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Abstract
It is well known that inter-generational transfers can be
suppported by subgame perfect equilibria in Samuelson's
consumption loan model if every generation is perfectly
informed about past events. This paper relaxes the perfect
information assumption minimally, and finds that transfers
cannot be supported by pure-atrategy sequential equilibria if
the transferable commodity is finitely divisible. Mixed
strategies allow transfers to be sustained, so that a version
of the Folk theorem holds with informational constraints.
However, these equilibria are not robust. If each agent's
utility function is subjected to a small random perturbation,
these mixed strategy equilibria unravel, and only the zero-
transfer allocation survives as the unique rationalizable
outcome. These results extend when we allow the commodity to be
perfectly divisible, and also apply to a class of repeated
games played by overlapping generations of players which
includes the prisoners' dilemma. We suggest that money may play
an informational role in this context, as a device for
overcoming the boundedness of social memory.
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1. INTRODUCTION

Samuelson's (1958) overlapping generations model has

rightly been described as "one of the most original and

stimulating contributions to modern economic theory" (Shell,

1971). Consider the following simple version of this model of

an infinitely lived economy. In each period, a single agent is

born and lives for two periods. The young agent is endowed with

two units of an indivisible and perishable consumption good -

fish for example. The old agent is without any endowment. The
economy begins at date one with a single old agent and a young
agent. In each period, the young agent may consume both fish or
she may give one to her mother. The old agent is passive, and

has no choices to make. Agents are selfish, and prefer more

consumption to less, but they would rather have the same total

consumption spread out so as to not starve when old.

This economy has a unique Walrasian equilibrium, where
each young agent consumes her endowment when young and starves
when old. This equilibrium is autarchic; no trades are possible
between generationa since the old do not have any endowment to
trade with. This equilibrium is also inefficient, and is

(strictly) Pareto dominated by the allocation where every

young agent gives one fish to her mother. The overlapping

generations model hence provides an instance where the first

welfare theorem fails to apply. 1

Samuelson observed that the social contrivance of money
could allow society to enforce the Pareto-efficient allocation.
Let the old agent in the first period isaue "money", and offer
this money in exchange for one fish. Let every young agent
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accept this money in exchange for one fish. If any agent fails
to secure this money by giving a fish to her mother, this agent
will receive nothing when she is old - should she issue her own
money, this will not be accepted. Accepting money and
transferring the good is clearly a Nash equilibrium. The
overlapping generations model has hence provided an extremely

~
influential theory of money.

From the perspective of non-cooperative game theory, the

monetary equilibrium provides what is perhaps the simplest

example of "history-dependent" behavior in a dynamic game.

Money is not really required for this etory, and one can simply

conaider the dyanamic game where each young agent chooses from

the set of poasible tranafere {0,1}. It is clear that the

monetary equilibrium corresponds to a Nash equilibrium - each

agent transfera 1 since by doing so ahe aecures a transfer of

1, whilst ahe geta 0 if she ahe transfers 0. If every agent

observes the entire history of past actions, the Nash

equilibrium supporting the efficient allocation can be made

subgame perfect, as Hammond (1975) observed. Although there are

infinitely many ways of constructing such a perfect pure

atrategy equilibrium, perhaps the aimplest is the strategy

profile GRIM. Each agent transfers one fiah to her mother if

all previoua agents have done so. If any agent fail to provide

for her mother, all aucceeding agents transfer zero. A more

attractive aubgame perfect equilibrium is the RESILIENT

atrategy profile, where agent puniahes her mother if and only

if she is a"deviant", where a deviant ia one who has

transferred zero when ahe should have given one fiah to her
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mother. Each of these strategy profiles can be implemented by a

simple two-state automotan, as Fig. 1 showa. The basic idea,

that an overlapping generationa structure allows fínitely lived

playera to cooperate, has been extended to general repeated

games with overlapping generations of players - see Cremer

(1986), Kandori (1992), Salant (1991) and Smith (1992).

Although the strategy profiles GRIM and RESILIENT are very

simple, and require only two states, this paper will show that

they are nevertheless informationally very demanding, and

require infinite memory. This may seem surprising since

complexity measures (as in Abreu and Rubinstein (1988)) and

informational requirementa seem cloaely related - one strategy

is defined to be simpler than another strategy if the former

is measurable with respect to a coaraer information partition,

i.e. uses lesa information. Complexity measures are however

controversial - for example, Lipman and Srivastava (1991)

auggest that the number of states measure is too aimplistic. We

shall see in thia paper that there is a sharp disjunction

between the simplicity of a strategy (as in Abreu-Rubinstein)

and the informational requirementa of a atrategy.

This paper proceeds by incorporating informational

constraints directly. These informational limitationa arise

naturally in the overlapping generations context. The

assumption that an agent who is born today has perfect

information about all past events ia patently unrealistic. Each

agent has little direct information about the past, and what

information she has is filtered through past generations. One

may of course relax the perfect information asaumption ín a



4

variety of ways. For example, social memory could be uniformly

bounded, so that any agent has information only about the

actions taken by the last m agents, where m is some natural

number. Alternatively, m could be increasing over time (t), as

our historians become more adept, although our lack of

knowledge about the past, t-m, could also be increasing. The

analysis of this paper applies to a very general type of

imperfect information, which includes all the above

possibilities. Perfect information implies that every agent is

omniscient and knows the entire past. It also implies that any

agent is omnifamous - each one of an infinity of future agents

is fully informed about her actions. The analysis of this paper

applies to any information structure where there are infinitely

many agents who are not omnifamous. It also applies to a class

of repeated gamea played by overlapping genérations of players

which includes the prisoners' dilemma.

The main results of our analysis are as follows. We first

analyze pure strategy sequential equilibria, and show that

informational constraints have dramatic implications - inter-

generational transfers cannot be sustained, and outcomes must

be Markovian, i.e. not history dependent. This is illustriated

by a simple example, ín section 2, and more formally in section

3. In section 4 we consider mixed strategies, with

diametrically opposite results - randomized punishments can

support the efficient allocation even if information is

severely limited. These mixed strategies however turn out to be

fragile. In section 5 we perturb the overlapping generations

economy in the manner of Harsanyi (1973). All agents are ex
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ante identical, but each agent's utility function is subject to

a small random shock, the realization of which ia private

information. We show that the randomized punishments which

support transfers unravel, and the unique rationalizable

outcome which survives is the one where every agent consumes

her entire endowment. Such a striking result does not even

require us to invoke the equilibrium asaumption, and holds

even if one considers sequentially rationalizable strategies.

To our knowledge, this is the first time that the Harsanyi

perturbation has been used to refíne equilibria in an extensive

form game.

Sections 2-5 asaume that the tranaferable commodity is

finitely divisible, so that each agent's action set is finite.

Section 6 relaxes this asaumption, and showa that the results

are qualitatively the same. With perfect divisibility, there

are pure strategy equilibria which support transfers, but once

again these equilibria do not survive when we perturb the

agent's utility function. Theae negative results lead us to

consider alternative information structures. In section 7 we

conaider the possible informational role of money, as a device

for overcoming the boundedness of social memory. We find that

money may allow the efficient allocation to be auppported, but

the equilibrium which supports this is necessarily GRIM, ao

that if any agent deviatea from this equilibrium, the economy

never returns to the efficient path. This providea a theory of

crises of confidence based on the informational role of money.

The final section concludes.
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2. AN EXAMPLE

We present a simple example which illustrates the problem

in supporting inter-generational transfers. As in the

introduction each young agent is endowed with two fish. She may

give one to her mother or none, so that the set of possible

transfers she could make is A-{0,1} (we assume that

preferences are such that transferring 2 and consuming 0 is

strictly dominated and may be ruled out). All agents have

identical preferences, and the utility u(a,a') where a is the

transfer made by the agent when young and a' is the transfer

received by her when old, satisfies:

u(0,1) ~ u(1,1) ~ u(0,0) ~ u(1,0) (2.1)

Let m- 2, so that any agent only observes the last two

actions taken. Let the first agent transfer 1 and the second

agent simply match the action of the first agent. This implies

that the first two agents will transfer 1. After t-3, every

agent observes the actions of the two previous agents. Hence

for t~2, the agent's strategy st, specifies the action to be

taken for every possible pair of actions last observed. we

restrict attention to pure strategies, and to strategy profiles

where st - st}1 - s for t~l, i.e. all agents after period 2

adopt the same strategy. Since m-2, there are 4 possible

obaerved hiatories.

Since we are interested in the possibility of supporting

transfera, the strategy must choose 1 after observing (1,1). To

sustain this, we must punish a deviator; hence we must choose 0

after (1,0). With these determined, we can fill in the choices

after (0,0) and (0,1) in four different ways. These allow four
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possible strategies, which we label I, II, III and IV. Table 1

shows what happens to a player after any of the four possible

observed histories if every agent adopts the same strategy.

Given any observed history, the strategy determines the action

taken by the ager.t at date t, and thereby also the information

of the agent at date ttl, which we call the the "induced

history". The induced history and the strategy determine the

"next-period action, i.e. the action taken at ttl. The actions

at t and ttl determine the utility of the agent at t. Table 1

shows why each of these four strategies fails to be

sequentially rational, since there is one observed history at

which the agent at t can deviate profitably, given that the

agent at ttl is following the strategy. Consider atrategy I

which is "nice", and chooses zero only after observing (1,0).

This is not optimal if the observed history is (0,0), since the

agent still gets 1 the next period if she chooses 0 rather than

1. II on the other hand is "grim", and chooses 0 at every state

except (1,1). This is too grim; after (0,1), the agent prefers

to choose 1 rather than 0. By choosing 1, she ensures that the

hiatory next period is (1,1), thereby ensuring a transfer to

herself. III and IV are intermediate; they choose 1 after two

of the four histories. They too fail, and interestingly, both

fail to be optimal after the history (0,0). III calls the

player to choose 0, but it is preferable to deviate to 1, since

this ensures a transfer of 1 in the next period. IV chooaes 1

after (0,0), but the player can deviate to 0 without being

punished.
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It might be conjectured that the problem arises because we

have required every agent to choose the same strategy. However,

this is not the case, and removing this restriction does not

improve matters. Nor is the case of m-2 particularly special -

the point generalizes to m- two million. The problem arises

since each agent has better information about the past than her

daughter. To support transfers we must reward "altruistic"

behavior and punish selfish behavior. This requires that the

agent at tt1 must vary her behavior in a non-trivial way

depending upon the information she observes. However, the agent

at t can manipulate the information that her daughter receives.

Any pure strategy profile aimed at supporting transfers either

turns out to be too grim or too nice, and any attempt to

rectify one problem only brings in the other problem.

We turn now to a formal analysis of the model.

3. PiJKE STRATEGY EQUILIBRIA

We consider an economy over periods 1,2,... The t-th agent

is born in period t, and is YOUNG in period t, and OLD in tfl.

Her endowment is e when she is young and 0 when she is old. The

young agent chooses an action from a finite set A, where a E A

representa the amount the agent transfers to agent t-1. Given

a, agent t's consumption at date t is (e-a). The old agent has

no choicea to make.

The finiteness of A can be justified since it is

physically impossible to have an infinitely divisible

commodity. In addition, indivisibilities may be enhanced for

informational reasons: subsequent generations may not be able
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to observe t's transfer as finely as t can.

The agent's utility u, is a function, u:AxA-)R, where

u(a,a') is the agent's utility when ahe transfers a units to

her mother and recieves a' units from her daughter, i.e. it is

the utïlity from consuming (e-a} units when young and a' units

when old. We assume that u(.) is decreasing in its first

argument, the transfer made by the agent. If A has k elements,

the agent's utility function can also be identified with a

point in R2k.

Although our focus is on Samuelson's consumption-loan

model, all our resulta and analysis apply to a class of

repeated games played by overlapping generations of players.

Consider a stage game consisting of two roles, YOUNG and OLD;

of associated action sets A and C; and payoff functions

vy:AxC)R, vo:CxA-)R. There is one player who is born in

every period, and who lives for two periods, assuming role

YOUNG in the first period, and role OLD in the second. Players

seek to maximize the sum of payoffs over their lifetime,

possibly disounted by a rate S. Consider the class of stage

games where role OLD has a strictly dominant action, which we

label D. This class includes the repeated prisoners' dilemma

played by overlapping generations of players, considered for

example by Smith (1992). Obviously, every player must choose

action D when old in any equilibrium. Given this, a player's

lifetime utility depends only upon the action she takes when

she is young and the action that the young player takes when

she is old. Hence define the payoff function, u:AxA)R as

follows:
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u(a,a') - vy(a,D) t Svo(D,a')

Since OLD has a strictly dominant action, this must always

be chosen, and we need consider only the action taken by the

player when young. Hence all the results of this paper will

apply to this class of games as well. Note that in this case

(3.1) implies that u(.) is additively separable in its two

arguments.

Our first assumption on preferences follows from the

preceding discussion.

Asscanption P1 u(a,a') is either decreasing in its first

argument or additively separable.

For this section and the next we make the following

regularity assumption regarding u, that distinct action vectors

yield different utility. Since the set of actions is finite

this assumption will be satisfied almost always.

Asswnption P2 Let w, z e A2. If u(w) - u(z), then w- z.

Note that P1 and P2 imply that argmax u(a,a') is unique
aeA

and independent of a'; label this action 0- in the consumption

loan model, this corresponds to transferring zero. In the

prisoners' dilemma, 0 corresponds to "defect". P1 and P2 imply

that this overlapping generations economy has a unique Markov

equilibrium, where every agent chooses 0. (A Markov equilibrium

is an infinite action sequence ~at~, where ut(at,attl) - max
aeA

ut(a,attl)).

Information

The focus of this paper is on relaxing the assumption that



11

social memory is perfect, i.e. that each generation has all the

information about the past that its predeceasors had. There are

a number of plausible ways in which one may introduce imperfect

information. For instance, social memory may be uniformly

bounded by a natural number m, which couid be very large. The

agent at date t has perfect information about the actions of

all previous agents if t-1 c m. Otherwise, ahe is informed

about the actions of the last m agents. Alternatively, the

bound on social memory may not be uniform, and memory could

increase over time. Agent t is informed about actions taken in

the last m(t) periods. m(t) could be increasing, although

forgetting also takes place, i.e. (t-1) - m(t) also increases

sufficiently often. In this case social memory is not bounded

above. The results of our paper apply to theae examplea of

imperfect social memory. We generalize as follows.

The history at period t, ht is the sequence of preceding

actions, (a1,a2,...,at 1). The history at period 1 is the null

history, hl. Ht is the set of all possible histories at t, i.e.

Ht - At-1. Consider a pair of agents, i,j with j~i, and define

the following:
ai(hj) is the i-th component of hj, i.e. the action taken

by player i.
hi(hj) is the element of Hi which corresponds to hj, i.e.

it is the first i-1 components of hj.

hj~ai is the history which results when the i-th component

of hj is subsitituted by ai.

Let Bj be the information partitíon of agent j, with

typical element bj. Bj is a partition of Hj. If the history at
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j is hj, agent j is informed that hj belongs to bj(hj). We

call bj the observed history, and Bj the set of observable

histories.

If j~i, let Bji denote the partiton that Bj induces on

Hi, with typical element bji. If bje Bj , we define bji(bj,i)

as follows:

bji(bj,i) -{hi: 3 hj E bj and hi - hi(hj)}

Bji defines the information player j has about events
prior to date i. Our first assumption says that if player j
comes after player i, j has (weakly) less information about
events prior to date i than i has.

Ass~ption M1 If j~i, Bji is (weakly) a coarsening of Bi.

our second assumption limits the information that players

have about the past. Players are assumed to be omniscient and

know the entire past if the game has perfect information. It is

more fruitful to invert this perspective - under perfect

information, for any player i, each one of an infinity of

succeeding players is informed about her actions, i.e. i is, to

coin a term, omnifamous. To define this, we first define the

notion of being uninformed about the actions of a previous

player.

Definition 3.1 Let j~i. Player j is uninformed about

player í if, V hj E Hj, V ai,aí E A:

bj (hj~ai) - bj (hj~ai)

Let 91(i) denote the set of players with index greater than

i who are uninformed about player i.

Definition 3.2 Agent i is not omnífamous if there exists

an agent j, j~i, such that j E 91(i).
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Agent i is omnifamo[ts if every succeeding agent is

informed of her actions. Agent i is not omnifamo[rs if there is

some succeeding agent who is not informed about i's actions. It

seems reasonable to assume that every agent is not omnifamous.

We need a milder assumption, under which most agents could well

be omnifamous.

Asstnnption M2 There are infinitely many agents who are

not omnifamous.

The following equivalence relation on Bj will play an

important role in our analysis:

Definition 3.3 Given a aet Bj, and i c j, -i is an

equivalence relation on Bj such that for any bj, b~ E Bj:

bj-i b~ iff 3 ai E A: bj~ai - b~

bj and b~ are i-equivalent if the information regarding

the actions of every agent except agent i is the same. Note

that for every pair (j,i), with icj, the equivalence relation

-i is defined on the set Bj. If j is uninformed about i, bj and

b~ are i-equivalent only if they are identical.

Strategies

A pure strategy for agent t is a function st:Bt~A, i.e.

it is a function which is measurable with respect to the

partition Bt. Agent t's pure strategy set, St, is the set of

all such functions. Given any bt in Bt, we write st(bt) for

the element of A which is induced by bt when st is played. A

strategy profile, s, is a infinite sequence cst~ where st e St

Vt.
Given any observed history, bt, an action by agent t, at,

induces an observed history for ttl, which we write as
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bt}1(at,bt), or simply as (at,bt). Any pure strategy also

defines a function from the set of observable histories at t,

Bt, to the set of observable hístories at tfl, Bt}1. Write

bt~l(st,bt) or simply (st,bt) for (st(bt),bt). Given a strategy

profile s, the realized history at t, bt(s), is the element of

Bt which is induced when s is played. Similarly, given s, t~L,

and an observed history bt, the realized history at t given bz,

bt(s,bT), is the element of Bt which is índuced when s is

played after bi.

Write st}l~bt for the map from A to itself which is

defined by the pair bt and st}1. The interpretation is that if

agent t takes action a e A after history bt, agent tfl takes

action st}1(a,bt). This map defines agent t's utility from

action a after history bt as follows:

ut(a'sttl,bt) - u (a' sttl(bttl(a,bt)] (3.2)

The agent's utility from the strategy st, given st}1 and

bt is:

u(st'sttl~bt) - u [st(bt), sttl(bttl(st,bt)] (3.3)

Observe that agent t's utility is affected directly only

by her own action and the action of agent ttl. Agent t's

utility is affected indirectly by the actions of agents t-i,

i-1,2,...t-1, since these actions determine the observed

history. Agent t's utility is unaffected by the actions of

agents at dates after ttl.

A strategy profile s is a sequentially rational equilibrium

(abbreviated to equilibrium henceforth) if dt, dbte Bt,

u(at,sttllbt) ~ u(a,sttl,bt) V a e A (3.4)

Remark: Our equilibrium definition is remarkably simple.
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We do not have to invoke any beliefs regarding past actions, as

is usual in games of imperfect information, since past actions

do not directly affect current or future utility. Further,

given assumption M1, the information partition of agent t

regardir.g the past is always finer than the information

partitions of agent tfk regarding the past (i.e. events before

t) .

We now define the following notion of ineasurability of a

strategy with respect to a partition, which will play an

important role in the proof of our theorem in this section.

Definition 3.4 Given j~i, and the equivalence relation - i
on Bj, sj is measurable vith respect to -i if :

bj -i b~ a sj (bj )- sj (b~ )

We now state the main result of this section:
Theorem 1. The overlapping generations game has a unique

pure strategy equilibrium where each agent chooses 0.

Proof By assumption M2 we can find an agent with an

arbitrarily large index i who is not omnifamous. Hence 3 j~i

such that j E 11(i) . We show, by backward induction, that for

all t, i ~ t ~ j, that st does not condition on agent i's

behavior. More precisely, we show that st is measurable w.r.t.

for all t in this range.-i'
i) sj is measurable w.r.t. -i : This follows since j e

~1(i), and hence , induces the trivial (finest possible)

partition of Bj, where each set in the partition is a
singleton set.

ii)Let i ~ t ~ j. If st}1 is measurable w.r.t. -i , then

st is measurable w.r.t. -i .
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Note first that by Mi, if bt -i bt and a e A, then:

bttl(a,bt) -i bttl(a,bC)

i.e. if player t takes the same action a at two i-

equivalent observed histories bt and bt, the resulting observed

histories for player ttl are also i-equivalent.

We claim that if st}1 is measurable w.r.t. -i and bt ~i
bt, then:

ut(st' sttl ,bt) - ut(st' sttl ~bt) (3.5)

Suppose not. Let ut(st, st}1 ~bt) ' ut(st' sttl ~bt). Then

st(bt) is not optimal, since by choosing the action st(bt),

agent t ensures the history bt}1(st(bt),bt). Since bt -i bt'

bttl(st(bt),bt) -i bttl(st(bt),bt)

(3.6)

Since sttl is measurable w.r.t. -i, agent t ensures that

ttl takea the same action, and hence the payoff ut(st,

st}l~bt). Hence if cst~ is a equilibrium, (3.3) must hold. If

(3.3) applies, Aasumption P2 implies that st(bt) cannot be

distinct from st(bt). Hence st is measurable w.r.t. -i.

(i) and (ii) together imply that if agent i is not

omnifamous, agent itl's actions do not depend upon i's actions.

From assumptions P1 and P2, agent i must choose 0 irrespective

of the observed history. By backward induction it now follows

that V t~i, st- 0 irrespective of the observed history. o

Remark 1: The negative result can be generalized, to the

case of extensive form rationalizable strategies, provided that

one requirea that players have "point-beliefs" about the pure

strategies played by succeeding agents. However, the point
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belief assumption is hardly plausible outside an equilibrium

context, and we defer the analysis of rationalizable strategies

(to section 5), after analyzing mixed strategies.

We offer the following intuition for Theorem 1. If

altruistic behavior is- to be supported, agents must vary their

behavior depending upon the observed history. Since the

strategy profile is pure, this implies that the agent's utility

under the strategy profile differs depending upon the history

they have observed. However, each agent has better information

about the past than the succeeding agent, and this allows her

to manipulate the information that is transmitted. The only way

in which this informational advantage can be nullified is if

the strategy profile does not condition upon information at

all. This intuition suggesta that mixed strategies may be able

to overcome the problem, and we turn to these.

4. MIXED STRATEGIES

Theorem 1 applies to pure strategies. In this section we

ask, is it possible to support efficient outcomes by the use of

randomized punishments? We find that the answer is yes, and

that in fact one can prove a version of the Folk theorem even

for economies where information is severely limited.

Let argmax u(a,a) .- 1 be the efficient action. By
aeA

assumption P2, this is unique. The following assumption is made

for convenience; otherwise the results of this section hold

trivially.

Asswnption P3 1 ~ 0
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The following lemma is straight-forward:

Lemma 4.1 u(0,1) ~ u(1,1) ~ u(0,0) ~ u(1,0)

Proof The first and last inequalities are implied by P1
and P2. The second inequality is implied by P3. o

In the consumption loan model, if u(.) is increasing in

its second argument (i.e. the transfer received by the agent),

u(0,0) is the agent's individually rational payoff, and hence

the interval (u(0,0),u(1,1] is the set of individually rational

and feasible payoffs. The following theorem is therefore

similar to a Folk theorem with informational constraints.

Theorem 2. If each agent observes the action taken by the

previous agent, the efficient path where every agent chooses 1

can be supported as an equilibrium by the use of randomized

punishments. Any payoff between the efficient payoff u(1,1) and

u(0,0) is an equilibrium payoff.

Proof We construct a class of equilibrium strategies which

randomize between the actions 0 and 1, and the randomization

probability depends only upon the action taken by the preceding

agent. Let p1 ~ 1 and p0 ~ 0 be numbers satisfying:

pl - u(0,0) - u(1,0) } u(0,1) - u(0,0) p0 (4.1)
u(1,1) - u(1,0) u(1,1) - u(0,0)

Lemma 4.1 ensures that p0 and pl lie in the unit interval.

Let p1 (resp. p0) represent the local strategy of choosing

action 1 with probability pl (resp. p0) and action 0 with
probability (1-pl) (reap. (1-p0). Define the strategy profile
~st~ as follows:
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st - pl if t- 1 or at-1 - 1

- p0 if t~ 1 and at 1~ 1

Since st}1 does not condition upon at 1, ut is independent

of at 1. Hence for any observed history bt, we have:

ut(l,sttl,bt) - pl u(1,1) t(1-pl) u(1,0) (4.2)

If a ~ 1,

ut(a,stfl,bt) - p0 u(a,l) t(1-p0) u(0,0) (4.3)

By assumption P1, the expression in (4.3) is maximized at

a- 0. It is easy to verify that the maximized value,

ut(O,st}l~bt), equals ut(1'sttl~bt) given (4.1). This verifies

that cst~ is an equilibrium.

The efficient outcome is supported if we select pl - 1,

with the corresponding p0, which we label p0}, given by

equation (4.1). The payoff to any player is u(1,1). Similarly,

the equilibrium with the lowest payoff in this class has p0 -
0, with payoff u(0,0). Since pl and p0 can be continuoualy

varied in this range, we can support any payoff in the interval

[u(0,0),u(1,1] . o

Note that if pl - 1, the equilibrium outcome path is pure,

as well as efficient. Further, if any player deviates from this

path, the economy reverts to the efficient path after a finite

number of periods with probability one. This strategy profile,

which we call MIXEDI, can be implemented by a two-state

automaton, as Fig 1. shows. MIXEDI is therefore as complex as

GRIM or RESILIENT, but it requires only one period memory.

Any deviant from MIXEDI ia punished only weakly, and does
not suffer a loss of utility. If every agent observe the
actions of the last two agents, we can construct a atrategy
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profile, MIXED2, which makes any deviant strictly worse off.

Fig 1 shows that MIXED2 has three states, and is hence more

complex than GRIM or RESILIENT, by the number of states

measure. Nevertheless, MIXED2 is an equilibrium with two-period

memory, whereas GRIM and RESILIENT require infinite memory.

In MIXEDI and MIXED2, and indeed in any informationally

economical equilibrium supporting the efficient outcome,

playera must take different actions at different observed

hiatories, and the equilibrium has to be constructed so that

this player is indifferent between these actions. We need to

use mixed strategies for this purpose - pure strategies are

either too nice or too grim. Since randomized punishments can

be fine tuned to be just right, it is posaible to induce an

agent take different actions at different information sets.

Nevertheleas, this knife-edge balance is unstable, as we shall

see in the next section.

The idea of theorem 2 could be generalized to prove an

informationally economical Folk theorem for a class of repeated

gamea played by overlapping generations of players which is

more general than that considered in this paper, thus

generalizing the results in Kandori (1992). However, we prefer,

in this paper, to focus on the robustness of theorem 2.

5. THE PERTURBED GAME

Are the mixed strategy equilibrium which support

altruiatic behavior robust? In this section we ask whether

these equilibria survive when each player's payoff function is

perturbed, and this perturbation is private information, in the
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manner of Harsanyi (1973). We adapt the framework of van Damme

(1991, chapter 5) to our set up, which is of an extensive form

game.

Index agents by t as before. Recall that each agent's

action set, A, has k elements. Let R. Let Xt be a random

vector with values in a set Z in R2k.

Z-{xER2k. -cl ~ xl ~ cl, i- 1,2,..,2k}, c1~0 V i

Let u be a probability measure on Z.

The disturbed overlapping generatíons game is as follows:

i) Nature chooses an outcome xt of Xt for each agent t,

independently, and by the probability measure {~.

ii) Agent t, t-1,2,..., gets to know the outcome xt, and

nothing else.

iii) Agents 1 chooses an element of DA, having observed

xl. Each succeeding agent observea xt, and the observed

history bt, and chooses an element of AA.

iv) If at and at}1 are choaen, the payoff to the t-th

agent is given by:

ut(at,attl) - v(at'attl) t xt(at' attl)
(5.1)

(5.1) shows that the payoff to agent t from any action

pair depends upon two componenta. The firat, v(.), ia common

to all agents, whereas the second, xt, is private information.

11n Informal ]lrgwnent
Before proceeding with our formal argument, it may be

useful to provide an intuitive argument for our main reault of

this section. Readers who prefer to akip such preliminaries
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should proceed directly to the sub-section headed "The Formal

Analysis".

Our main theorem implies that the disturbed consumption

loan model has a unique equilibrium where each agent transfers

zero. Some intuition for the main point of the theorem can be

gained by considering why the mixed strategy equilibrium of the

previous section cannot be approximated in the disturbed game.

We simplify the game by allowing only two actions, 0 and 1. The

mixed strategy was:

(1,1) -) 1

(o, l) ) 1

(1, o) -) o

(0,0) -~ 1 with probability p0~, 0 with probability (1-
~

P )

To keep things simple, we perturb only one payoff, the

payoff u(0,1), so that the payoffs of agent t are:

ut(0,1) - v(0,1) t xt

ut(a,a') - v(a,a') for all other (a,a') in A2 (5.2)

where xt is i.i.d, on [-c,c] with a uniform density.

Let the last observed history be (a,0), where a is either

1 or 0. Consider agent t's payoff from the two actions, 1 and

0:

ut(l,sttl,(a,0) - v(1,1) (5.3)

ut(O,sttl~(a,0) - p0~ut(0,1) t (1-p0~) v(1,1)

(5.4)

The difference in payoff between the two actions, 1 and 0,
is:

ut(l,sttl~(a,0) - ut(O,sttl~(a,0) - xt p0~
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(5.5)

(5.6) shows that agent t has a unique best response unless

xt- 0, i.e. for almost all realizations of xt. Further, t will

choose 1 with probability one if xtc0, and 0 with probability

one if xt~0. Hence player t-1 should expect t to choose 1 with

probability 1~2, and to choose 0 with probability 1~2, if t-1

induces the history (0,0) or the history (1,0). In other words,

the aggregate strategy, st(0,0) - st(1,0), since st(a,0) is

uniquely determined by (5.5), no matter whether a- 1 or a
0. However, the strategy reguires t to take different actions

at (0,0) and (1,0). Hence, the strategy cannot be an

equilibrium.

The basic problem with che mixed strategy equilibrium is

that agent t is required to take different (probability

distributions over) actions at different information aets.

Since future agents cannot distinguish these information sets,

agent t must be induced to be indifferent between these

actions. Once payoffs are perturbed, these indifferences cannot

persist, since for almost all realizations of the private

information, the agent has a uniqué best action. Consequently,

the actions of the agent must depend only upon the private

information, and not upon the observed history.

We proceed to a formal analysis of the model.

The Formal 1lnalysis

A behavior strategy for agent t is now a Borel measurable

function, vt:Bt X Z ) AA. Two behavior strategies of agent t

are equivalent if, for every bt in Bt, they differ on a subaet

of Z of u-measure zero. Let st : Bt-) AA, and let St be the set
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of all such functions st. If Qt is a behavior strategy, Qt

induces an element st of St, defined by st:- fatdu. Call st the

aggregate of a~t. If player t plays Qt, to an outside observer,

and to all players ict, it seems as though t plays the

aggregate st of vt. Let Et be the set of behavior strategies

for player t, and let St denote the corresponding aggregates. A

behavior strategy profile, cv~, is a sequence of behavior

strategies, cQt~. Associated with this is the sequence of

aggregates, cst~.

Given Qt and bte Bt, write vt(bt) for the restriction of

vt to {bt}XZ, and write st(bt) for the associated aggregate.

Given an aggregate for player ttl, st}1, and bt, write sttl~bt
for the map from A to AA which is defined by the pair bt and

st}1. The interpretation is that if agent t takes action a e A

after hiatory bt, agent ttl is expected to take actions in A by

the probability measure st}1(a,bt).

At this point it is convenient to drop time subscripts,

since all agents are exante identical. Let x E Z be a

realization of private information for agent at an arbitrary

date t. The agent's utility function is hence u(a,a',x), where

a is the agent's own actíon, and a' is the action taken by

agent ttl. Let p:A~AA be an arbitrary function, and let

p(a'~a) denote the probability of action a' given a. The

interpretation is that p could be something similar to sttl~bt'
Given any aeA, define:

u(a,p,x) :- Eu(a,a'x)p(a'~a) (5.6)
a'eA

u(a,p,x) denotes the payoff to t from action a conditional
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on the realization of private information x, given that p is

the aggregate strategy adopted by ttl after some observed
history. Define the following:

S(p,x) :- {a'EA:u(a',p,x) - max u(a,p,x)}
aEA

~(p,x) .- {aEAA:u(a,p,x) - max u(a,p,x)}
aEA

S(p) .- {9:Z-~AA : 6(x) E ~(p,x) }

~a(p) .- {xE Z : a E S(p,x)}

We now define the equilibrium concepts for the disturbed
overlapping generations game. The first notion is that of a
sequential equilibrium:

Definition 5.1 cvt~ is a sequential equilibrium, if for

every t, V bt E Bt:

a't(bt) E R(sttl~bt)
The equilibrium requirement implies that each player's

behavior strategy is a best response to the strategy adopted by

the next player, and implies that players have common beliefs

about the equilibrium to be played. Our main theorem however

can be proved without invoking the equilibrium assumption, and

only requires that strategies are seqaentially rationali2able.
We define this concept for our specific game; for a detailed

discussíon of rationalizability in extensive form gamea, see

Pearce (1984).

Let 9ts Et be a set of behavior strategies, and let c9t~

denote a sequence of such sets. Let Qt be the set of

aggregates corresponding to At, i.e.:
Qt :- { StE St : 3 O'tE 8t, st- J 0'td~!}
Definition 5.2 The sequence cAt~, 9ts Et, has the
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sequential best response property if v t:
vt E 9t ~ 3 cIttl E Qttl : Vbt E Bt, ~t (bt) E S~~Ittl~bt)

Definition 5.3 c6t~ is sequentially rationalizable if it

is the maximal sequence with the sequential best response

property, i.e. if cAt~ has the sequential best reponse

property, then 9t s 9t `d t. The set of sequentially

rationalizable strategy profiles is the infinite product ~
~

.- X et.
t-1

Henceforth we use the notation 9t to denote the set of

sequentially rationalizable strategies for player t, and 8 for

the set of sequentially rationalizable strategy profiles.

Note that if co~t~ is a sequential equilibrium, cvt~ is

sequentially rationalizable, while the converse is not true in

general. Rationalizability usually results in a proliferation

of outcomes. For example, in the consumption loan model with

infinite memory, the outcome path 1,0,0,0... cannot be an

equilibrium path whereas it can be rationalized. In a

rationalizable path, a player may get less than her

individually rational payoff, sínce expectations may not be

fulfilled.

The following assumptions on preferences and the

distribution of private information replace assumptions P1 and

P2 of section 3.

]1ss~ption D1 u is either decreasing in its first argument

or additively separable in its first two arguments for all

realizations of x.
1lsstnnption D2 u is absolutely continuous with respect to
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Lebsegue measure.

Our first lemma for this section follows from D2:
Lemma 5.1 Let a, a' e A. If a~ a', ~a(p) n~a~(p) has

u-measure zero.

Proof ~a(p) (j ~a~ ( p) -{x e Z: u(a,p,x) - u(a',p,x)}. If x

e ~a(p) (1 ~a (p), then:

~u(a,a",x)p(a"~a) - ~(a,,a",x)p(a"~a') (5.7)
a"eA a"eA
(5.7) defines a hyperplane of Lebesgue measure zero, and

hence of u-measure zero. o

Our second lemma follows from D1 and D2. If a e AA, write

~(a) to denote ~(p) for the case when p is the constant

function a.

Lemma 5.2 If a, a' e AA, S(a,x) -~(a',x) .- 7(x) for

almost all x. 7(x) can be chosen to be single element of A.

Proof If u is decreasing in its first argument, then it is

strictly decreasing for almo~r all realizations of x, i.e.

S(a,x) - S(a',x) -{0} for almost all x. If u is addivitely

separable in its first two arguments, ~(a, x) - S(a' , x) . Lemma

5.1 implies that these sets are singleton for almost all x. o

Since 2~(x) is a singleton set, 7:Z~A defines a Markov

strategy. More generally, a Harkov strategy is a function

wt:Z-~AA, with aggregate wt -~~tdu. Let n denote the set of

Markov strategies for any player, a set which is obviously

time-invariant. Suppose that every player is restricted to

playing a Markov strategy, i.e. the set A rather than the set

Et. If f~~ is a subset of fl, we call Sl~ Harkov rationalizable if

the constant sequence cn~~ satiafies the best response
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property, and it is the maximal subset of D which does so. The

lemmata 5.1 and 5.2 imply that the overlapping generations

economy has an essentially unique Markov rationalizable

sequence, i.e. all elements in ~t are equivalent to ~. It

also implies that a Markov rationalizable sequence is also a

Markov equilibrium. In the consumption loan model, each player

transfers zero after almost every realization of x in any

Markov equilibrium. We will extend this notion, and call a

behavior strategy profile a Markov equilibrium if it is

equivalent to 7. Note that we allow a Markov equilibrium to be

"non-Markovian" on sets of ineasure zero.

Definition 5.4 A behavior strategy profíle ~~t~ is a

Xarkov eqttilibrium if Vt, d bte Bt, vt(bt) is eguivalent to

7.

We make the same informational assumptions as in section

3, viz. Mi and M2. We extend the definitions of section 3

regarding the measurability of strategies in the following

manner.
Definition 5.5 A behavior strategy vt is measurable w.r.t.

-i if for any bt, bt e Bt with bt -i bt, the set of xt such

that (5.8) does not apply has u-measure zero:

vt(xt,bt) - vt(xt,bt) (5.8)
If vt is measurable w.r.t -i , it follows that the

associated aggregate st ia likewise measurable w.r.t. -i, i.e.

if bt -i bt, st(bt) - st(bt)

The following theorem shows that the overlapping
generations game with memory constraints has a unique
sequentially rationalizable outcome.
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Theorem 3 The disturbed overlapping generations game has

an essentially unique sequentially rationalizable outcome which

a Markov equilibrium. In the consumption loan model, every

agent transfers zero after every observed history.

Proof By assumption M2 we can fínd an agent with an

arbitrarily large index i who is not omnifamous. Hence 3 j~i

such that j e 71(i) . We show, by backward induction, that for

all t, i c t c j, that if vt e 9t, Qt is measurable w.r.t. -i.

i) Every strategy in Ej is measurable w.r.t. -i, since j

e 1L(i), and -i induces the trivial (finest possible) partition

of Bj, where each set in the partition is a singleton set.

Hence if Qj E 6j, aj is measurable w.r.t. -i.

ii)Let i c t c j. If every st}1 in Qt}1 is measurable

w.r.t. -i, then if Qt e Et, vt is measurable w.r.t. -i .

We now prove (ii). Let st}1 be measurable w.r.t -i, let

xt be any realization of Xt. and let bt -i bt. We claim that :

ut(o't' sttl ,bt' xt) - ut(~t' sttl Ibt,xt) (5.9)

Suppose not. Let ut(~t' sttl ~bt' xt )' ut(~t' sttl
~bt,xt). Since bt -i bt,

btfl(vt(bt'xt)'bt) Vi bttl(Qt(bt,xt), bt)

(5.10)

Since sttl is measurable w.r.t. -i,

stfl~bttl(Qt(bt'xt)'bt)] - stfl [bttl(vt(bt,xt),bt)]

(5.11)

Hence agent t ensures the payoff ut(~t' sttl~bt'xt) by
chooaing o~t(bt,xt), so that vt(bt,xt) is not optimal.

Hence if Qt e S(st}1)' (5.9) must hold.
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However, by lemma 5.1, for almost all realizations of xt,

agent t has a unique optimal action, so that for almost all

realizations of xt:

Pt(bt,xt) - Qt(bt,xt) (5.12)

Hence at is measurable w.r.t. -i, and hence st is

measurable w.r.t. -i'
(i) and (ii) imply that si}1 is measurable w.r.t -i. By

lemma 5.2, player i's must choose ~(x) after every observed

history, and for almost all realizations of x.

We can now apply backward induction to players with index

less than i. If player i chooses an element 7(x) almost

everywhere after every history, the corresponding aggregate is

measurable w.r.t. Hence i-1 and every preceding player~i-1'
chooses 7(x) for almoat all x irrespective of the observed

history. o

Remark 1: Our proof is based on backward induction, even

though the model has an infinite horizon. This is why we are

able to get our results with an extremely weak solution

concept, such as sequential rationalizability. Note that the

argument here is not open to some of the critiques of backward

induction, eg. Basu (1991). These critiques consider games such

as the centipede game, where although the game has a unique

backward induction outcome, a single player moves several

times. If such a player deviates from the backward induction

prescription, this contradicts the common knowledge of

rationality assumption, placing other players in a dilemma. In

our model each player moves only once. Should she deviate, this

has no implications for future behavior.
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Remark 2: The key element in theorem 3 is the use of

Harsanyi's (1973) device of perturbing player's payoffs. This

device yields powerful results: contrast theorem 2. This is, to

our knowledge, the first time that payoff perturbations ala

Harsanyi, have been used to refine equilibria significantly in

dynamic games.2 Perturbations, with incomplete information

about players types, have indeed been used in dynamic games,

and in some

equilibria.

cases, such perturbations have refined the set of

Notable examples are Aumann and Sorin (1989) and

Fudenberg and

perturbations,
a "crazy"

Levine (1989). These models rely upon "large"

i.e. there is some probability that a player

type,

is

playing a fixed atrategy. Our use of

quite different; in particular we do not

set Z, of possible realizations of private
perturbations is

require that the

information, be large. Indeed, the proof allows Z to be

arbitrarily small. A second qualitative difference between our

model and the above mentioned papers is that we have no

"reputation effects". Remark 1 is relevant here: aince each

player moves only once, there is no scope for building

reputation in our model.

6. PERFECT DIVISIBILITY OF THE TRIINSFERIIBLE C01~490DITY

We now examine the implications of allowing the

transferable commodity to be perfectly diviaible. In our view,

perfect divisibility is an unreasonable assumption. The

analysis here is mainly in order to demonatrate that the

difficulties with sustaining efficient outcomes do not atem

from this assumption. In this section, we show that with
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perfect divisibility one can support the efficient outcome by

pure strategies. However, these pure strategies turn out to be

non-robust once we perturb the utility function.

Let A- [O,e] and let u:AXA)R be the payoff function,

which satisfies C1.

]1ss~nnption C1. u(.) is continuous, and is strictly

decreasing in its first argument and strictly increasing in its

second argument.

As in section 4, label the efficient action as 1, i.e.

u(1,1) ~ u(a,a) V a e A. The interval [u(0,0),u(1,1)] is the

set of individually rational and feasible payoffs. If u~

belongs to this interval, by the intermediate value theorem, 3

a~, 0 c a~ ~ 1, such that u(a~,a~) - u~. The following theorem

says that any individually rational feasible payoff can be

supported by a pure strategy provided that each player observes

the action of the previous player.

Theorem 4 If each agent observes the action of the

previoua agent, any individually rational and feasible

payoff can be supported by a pure strategy equilibrium.

Proof Given a u~, define a~ as above. Define the function

~:[O,a~] ~[O,a~] by the equation:

u(a,~(a)) - u(a~,a~) (6.1)

We first show that ~ is well defined. Let a e[O,a~]. By the

definition of at:

u(a,a) ~ u(a~,a~) (6.2)

Further, since u(.) is strictly decreasing in its first

argument:

u(a,a~) ~ u(a~,a~) (6.3)
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Since u(.) is continuous, the intermediate value theorem

implies that there exists a~(a), a~ ~~(a) ~ a, satisfying

(6.1). Since u is strictly increasing in its second

argument, this solution is unique, so that the function ~

is weil defined. We construct a pure strategy supporting at

which conditions only on the last observed action as followa:

sl - a~

If at-1 ' a~' st - a~
If at-1 ` a~' st - ~(at-1)
It may be verified that thia strategy profile constitutes

an equilibrium. No matter what the observed hiatory, the
strategy ensures a payoff of u(a~,a~). If the agent deviates by

choosing any other transfer in [O,a~], she still geta only

u(a~,a~). If she deviates by choosing a transfer greater than

a~, she only gets a~ in the next period and hence her utility

is less than u(a~,a~). o

The pure strategies supporting the efficient allocation

are infinitely complex - indeed, they have an uncountable

number of states. Nevertheleas, they require only one period

memory. The contrast between the informational requirements of

a strategy and the Abreu-Rubinatein number of states measure of

complexity could hardly be more stark. If one believes that a

atrategy should be informationally economical and use few

states, this compels us to consider automata which output

randomized actions. As we noted in aection 3, the efficient

outcome can be supported by MIXEDI which requires only one-

period memory and two states.

We now show that this pure atrategy alao fails to survive
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if we perturb the payoff function. This is technically more

complicated since u is now infinite dimensional.

However, we adopt the procedure of parametrizing

u(.) by a single parameter, thereby reducing the

question of genericity of u(.) to that of this parameter. Let

ut be given by:

ut(a,a') - v(a,a') - xta (6.4)

where xt is independently and identically distributed

by the probability measure u on the set Z -[-c,c]. We

assume that c is sufficiently small that ut is increasing in

its first argument for all realizations of xt.
The following discussion mirrors that of section 5, and as

before we drop time subscripts. Let AA be the set of

probability measures over A. Let p:A~AA be Borel measurable,

and let p(a) denote the element of AA that is mapped into by a.

Define:

u(a,p,x) :- fu(a,a',x) p(a'~a) da' (6.5)

v(a,p) :- ~v(a,a') p(a'~a) da' (6.6)

Given (6.4), we have:

u(a,p,x) - fv(a,a') p(a'~a) da' - xa (6.7)

- v(a,p) -xa
Define S(p,x) as in the previous section. Given any

realization of private information, x, we define:

~~(P,x) :- [sup ~(p,x), inf S(p,x))

Given any probability measure over the strategies of

player ttl, p, and the realization of private information, x,

~t is the half-open interval constructed using the infimum and

aupremum of best reaponses of player t. If ~(p,x) is a
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singleton set, ~t is the null set; otherwise, it is an interval

of strictly positive length. Define further the set:

X(p) :- {x e Z: S~(p,x) ~ 0}

X(p) is the subset of Z for which player t has multiple

best responses to a given mixed strategy of player ttl. We are

now in a position to state the following lemma.

Lemma 6.1 X(p) is at most countable and hence has

u-measure zero.
Proof Suppose x,x' are two realizations of X, with x~x'.

Let a E S(p,x) and a'e S(p,x'). From (6.7):

u(a,p,x) - u(a',p,x) - v(a,p) - v(a',p) t x(a-a') ~ o

(6.8)

u(a',p,x') - u(a,p,x') - v(a',p) - v(a,p) t x'(a'-a) ~ 0

(6.9)

Adding these inequalitiea we have:

(a-a')(x-x') ~ 0 (6.10)

Hence inf S(p,x) c sup ~(p,x'), which implies:

S~ (p,x) O fj' (p,x' ) - 0 (6.11)

(6.11) implies that for each x in X(p) we can find a

distinct rational number in ~~(p,x). Hence X(p) must be at most

countable since otherwise we have a one-to-one correspondence

between an uncountable set and a subset of the rationals. o

Given lemma 6.1, we can now replicate the proof of theorem

3 to prove the following theorem:
Theorem 5 The disturbed consumption loan model with a

perfectly divisible commodity has a unique sequentially

rationalizable outcome where each agent transfers zero

irrespective of the observed history.



36

7. THE INFORMATIONaL ROLE OF MONEY

We now consider the possibility that money may play an
informational role in the overlapping generations context, by
potentially allowing society to retain unbounded memory in some
situations. This allows society to support the efficient

outcome, even though information about past events is limited.
Conaider the simple model of our example, where the set of

actions A-{0,1}. In period one the old agent may issue,

(costlessly), a dated piece of paper which we call money. If

the young agent in period one transfers 1 to the old agent, she

is offered thia money in exchange. Every agent can acquire

money by one of two means: she may get it from the older agent

by transferring 1, or ahe may simply issue her own money.

Clearly the action sets of the agents are the same as

before. However, since money comes with the date of the issuing

agent, this gives rise to a different information structure. we

assume that in each period, the young agent has no knowledge of

the preceding actions. However, she may discern the date of the

agent who has isaued the money that is offered to her. Agent

t's observed history, bt, is now simply a date, i with z ~ t.

The set of possible observed histories, Bt, equals

{0,1,2,,...,t-1}. If agent t observes that the money offered to

has date t, she can infer that agent z has transferred 0, that

every agent after i has accepted the old's money, and has

therefore chosen 1. However, she can make no inference

regarding the behavior of agents before T.

Contrast this information structure with the case of m

period social memory, m~l. The information partitions of any
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agent under these two structures are not ordered, so that

neither can be considered more informative than the other.

Nevertheless, money allows social memory to be potentially

unbounded. If every agent accepts the money iasued by the first

old agent i.e. of date 0, future agents will have information

about all the actions taken by all agents. The potential

unboundedness of inemory allows us to support efficient

allocations in a robust way. For ease of exposition, we

consider the efficient allocation where every agent transfers 1

- the results extend in an obvious way to other efficient

allocations where the first k agents transfer 0, and agents

with index greater than ktl transfer 1.

Proposition 1. The efficient allocation can be supported

by the strategy profile GRIM, which is the unique efficient

pure strategy equilibrium. If any agent deviates and refuses
to accept money, money is never accepted subsequently so that

the continuation path is inefficient.
Proof Consider the partition of Ht into two sets: the

singleton set of conaisting of the history with ai - 1 v t ~ t,

and the set of all other histories where some player has chosen

0. This partition is coarser than Bt, and since GRIM is

measurable with respect to this partition, GRIM is a

sequentially rational equilibrium.

We now show that GRIM is the unique efficient equilibrium.

Let ~st~ be an efficient equilibrium, so that st(bt-0) - 1 V t.

Let st~}1(t~) - 1 for some t~~l. This implies stf(1) - 0,

contradicting the assumption that st(O) - 1 V t. If at~}1(t~) -

1, t~ gets a transfer of 1 next period by iasuing her own
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money, and hene will not accept money issued at date 0. o

Remark 1. Each agent has strict incentives to use GRIM at

every information aet, so that the equilibrium is robust to

small perturbations in the utility functions of agents as in

section 5.

The monetary equilibrium is however fragile in another

sense, since it is vulnerable to a"crazy" behavior by any one

generation. If any generation were to be foolish enough to

deviate, money never regains its value. In other words, the

loss ín confidence is permanent. This fragility is necessary

for the original equilibrium to be self-enforcing. Given

informational conatrainta, crises of confidence must be

devaetating, and long lasting. The informational role of money

hence provides a theory of monetary crisea of confidence.

8. CONCLUDING COMMENTS

This paper can be viewed as a contribution to the

literature on informational constraints in dynamic games, eg.

repeated gamea with imperfect monitoring as in Green and Porter

(1984). The overlapping generations framework provides a

natural way of introducing imperfect information, in a way
which is different from the repeated games literature.3 The

paper has also a bearing on the issue of strategic complexity.

As we have seen, simple atrategies may require infinite memory,

whereas a atrategy which requires only one-period memory may be
infinitely complex.

Our aubstantive results sound a note of caution with
regard to the poasibility of aupporting social cooperation in
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the context of finitely lived overlapping generations with

informational constraints, at least in the absence of

mechanisms for preserving infinite memory such as money. The

negative result in the arises from the informational assumption

is there is always an agent af sufficiently large index who is

not omnifamous, so that there is a subsequent agent who is

uninformed about i. This creates asymmetric information between

the those who are informed and those who are uninformed about

this agent. The simplest way of appreciating this point is to

consider the case of one period social memory, so that agent

ttl is informed about t's actions, but tt2 is not. Agent ttl

has private information about t's actions, and since theae do

not directly affect ttl's payoffs, agent ttl muat be

indifferent between the actions she takes at different

information sets. It is impoasible to construct a history-

dependent strategy for ttl which preserves this indifference in

a robust way, once we perturb the payoffs. This essential

argument extends, via backward induction, to more complex

information structures and greater social memory, provided that

the asymmetric information between the informed and the

uninformed persists.

An alternative way around this negative result is to get

rid of the asymmetric information. Suppose that agent ttl has

the same information about the past as agent t, with a high

probability (1-e), but with a small probability, e, has less

information. e could be a function of m, the size of inemory. In

such a model, society loses memory, but social forgetting is a

stochastic process, and agent t's information partition is
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stochastic. This generates a model which is formally quite

different from that analyzed in this paper, and therefore

requires separate analysis. The results in such a model depend

upon the assumption one makes about e. If e(m) is sufficiently

small no matter how large m is, then one can support inter-

generational transfers. This is possible since if e(m) is

always very small, then any pair of adjacent agents, t and ttl,

always have almost the same information. However, if e(m)

becomes large at very large values of m, the results are

similar to those in this paper. The basic point is that in the

stochastic model, any generation and its successor have

essentially symmetric information about the past - with high

probability they have the same information. It is not clear to

us that thia is more persuasive than the model analyzed in this

paper. In our view asymmetric information about the past is an

essential difference between generations who are born at

different dates. The deterministic model, we would argue,

captures this asymmetry better than a stochastic model.

The results of this paper also apply to repeated two-

player games played by overlapping generations of players,

where where the old player has a dominant strategy. This runs

counter to much of the recent literature on dynamic games

played by overlapping generations of players - eg. Kandori

(1992) and Smith (1992). The anti-folk theorem presented here

does not necessarily generalize to the general games played by

overlapping generations of players. If there are three or more

players in each generation who share the same information about

the past, a non-cooperative equilibrium can be constructed
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where they are induced to reveal this information to future

generations. One may therefore be able to prove an

informationally economical Folk theorem for auch games as

Kandori (1992) suggests. Such an equilibrium is however

vulnerable to collusion between agents of the same generation.

We leave a complete analysis of these games for future work.
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iThis model also provides an instance where the classical

relationahips between competitive equilibria and the core fail

to apply, as Hendricks et. al. (1980) and Esteban (1986) show.

2van Damme (1991, ch.6) notes that the Harsanyi perturbation

has very little power in extensive games.

3It is posaible to introduce imperfect recall into repeated

games; however, there are major problems of interpretation

which need to be resolved before this can be done in a

satisfactory, as Piccione and Rubinstein (1994) note.
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GRIM

RESILIENT

STATES: C, P

INITIAL STATE: C

OUTPUT : C-~ 1, P~ 0

Fig 1
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TABLE 1

OBSERVED ACTION INDUCED NEXT-PERIOD PAYOFF
HISTORY THIS PERIOD HISTORY ACTION

(1,1) 1 (1,1)

(1,0) 0 (0,0)

I (0,1) 1 (1,1)

(0,0) 1~ (0,1)

1

1

1

1

Action after (0,0) not optimal; choosing 0 induces (0,0) and 1 next
period, giving u(0,1)

(1.1) 1 (1.1)

(1,0) 0 (0,0)

II (0,1) 0~ (1,0)

(o,o) o (o,o)

1

0
0

0

u(1,1)
u(0,0)
u(0,0)
u(0,0)

Action after (0,1) not optimal; choosing 1 induces (1,1) and 1 next
period, givinq u(1,1)

(1,1) 1 (1,1)

(1,0) 0 (0,0)

III (0,1) 1 (1,1)

(0,0) 0~ (0,0)

1

0
1

0
Action after ( 0,0) not optimal; choosing 1 induces (0,1) and 1 next
period, givinq u(1,1)

(1,1) 1 (1,1)

(1,0) 0 (0,0)

IV (0,1) 0 (1,0)

(0,0) 1~ (0,1)

1

1

1

0

Action after (0,0) not optimal; choosing 0 induces (0,0) and 1 next
period, qiving u(0,1)

~ shows sub-optimal action
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MIXEDI

0

MIXED2

STATES: C, P, M

INITIAL STATE: C

OUTPUT : C ~ 1, P~ 0

M ) 0 with probability p~~, 1 with probability (1-pD~)

Fig 2
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