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Abstract.
For a nonlinear regression model with a constant term, it is shown that -
under diffuse priors of the constant term and of the error precision - the

assumption of equicorrelated errors (instead of uncorrelated ones) has no
new consequences on Bayesian estimation of the (nonlinear) regression
parameters (except for the constant term).
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1. Introduction

Main non-Bayesian results concerníng linear regression with an
intercept and with equicorrelated observations were obtained long time ago.

Assuming joint normality of observations, Halperin (1951) showed that

certain estimators and tests of significance used in regression analysis

when observations are independent are equally valid in the case of

equicorrelated observations. McElroy (1969) proved that, in a linear

regression model with an intercept, OLS estimators are BLU if and only if

the errors have the same variances and the same nonnegative coefficient of

correlation between each pair; see also Balestra (1970).

Bayesian results for a linear model with equicorrelated disturbances

are presented in Osiewalski (1987); it is shown that under diffuse priors of

all the regression parameters and of the error variance:
1. the posterior of the correlation parameter is equal to its prior,

2. the marginal posterior of the regression parameters (except for

the constant term) is the same as in the case of uncorrelated

disturbances,
3. the posterior mean of the intercept is unaffected by

equicorrelation, but its posterior variance is seriously affected

and can be infinite for some priors.

The purpose of this paper is to extend these results to a nonlinear

model with a constant term and to general prior assumptions on (nonlinear)
regression parameters other than the constant term.

1.1 Notation

Throughout this note p(.) denotes a probability density function (PDF)

with special notation for PDF's of gamma, normal and t distributions. For

xeRk, pN(xlc,W) denotes a k-variate normal PDF with a mean vector c and a

covariance matrix W, and pS(xlT,c,T) denotes a k-variate Student t PDF with

T degrees of freedom, a noncentrality vector (a mean vector, if T) 1) c and
1

a precision matrix T. For wER~,
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a

PG(w~a.b) - C a wa-1 exp(-bw).

that is a gamma PDF with parameters a) 0, b~ 0.

2. Posterior densities under uncorrelated and equicorrelated errors - a
comparison

We consider two cases of the following (nonlinear) regression model
with normal errors:

Y- h(Z;9) t be t N, y~ ~ N(D.u-1V), (1)

where yERn is observed; gEpCRk-1, SER1 and WER} are unknown parameters; e is
a column vector of ones (thus b is a constant term); Z is a known
(nonrandom) matrix of (nxt) fixed values of T explanatory variables; h(Z;g)
is a known vector function (without a constant term). We assume that the
vector function h(as a function of g only, given Z) is sufficiently well-
behaved to ensure the possibility of integration with respect to g. In order
to save space, we will write hs instead of h(Z;g).

Model ( 1) with a scalar covariance matrix ( i.e. with V-I ) is then
first case considered here. Model (1) with equicorrelated errors, that is
with

V - V - (1-p)In t ~oee~ . ~oe ~D~1)~
~

constitutes the second case. In both cases we assume diffuse priors on the
constant term (S) and the precision parameter (u).

A. If V- In, then the conditional data density p(yl Z, g, b, W)is the
following n-variate normal density:

p(YIZ. 8. b. W) - pN (Y~hs 4 be. ~ lIn)-
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Under the prior

P(8. b. u) a u-iP(8). 6E0. bERl. ~eR;,

which uses Jeffreys' rule to express vague prior knowledge about u, we
obtain the following posterior:

n -1
P(8. b. ulY. Z) ~ P(8) W2 exp[- 2(Y-hg-be)'(Y-hg-be)~.

Denoting

d~ - n e' (Y-hD).

sg - (Y-he)'(ln - n ee')ÍY-hg),

we can write the identity

(Y-hg-be)' ÍY-h9-be) - sg ~ n(b-dg)2.

Now it is possible to present the joint posterior density in the form:

n-1
PÍ9. b. ulY. Z) a P(9) s9 2 PU(w1n21. SZ) PN (b~dg. ~~). (2)

From (2) we easily obtain the following marginal and conditional posterior
densities:

n-1
P(9IY.2) oc P(9) sg 2.

P(uIY.Z,9) - PU(m~ nZl. 2R).

P(S~Y.Z.9.w) - PN(b~dg. n~),

P(bIY.Z,B) - oJm P(b~Y,Z.B.c~) P(uIY,Z.B) dc~ - PS(bin-1, dg. n nsl)-
9



4

In the case of a linear model with diffuse prior, that is when

T- k-1, O- Rk-1, hg - Zg, p(g) - const,

one obtains the well-known posterior results for ~ - [b g']', as in Zellner
(1971) pp. 66-69.

B. If we assume equicorrelated disturbances, then we have one more unknown
parameter, ~[0,1), and the conditional data density p(yIZ, g, b, u, p) is
the following normal density:

P(YIZ. 8, b. u. V) - PN (Y~hg ' be. ~,-1 V~),

V~o - (1-p) In t pee'.

Under the prior

P(g, b. u, ~n) oc u-1 P(g.~) - u-1P(g)P(tolg). ge0. bERl, c~eR~. y,e[G,1).

where p(pIg) is proper (for every gE0). we obtain the following joint
posterior density

n -1
P(g. b, c~. S~IY. Z) a P(g) P(VIg)IVpI-~ u2 exp[- 2(Y-hg-be)~V~-1

(Y-hg-be)].

Now let us take into account that

-1 1 ,
V~ - 1-~ [ In- 1. n-1 ~ ee ],

see e.g. Graybill (1969) p. 172; we have

(Y-hg-be)' V~-1 (y-hg-Se) -

- 11~ { (y-hg-be)' (Y-hg-be) - lt n-1 ~, [(Y-hg-be)'e]2} -



- llp sg } 1. n-1 ~ (b-dg)Z.
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The joint posterior density can be presented as

n -1 ~s
P(9, b. u. pIY. Z) a P(PI9) P(9)IVpI-~ w2 exP[- 2 lgy ~

exp[- 2 lt n~l ~ Íb-dg)2~.

Since the determinant of V~p takes the form

IVf~I - [1 . (n-1)S~~ (1-p)n-1

see e.g. Graybill (1969) p. 1~2, we can write

n-1
P(g. b. u. ~vIY. Z) a P(FIg) P(g) sg 2 PG(uIn21' 2 lgp )

Pl (b d , lt(n-1)S~).
N I 9 nu

or equivalently

P(9.b.u.wlY.Z) - P(9IY.Z) PÍpIY.Z.9) P(~rIY.Z.9.p) P(bIY.Z.9.p,ca)

where
n-1

P(gIY.Z) a P(9) sg Z.

PÍyIY.Z.g) - P(5~~9).

P(t~IY.Z.9,p) - PG(wIn21. 2 s9-~ ).

P(bIY.Z.9.q.~) - P1 (b d 1 } (n-1)F).
N ~ g' n~
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First, let us notice that the conditional posterior of p given g is

identical to the conditional prior of .p (given g); we can learn from the

data about ~ only through prior dependence between ~ and g:

P(PIY. Z) - J~ P(p~9) PÍBIY. Z) dg.

In the case of prior independence, i.e. if p(~olg) - p(p), we also have

posterior independence between ~ and g, and we cannot learn about ~ from the

data at all. Let us also notice that the marginal posterior of g is the same

as in the case of uncorrelated errors, so the form of correlation assumed

here has no influence on the estimation of g, provided, of course, that we

use the same (margínal) prior p(g) in both cases.
The presence of unknown pE [0,1) affects only the posterior densities

of the precision parameter ~ and the constant term b.
In the case of uncorrelated disturbances we have p(c~Iy, Z, g) -

- pG(wIn21, 2 s9- ) and thus, for example, E(WIy, Z, g) - nsl.
~P~ g

In the case of equicorrelation disturbances we have

P(wIY. Z. g) - gfl PGÍwIn21. 2 sg-~ ) P(P~g) dP~

E(WIY. Z. g) ' nsl [1 - E(S~I9)~.
g

The assumption of equicorrelation influences the posterior of b, but not its
mean; we have

P(SIY. Z. 9. P) - oJ~ P(bIY. Z. 8. V. u) PÍwIY. Z. 9. P) dc~ -

- PS (bIn-1, dg, n nsg' l.ln-1 ~).

P(bIY, Z. 8) - gJl PS (bin-1. dg, n nsl' ltln-1 ~) P(íolg) dp.
g

E(bIY. Z. 8) - dg - E(bIY. Z, g, P).



where the conditional posterior mean dg is the same as in the case of
uncorrelated errors. The higher moments of b, however, are different and can
be infinite. For example:

E(52~Y. Z, g) - pJl Ln ng3 . 1'in~l)~ t dg] P(plg) dp -

dg } nsn-3 ~OJ~ pl-~8) dp f(n-1) UJ1 1~P(~~g) d~].

and for p(plg) - 1 we have

UJ1 ~ - tm, UJ1 ~ dp - .m.
~ P

Usually, however, the precision ~ and the constant term b are treated as
nuisance parameters. Whenever the model with equicorrelated observations

seems appropriate and the elements of g are the only parameters of interest,
we can rely on the posterior results under assumption of uncorrelated

observations. The same conclusions were reached in Osiewalski (198~), but
only for the case of a linear model with diffuse prior, that is for

hg - Z9. P(g.F) a P(P).

3. Concluding remarks

For a(nonlinear) regression model with a constant term b, with

equicorrelated errors and with diffuse priors of b and of the error

precision W, it is shown that the marginal posterior of g, the vector of the

(nonlinear) regression parameters other than b, is exactly the same as in

the case of uncorrelated errors.
Since normality of errors and nonrandomness of explanatory variables

(Z matrix) were assumed, let us note that both these assumptions can be
relaxed. We could consider random Z and under the assumption of a Baysesian

cut our results would remain wholly valid; for the definition of a Bayesian

cut see Florens and Mouchart (1985). If we assumed, more generally,

elliptical errors instead of normal ones, then only the posterior of the
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error precision ~ would be affected by this change, but the (marginal)
posterior of the rest of the parameters would remain unchanged; see
Osiewalski (1988). On the other hand, the presence of the constant term (b)
in the model and the form of the priors of b and ~(diffuse!) seem to be the
crucial assumptions for obtaining the results presented in the paper.
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