Since (N((y), ¢q,) is submodular, the submodularity of (N(Gy + G3), ¢) would follow if
we show that f©1 is a submodular function.
Let S and T be arbitrary subsets in N (G + (/2). We distinguish four cases:
Case 1: S, =0 and 7} = 0.
Then

TS + 99Ty ca, (S1) + e, (17)
i (S1UTY) + ¢, (S, 0T
FOSuT) + f5SnT),
where the two equalities hold by (11) and the inequality follows from the submodularity
of (N(Gy), cqy ).
Case 2: S, # () and T}, # §.
Then

S+ f ) = e, (S1;9) + ¢q, (Th;v)
i, (iU {v}) + e, (T U {v})

> e, ($1UT) U {o}) + e (5,0 1)U o)),

where the first equality holds by (11), the second equality holds by (6) and the inequality

v ol

follows from the submodularity of (N(¢/)) U {v},efs,) (el Lemma 3.3). Now, we have
&, (S UTLUA{v}) = e, (8 UTy0) = [9(S, UT), since S, UTy # 0. Further,
G ((SINT) U Av}) = e, (St N1y v), e, (S NTv) = FES NT) il S, N Ty # 0 and
¢, (SiNTy;v) > f9(S,NT)if S,NT, = 0. Hence, e, (SyN7Ty;0) > fG1(S,NTy). The
submodularity of [ for this case follows.

Case 3: S, # W and T, = §).

Then

f91(5y) + [Ty

ca, (Si;v) + ¢, (Th)

g, (S U {v}) + ¢, (T))

e, (STUTL U {v}) + ¢t (SN Ty)
e, (STUT;0) + e, (S, N TY)
SOSUT) + S 0Ty,

v



where the first and fourth equalities hold by (1), the second and third cqualities follow
from (6), and the inequality follows from the submodularity of (N((/)U {v},et) (cf.
Lemma 3.3).

Case 4: S, = () and 1}, # 0.

The proof is identical to that of (iii).

Thus, we have proved above that f is submodular, which implies that G, + G, is

CP-submodular. ]

We are ready to present the following Theorem.
Theorem 3.1 For an undirected graph G, the following statements are equivalent:
(i) G is weakly cyelic.
(ii) (i is CP-submodular.
(1) G is CP-totally balanced.
PROOF: The case (i1) — (442) holds since a submodular game is totally balanced and
the case (12) — (i) is already proved in Lemma 3.1. It remains to prove that () — (i2).
Indeed, one can casily verily that a weakly cyclic graph can be obtained by 1-sums of
circuits and single edges. By Lemma 3.2, the delivery games corresponding to circuits
and single edges arc submodular and by Lemma 3.4, a 1-sum of CP-submodular graphs

is CP-submodular. O

Now, we will briefly discuss the recognition problem of a weakly cyclic graph. The
connectedness of any graph can be checked in lincar time. Tarjan (1972) showed that
the biconnected components® of a graph can be found in lincar time with respect to the
number of vertices and edges. In a weakly cyclic graph, the biconnected components are
the circuits. Since it can be checked in linear time whether a biconnected component is
a circuit, we have proved the following proposition.

Proposition 3.1 The computalional complezity of determining whether a graph (7 is
weakly cyclic s O(| E(G) |, | V(G) ).

Hamers el al. (1994) discussed the CP-balancedness of the undirected case. They
showed that if a connected undirected graph (7 is a weakly Fuler graph then the graph
is CP-balanced. lere, a graph (i is called a weakly Euler graph il the components of
the graph (V((), E(G) — B((7)), the graph that arises from G by removing all bridges,
are all Euler graphs or singletons. Recall that a graph is called an Euler graph if there

exists a closed walk in that graph that visits cach edge of this graph exactly once. We

*A biconnected component of a graph (7 is a maximal subgraph of (7 in which for cach triple of

distinet vertices v, w, z there exists a path between v and w not containing z.
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refer to such a closed walk as an Euler tour. Before the next Theorem is formmlated we
need the following notation. For a path p we will denote by V(p) and #(p) the set of
vertices and edges therein, respectively. The degree of a vertex v € V(@) in a graph
(= (V((), () is equal to the number of edges incident to that vertex v. The set
OV(() denotes the set of vertices which have an odd degree in ;.

Theorem 3.2 A connecled undirected graph G is weakly Euler if and only if G s CP-
balanced.

Proor: If (7 is weakly cyclic, Hamers et al. (1994) have provided a vector that is
in the core of the corresponding delivery game. So, here we have to prove the only if
part. Supposc (i is not a weakly Buler graph. Then there exists a component G* in
(¢ — B(G) that is not an Buler graph and not a singleton. This implies that ov(ar)
is a non-empty set that contains an cven number of vertices. Since G* is connected,
the vertices of OV/(G™) can be covered by a forest (7, which is a subgraph of G, in
such a way that the graph that arises from (;* by multiplying the edges of G* that
correspond to (i, is an Fuler graph (cf. Edmonds and Johnson (1973). Since (I, is
a forest, there exists vertex-disjoint trees 7y, ..., such that the union of these trees is
equal to (.. Obviously, there exists a vertex in the tree 7} such that the degree of v, is
cqual to one in 1} and v, € OV(G"). Since (i contains no bridges, the degree of v, in
G is at least three. Let ey, ..., ¢x be all edges of E(G*) that are incident with vy, and
let ¢, € E(T)). Since the degree of v, in T} is equal to one and the trees T,...,T; are
vertex-disjoint, we can conclude that ¢; ¢ U'_, 12(T;) for all j € {2,...,k}. Consider the
cost function t : E(G*) — [0,00) that is defined by t(e;) = 1 —¢,0 < ¢ < 1,t(e;) =1 for
all j € {2,...,k} and t(e) = 0 otherwise. Then the costs of a minimal E(G*)-tour w.r.t.
to vy is equal to (k — 1) 4+ 2(1 = ¢). This follows from the fact that (i, is the cheapest
cover of G that yields an Euler graph. Any other cover that excludes e, has to use at
least one of the edges {ey, ..., cx}, which implies that such a cover has at least costs 1,
whereas the costs of (Fois equal to 1 — ¢,

Let vy € OV((7), vy # vy be incident to ¢,. Since (/* is connected and contains no
bridges, the graph (i that arises from G* by removing the edge ¢, is also connected. Then
the forest 17, Ty, ..., Ti, where T) = (V(T)) — {o }, E(T}) — {e1}) is a cover of OV ({) in
G that yields an Fualer graph. Since the costs of this cover is equal to zero we have that
the costs of a minimal F(G)-tour in G* w.r.t. v, is equal to k — 1.

Now, consider the graph @, consisting of the edge set £(G") — Ule I(T;) and the
vertices connected to the edges of this edge sct. In the graph G, which is not necessarily
connected, the degree of each vertex is an even number. This implies that the components
of G are singletons or Euler graphs. Since ¢, @ US E(T;) for all j € {2,...,k} and k
is an odd number greater of equal to three, we can conclude that v, is contained in a

component of (i that is an Fuler graph. Let us describe the Euler tour of this component
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by t. Since (i is connected and contains no bridges, there exists a path p from v, to some
vertex b with {h} = V(p)n V(1) and ¢, & E(p). Note, that it is possible that v, € Vi(1).
In this case we have that vy = h. Since Lis an Euler tour there exists two subpaths 1,
and £y of ¢ from h to vy such that K(t) U E(ly) = E(1) and E(t,) N E(ty) = 0. For
7 € {1,2}, let (i) be the graph that consists of the edge ¢, and the paths p and ¢,. Since
(i, is a circuit, the minimal costs of a F(Gy-tour in G* wrt. vy is equal to k; + (1 —¢),
where & is the degree of vy in the graph Gy, It is obvious that k; + ky = k— 1. Let G,)
be the graph that consists of the edge ¢, and the path f,. Then the minimal costs of a
E(GY, )-tour is equal to kz+(1—c¢). This holds since the costs of the minimal E(Gy,)-tour
is equal to k, + (1 — ¢) and the edges incident to vy are the same in as well 15((y,) as
E(Gy).

Now, we will partition the edges of £(G*) —U E((/,)) in two sets E(G7) and E(G3).
Let e € K(G7) — U2 E(GY,). I there exist a path g such that e € E(q), 1£(q) N (F(th)u
E(p)) # 0 and F(q) N E(Ly) = B, then ¢ € E(G5). Otherwise, we say ¢ € E((3). For
7 € {1,2}, we have that the costs of all edges of [(G5) are equal 1o zero, and these
edges can reach 1, by a path that contains only edges that have costs equal to zero. This
implies that the costs of a minimal (E£(G7) U £(G),))-tour in G* w.r.t. v, is equal to
ki + (1 = ¢), and the costs of a minimal (E(G3) U B(G,))-tour in (i w.rt. v is cqual
to ky + (1 — 0).

Consider the following delivery problem I' = (N(G*), (G*,vy),t,9) and let
(N(G®),¢) be the corresponding delivery game. Let the player sets corresponding to
E(G7), B(G), (G U E(G) and E(G) U E(GL) be N(G*), Sy, S, and Sy, respectively.
From the values of the above minimal tours, we can conclude that

e(N(GT) = (K=1)+2(1 - ),
oS) = k-1,
¢(S) = k4 (1 —¢) and
o(93) = ka4 (1 =)
By construction we have that [5(G") = E(G7) U E(G3) U E(6) U (1) U E(p) U {e;}
and that the intersection of cach pair of these edge sets is empty. This implies that
NG — $(€% 4 % 4 ™), where el =1ilj€T and =0ilj e NG)-T. We
claim that the core of (N((*),¢) is empty. Indeed, if the core is not empty, then there
exists a vector v,z € RN such that £(N(G*)) = ¢(N(G*)) and
x(S)) k-1
2(8) < kit (l—¢) (12)
2(Sy) < ky+ (1 —0).
Summing the inequalities in (12) we obtain that

22(N(G")) < 20k — 1)+ 2(1 — ) < 2(k — 1) + 4(1 — €) = 2¢(N(G*)).

IA



11

We have obtained a contradiction, since it was assumed that z(N(G")) = ¢(N(G*)), and
we conclude that (N(G%). ¢) is not balanced.

Finally, we will show that ¢/ is not CP-balanced. Consider the delivery problem
I" = (N(G), (G, ), 1, ¢') where t'(e) = te) il ¢ € E(G*) and t'(¢) = 0, otherwise.
Let (N(G),¢7) be the delivery game corresponding to 1Y, We partition the edges of
E(G) = 12(G7) two sets £ (/) and I5((dy). Let e € B(C) — E(G*). If there exist a path
g such that ¢ € 1(q), £(q) N (15(¢),) U E(GT) # 0 and E(q)n (E(G,) U E(G3) =0,
then ¢ € FE((/)). Otherwise, we say ¢ € [/((iy). Let the player set corresponding to
E(Gh) and E(Gy) be N(Gy) and (N((7y), respectively. Let 1) = S, U N(Gy)U N(@y),
Ty = S,UN(G) and 1Y = S,U N((7y). Now, it casy to verify that (N(Q)) = e(N(G™))
and e*(1;) = ¢(5;) for j € {1,2,3}. Now, we can prove the non-cmptyness of the core
of (N((/)),¢™) in a similar way as we did for (N(G™),¢). Hence, we can conclude that (7

is not CP-balanced. ]

4 Directed weakly cyclic graphs, submodular
graphs and totally balanced graphs: the directed

case

In this section it is assumed that the underlying graph of the delivery problem is a
connected and directed. Observe that in a connected directed graph cach arc is contained
in at least one circuit. A connected digraph is said to be weakly cyclic if cach arc is
contained in precisely one directed circuit. In the following we will provide an alternative
characterization of a directed weakly cyclic graph. For that purpose we need to introduce
some new notation. Let G be a directed graph and let p’ be a path from v; to v, in
the underlying undirected graph associated with G. Let p be derived from p’ by the
introduction of the directions of edges in P’ as they appearin G If p is neither a directed
path from v; 10 v, nor a directed path from vy to vy, we will refer to p as pscudo path.
A directed (pseudo) path p from a vertex v, to a vertex vy will be denoted by p: vy — v,
(p:vi —vg). Further, for a path p, we will denote by V(p) and E(p) the set of vertices
and arcs theirin, respectively, and /(p) = V(p)\{v1,v2} will be refered to as the internal
vertices of path p. Two path, p, and p,, from vy Lo vy are called internally vertex-disjoint
it V(p1) NV(p2) = {vi,v:}. Let wy,w, € p,, where Py is either a directed path or a
pseudo path. Then w; is closer to v, on p1 than wy, denoted by w, <u,p w2 if the
(possibly pseudo) subpath ¢ : v; — w, of p, does not contain wy. The following lemma

will be needed to provide a characterization of a weakly cyclic digraph.



Lemma 4.1 Let i be a connceted direcled graph and let v, and v, be two different
vertices in (. If there exist direcled paths py : v, — v, and P2 vy — vy and a pscudo
path py vy — vy in G, then there exists an are in () that is contained in at least two
distinct direcled eireuits.
PROOF: If py is directed [rom vy Lo vy then cach are of py is contained in the two circuits
formed by p; and p, and by p, and py. Hence, we may assume that py is not directed from
v to vy e pyis a psendo path with at least one arce directed towards v;. Now, given py,
we deseribe below a method to construct a directed path g from vy to vy, with ¢ # p,. A
generie step in this construction is as follows. For some b} € V(ps) there exists a directed
path ¢, : v — b}, such that: (i) ¢, coincides with the subpath B, : (v, — b) of py and (i1)
for the arc (b, b)) € F(p,) holds b} <, 1 b3 Observe that b} cannot be reached directly
from b} via ps since (b}, b!) is directed towards vi. Also, b} could possibly coincide with
vi, in which case g; consists only of the vertex v, Now, since (7 is connected, there
exists a directed path ¢, from bl to by If V(1 DNV(p)UV(p,)) =0, q augmented with
) form a directed walk g1 from vy to some vertex w,w € V(ps), such that 1)2 Sy and
I{gy)N(V (p,) UV(p2)) = 0. This implics that there exists a directed path ¢{ : v, —» w
such that I(q,) (V(p1) UV(p2)) = 0. We proceed now from vertex w along py towards
vy until we either reach v, or encounter an are (b3, 67) such that b? <,, . b2. If we have
reached vy, then the structure consisting of lif,pl and p, contains at least one arc which
is contained in at least one directed circuit. Otherwise, we repeat the generie step to
construct a directed path, t, from b2 to b2. If V(i) N V(p1) U V(p2)) = 0 we repeat
the generic step. Bventually, if V(L;) N0 (V(p) U V(p2)) = 0 for a sufficient number of
path j, we will reach vertex v, and the conclusion that there exists at least one arc
which is contained in at least two directed circuits. Thus, it remains to consider the case
V(1) N (V(p1) U V(p2)) # 0.

Let = € V(i )N(V (p1)UV(p2)) be such that the directed subpath £, : b} — h* contains
no other vertex h € V(t,) N (V(p) UV(py)) and let h € V() N (V(p) UV (py)) be such
that the directed subpath £, : b — b, wntams noother vertex b € V(£,)N(V (p,)UV (py)).
We consider two cases.

Case 1: V(1) N (V(p1) UV(p2))) N {or} # (o).

If 2" = vy, then from the assumption in Case 1 it follows that A" # h. Let p denote
the directed path consisting of subpath 7, of ¢,, T, : h— by, arc (b, b}) and the directed
subpath £ of (,, by bi — vy, define a directed path p: - vy that is internally vertex
disjoint with p; and p,. The structure consisting of p, p; and p, contains at least one arc
that is contained in at least two directed circuits. llence, we may assume that A* £ i
Let d, be the closest vertex to vy, on ¢y, such that dy; € V(1,). Formally, d, € V(q, nvit)
and if g7 denotes the subpath of ¢y, g7,: v, — d, then )N (V(g)n V(L)) = 0. Since

h™ # i, @i contains at least one arc. Now, let p denote the directed path from v; to
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h* consisting of the directed subpath g7 and the directed subpath £, of ¢, T, : d, — h".
By construction, I(p) 0 (V(p,) 0 Vi(py)) = 0. Thus, the structure consisting of p, p,
and py contains at least one arc that is contained in at least two directed circuits. We
conclude therefore that if Case | occurs, there exists an arc that is contained in at least
two directed circnits.

Case 2: V(1,) N (V(p) U V(p2)) N {vy } = {0}

In this case, the directed path which consists of the path ¢, augmented with ¢, forms a
directed path from vy to b2, which, possibly, has only the vertex v, in common with i3
and p;.

We then proceed from b} along py towards v, until we encounter an are (b3, b%) from b2
to b on py such that b2 <,, = b2 and repeat the generic step, where b2 replaces b} and
the directed path t, from b} to b} replaces the directed path ¢; from b} to b}. Eventually,
cither for some j > 2 the directed path 17 satisfies Case 1 (with 1 replacing ¢,), or, we
have constructed a directed path ¢ @ v, — vy, such that q is internally vertex-disjoint
with p; and p,. The structure consisting of ¢, p, and p, contains at least one arc that is

contained in at least two directed circuits, which completes the proof. 0

The next Lemma provides alternative characterizations for a weakly cyclic graph.
Lemma 4.2 Let (0 be a connected directed graph. Then, the following statements are
cquivalent:

(i) (i is weakly cyclic.

(i) The underlying undirected graph G of G is a weakly cyclic graph that does not contain
a bridge.

PrOOF: (2) — (i2) : Suppose (7 is weakly cyclic and assume first, on the contrary,
that &/ is not. weakly cyclic. Then there exist two vertices v, and vy that are con-
nected by three internally vertex-disjoint paths. IHence, there exist in (7 three internally
vertex-disjoint pscudo path, py,p; and ps, between v; and v,. Without loss of gener-
ality we may assume that p, is not a directed path from v, to v,. Therefore, there
exists an arc (by,b;) from by to by such that (by,b,) € E(p,) and b, <u.pm 02.The con-
nectivity of (7 implies the existence of a directed path, t, from b, to b, and thus ¢
angmented by (by,b,) is a directed circuit, €', in G. Since by, b, € V()N V(p,) and
since py,p; and ps form three internally vertex disjoint (pseudo) paths between v, and
vy, we can conclude that there exists at least one arc (wy,w)) such that w, € V(t) and
(wy,wy) € (LE(pr) U E(p2) U E(ps))\I2(C), where E(C) is the are set of the circuit €.
Therefore, there exists a psendo path q : wy — w,, which coincides with arc (wy,w}) if
wy € V (1), such that wy, € V(1) and E(q) C (£ (p)UL(p2)UE(ps))\E(C). The structure
consisting of the directed circnit €' containing vertices w; and w, and the pseudo path ¢

between w; and w, implies, by Lemma 4.1, the exixtence of at least one arc in ¢ which
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is contained in at least two directed circuits theirin. This contradicts our assumption
that (/' is a weakly cyclic digraph.

To complete the proofl we need to show that (7 does not contain a bridge. This follows
from the fact that (i is connected, and thus cach arc therein is contained in at least one
circuit. Hence, (7 cannot contain a bridge.

(22) — (1) : If G is weakly cyclic without bridges, then it is a 1-sum of undirected cir-
cuits. Thus, sine (Fis assumed to be connected, it must be a 1-sum of directed circuits,
implying that every arc therein is contained in precisely one cirenit. We conclude that

(is a weakly cyclic digraph. (m}

From Lemma 4.2 we may conclude that a directed weakly cyclic graph can be obtained
by 1-sums of directed circuits. The following Lemma shows that a CP-submodular graph
is weakly cyclic.

Lemma 4.3 A CP-submodular digraph is weakly cyclic.

PROOF: Let (N(G),(GLv0),8,9) be a delivery problem and let (N, ¢) be the correspond-
ing delivery game. Suppose (7 is not weakly cyclic. Then by definiton of a weakly cyclic
digraph, there exists an are (wy,w,) which is contained in two distinet directed cirenits.
This can be shown to imply the existence of three internally vertex-disjoint, directed paths
Prior =g, pr vy —opand py ey = oo, Let Sy, 8, and Sy be the set of players corre-
sponding to the arcs contained in py, py, and py, respectively. Let vy be the post office, let
t(e) = 1 for all arcs cointained in py, p; and py, and let 1(c) = max{| p, Llpzlslps |} +1
for all other ares e, where | p, |, = 1,2,3 denotes the number of arcs in p;j- Then

A(S1USUS) +e(S) = 2lpl+ Il +1ml)
(I po | 4+ min{| p2 |, ] ps 1H)
(

+
> (et D+Up I+ 1 psl)
= (S US,) + (S USy),
implying that ¢ is not a submodular function. Hence, G is not CP-submodular. (]

Let (7 be a weakly cyclic digraph and let vy be an arbitrary vertex therein. We can
associate a dirccted tree T'((/,vo) with (G,vg) as follows. All arcs in the tree T'((, vg)
are directed towards v, the root of the tree. A circuit in (7, consisting of the arc sct S,
corresponds to an arc ag in T((, vp), and vertex vs in T'((J, vg) is the tail of arc ag therein.
Further, if two circuits, €'} and Oy, consisting of arc sets S; and S, in (+ have a common
vertex and the directed path from any node in C} to vy uses some arcs in Cy, then Vs,
is the head of arc as, in T((,v). Let I' = (N(G), (G, vo),t,g) be a delivery problem.
Its corresponding directed tree problem is defined to be T,7 = {N(G), (G vo), t*, g7},

where N((G) is the same player set as in I, T((/,v) is the dirccted tree associated
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with (G ) and £7 is the cost function in 7((, vg) satislying 1"(as) = ¥,eq!(e), for
every directed circuit consisting of ares S in (. The (unction g¢* assigns the players
corresponding to directed circuits in ¢ to vertices in T'(Gvp). Thus, if S is the set of
arcs in a circuit of (7, its corresponding vertex, vy, in T'((!, vy) contains the set of players
S
Let (N((), ¢) be the delivery game corresponding to I’ = (N(C), (Gyve), L, g) and let
(N((7),e*) be the game corresponding to T = (N(C), T(C ), 17, g*), where, for cach
S5 C N(G), e*(S) is the total cost of all ares in the minimal subtree of T'(C vg) that is
rooted at vy and contains all vertices which contain players in S, By construction of the
tree graph T(C/ v,), there is a one-to-one correspondence between ares in the tree and
circnits in (7. From this observation and the location of the players at vertices in the
tree it follows that
(S) = c"(S) for all S C N(G). (13)
Display (13) implies that delivery games which arise from a weakly cyclic digraphs are
contained in the class of tree games, introduced by Megiddo (1978). Granot, Maschler,
Owen and Zhu (1996) obscrved that tree games are submodular, which, in combination

with Lemma 4.3, results in the following Theorem.

Theorem 4.1 A connecled digraph (i is weakly cyclic if and only if (; is CP-submodular.

Meggudo (1978) proved that for tree games Shapley value can be computed in O(n)
and the nucleolus can be computed in O(n?), where n is the number of vertices in the
tree. Galil (1950) improved Meggido’s algorithm and demonstrated that the nucleolus of
a tree game can be computed in O(nlogn). Granol, Maschler, Owen and Zhu (1996) and
Pollers, Maschler and Regnierse (1996) have developed other algorithms for computing
the nucleolus of a tree games. Obviously, all these algorithms can be used to compute

the nucleolus of delivery games that arise from CP-submodular digraphs.

Finally, we remark that one can casily construct examples of directed graphs for
which the corresponding delivery games are totally balanced but not submodular. ‘I'hat
is, in contrast with the undirected case, the class of CP-totally balanced directed graphs
properly contains the class of CP-submodular directed graphs.

Morcover, the following Theorem demonstrates that, by contrast with the undirected

case, a connected digraph is always CP-balanced.
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Theorem 4.2 A connceled dirceled graph s CP-balanecd.
Proor: Let (7 be a connected digraph, with an associated delivery problem I =
(N(G), (Ghog), tg) and a corresponding delivery game (N((7),¢). We have to show
that (N((/),¢) is balanced.

For S C N((/), consider the [ollowing lincar programming (LP) problem:

¢*(S) = min Z Lz

L JEN(C)
subject to (14)
Z Lji — Z x,;; =0 for all 2 € N((7)
JEN(G) JEN(G)

x;; > | for all ares (vi,v,) € E(S),

zy; 2> 0 for all arcs (v, v,) € F(S),
where £;; denotes the cost of arc (v, v;), x;; denotes the flow in are (v, v;), and £(S)
is the set of ares belonging to the players in S, For 8 = N((/) an optimal solution
for (11) is a minimum cost circulation on ¢ such that the flow in cach arc is at least
onc. In fact, the optimal value of (14) for S = N((7) is the cost of an optimal Chinese
postman tour in G with cost function t (cf. Orloff (197/)). Therefore, we conclude that
(N((D)) = e«(N(()). For S # N(() an optimal solution to (11) will consist of minimum
cost circulations on G which may be disconnected. In fact, ¢*(S) is equal to the total
cost ol minimum cost (sub)tours that visit cach arc of S at least once. In a minimal
delivery tour of coalition S| cach arc of S is also visited at least once. However, this tour
has to be connected and must contain vy. We conclude therefore that ¢*(S) < ¢(9) for
all 5 C N(().

For a set of players (arcs) S € N((), let 6% denote the right hand side vector in (14).
Then, one can casily verify that b¥ = Tiidles b where 507 = 1 if g((vi,v,)) € S
and 07 = 0 otherwise. Thus, (11) presents a lincar production game formulation of
(N(G),¢7), and by Qwen (1975) it follows that (N((/),¢*) is totally balanced. Since
H(N(G)) = ¢ N(G)) and ¢*(S) < ¢S) for cach S C N(G), it follows that (N((7),¢) is

balanced. o

We note that it follows from Owen that il w;; is an optimal dual variable associated
with the lower bound constraint in the LI problem (14) associated with S = N((/), then
= ((u,): (v,.v,) € () is in the core of the delivery game (N((/),c). Therefore,
it follows from Tardos (1986) that a core point in a delivery game associated with an
arbitrary digraph can be found in strongly polynomial time.

Finally, we note that the recognition problem of a directed weakly cyclic graph ¢/
can be solved by considering the undirected underlying graph associated with ;. Then

essentially the same procedure for the recognition problem in the undirected case can be
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applied to the directed case. The only difference lies in the last step where one has to
verily if cach biconnected component is a directed circuit. However, this step can also
be done in lincar time. Hence, we conclude that the recognition of a directed weakly
cyclic graph can be done in lincar time.  We conclude this section by considering briefly
the case where the underlying graph ¢ = (V(@), (7)) is mixed. That is, an element in
1((7), which will be referred to as a connection, is cither an arc or an edge. p is said to
be a mixed path from vy to vy in G if the underlying undirected graph associated with P
is a path between vy and vy, and all arcs in p are directed from vy to vy, A mixed cirenit
in (s defined similarly.

A connected mixed graph ( is said to be weakly cyclic if cach connection theirin is
contained in at most one mixed circuit. Using a proof similar to the proof of Lemma
1.2, one can show that a connected mixed graph (/' is weakly cyclic if and only if the
underlying undirected graph @ of (7 is a weakly cyclic graph. Morcover, using similar
techniques, one can proof the following result.

Theorem 4.3 A connected mired graph (I is weakly cyclic if and only if @ is a CP-
submodular graph.

As in the undirected case and directed case, mixed weakly cyclic graphs can be rec-
ognized in lincar time. Finally, let us briefly consider the class of CP-totally balanced
graphs in the mixed case. Clearly, by definition, a CP-submodular graph is CP-totally
balanced. Our conjecture regarding the characterization of CP-totally balanced mixed
graphs is as follows:

Conjecture 4.1 Let (& be a connected mized graph. If G does nol contain any of the

three graphs in Figure .1 as an edge induced subgraph, then (Fis CP-tolally balanced.

(i) (ii) (iii)

1 i i

Figure 1.1
In all three cases in Figure 4.1, there are three internally vertex disjoint paths between
vy and vy. In case (ii), one of these three paths is a mixed path from v, to v,, while in
case (iii) one of the paths is a mixed path from v, to v, and another is the mixed path

from vy to v,.
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