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Abstract

The original rent seeking game devised by Tullock, whereby the probability of winning a rent-
seeking contest is a function of the rent seeking expenditures raiseá to the power R, is solved
for any value of R~ 0. In particular, we show that a mixed-strategy Nash equilibrium exists
when R 1 2. The possibility of over dissipation of rents - which was conjectured in the early
literature for the case where R~ 2-- dces not arise in any Nash equilibrium. We provide a
tight bound on the amount of under dissipation of rents that arises in a symmetric equilibrium.
This bound explains earlier experimental work which could not be rationalized before. General
representations of symmetric Nash equilibrium mixed strategies are provided, as well as
numerical examples based on values of R 1 2 used in some of the recent experimental
literature.
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1. INTRODUCTION

]n Tullock (1980) the following interesting rent seeking game is described. Consider two

players who bid for a poGtical favor commonly known to be worth Q dollars (Q ~ 0 and finite).

Their bids influence the probability of receiving the favor. Let x and y denote the bids ofagents

1 and 2 respectively, and let ar(x,y) denote the probability the first agent is awarded the political

favor. The payoff to agent 1 from bidding z when the other agent bids y is

U~(~ly) z rc~,y)Q - x , (i)

while that of player two is symmetrically defined:

U:(Y i x) -[I - x(x,Y))Q - Y.

Because the politician awarding the prize may have other considerations, or because he

can only imperfectly discriminate between the bids (if bids are not made in the money metric),

the high bidder is not guaranteed the prize. This is a common assumption in (I) the principal-

agent literature (Lazear and Rosen, 1981; Nalebuff and Stiglitz, 1983; Bull, Schotter and

Weigelt, 1987), (2) the political campaign expenditure literature (Snyder, 1990); and (3) the

literature on rationing by waiting in line (Holt and Sherman, 1982). Presumably, given y, the

probability of winning is an increasing function of x. Tullock suggested the specification

1 ij.z~y~0
2

(2)

z"
xR , yR otherwue (x Z 0, y Z 0)
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where R 1 0. This specification has become standard in the rent seeking literature and other

fields, see e.g. Snyder (1990). The case where R- 1 is studied most (Ellingsen, 1991; Nitzan,

1991a; Paul and Wilhite, 1991), but it is of interest to consider other values of R, as in

Applebaum and Katz (1986) and Millner and Pratt (1989). Loosely speaking, the case 0 e R

c 1 represents decreasing returns, while R~ 1 repn.saits increasing retums to aggn~sive

bidding. While the two agent pure strategy symmetric Nash equilibrium is straightforward to

calculate from the first order conditions when 0 c R 5 2, this is not the case when R~ 2.

Consequently Tullock (1980) devoted a large part of his discussion to these latter cases.

To date, there are only conjectures concerning the ezistence of a Nash equilibrium for

R~ 2 but finite. Rowley (1991), in his review of Tullock's work, lists this as one of the three

important theoretical problems for a research program in the area of rent seeking. The problem

is not so much that the first-order condition for a maximum cannot be calculated; the problem

is that the symmetric (x - y) solution to the two player's first-order wnditions does not

necessarily yield a global maximum (if R 1 2 the symmetric solution to the first order

conditions implies a negative ezpected payoff, which is dominated by a zero bid). In such a case

the sum of the solutions to the first-order conditions exceed the value of the prize Q; there is the

false appearance of an over dissipation of rents. Tullock (1980, 1984, 1985, 1987, 1989)

devoted considerable attention to the case of over dissipation because of the induced excess

social waste; see Dougan (1991) for a critical comment, and Laband and Sophocleus (1992) for

estimates of the resource expenditures. In Tullock (1984) it was acknowledged that over
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dissipation may be due to a failure of the second order conditions.' In the vernacular of game

theory, over dissipation is not part of a Nash equilibrium. This notwithstanding, the possibility

of over dissipation is a recutTertt theme in the rent sesking literature.

In particular, Millner and Pratt (1989) examined the rent seeláng model experimentally

for the cases where R- 1 and R- 3. Due to the use of laboratory dollars, the strategy space

used in their experimcnt is discrete. For a prize worth 8 U.S. dollars they formulate two

hypolheses concerning the mean of the individual expenditures and the mean dissipation rates.

These hypotheses are stated in Table 1, together with the'u experimental results.' Both

hypotheses are rejected for either value of R, but at markedly different p-values. The p-value

for the R- 1 case is at least .015, while the p-value for R- 3 is at the most ]0~. Thus, Ho

is only rejected marginally for the case R- 1, while I-io is strongly rejected for the case R-

3. Baik and Shogren (1991) point out, however, that Millner-Pratt's null hypothesis for the c~se

R- 3 is not the correct one. The problem, however, is that the equilibrium to the game is not

known when R 1 2. Our paper resolves this issue.

z

Briefly considering the n-player variant, n z 2, the second order conditions fail if R~
nl(n-2), cf. Tullock (1984) (where the reverse condition is reported erroneously). Note
that for the case n- 2 the second order conditions are always satisfied. But it is easily
checked that for R~ 2 the symmetric solution to the first-order conditions yields U,(. ~.)
c 0, and hence is not a global maximum. Thus the two agent case is the most
interesting case to consider, because with n~ 2 the posited solutions obviously do not
make sense if R 1 nl(n-2).

The null hypotheses should be interpreted with caution because the experimental setup
of Millner and Pratt (1989) is not entirely congruent with the simultaneous move
n~uirement (neither dces it fit the altemating move version studied in Leininger 1990
a,b).
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Table 1: Millner and Pratt (1989) Hypotheses and Experimental Results

Iio Experiment Iia Experiment

Exponent R- 1 R- 3
Mean Individual 2 2.24 6 3.34

Expenditures (2.42) (-24.28)

Mean Dissipation 5096 5696 15096 849b

Rates (2.3T) (-13.37)

Number of Observations 146 100

More specifically, for R- 1, the symmetric Nash equilibrium is known, and the

associated expenditure and dissipation rates are readily verified to correspond with the

hypothesiud values in Table 1. This is further wrroborated by a recent experiment by Millner

and Pratt (1991) which shows that risk avenion can explain the discrepancies between the

hypothesized and realiud values in Table 1 for the case when R- I. A major benefit of the

results presented below is that we will be able to explain the discrepancy between the

hypothesiud values and experimental results for the case when R~ 3. The punch-line is that

the formula based on the first-order equations (which yields a rent dissipation of 15096) is

incorrect. In fact, there is not a symmetric pure-strategy equilibrium when R- 3. We

characteriu the "correct" Nash equilibrium, and show that the results of the Millner-Pratt

experiments are in line with the theoretically correct Nash equilibrium mixed strategies. To this

end we mainly focus on the two agent case in discrete strategy space. In the last section we

consider a continuous strategy space by taláng limits of the finite game.
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Before we embark on this, we briefly review the approaches others have used to deal

with the R ~ 2 case. The approach in the existing literature is to modi~ the original gome to

remove the apparent over dissipation of rents. In his original contribution Tullock (1980)

suggested three modifications. The fu-st is to let R be infinite, which tums the game into an all-

pay auction. Within the rent seeking literature this version has been studied by Hillman and

Samet (198Tj. The complete charactetization of all equilibrium strategies has ber.n obtained by

Baye et al. (1990), and the equilibrium level of r~ent dissipation is derived in Baye et al. (1993).

The second type of modification is to change the one shot game into a dynamic game. Tullock

(1980) discusses the case of altemating bids, and this has been formalized recently by Leininger

(1990a, b). In Corcordn (1984), Corcoran and Karels (1985), and Higgins et al. (198T) the

game is changed into a two stage game. In the first stage the number of participants is selected

such that, when the rent seeking game is played in stage two, the number of participants is

consistent with (almost) complete rent dissipation. Similarly, Michaels (1988) devises a setting

within which the politician has the incentive to adjust the exponent such that the first and second

order conditions are met. The third modification deals with asymmetries between the players.

This was briefly dealt with in Tullock (1980) and has been further investigated by Allard (1988).

Finally Nitzan (1991b) introduces coalition behavior on the part of the contestants. None oj

these contributions, though, offers o solution to the original simultaneous moue rent seeking

game when R~ 2. The next secdon provides this solution and relates it to the experimental and

theoretical literatures.



2. SOLVIIVG THE RENT SEEKIIVG GA11~

Consider the two agent rent seelàng game with conditional payoffs and winning

probabilities as given in equations ( 1) and (2). The exponent satisfies R~ 0. Suppose a pure

strategy equilibrium exists. Given y~ 0, the first and second order conditions for an

unconstrained (local) maximum of U~(x ~ y) are readily calculated as

Y .`R R xR-' - 1` ~~
(x 4 Y~

and

"!R XR-7

Q(xR 4 y~~ I(R-I)(XR t Y~ - 2RxRJ c 0.

(3)

(4)

Assuming a symmetric solution, condition (3) yields x- y- QRl4, for which condition

(4) is readily seen to hold locally for any R 1 0. Substituting back into equation (1) yields

U,(x - Y- QR) ~ Q(1 - 2); i- 1, 2.

(S)

Note that in this case U;(. ~.) is non-negative as long as R 5 2. Moreover, for any z,

y~ 0 the factor (R-1)(xR f yR) - 2R x" in the second order condition (4) is unambiguously

negative if R S 1, while it is positive over some interval to right of x- 0 if R~ 1 and

becomes negative thereafter. In particular, (4) is satisfied when x - y. Thus for R 5 2, the

symmetric solution x - y- QRl4 constitutes a Nash Equilibrium. For R ~ 2, U(QRl4 ~ QRI4)

in (S) becomes negative and hence the first order conditions do not yield a symmetric Nash

equilibrium point ( because one can choose x- 0 given that y- QRl4; and earn a higher

payoff. But if x- 0 is chosen, player two has an incentive to lower y to small e~ 0).
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Generally, the fust and second order conditions (3) and (4) fail to characterize the global

maximum when R ~ 2.~

In order to find a solution for the cxse R~ 2, we focus on the game with a discrete

strategy space. This yields a version of the game similar to that used in the laboratory

experiments by Millner and Pratt (1989, 1991).` Due to the use of laboratory dollars, the bids

are necessarily discrr,te, and thus the game is a so-called finite game.' Nash's (1951) theorem

guarantees that every finite game has a mixed-strategy equilibrium.~ It follows immediately that

the Tullock rent-seeking game in discrete strategy spact has a Nash equilibrium, possibly in non-

degenerate mixed strategies, for any R~ 2. While it is in general difficult to characterize the

equilibria, we may be more specific in this case. Note that for any strategy pair (x,y), the

payoff to the second agent is the same as the payoff to the first agent if the strategies played by

the two agents are interchanged; the game is symmetric. Recalling that an equilibrium is defined

to be a symmetric equilibrium if all players choose the same strategy, we may apply Dasgupta

and Maskin's (1986) L.emma 6; a finite symmetric game has a symmetric mixed-strategy

equilibrium.

s

6

Baye, Tian, and Zhou (1993) show that one cannot generally blame the non-existence of
a pure-strategy equilibrium on the failure of payoff functions to be quasiconcave or upper
semi-continuous.

Although Millner and Pratt claim to be testing the Tullock model, the experiment actually
allows the rent-seekers to expend resources continuously over a small time interval.
Hence, the experiment does not formally test the original one-shot simultaneous-move
Tullock game. This problem is corrected in the experiments of Shogren and Baik (1991),
who do not rtject the theoretical prediction when r- 1.

The continuous strategy space ( infinite game) is dealt with below.

The mixed-strategies may be degenerate, i.e., in the c~se of a pure strategy equilibrium.
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In summary, the Tullock rent seeking game with a discn~e strategy space certainly has

a symmetric Nash equilibrium, even when R 1 2. These results immediately raise the

following questions: (i) Can we characterize the equilibria for R 1 2, even though previous

authors have been unable to do so? In particular, is it possible to provide an ezplicit soludon

for the symmetric equilibria that arise for differcnt values of R? (ii) Can the equilibria of the

finite game be used to shed light on infinite game (o~ntinuous strategy space) equilibria? A

derivative question is: (iii) How do the answers to these ques6ons relate to the experimental

work reported by Millner and Pratt for the c~se R- 3?

We answer question (i) by employing a device which was first used by Shilony (1985).

The payoffs to the game will be written in matrix format. We then show this yields a matrix

equation which can be manipulated to yield the symmetric mixed strategy solution. Some

numerical examples and a special case of this procedure are provided. To answer the derivative

question (iii) we manipulate the matrix equation to obtain tight bounds on the equilibrium

dissipation rate. Question (ii) is answered by letting the mesh of the strategy space become

small relative to the value of the prize.

Recall equation (1) which gives the conditional payoffs for agent l. To obtain the

unconditional or expected payoffs from playing x, EU~(x), the conditional payoffs are

premultiplied by the (mixed-strategy) probability py that a particular y value is being played by

player one's opponent, and subsequently these are summed over y. Thus
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Q
EU,GY) ~ ~ P, ~(x.Y)Q - X.

Y-o

Denote the expected payoffs to agents 1 and 2 in an arbitriry Nash equilibrium by v, and v,

respectively. In the case of a symmetric Nash equilibrium note that the players' expected

payoffs are identical, v, - vz - v(however, v need not be unique). The manipulations below

make repeated use of the following general result.

Tbeorem 1. In any equilibrium: (i) EU,(x) 5 v,, (ii) EU,(x) - v, when p, ~ 0, while (iii)

pj - 0 if EU,(x) c v,. Similar results hold for player 2.

A proof of this theorem can be found in Vorob'ev (1977, sec. 3.2.2., 3.4.2. and 3.4.3.).

For a symmetric equiGbrium -- which we Irnow exists by L.emma 6 in Dasgupta and Maskin

(1986) -- we can use equations (6) and (2) to restate the condition EU,(x) 5 v as

Q R

QPr xR f YR 5 vQx

(7)

Conditions (ii) and (iii) in Theorem 1 imply a complementary slaclmess-type condition for a

symmetric equilibrium of the form

V x: P~ ~ Ps RsR R- v; x ~ 0. ~~l
Y.p X 4 Y Q

Now note that EU,(x - Q) 5 0, and in fact EU,(x - Q) c 0 if pr.a c 1(and R is finite).

Thus in a symmetric equilibrium no mass will be placed at Q, i.e. p,.Q - pr.Q - 0. Suppose
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(without loss of generality but for ease of notation) that Q e N, and that x and y can only take

on the integer values 0, 1, ..., Q. Note that there are exactly Q oonditions ('7) for x s 0, 1,

..., Q-1. These can be conveniently expn~sod in matrix format:

1 0 0
2

1

1

0

1 1 1
2 1.2R 1}(Q'1)R

ZR 1 ZR
2Ra1 2 ...

2Rt(Q-]I

1 (Q-lI (Q-1)R ...
(Q-1)R'1 (Q-1~~2R

1

2

Po

P,

Pz

PQ-,

5

v
Q
v.l

Q
v;i

v.Q-1
Q

In addition to this Q x Q matrix condition, the following constraints must be imposed:

Q-1
~ pr-1; prz0, y~0, 1,..,Q.
y-o

(8)

(9)

Condition (8), together with the constraints (9) and the complementary slackness

condition (7') provide a complete, but implicit characterization of the symmetric equilibrium,

which we know exists by Dasgupta and Masldn's Lemma 6. These conditions form a linear

programming problem which, at least in principle, can be solved for (po, ..., po-„ v). We have

thus proved

Tóeorem 2. Suppose the strategy space is discrete. Then for any R~ 2, the Tullock rent-

seeking game has a symmetric mixed-strategy Nash equilibrium, defined implicitly by the

solution to conditions C1'), ( 8) and (9).
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In order to illustrate the practical utility of Theorem 2, we will investigate two special

cases: R L oo and R~ 3. The latter case is that examined in Millner and Pratt's experiments,

while the former is the discrete atrategy spaoe version of the all pay auction examined in Baye,

Kovenock, and de Vries (1990; 1993).

We begin with the case when the exponent R~ oo and assume Q~ 1 for simplicity.

In this case the matrix expression in (8) becomes

I 0 0 ... 0
2

1 l 0 0
2

1 1 1 ... 0
2

I 1 1 ... l
2

Po

P,

P,

PQ.,

5 (10)

It is straightforward to find symmetric e~uilibria if it is assumed that all p; 1 0. In this

case the matrix inequality (10) becomes an equality by Theorem 1. The lower triangular matrix

equation can then be solved through recursive substitution. This yields po - p~ -... - po-~ -

2vIQ and p, - pj -... - pQ, - 2(1-v)IQ. In addition to (8), conditions (9) and (7') have to

hold. For even walues of Q this restricts v E[0, 1], while for odd values of Q, we necessarily

have v- ll2 (see Bouckaert et al. for a proof of this claim).

Note that we may make the grid in the formulation of the game (7) finer and finer and

normaliu the value of the prize to be one by dividing all dolLv units by Q and letting Q tend

to infinity. The e~uilibrium distributions in this discrete game with r- oo then converge
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uniformly to the continuous uniform distribution, and the expected payoff vIQ converges to uro;

therc is full rcnt dissipation. Also note that equations (1) and (2) can be expressed as

Q- x ~fx 1y

U~(xly) - 2Q - x 4lx - y

-x jfx cy

which is precisely tht defuution of the all-pay aucáion (ef. Baye, Kovenock, and de Vries,

1993). It follows that the symmetric equilibria of the discrcte all-pay suction converge to the

unique (see Baye et al., 1990) equilibrium of the continuous strategy space rwo player all-pay

auction.

Next, consider the case of finite exponents. When 0 c R 5 2, the game has a

symmetric purc strategy equilibrium (x - y- QRl4) as discussed earlier. Because R- 3 is

used in Millner and Pratt's experimental work on the game, and as pointed out by Shogrcn and

Baik ( 1991) the 'solution" examined by Millner and Pratt is not really a Nash equilibrium, we

will focus on this case.' For R~ 2 and finite, the solutions to the game cannot be given in

the same compact form as the solution for R - m, although conditions (7'),(8) and (9) still

provide a complete but implicit description of the game and its soludon. For any specific values

of R and Q, it can be solved explicitly through linear progrdmming. We list some examples.

' Shogren and Baik (1991) state that the behavioral inconsistency reported in Millner and
Pratt "... is due to the nonexistence of a Nash equilibrium. In this case there is no
predictable behavioral benchmarks to measurc the experimental evidence against.' t~ur
Theorem 2, however, provides such a benchmark. Shogren and Baik are rcferring to the
non-existence of a symmetric pure strategy Nash equilibrium.
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(i) R- 3, Q- 1. Therc is one pure strategy solution: both agents bid zero and receive

v- 112. lnter alia, this result holds for any fuute value of R.

(ii) R- 3, Q 3 2. There exist multiple pure strategy solutions: (1) both bid zero and

receive v~ 1, (2) one agent bids uro and the other bids one with respective payoffs v~ - 0

and v~ ~ 1, and (3) both agents bid one and rrceive v~ 0. Mixed strategies whereby agents

randomiu over (some) of the pure strategy solutions exist as well.

(iii) R- 3, Q- 3. 1'his case is still solvable by hand. In particular, condidon (8)

becomes

1 0 0
2
1 1 1

2 9
1 8 l

9 2

v
3Po

P, 5 (12)v;l
3

v}2
3P,

It is readily verified that (po, p~, p~ ~(-;-, ~, ~r) and v- 14 satisfy condition ( 12) and the

other conditions of Theorem 2, and hence constitute an equilibrium to the game.

(iv) R- 3, Q- 4. This case is alrcady too cumbersome to solve by hand, so we relied

on the analydcal computer program 'Derive" to solve this game. It can be checked that there

are two symmetric solutions: (i) (po, pi, p2, P~ -( 14, 0, 14, Ol with v--3f-, and
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(ii) (Ao~ P~, Pi~ P~) - f 38~ 0' 38'
O1 with v'

19 ~

For R~ 3 and Q~ 4, one genetally finds that all probability mass is loaded on the first

few probabilities q, with most mass lo~aded on the higher q's, and 0 t v c 1. For Q~ 15

the computational burden incre~ases rapidly and exact solutions take an excessive amount of

computer time. This is a bit unfortunate berause the experiment conducted by Millner and Pratt

(1989) used R- 3 and a grid of Q- 80 (at the end of the experiment the laboratory dollars

were converted into U. S. dollars at an exchange rate of 10. But subject payments were also

rounded to the nearest 25 cents, generating a grid of 32 with unequal grid sizes). Their

hypotheses and tests, however, all concern mean individual expenditures and mean dissipation

rates. The question therefore is whether we have something to offer concerning these quantities,

without explicitly calculating the solutions.'

71ie expected individual expenditures and the expected dissipation rates can be calculated

from equation (6). Note that premultiplication of EU,(x) by p, and summation over x gives the

expected equilibrium payoff to player 1 in a symmetric equilibrium:

' In future work it may be of interest to repeat the experiment for R- 3 and Q small such
that all the properties of the symmetric equilibrium can be evaluated, i.e. the values of
the p,'s.
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Q Q Q Q (13)EU, -~ P, EU~4r) -~ P. ~ P, tGY,y)Q - x -~ P~v ` v,
x-0 x-0 y-0 x~0

berzuse player one only loads mass on those x's which generate the same (highesy expected

payoff equal to v (see Theorem 1 above).

In order to dispel the claim by Millner and Pratt that over dissipation of rents is expeated

when R~ 2, first note that if agent 1 chooses x~ 0 with probability 1, then

Q
EU, -~ P,~(o,Y) Q' Po 2 Q Z 0.

y~o
(14)

Hence each player can guarantee a non-negative expected payoff. Secondly, the expected

dissipation rate is easily calculated from EU, t EUT. Note that

v, ~ EU, - Prob{agtnt 1 wins} Q- x,

where x -~p~r is the average individual expenditure. Adding up yields

v, . v2 -[Prob{agent 1 wins} . Prob{agent Z wtns}] Q- x- y.

But since the prize is always awarded, there is always a winning agent and hence by (14)

o s v, ~vi-Q-x-y, (is~

so that x~ y 5 Q. The expected rate of rent dissipation, D, is defined as D -(i .~IQ.

Thus
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D~1-Y'~v'S1.
Q

We have thus proved:

Theor~ 3. The two player finite rent sceláng game devised by Tullock never involves over

dissipation in any (possibly mixed-strategy) Nash oquilibrium for any R~ 0. That is, D 5 1

always.

The dissipadon rate is also bounded from below. But in contrast with the upper bound,

the lower bound depends on the value of the exponent R. This can be easily seen by

investigating the two limiting cases R- 0 and R - oo. In the former case there is no

dissipation, while in the latter case dissipation can be complete. Therefore, we will investigate

specific values of R. To explain the Millner-Pratt ezperimental results for the case R- 3, one

requires precise information about the size ofD, and hence the tighter the lower bound on D the

better. ]t is not too difficult to show for Q~ 2, R~ 2, that in any equilibrium the dissipation

rate is at least 5096. With more effort, for Q 1 3 a sharper lower bound for the symmetric

equilibria is obtained in Theorem 4.

Theorem 4. In any symmetric Nash oquiGbrium of the two player Tullock rent-seeking game

with ~ ~ R~ 2 and ~ 1 Q~ 2, the dissipation rate is bounded from below by 1-~-.
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ProoG The proof comes in two parts. In part 1 we auume that p~ ~ 0, and show that this

implies v 5 1. Hertct D 2 1- 2IQ. In part 2 we show that pb ~ 0 necessarily. Some of the

computations for part 2 arc relegated to the Appendix.

Part 1. Suppose that p, 1 0. Then (by 7lieorem 1) for x~ 0 condition (~ ne~ly

beromes an e~uality: po ~ 2vIQ, so that v ~ Qpol2. Because po is bounded above by 1, v is

bounded above by Q12. This implies D Z 0. To improve the upper bound on v, i.e. to lower

it fmm Ql2 to 1, we continue the presumption pp 1 0. From condition (~, for x- 1 we have

po ~ a 5 yQ 1; 0 5 a G~.

To sce this note that all the probabilities r(l,y) except the first in the second row of

matrix condition (8) are less than or oqual to 112. Combine the prrsumption pa - 2vIQ with

the above inequality to get

as Q-Q. (1~

Hemce 1- v 2 aQ z 0. Theroforo 1 2 v.

Pa~t 2. We now show po ~ 0 necessarily. Let x be the first row for which p, ~ 0, x

;c 0, i.e. pb ~... z PI-~ - 0. Then condidon ('n holds as an equality for this row, i.e.
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R R1 x x V t X2 p,. xR}(Z~l~p,,, }... ~ xR~(Q-I~pQ-, - Q~ (18)

We will show that v~ 1 and pb ~ 0 are incompatible. For x f 1, condition (~ rads

as follows:

(xtl~ ~ 1 a. t (x~l~ 5 v}1 tX
(z~lj' r xR p' 2 p'~' (z;11R .(Q-1~ pQ-~ Q

(19)

Compute p~ from the equality ( 18), and substitute this into the weak inequality (19). This

yields the following weak inequality:

1 - 2 (x~l)R xR
2 (x;l)R ~ xR xA ~ (x~l~, P,.~ ~ ...t

G~'1)R {(Q-1)" - 2(Z}1~ } XR xR 4(Q-1~ pQ.~ 5
L ~;1)R ~~t~ xR J

5 Q {v~l {x - 2(vtx) (x ~l~x }.
r ~ R

In the Appendix we manipulate the two sides of inequality (20) to show that the left-hand-side

is non-negative while the right-hand side is strictly negative. (Note that the proof would be

particularly simple if R- oo, since then (20) reduces to 0 5 -~- p,,, 5(1-v-x)IQ). This yields

a contradiction so that the supposition po - 0 and v Z 1 are incompatible.) Q.E.D.

3. 11SII.LNER AND P'RATT REVISITED

How do the above theoretical results compare with the experimental evidence reported

by Millner and Pratt (1989)? Note that for Q large Theorems 3 and 4 provide tight bounds.

In particular, given the values of R~ 3 and Q a 80 used in the Millner and Pratt experiments,
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the symmevic ( mixod-strategy) equióbrium expected outlays are z~ y- 3.9 (after catversion

to U.S. dollars) and the corraponding interval for the expecKed rent dissipation is D E[97.596,

10096] -- it is not the 150 percent dissipation rate used as the null hypothesis by Millner and

Pratt. Using the experimental evidence reported by Millner and Pratt we find the following t-

statistícs for the null hypotheses: -5.11 and -2.73 respectively' Compare these to the values

reported by Millner and Pratt and reproduced in Table 1 above. (If the rounding to the nearest

25 cents in the actual payout is taken into acoount, the mean dissipation rate is reducod to

approximately 93.75, which does not differ significantly from the experimental result at the 596

level.) Note that these t-statistics are of the same order of magnitude as those for the case R-

1. Also rocall the rectnt experimental work by Millner and Pratt ( 1991) which relates the

relatively small discrepancy for the case R- 1 to the ezistence of risk aversion.'o Our

cx]njecture is that the remaining discrepancy for the case R - 3 can be explained in a similar

way. Importantly, though, the above shows that when the correct symmetric (mixed-strategy)

Nash equilibrium is used as the theonr.tical benchmark to form the null hypothesis, Millner and

Pratt's empirical results for the case R- 3 and Q- 80 accord well with state-of-the art rent-

setking theory. Individuals seem to behave quite efficiently after all.

' Calculations are based on (3.34 - 3.9)Is, --5.11 and (84 - 97.5)Is2 - -2.73, where s,
and si were calculated from Millner and Pratt ( 1989) using (3.34 - 6)Is, --24.28 and
(84 - 150)Is, - -13.37.

'o Sce also Shogren and Baik, who run a related experiment for R- 1 and find that the
Nash equilibrium dissipation hypothesis cannot be rejected at the 90 percent level.
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4. S[JNIII~IARY AND RESULTS FOR THE CONTIIVUOUS STRATEGY SPACE CASE

In this paper we have solved the original rent seeking game devised by Tullock for the

case where the rent-seeking exponent (R) exceads two. A oonstructive method was used to find

the explicit solution for the finite game (i.e, the TuUock game in discrete strateSY space). Our

theoretical n~ults, which establish that rents are under dissipated when R 1 2, accord well with

the existing experimental evidence. We also provide tight bounds on the rate of dissipation as

the mesh of the strategy space decreases.

Up to this point we have not addressed the solution to the infinite rent seeking game, i.e.

when the strategy space is continuous and R 1 2. It tums out the payoff functions in oquation

(1) satisfy the conditions of Theorem 6 in Dasgupta and Maskin (1986), guaranteeing the

existence of a symmetric mixed strategy oquilibrium for the rent seeking game with a continuous

stntegy space. The proof of their thoorem relies on finite approximation of the game and then

letting the grid size become finer and finer, as we did in our example with an infinite R. Thus

the construction of the equilibrium to the finite game in the previous section is driven to the

limit. Under sufficient regularity conditions this method indeed yields a solution to the infinite

game.

The application of Dasgupta and Maskin's Theorem 6 requires four conditions, each of

which is satisfied for the Tullock game with a continuous strategy space. In particular, this

thoorem re~uires: ( i) The sum of the payoffs must be upper semi~ontinuous. From equations

(1) and (2) we easily see that U,(x ~ y) t Uz(y ~ x) ~ Q- x- y, which is continuous and therefore

upper semi~ontinuous as well. ( ii) The subset of discontinuities in the payoffs must be of a

dimension lower than 2, and one must be able to express the elements of this subset as functions
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which relatc the strategy of one player to the strategy of the olher. For the Tullock game with

R c oo, this oondition is simple to check, as x a y~ 0 cx)nstitutes the only point of

discontinuity. Th~ condition guarantees that the discontinuities are relatively unimportant (have

measure zero). (iii) The payoff U,(x ~ y) must be boundod. This holds evidently as -Q 5

U,(x ~ y) 5 Q on [0, Q]. (iv) Finally, U,(x ~ y) must be weakly lower semi-continuous. The only

point where there could arise a problem is at the point of disoontinuity, but as U,(x ~y- 0) is

lower semi~ontinuous, it is oertainly weakly lower semi-oontinuous. This last condition

guarantees that, loosely spe.alvng, a player daes not want to put weight on the discontinuity point

even if the other player does, bccause payoffs may jump down but do not jump up.

Thus we conclude that a symmetric mixed strategy oquilibrium exists for the continuous

strategy space rent sceking game for all R~ 2 as well. An explicit closed form solution

remains for future invatigation. For the special case R- oo, a full characteriration of all the

equilibria is available even when there are more than two players; sce Baye et al. (1990, 1993).

Other interesting questions include the explicit solurion to asymmetric versions of the game, as

well as further ezperimental work along the lines suggestod above. These remain the focus of

our future research.
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APPENDIX

In this Append'u we show that the Ieft-hand-side of inequality (20) is posidve, while the

right-hand-side is negative.

Manipulate the right-hand-side as follows:

v.l ~ x - 2(v.x) ~~1~ ~ 0
l~41Vt ~ xR i

MN
1

(v.l ;xlr a j (v- l .x)(~r.l ~
a

1 a 2 ~
(1 . ~ ~.

ViX-1 C X

Note that the left-hand-side of this last inequality is decreasing in v. Hence, to show that the

right-hand-side of (20) is negative, it is sufficient to show that such is the case for v a 1.

Assuming that v~ 1, we can further manipulate the last inoquality:

1 t l;X j(1,~~-~

a

1; 1~ x ~(1 { z)(1 a X~ 2.

Evidently, for any R Z 2 and x 2 1

1 4 1 ~ 1~ 1.
1 ~ X X

Thus the right-hand-side is strictly negative for any v~ 1.

To obtain the left-hand-side result we need to show that for any t such that

Q-12t2xf1,
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~~1~ 2 Z ~a]~ ~R

4~41~` ; tR 4~~1~` ~ TR xR ~ tx~

Manipulation yields

[~~1~ t ~~MR ~ t~ ~ ~~~~1~ 4 tR~

FI

xR~~lyr ; tR~tlYr ' ~u ; ~rtR j ~R ~al~ t ~Rte

M

[(x~l~ - xx][t" - sxj j 0.

Because t Z x tl~ x, the left-hand-side of this lau inequality is unequivocally positive, and

hcnce the left-hand-side of (20) is non-negative.



25

REFERENCFS

Allard, R. J., "Rent-seeking with tan-identical players," Public Choice, 1988, 3-14.

Applebaum, E. and E. Katz, "Ttansfer seeking and avoidanca: On the full social cosu of rent
seeking," Public Choice, 1986, 175-181.

Baye, M., D. Kovenock and C. G. De Vries, "Rigging the Lobbing Process: An Application
of the All-Pay Auction,' ',(March 1993), pp. 289-294.

Baye, M., D. Kovenock and C. G. De Vries, "The all-pay suction with complete information,"
CentER discussion paper 9051, 1990.

Baye, M., G. Tian, and J. Zhou, "Characteri7ations of the Existence of Equilibria in Games
with Discontinuous and Nonquasiconcave Payoffs," Review of Economic Studies,
forthcoming 1993.

Bouckaert, 1., H. Degryse, and C.G. de Vries, "Veilingen waarbij iendereen betaalt en toch
wint," Tjjdschrift voor economie en management, forthcoming .

Bull, C., A Schotter and K. Weigelt, "Tournaments and Piece Rates: An Experimental Study,"
Joumal of Political Economv, 1987, 1-33.

Corcoran, W. 1., 'Long-run equilibrium and total expenditures in rent-seeking," Public Choice,
1984, 89-94.

Corcoran, W. J. and G. V. Karels, "Rent-sceking behavíor in the long-run," Public Choice,
1985,227-246.

Dasgupta, P. and E. Maskin, "The existence of oquilibrium in discontinuous game, I: Thoory,"
Review of Economic Studies, 1986, 1-26.

Dougan, W. R., "The cost of rent seeking: Is GNP negative?' loutnal of Political Esbnomv,
1991, 660-664.

Ellingsen, T., "Strategic buyers and lhe socia! oost of monopoly," American Economic Review,
1991, 648-657.

Higgins, R. S., W. F. Shughart and R. D. Tollison, "Free entry and efficient rent seeking,"
Public Choice, 1987, 63-82.

Hillman, A. L., and D. Samet, "Dissipation of rents and revenues in small numbers cattests,"
Public Choice, 1987, 63-82.



26

Holt, C. A. and R. Sherman, 'Waiting-Line Auctions,' Jounnal of Polit.ca-1 E-mnomv, April
1982, pp. 280-294.

Laband, D. N. and J. P. Sophocleus, "An estimate of resouttix expenditures on transfer activity
in the United States,' ~an~rjy Journa-1 of E-rnnomics, 1992, 957-983.

Lazear, E. P. and S. Rosen, "Rank-order tounnaments as optimum Libor contracts,"~
Politícal Economv, 1981, 341-364.

Leininger, W. and C. -L. Yang, 'Dynamic rent-seekin8 games," Discussion Papers in
Economics 90-08, University of Dortmund, 1990.

Leininger, W., "More efficient rent-seeking, a Munchhausen solution,' Discussion Papers in
Economics 90-02, University of Dortmund, 1990.

Michaels, R., "The design of rent-seeking competitions," Public Choice, 1988, 17-29.

Millner, E. L. and M. D. Pratt, 'An experimental investigation ofefficient rent-seeking, ~g
Choice, 1989, 139-151.

Millner, E. L. and M. D. Pratt, "Risk aversion and rent-seeking: An extension and some
experimental evidence, Public Choice, 1991, 81-92.

Nalebuff, B. J. and J. E. Stiglitz, "Prizes and Incentives: Towards a general theory of
compensation and competition," Bell )ournal of Economics, 1982, 21-43

Nash, l., "Non-cooperative games," Annals of Mathematics, 1951, 286-295.

Nitran, S., "Rent-seeking with identical sharing rules, Public Choice, 1991, 43-50.

Nitran, S., "Collective rent dissipation," The Economic Joumal, 1991a, 1522-1534.

Paul, C. and A. Wilhite, "Rent-seeking, rent-defending, and rent-dissipation, Public Choice,
1991, 61-70.

Rowley, C. K., "Gordon Tullock: Entrepreneur of public choice," Public Choice, 1991, 149-
169.

Shilony, Y., "The sequence method for fmding solutions to infinite games: A first
demonstrating example," Journal of Ootimiration Theory and ApDlication, I985, 105-
117.

Shogren, J. F. and K. H. Baik, "Reexamining Efficient Rent-Seeking in Laboratory Markets,"
Public Choice 69 (1991), pp. 69-79.



v

Snyder, l. M., 'Campaign contr:'r.~,a:iiar,~ ~s investments: The U. S. House of Representatives,
1980-1986," Journal of FT.~ln~c.~al ~conomy, 1990, 1195-1228.

Tullock, G., 'Efficient rent seeking,' in: J. M. Buchanan, R. D. Tollison and G. Tullock, eds.,
Toward a Theorv of the Rent Setking Socieri, (College Station: Texas AdcM University
Press), 1980, 97-112.

Tullock, G., "Long-run equilibrium and total expenditura in rent-seeking: A comment,' ~jj~
Choice, 1984, 95-97.

Tullock, G., 'Back to the bog,' Public Choice, 1985, 259-263.

Tullock G., 'Another part of the swamp,' Public Choice, 1987, 83-84.

Tullock, G., 'Editorial comment,' Public Choice, 1989, 153-154.

Vorob'ev, N. N., Game Theory: Lecturos for Economists and Systems Scientists, (Berlin,
Springer-Verlag), 1977.



Discussiou Paper Seriea, CeetER, Tilburg Univenity, The Netàerlanda:

(For previous papers please consult previous discussion papers.)

No. Author(s)

9232 F. Vella and
M. Verbeek

9233 P. de Bijl and
S. Goyal

9234 J. Angrist and
G. Imbens

9235 L. Meijdam,
M. van de Ven
and H. Verbon

9236 H. Houba and
A. dc 'l.ceuw

9237 A. Cameron and
P. Trivedi

9238 J.-S. Pischke

9239 H. Blcemen

9240 F. Drost and
Th. Nijman

9241 R. Gilles, P. Ruys
and J. Shou

9242 P. Kort

9243 A.L. Bovenberg and
F. van der Plceg

9244 W.G. Gale and
1.K. Scholz

9245 A. Bera and P. Ng

9246 R.T. Baillie,
C.F. Chung and
M.A. Tieslau

9247 M.A. Tieslau,
P. Schmidt
and R.T. Baillie

Title

Estimating the Impact of Endogenous Union Choice on
Wages Using Panel Data

Technological Change in Marlcets with Network Externalities

Average Causal Response with Variable Tn~tment Intensity

Strategic Decision Making and the Dynamics of Govemment
Debt

Stretegic Bargaining for the Control of a Dynamic System in
Statc-Space Form

Tests of Independence in Parametric Models: With
Applications and lllustrations

Individual Income, Incomplete Information, and Aggregate
Consumption .

A Model of Labour Supply with Job Offer Restrictions

Temporal Aggregation of GARCH Processes

Coalition Fortnation in Large Network Economies

The Effects of Maricetable Pollution Permits on the Firm's
Optimal Investment Policies

Environmental Policy, Public Finance and the Labour Marlcet
in a Second-Best World

IRAs and Household Saving

Robust Tests for Heteroskedasticity and Autocorrelation Using
Scon: Function

The Long Memory and Variability of Inflation: A
Reappraisal of the Friedman Hypothesis

A Generalized Method of Moments Estimator for Long-
Memory Processes



No. Aethor(a)

9248 K. WBmeryd

9249 H. Huizinga

9250 H.G. Blcemen

9251 S. Eijffinger and
E. Schaling

9252 A.L. Bovenberg and
R.A. de Mooij

9253 A. Lusardi

9254 R. Beetsma

9301 N. Kahana and
S. Nitran

9302 W. GOth and
S. Nitzan

9303 D. Karotkin and
S. Nitzan

9304 A. Lusardi

9305 W. GOth

9106 R Pclrt; and
S. I íjs

9307 G. Imbens and
A. Lancaster

9308 l'. Ellingsen and
K. W3meryd

9309 H. Bester

9310 T. Callan and
A. van Scest

931 I M. Pr~dhan and
A. van Scest

9312 Th. Nijman and
E. Sentana

Titk

Partisanship as Information

The Welfare Effects of Individual Retirement Accounts

Job Search Theory, Labour Supply and Unemployment Duration

Central Bank Independence: Searching for the Philosophers'
Stone

Environmental Taxation and Labor-Market Distortions

Permanent Income, Current Income and Consumption: Evidence
from Panel Data

Imperfect Coedibility of the Band and Risk Premia in the
European Monetary System

Cn~dibility and Duration of Political Contests and the Extent
of Rent Dissipation

Are Moral Objections to Free Riding Evolutionarily Stable7

Some Peculiarities of Group Decision Making in Teams

Euler Equations in Micro Data: Merging Data from Two Samples

A Simple Justification ofQuantity Competition and the Coumot-
Oligopoly Solution

T'hr t'onsisirncy Principle For Gmnes in Strnte},ic Fnrm

Case Control Studies with Contaminated Controls

Foreign Direct Investment and the Political Economy of
Protection

Price Commitment in Search Markets

Female Labour Supply in Farm Households: Farm and
Off-Farm Participation

Formal and Informal Sector Employment in Urban Areas of
Bolivia

Marginalization and Contempotaneous Aggregation in
Multivariate GARCH Processes

9313 K. WBmeryd Communication, Complexity, and Evolutionary Stability



No. Aatóor(s)

9314 O.P.Attanasio and
M. Browning

9315 F. C. Drost and
B. J. M. Werlcer

9316 I I. I Iamer:,
P. Bomi and
S. Tijs

9317 W. GUth

9318 M.J.G. van Eijs

9319 S. Hurkens

9320 J.J.G. Lemmen and
S.C.W. Eijffinger

9321 A.L. Bovenberg and
S. Smulders

9322 K.-E. Wifineryd

9323 D. Talman,
Y. Yamamoto and
'!.. Yang

9324 H. Huizinga

9325 S.C.W. Eijffinger and
E. Schaling

9326 T.C. To

9327 J.P.J.F. Scheepens

9328 T.C. To

9329 F. de Jong, T. Nijman
and A. RtSell

9330 H. Huizinga

9i31 IL Fluizinga

9332 V. Feltkamp, A. Koster,
A. van den Nouweland,
P. Borrn and S. Tijs

Titk

Consumption over the Life Cycle and over the Business
Cycle

A Note on Robinson's Test of Independence

On Games Corresponding to Sequencing Situations
with Ready 7'imcs

On Ultimatum Bargaining Experiments - A Personal Review

On the Determination of the Control Parameters of the Optimal
Can-order Policy

Multi-sided Pre-play Communication by Burning Money

The Quantity Approach to Financial Integration: The
Feldstein-Horioka Criterion Revisited

Environmental Quality and Pollution-saving Technological
Change in a Two-sector Endogenous Growth Model

The Will to Save Money: an Essay on Economic Psychology

The (2"~" - 2}Ray Algorithm: A New Variable Dimension
Simplicial Algorithm For Computing Economic F.quilibria on
S" x R"

The Financing and Taxation of U.S. Direct Investment
Abroad

Central Bank Independence: Theory and Evidence

Infant Industry Protection with Learning-by-Doing

Bankruptcy Litigation and Optimal Debt Contracts

Tariffs, Rent Extraction and Manipulation of Competition

A Comparison of the Cost of Trading French Shares on the
Paris Bourse and on SEAQ Intemational

The Welfare Effecis of Individual Retirement Accounts

Time Prcfercnce and Intemational "fax Competition

Linear Production with Transport of Products, Resources and
Technology



No. Autóor(s)

9333 B. Lauterbach and
U. Ben-Zion

9334 B. Melenberg and
A. van Soest

9335 A.L. Bovenberg and
F. van der Plceg

9336 E. Schaling

9337 G.-1.Otten

9338 M. Gradstein

9339 W. GOth and H. Kliemt

9340 T.C. To

9341 A. DemirgOg-Kunt and
H. Huizinga

9342 G.J. Almekinders

9343 E.R. van Dam and
W.H. Haemers

9344 H. Carlsson and
S. Dasgupta

9345 F. van der Plceg and
A.L. Bovenberg

9346 J.P.C. Blanc and
R.D. van der Mei

9347 J.P.C. Blanc

9348 R.M.W.J. Beetsma and
F. van der Plceg

9349 A. Simonovits

9350 R.C. Douven and
J.C. Engwerda

9351 F. Vella and
M. Verbeek

Titk

Panic Behavior and the Performance of Circuit Breakers:
Empirical Evidence

Semi-panunetric Estimation of the Sample Selection Model

Grcen Policies and Public Finance in a Small Open Economy

On the Economic Independence of the Central Bank and the
Persistence of Inflation

Characterizations of a Game Theoretical Cost Allocation
Method

Provision of Public Goods With Incomplete Information:
Decentralization vs. Central Planning

Competition or Co-operation

Export Subsidies and Oligopoly with Switching Costs

Barriers to Portfolio Investments in Emerging Stock Markets

Theories on the Scope for Foreign Exchange Market Intervention

Eigenvalues and the Diameter of Graphs

Noise-Proof Equilibria in Signaling Games

Environmental Policy, Public Goods and the Marginal Cost
of Public Funds

The Power-series Algorithm Applied to Polling Systems with
a Dortnant Server

Perfortnance Analysis and Optimization with the Power-
series Algorithm

Intramarginal Interventions, Bands and the Pattem of EMS
Exchange Rate Distributions

Intercohort Heterogeneity and Optimal Social Insurance Systems

Is There Room for Convergence in the E.C.?

Estimating and Interpreting Models with Endogenous
Treatment Effects: The Relationship Between Competing
Estimators of the Union lmpact on Wages



No. Aatóor{s)

9352 C. Meghir and
G. Weber

9353 V. Feltkamp

9354 R.J. de Groof and
M.A. van Tuijl

9355 Z. Yang

9356 E. van Damme and
S. Hurkens

9357 W. GUth and B. Peleg

9358 V. Bhaskar

9359 F. Vella and M. Verbeek

93tí0 W.B. vsn den Hout and
J.P.C. Blanc

9361 R. Heuts and
1. de Klein

9362 K.-E. Wámeryd

9363 P.J: J. Herings

9364 P.J- J. Herings

9365 F. van der Plceg and
A. L. Bovenberg

93tí6 M. Pradhan

9367 H.G. Bloemen and
A. Kapteyn

9368 M.R. Baye, D. Kovenock
and C.G. de Vries

Titk

Intertemporal Non-separability or Borrowing Restrictions? A
Disaggregate Analysis Using the US CEX Panel

Altemative Axiomatic Characterizations of the Shapley and
Ban7haf Values

Aspects of Goods Maricet Integration. A Two-Country-Two
-Sector Analysis

A Simplicial Algorithm for Computing Robust Stationary Points
of a Continuous Function on the Unit Simplex

Commitment Robust Equilibria and Endogenous Timing

On Ring Formation In Auctions

Neutral Stability ln Asymmetric Evolutionary Games

Estimating and Testing Simultaneous Equation Panel Data
Models with Censored Endogenous Variables

The Power-Series Algorithm Extended to the BMAP~PHII Queue

An (s,q) Inventory Model with Stochastic and Interrelated Lead
Times

A Closer Look at Economic Psychology

On the Connectedness of the Set of Constrained Equilibria

A Note on "Macroeconomic Policy in a Two-Party System as a
Repeated Game"

Direct Crowding Out, Optimal Taxation and Pollution Abatement

Sector PaRicipation in Labour Supply Models: Preferences or
Rationing7

The Estimation of Utility Consistent Labor Supply Models by
Means of Simulated Scores

The Solution to the Tullock Rent-Seeking Game When R~ 2:
Mixed-Strategy Equilibria and Mean Dissipation Rates



pn Qnv nn~~~ ~nnn i G Tii RI IR(, TNF t~FTNFRLAND;
Bibliotheek K. U. Brabant

I I II III VIn ItlII MININII1AIW ll I
~ 7 000 01 1 33579 2


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37

