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Abstract

This paper constructs estimators for panel data regression models with individual speci�c

heterogeneity and two�sided censoring and truncation. Following Powell (1986) the estimation

strategy is based on moment conditions constructed from re�censored or re�truncated residuals.

While these moment conditions do not identify the parameter of interest, they can be used to

motivate objective functions that do. We apply one of the estimators to study the e¤ect of a

Danish tax reform on household portfolio choice. The idea behind the estimators can also be

used in a cross sectional setting.
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1 Introduction

This paper generalizes a class of estimators for truncated and censored regression models to allow

for two�sided truncation or censoring. The class of estimators is based on pairwise comparisons

and the proposed generalizations therefore apply to both panel data and cross sectional data.

A leading example of when two�sided censored regression models are useful is when the de-

pendent variable is a fraction. For example, Alan and Leth-Petersen (2006) estimate a portfolio

share equation where the portfolio shares are between 0 and 1, with a signi�cant number of obser-

vations on either of the limits. Other recent applications in economics of regression models with

two�sided censoring include Lafontaine (1993), Petersen and Rajan (1994), Petersen and Rajan

(1995), Houston and Ryngaert (1997), Fehr, Kirchler, Weichbold, and Gachter (1998), Huang and

Hauser (1998), McMillan and Woodru¤ (1999), de Figueriredo and Tiller (2001), Huang and Hauser

(2001), Fenn and Liang (2001), Poterba and Samwick (2002), Nickerson and Silverman (2003), Of-

�cer (2004), Charness, Frechette, and Kagel (2004), Andrews, Schank, and Simmons (2005) and

Gi¤ord and Bernard (2005). We formulate the two�sided censored regression model as observations

of (y; x; L; U) from the model

y� = x0� + " (1)

where y� is unobserved, but we observe

y =

8>>><>>>:
L if y� < L

y� if L � y� � U

U if y� > U

(2)

and � is the parameter of interest. When y is a share, L and U will typically be 0 and 1, respectively.

We will focus on panel data settings so the observations are indexed by i and t where i = 1; : : : ; n

and t = 1; : : : Ti. This allows for unbalanced panels, but we will maintain the restrictive assumption

that Ti is exogenous in the sense that it satis�es all the assumptions made on the explanatory

variables. In a panel data setting, it is also important to allow for individual speci�c e¤ects in

the errors "it. We will do this implicitly by making assumptions of the type that "it is stationary

conditional on (xi1 : : : xiTi) or that "it and "is are independent and identically distributed conditional

on some unobserved component �ist. These will have the textbook speci�cation "it = vi+ �it (f�itg

i.i.d.) as a special case. In section 4.2, we discuss how to apply the same ideas to construct

estimators of the cross sectional version of the model.

For the two�sided truncated regression model, we assume observations of (y; x; L; U) from the
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distribution of (y�; x; L; U) conditional on L � y� � U . Two�sided truncated regression models are

less common than two�sided censored regression models, but they play a role in duration models.

Suppose, for example, that one wants to study the e¤ect of early life circumstances on longevity by

linking the Social Security Administration�s Death Master File to the 1900�1930 U.S. censuses1.

This will miss a substantial number of deaths: (1) individuals who died under age 65 (since they

were less likely to be collecting social security bene�ts and thus their deaths were less likely to

be captured); (2) individuals who died before the year 1965 (the beginning of the computerized

Social Security �les); and (3) individuals who died after the last year the data is available. This

is a case of two-sided truncation because we observe an individual only if the dependent variable,

age at death, is greater than 65 years and if the death occurs between 1965 and the last year the

data is available. This is essentially the empirical setting in Ferrie and Rolf (2011), although they

only consider data from the 1900 census, so right�truncation is unlikely to be an issue in their

application.

Honoré (1992) constructed moment conditions for similar panel data models with one�sided

truncation or censoring and showed how they can be interpreted as the �rst�order conditions for

a population minimization problem that uniquely identi�es the parameter vector, �. This paper

generalizes that approach to the case when the truncation or censoring is two�sided. The main

contribution of the paper is to show that some of those moment conditions can be turned into

a minimization problem that actually uniquely identi�es � when there is two�sided censoring or

truncation. This is an important step because the moment conditions that we derive do not identify

the parameters of the model. This is a generic problem with constructing estimators based on

moment conditions. For example, Powell (1986) constructed moment conditions for a related cross

sectional truncated and censored regression models based on symmetry of the error distribution.

He also pointed out that while these moment conditions did not identify the parameter of interest,

minimization of an objective function based on them did lead to identi�cation.

The rest of the paper is organized as follows. Section 2 derives the moment conditions and the

associated objective function for models with two�sided censoring and two�sided truncation. Sec-

tion 3 then discusses how these can be used to estimate the parameters of interest. Generalizations

of the two models considered in Section 2 are discussed in Section 4. We present the empirical

application in Section 5 and Section 6 concludes.

11930 is the latest year for which this linkage is feasible.
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2 Identi�cation: Moment Conditions and Objective Functions

The challenge in constructing moment conditions in models with censoring and truncation is that

one typically starts with assumptions on " conditional on x in (1). If one had a random sample

of (y�; x) then these assumptions could be used immediately to construct moment conditions. For

example if E ["x] = 0, then one has the moment conditions E [(y� � x0�)x] = 0. However with

truncation or censoring, y�x0� will not have the same properties as ". The idea employed in Powell

(1986), Honoré (1992) and Honoré and Powell (1994) is to apply additional censoring and truncation

to y � x0� in such a way that the the resulting re�censored or re�truncated residual satis�es the

conditions assumed on ". For example, Powell (1986) assumed that " is symmetric conditional on

x in a censored regression model with censoring from below at 0. If that is the case, then y �

x0� = max f";�x0�g will clearly not be symmetric conditional on x, but the re�censored residuals,

min fy � x0�; x0�g will be. This implies moment conditions of the type E [min fy � x0�; x0�gx] = 0.

Unfortunately, this moment condition will not in general identify �, but Powell (1986) was able

to prove that the integral (as a function of b) of E [min fy � x0b; x0bgx] is uniquely minimized at

b = � under appropriate regularity assumptions. Honoré (1992) applied the same insight to a

panel setting where the assumption was that " is stationary conditional on the entire sequence

of explanatory variables. Again, censoring or truncation destroys this stationarity, but it can be

restored for a pair of residuals by additional censoring. Honoré and Powell (1994) then applied the

same idea to any pair of observations in a cross section, and Hu (2002) generalized it to allow for

lagged latent dependent variables as covariates.

The contribution of this paper is to generalize the approach in Honoré (1992) to the case

with two�sided censoring or truncation. As in Powell (1986), Honoré (1992) and Honoré and

Powell (1994), it is straightforward to construct moment conditions based on some re�censored

or re�truncated residuals. However, it is not clear that these moment conditions will identify

the parameters of interest, and we therefore construct (population) objective functions from these

moment conditions, and then explicitly verify that these objective functions are uniquely minimized

at the parameter. It is the construction of the objective functions and verifying that they are

uniquely minimized at the true parameter value that constitute the methodological contribution of

the paper.

The general approach is to start with a comparison of two observations for a given individual

in a panel. Based on these observations we will construct re�censored or re�truncated residuals
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eits (yit; xit; xis; Lit; Lis; Uit; Uis; b) and eist (yis; xis; xit; Lit; Lis; Uit; Uis; b) that have the same prop-

erties as "it and "is when b = �. This will then imply that if "it and "is are identically distributed

conditional on (xit; xis), then

E [ (eits (yit; xit; xis; Lit; Lis; Uit; Uis; �)� eist (yis; xis; xit; Lit; Lis; Uit; Uis; �))jxit; xis] = 0: (3)

This will form the basis for construction of our estimators. Of course, once it has been established

that eits (yit; xit; xis; Lit; Lis; Uit; Uis; �) and eist (yis; xis; xit; Lit; Lis; Uit; Uis; �) are identically dis-

tributed then for any function, � (�), we also have the moment condition

E [ (� (eits (yit; xit; xis; Lit; Lis; Uit; Uis; �))� � (eist (yis; xis; xit; Lit; Lis; Uit; Uis; �)))jxit; xis] = 0:

(4)

provided that the moment exists.

Moreover, if the errors "it and "is are also independent conditional on (xit; xis), then so are

eits (yit; xit; xis; Lit; Lis; Uit; Uis; �) and eist (yis; xis; xit; Lit; Lis; Uit; Uis; �). This implies that their

di¤erence is symmetrically distributed around 0, so for any odd function � (�),

E [ (� (eits (yit; xit; xis; Lit; Lis; Uit; Uis; �)� eist (yis; xis; xit; Lit; Lis; Uit; Uis; �)))jxit; xis] = 0: (5)

provided that the moment exists.2

In this paper we will focus on (3) and the generalization (5). The reason for this is that in a linear

model without censoring or truncation, (3) will correspond to OLS on the di¤erenced data, whereas

(5) will also accommodate least absolute deviation estimation on the di¤erenced data as a special

case. As already mentioned, the construction of the residuals eits (yit; xit; xis; Lit; Lis; Uit; Uis; �) is

fairly straightforward, and the challenge is to show that although (3) and (5) may not identify �,

and unconditional version of them can be integrated to yield a population objective function that

is uniquely minimized at b = �. This will involve the integral of � (�), which we will denote by

� (�), and in addition to being odd, we will assume that � (�) is also increasing, so � (�) is a convex

symmetric function. The leading cases are � (d) = jdj and � (d) = d2.

In order to simplify the exposition, we will �rst develop the case when Lit = 0 and Uit = 1. We

will then demonstrate that the result can be adapted to the general case.

2Of course one could combine the insight in (4) and (5) to get even more general moment conditions. See also the

discussion in Arellano and Honoré (2001) and Honoré and Hu (2004).
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2.1 Two�Sided Censoring

Consider �rst the situation with two�sided censoring. Consider an individual, i, in two time periods,

t and s, and assume that "it and "is are identically distributed. The distribution of yit � x0it� will

be the same as that of "it except that the former is censored from below at �x0it� and from

above at 1 � x0it�. Figure 1 illustrates this. The dotted line depicts the distribution of "it, while

the solid line gives the distribution of yit � x0it�, which typically has point mass at �x0it� and

1 � x0it� (illustrated by the fatter vertical lines). Since x0it� will typically di¤er from x0is�, the

distributions of yit � x0it� and yis � x0is� (given (xit; xis)) will di¤er even if f"itg is stationary

(given (xit; xis)). However, it is clear that one could obtain identically distributed �residuals�by

arti�cially censoring yit�x0it� and yis�x0is� from below at max f�x0it�;�x0is�g and from above at

min f1� x0it�; 1� x0is�g. See the dashed lines in Figure 1. One can then form moment conditions

from the fact that the di¤erence in these �re�censored�residuals will be orthogonal to functions of

(xit; xis).3 Of course, this construction is only useful if �1 < x0it� � x0is� < 1, because otherwise,

the supports of yit � x0it� and yis � x0is� will not overlap.

In order to proceed, we need explicit expressions for the di¤erence in these �re�censored�resid-

uals. Consider �rst the case when x0it� � x0is�. Then the di¤erence in the arti�cially censored

residuals for individual i in periods t and s is

max
�
yit � x0it�;�x0is�

	
�min

�
yis � x0is�; 1� x0it�

	
(6)

=
�
max

�
yit �

�
x0it� � x0is�

�
; 0
	
� x0is�

�
�
�
min

�
yis; 1�

�
x0it� � x0is�

�	
� x0is�

�
= max

�
yit �

�
x0it� � x0is�

�
; 0
	
�min

�
yis; 1�

�
x0it� � x0is�

�	
;

and when x0it� � x0is�

min
�
yit � x0it�; 1� x0is�

	
�max

�
yis � x0is�;�x0it�

	
(7)

=
�
min

�
yit; 1 +

�
x0it� � x0is�

�	
� x0it�

�
�
�
max

�
yis +

�
x0it� � x0is�

�
; 0
	
� x0it�

�
= min

�
yit; 1 +

�
x0it� � x0is�

�	
�max

�
yis +

�
x0it� � x0is�

�
; 0
	
:

3Clearly, one can also use the fact that di¤erences in functions of the re�censored residuals will be orthogonal to

functions for the explanatory variables. As discussed in Arellano and Honoré (2001), one can also construct moment

conditions based on symmetry under the additional assumption that ("i1; :::; "iT ) is exchangeable conditional on

(xi1; :::; xiT ). This is the motivation for the approach in Honoré (1992).
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Figure 1: Illustration of Re�Censored Residuals when x0it� > x
0
is�.

If we de�ne

u (y1; y2; d) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0 for d < �1

1 + d for �1 < d < c1
min f1� y2; y1g for c1 < d < c2

y1 � y2 � d for c2 < d < c3

max fy1 � 1;�y2g for c3 < d < c4

d� 1 for c4 < d < 1

0 for d > 1

(8)

where c1 = min f�y2; y1 � 1g, c2 = max f�y2; y1 � 1g, c3 = min f1� y2; y1g and c4 = max f1� y2; y1g

then u (yit; yis; x0it� � x0is�) will give the di¤erence in the re�censored residuals discussed above (see

Appendix 1). Hence the moment conditions are

E
�
u
�
yit; yis; x

0
it� � x0is�

���xit; xis� = 0;
which implies the unconditional moments

E
�
u
�
yit; yis; (xit � xis)0 �

�
(xit � xis)

�
= 0: (9)

Panel A of Figures 2�4 depict the contribution to the moment condition function u (y1; y2; d)

for pairs of uncensored observations (Figure 2), pairs with one censored and one uncensored
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Figure 2: The Functions u (y1; y2; �) and U (y1; y2; �). Neither Observation Censored.

observation (Figure 3) and pairs with one observation censored from above and one from below

(Figure 4).

Although the true parameter value will satisfy (9), it is not in general the unique solution to

the moment condition. This is illustrated in Panel A of Figure 5. It considers the case when

y�i1 � N (0:5; 1) and y�i2 � N (0:4; 1) and both are censored from below at 0 and from above at 1.

Note that this is the data generation process that one would get with � = 0:1, xi1 = 1 and xi2 = 0

for all i.

It is clear from Figure 5 that the moment condition E [u (yit; yis; x0itb� x0isb)jxit; xis] = 0 does

not identify the parameter, �, of the model. The most obvious reason is that, as mentioned, only

observations for which �1 < (xi1 � xi2)0 b < 1 will contribute. In this case xi1 � xi2 = 1 for all

observations, so the moment condition is automatically satis�ed when jbj > 1.

Following Powell (1986), we attempt to overcome the non�identi�cation based on the moment

condition by turning it into the �rst order condition for a minimization problem. It is easy to see

that (9) is (half of minus) the �rst order condition for minimizing

E
�
U
�
yit; yis; (xit � xis)0 b

��
; (10)
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Figure 3: The Functions u (y1; y2; �) and U (y1; y2; �). One Observation Censored.

Figure 4: The Functions u (y1; y2; �) and U (y1; y2; �). Both Observations Censored.
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Figure 5: The Functions E [u (y1; y2; �)] and E [U (y1; y2; �)].

where

U (y1; y2; d) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

1 + 2c1 + c
2
1 � 2c3c1 + 2c3c2 + (y1 � y2 � c2)

2 for d < �1

�2d� d2 + 2c1 + c21 � 2c3c1 + 2c3c2 + (y1 � y2 � c2)
2 for �1 < d < c1

�2c3d+ 2c3c2 + (y1 � y2 � c2)2 for c1 < d < c2

(y1 � y2 � d)2 for c2 < d < c3

�2c2d+ 2c2c3 + (y1 � y2 � c3)2 for c3 < d < c4

�d2 + 2d+ c24 � 2c4 � 2c2c4 + 2c2c3 + (y1 � y2 � c3)
2 for c4 < d < 1

1 + c24 � 2c4 � 2c2c4 + 2c2c3 + (y1 � y2 � c3)
2 for d > 1

:

Panel B of Figures 2�4 depict the contribution to the objective function U (y1; y2; d) for pairs

of uncensored observations (Figure 2), pairs with one censored and one uncensored observation

(Figure 3) and pairs with one observation censored from above and one from below (Figure 4). Like

the estimator for the panel data one�sided censored regression model developed in Honoré (1992),

the objective function is piecewise quadratic or linear. However, surprisingly, going from one�sided

to two�sided censoring ruins the convexity of the objective function, and the shape of the function

is more similar to the objective function in Powell (1986) although that estimator was developed

for a cross section model with symmetrically distributed errors.

It is clear from the discussion above that the true � will solve the �rst order condition for
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minimizing the population objective function in (10). However, since U is constant, linear, quadratic

and convex, and quadratic and concave over di¤erent regions, it is not at all obvious that � will be

the unique solution to these �rst order conditions. The key step for establishing identi�cation of �

is therefore to establish that the function in (10) is minimized at �. We establish this in Appendix

1 (Section 7.1), and the result is illustrated in Panel B of Figure 5.

As mentioned, it is also possible to construct moment conditions based on (5). Let � be convex

and symmetric, and let � (�) = �0 (�) (when it exists). When "it and "is are independent and

identically distributed, we also have the moment conditions

E
�
�
�
u
�
yit; yis; x

0
it� � x0is�

����xit; xis� = 0
which imply the unconditional moments

E
�
�
�
u
�
yit; yis; (xit � xis)0 �

��
(xit � xis)

�
= 0 (11)

where

� (u (y1; y2; d)) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0 for d < �1

� (1 + d) for �1 < d < min f�y2; y1 � 1g = c1
� (c3) for c1 < d < max f�y2; y1 � 1g = c2

� (y1 � y2 � d) for c2 < d < min f1� y2; y1g = c3
� (c2) for c3 < d < max f1� y2; y1g = c4
� (d� 1) for c4 < d < 1

0 for d > 1

Except for a multiplicative constant, (11) is the �rst order condition for minimizing

E
�
U�
�
yit; yis; (xit � xis)0 b

��
(12)

where U� is found by integrating � (u (y1; y2; d)) over each of the regions and insisting on continuity

at the boundaries between the regions:

U� (y1; y2; d) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

� (0)� � (1 + c1)� � (c3) c1 + � (c3) c2 + �(y1 � y2 � c2) for d < �1

� (1 + d)� � (1 + c1)� � (c3) c1 + � (c3) c2 + �(y1 � y2 � c2) for �1 < d < c1
�� (c3) d+ � (c3) c2 + �(y1 � y2 � c2) for c1 < d < c2

� (y1 � y2 � d) for c2 < d < c3

�� (c2) d+ � (c2) c3 + �(y1 � y2 � c3) for c3 < d < c4

� (d� 1)� � (c4 � 1)� � (c2) c4 + � (c2) c3 + �(y1 � y2 � c3) for c4 < d < 1

� (0)� � (c4 � 1)� � (c2) c4 + � (c2) c3 + �(y1 � y2 � c3) for d > 1

:

The appendix establishes that (12) is uniquely minimized at b = �.
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2.2 Two�sided Truncation

Mimicing the argument for the model with two�sided censoring, it is clear that if "it and "is are

independent and identically distributed conditional on (xit; xis), then the observed errors, yit�x0it�,

will be i.i.d. except that the sampling scheme will have truncated them at di¤erent points, �x0it�

and �x0is� from below and 1 � x0it� and 1 � x0is� from above. We can then construct identically

distributed residuals by arti�cially truncating yit � x0it� at �x0is� from below and at 1� x0is� from

above (and similarly for yis � x0is�). This yields many moment conditions, including

E
�
r
�
yit; yis; (xit � xis)0 �

��
� E

��
yit � yis � (xit � xis)0 �

�
� 1
�
�x0is� � yit � x0it� � 1� x0is�

	
� 1
�
�x0it� � yis � x0is� � 1� x0it�

	
(xit � xis)

�
(13)

= 0

It is an easy exercise to see that except for a multiplicative constant (13) is the �rst order

condition for minimizing

E
�
R
�
yit; yis; (xit � xis)0 b

��
(14)

where R (y1; y2; d) is de�ned by8>>><>>>:
1
2 (y1 � y2 �max fy1 � 1;�y2g)

2 if max fy1 � 1;�y2g > d
1
2 (y1 � y2 � d)

2 if max fy1 � 1;�y2g � d � min fy1; 1� y2g
1
2 (y1 � y2 �min fy1; 1� y2g)

2 if d > min fy1; 1� y2g

Figure 6 depicts the function R and its derivative, whereas Figure 7 shows their expectation when

y�1 � N (0:5; 1) and y�2 � N (0:4; 1) and both are truncated from below at 0 and from above at 1.

More generally, again let � be convex and symmetric, and let � (�) = �0 (�) (when it exists).

Then

E
�
�
�
yit � yis � (xit � xis)0 �

�
� 1
�
�x0is� � yit � x0it� � 1� x0is�

	
� 1
�
�x0it� � yis � x0is� � 1� x0it�

	
(xit � xis)

�
= 0

or

E
�
�
�
yit � yis � (xit � xis)0 �

�
� 1
�
0 � yit � (xit � xis)0 � � 1

	
� 1
�
0 � yis + (xit � xis)0 � � 1

	
(xit � xis)

�
= 0
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Figure 6: The Functions r (y1; y2; �) and R (y1; y2; �).

Figure 7: The Functions E [r (y1; y2; �)] and E [R (y1; y2; �)].
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or with � = (xit � xis)0 �,

0 = E [� (yit � yis � �) � 1 f0 � yit � � � 1g � 1 f0 � yis + � � 1g (xit � xis)]

= E [� (yit � yis � �) � 1 f0 � yit � �g � 1 fyit � � � 1g � 1 f0 � yis + �g � 1 fyis + � � 1g (xit � xis)]

= E [� (yit � yis � �) � 1 f� � yitg � 1 fyit � 1 � �g � 1 f�yis � �g � 1 f� � 1� yisg (xit � xis)]

= E [� (yit � yis � �) � 1 fmax fyit � 1;�yisg � � � min fyit; 1� yisgg (xit � xis)]

This is minus the derivative of E
�
R�
�
yit; yis; (xit � xis)0 b

��
evaluated at b = �, where

R� (y1; y2; d) =

8>>><>>>:
� (max fy1 � 1;�y2g) for d < max fy1 � 1;�y2g

� (y1 � y2 � d) for max fy1 � 1;�y2g � d � min fy1; 1� y2g

� (min fy1; 1� y2g) for d > min fy1; 1� y2g

As was the case for the censored model, the argument above only establishes that the true

� will solve the �rst order condition for minimizing E
�
R�
�
yit; yis; (xit � xis)0 b

��
. On the other

hand, it is clear that without additional strong assumptions, � will not be the unique minimizer.

The reason is that we know that, in general, the truncated regression model will not be identi�ed

with exponentially distributed errors. As a result, assumptions must be added that rule out the

exponential distribution. In Appendix 1 (section 7.2), we show that � is the unique minimizer of

E
�
R
�
yit; yis; (xit � xis)0 b

��
, and more generally of E

�
R�
�
yit; yis; (xit � xis)0 b

��
, provided that the

errors have a log�concave probability distribution.

3 Estimation

The arguments leading to identi�cation of the parameters of interest, �, above were based on

comparing two observations for the same individual and we showed that � could be expressed as

the unique minimizer of an expectation of the form E
�
Q
�
yit; yis; (xit � xis)0 b

��
for some function

Q. This suggests estimating � by minimizing a sample analog of this such as

b� = argmin
b

1

n

nX
i=1

�
Ti
2

��1 X
1�s<t�Ti

Q
�
yit; yis; (xit � xis)0 b

�
In this aggregation, observations get di¤erent weight depending on the number of observations for

a given individual. Alternatively, one could also use objective functions of the type

argmin
b

1

n

nX
i=1

X
1�s<t�Ti

wistQ
�
yit; yis; (xit � xis)0 b

�
14



where the wist�s are exogenous weights. In particular, with unbalanced panels, one might want wist

to depend on Ti, the number of time periods for individual i. For example, one can think of the

usual �xed e¤ects estimator in a linear regression model as minimizing

nX
i=1

X
1�s<t�Ti

1

Ti

�
yis � yit � (xis � xit)0 b

�2
;

so a simple natural choice for wist could be 1
Ti
.

For two�sided censoring, the resulting estimator is4

b� = argmin
b

nX
i=1

X
1�s<t�Ti

wistU
�
yit; yis; (xit � xis)0 b

�
or more generally b� = argmin

b

nX
i=1

X
1�s<t�Ti

wistU�
�
yit; yis; (xit � xis)0 b

�
(15)

where the functions U and U� are de�ned in Section 2.1. Standard arguments5 yield

Theorem 1 Consider a random sample of size n from
�
Ti; fyit; xitgTit=1

�
: If

1.

yit =

8>>><>>>:
0 if x0it� + "it < 0

x0it� + "it if 0 � x0it� + "it � 1

1 if x0it� + "it > 1

;

2. ("i1; "i2; � � � ; "iTi) is continuously distributed conditional on
�
Ti; fxitgTit=1

�
with a density that

is continuous and positive everywhere,

3. the sequence "i1; "i2; � � � ; "iTi is stationary conditional on
�
Ti; fxitgTit=1

�
, and for any s; t � Ti

there exists a random variable, �sti , such that "is and "it are independent conditional on �
st
i ,

4. the matrix

E
�
(xis � xit) (xis � xit)0

��� 1 < (xis � xit)0 � < 1�
has full rank

4A Stata-program for calculating this estimator can be found at www.princeton.edu/~honore/stata.

5Consistency follows from Theorem 4.1.1 of Amemiya (1985) and asymptotoc normality from, for example, The-

orem 3.3 of Pakes and Pollard (1989).
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then
p
n
�b� � �� d�! N

�
0;��1V ��1

�
where b� is de�ned in (15) and

� =
dE
�P

s<twi;t�s�
�
u
�
yit; yis; (xit � xis)0 b

��
(xit � xis)

�
db0

�����
b=�

and

V = E
�
viv

0
i

�
with

vi =
X
s<t

wi;t�s�
�
u
�
yit; yis; (xit � xis)0 �

��
(xit � xis) :

These assumptions are consistent with a ��xed e¤ects�model in which "it = �i + e"it with �i
unrestricted and the sequence fe"itgTit=1 independent and identically distributed. The assumptions
also allow for some correlation in the e"it�s. For example if (e"is;e"it) is bivariate normal with the
same variance, then they can be written as e"is = Zis + Qi and e"it = Zit + Qi where Zit, Zis and
Qi are independent normals. So e"is and e"it are independent conditional on Qi. The assumption
that ("i1; "i2; � � � ; "iTi) is continuously distributed is necessary if one wants to allow � to be non�

di¤erentiable(i.e., � (d) = jdj). Without it, the derivative in the expression for � might not exist.

When � (d) = d2, condition 3 can be reduced to assuming that the sequence "i1; "i2; � � � ; "iTi is

stationary conditional on
�
Ti; fxitgTit=1

�
, and condition 2 is not necessary. In that case the terms

in the asymptotic variance reduce to

� = E

"X
s<t

wi;t�s1
�
�1 < (xis � xit)0 � < 1

	
�
1
�
�1 < (xis � xit)0 � < yis � 1

	
� 1

�
0 < (xis � xit)0 � < yis

	
� 1

�
�yit < (xis � xit)0 � < 0

	
+ 1

�
1� yit < (xis � xit)0 � < 1

	�
(xis � xit) (xis � xit)0

#

and

V = E
�
viv

0
i

�
with

vi =
X
s<t

wi;t�su
�
yis; (xis � xit)0 �

�
(xis � xit)

16



Following standard arguments, these are consistently estimated by

b� = 1

n

nX
i=1

"X
s<t

wi;t�s1
n
�1 < (xis � xit)0 b� < 1o�

1
n
�1 < (xis � xit)0 b� < yis � 1o� 1n0 < (xis � xit)0 b� < yiso

� 1
n
�yit < (xis � xit)0 b� < 0o+ 1n1� yit < (xis � xit)0 b� < 1o� (xis � xit) (xis � xit)0#

and bV = 1

n

nX
i=1

bvibv0i
with bvi =X

s<t

wi;t�s u
�
yis; (xis � xit)0 b�� (xis � xit)

For two�sided truncation the resulting estimator is

b� = argmin
b

nX
i=1

X
1�s<t�Ti

wistR
�
yit; yis; (xit � xis)0 b

�
(16)

or more generally b� = argmin
b

nX
i=1

X
1�s<t�Ti

wistR�
�
yit; yis; (xit � xis)0 b

�
(17)

where the functions R and R� are de�ned in Section 2.2.

We have

Theorem 2 Consider a random sample of size n from
�
Ti; fyit; xitgTit=1

�
: If

1. yit is drawn from the distribution of x0it� + "it conditional on 0 � x0it� + "it � 1

2. ("i1; "i2; � � � ; "iTi) is continuously distributed conditional on
�
Ti; fxitgTit=1

�
with a density that

is continuous and positive everywhere

3. the sequence "i1; "i2; � � � ; "iTi is stationary conditional on
�
Ti; fxitgTit=1

�
, and for any s; t � Ti

there exists a random variable,�sti , such that "is and "it are independent and have log�concave

density conditional on �sti ,

4. the matrix

E
�
(xis � xit) (xis � xit)0

��� 1 < (xis � xit)0 � < 1�
has full rank
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then
p
n
�b� � �� d�! N

�
0;��1V ��1

�
where b� is de�ned in (17) and

� =
dE
�P

s<twi;t�s�
�
r
�
yit; yis; (xit � xis)0 b

��
(xit � xis)

�
db0

�����
b=�

and

V = E
�
viv

0
i

�
with

vi =
X
s<t

wi;t�s�
�
r
�
yit; yis; (xit � xis)0 �

��
(xit � xis)

4 Extensions

4.1 Mixed Censored/Truncation

Having considered models with two�sided censoring or truncation, it is natural to also consider a

regression model with censoring from one side and truncation from the other:

y�it = x0it� + "it

(yit; xit) = (min fy�it; Uitg ; xit) conditional on Lit � yit (18)

To simplify the notation, we again focus on the case where Lit = 0 and Uit = 1. In this case

the moment condition based on the same logic as above is

0 = E
�
1
�
yit � x0it� > �x0is�

	
1
�
yis � x0is� > �x0it�

	
�
min

�
yit � x0it�; 1� x0is�

	
�min

�
yis � x0is�; 1� x0it�

	���xit; xis�
= E

�
1
�
yit > (xit � xis)0 �

	
1
�
yis > � (xit � xis)0 �

	
�
min

�
yit; 1 + (xit � xis)0 �

	
�min

�
yis; 1� (xit � xis)0 �

	�
� (xit � xis)0 �

��xit; xis�
= E

�
t
�
yit; yis (xit � xis)0 �

���xit; xis� :
where we have assumed that "it and "is are independent and identically distributed conditional on

(xit; xis).

This implies the unconditional moment condition

E
�
t
�
yit; yis (xit � xis)0 �

�
(xit � xis)

�
= 0
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where

t (y1; y2; d) =

8>>>>>>>>><>>>>>>>>>:

0 for d < ec1
1� y2 for ec1 < d < c2

(y1 � y2 � d) for c2 < d < c3

y1 � 1 for c3 < d < ec4
0 for ec4 < d

where ec1 = �y2, c2 = max fy1 � 1;�y2g, c3 = min f1� y2; y1g and ec4 = y1. Note that c2 and c3

are de�ned as before, but ec1 and ec4 di¤er from c1 and c4.

Let

T (y1; y2; d) =

8>>>>>>>>><>>>>>>>>>:

�2 (1� y2)ec1 + 2 (1� y2) c2 + (y1 � y2 � c2)2 for d < ec1
�2 (1� y2) d+ 2 (1� y2) c2 + (y1 � y2 � c2)2 for ec1 < d < c2

(y1 � y2 � d)2 for c2 < d < c3

�2 (y1 � 1) d+ 2 (y1 � 1) c3 + (y1 � y2 � c3)2 for c3 < d < ec4
�2 (y1 � 1)ec4 + 2 (y1 � 1) c3 + (y1 � y2 � c3)2 for ec4 < d

We then de�ne the estimator of � by minimizingX
i

X
t<s

witsT
�
yit; yis; (xit � xis)0 b

�
The function T and its derivative are depicted in Figures 8 and 9 for a pair of uncensored

observations and for a pair with one censored and one uncensored observation, respectively.

Figure 10 shows the moment condition and the expected value of the objective function when

y�1 � N (0:5; 1) and y�2 � N (0:4; 1) and both are truncated from below at 0 and censored from

above at 1.

As before, we also have

E
�
�
�
t
�
yit; yis (xit � xis)0 �

��
(xit � xis)

�
= 0

where � is convex and symmetric, and � (�) = �0 (�) (when it exists)

Let

T� (y1; y2; d) =

8>>>>>>>>><>>>>>>>>>:

�� (1� y2)ec1 + � (1� y2) c2 + �(y1 � y2 � c2) for d < ec1
�� (1� y2) d+ � (1� y2) c2 + �(y1 � y2 � c2) for ec1 < d < c2

� (y1 � y2 � d) for c2 < d < c3

�� (y1 � 1) d+ � (y1 � 1) c3 + �(y1 � y2 � c3) for c3 < d < ec4
�� (y1 � 1)ec4 + � (y1 � 1) c3 + �(y1 � y2 � c3) for ec4 < d
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Figure 8: The Functions t (y1; y2; �) and T (y1; y2; �). Neither Observation Censored.

Figure 9: The Functions t (y1; y2; �) and T (y1; y2; �). One observation censored.
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Figure 10: The Functions E [t (y1; y2; �)] and E [T (y1; y2; �)].

We then de�ne the estimator of � by minimizing

X
i

X
t<s

witsT�
�
yit; yis; (xit � xis)0 b

�
:

4.2 Pairwise Di¤erence Versions

If we can estimate a panel data with 2 observations per unit, then we can apply the same idea to

any two observations in a cross section, treating the constant in the cross sectional model as an

individual�speci�c e¤ect. This idea was explicitly used in Honoré and Powell (1994) to construct

estimators for the parameters of cross sectional (one�sided) censored and truncated regression mod-

els based on the panel data estimator in Honoré (1992). Among others, this also characterizes the

relationship between the estimators in Manski (1987) and Han (1987) and between the estimators in

Kyriazidou (1997) and Powell (1987). The same idea can be applied to the models with two�sided

censoring and truncation considered here, and the asymptotic properties follow from the arguments

used in Honoré and Powell (1994):
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4.3 General Censoring Points.

It is easy to generalize the results above to the case where the truncation and censoring points are

not all 0 and 1. For example, consider the model with two�sided censoring

yit =

8>>><>>>:
Li if y�it < Li

x0it� + "it if Li � y�it � Ui
Ui if y�it > Ui

then

yit � Li
Ui � Li

=

8>>><>>>:
0 if y�it < Li�

xit
Ui�Li

�0
� + "it�Li

Ui�Li if Li � y�it � Ui

1 if y�it > Ui

and we could estimate � by

b� = argmin
b

X
i

X
t<s

witsU�

�
yit � Li
Ui � Li

;
yis � Li
Ui � Li

;

�
xit � xis
Ui � Li

�0
b

�
(19)

This simple approach does not work when the censoring points are time�varying, because then
"it�Lit
Uit�Lit is not stationary.

In order to proceed, we need explicit expressions for the di¤erence in these �re�censored�residu-

als. We �rst note that only pairs for which the support of the re�censored residuals overlap can play

a role in the moment conditions leading to the objective function. These pairs are characterized by

Lit � Uis < x0it� � x0is� < Uit � Lis

and for such pairs, the di¤erence in the arti�cially censored residuals for individual i in periods t

and s is

mami
�
Lis � x0is�; yit � x0it�; Uis � x0is�

	
�mami

�
Lit � x0it�; yis � x0is�; Uit � x0it�

	
= mami

�
Lis; yit �

�
x0it� � x0is�

�
; Uis

	
�mami

�
Lit; yis +

�
x0it� � x0is�

�
; Uit

	
+
�
x0it� � x0is�

�
where we use the notation mami fa; x; bg = max fa;min fx; bgg.

If we de�ne

k (L;U; y; d) =

8>>><>>>:
U for d < y � U

y � d y � U < d < y � L

L for d > y � L

and

u (y1; y2; d; L1; L2; U1; U2) = 1 fL1 � U2 < d < U1 � L2g (k (L2; U2; y1; d)� k (L1; U1; y2;�d) + d)
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then

E
�
u
�
yit; yis;

�
x0it� � x0is�

�
; Lit; Lis; Uit; Uis

��� (xit; xis)� = 0
and hence

E
�
u
�
yit; yis;

�
x0it� � x0is�

�
; Lit; Lis; Uit; Uis

�
(xit � xis)

�
= 0:

These will be the moment conditions that lead to the estimator in this case.

Also de�ne

K (L;U; y; d) =

8>>><>>>:
2yU � 2dU � U2 for d < y � U

(y � d)2 y � U < d < y � L

2yL� 2dL� L2 for d > y � L

S (y1; y2; d; L1; L2; U1; U2) = K (L2; U2; y1; d) +K (L1; U1; y2;�d)� d2

and

V (y1; y2; d; L1; L2; U1; U2) =

8>>><>>>:
S (y1; y2; L1 � U2; L1; L2; U1; U2) for d < L1 � U2
S (y1; y2; d; L1; L2; U1; U2) for L1 � U2 < d < U1 � L2

S (y1; y2; U1 � L2; L1; L2; U1; U2) for d > U1 � L2

and the estimator for � is then de�ned by

argmin
b

nX
i=1

X
t<s

witsV
�
yit; yis; (xit � xis)0 b; Lit; Lis; Uit; Uis

�
A version of this can be developed for a general loss function.

All of these extensions assume that the censoring and truncation points are exogenous in the

sense that one must make assumptions on the error terms conditional on them. In a recent paper,

Khan, Ponomareva, and Tamer (2011) consider a (one�sided) censored regression model with en-

dogenous censoring. Their approach only leads to partial identi�cation, but it would be interesting

to generalize it to more general versions of the models considered here.

5 Empirical Application

In this section we apply the estimator in Section 2.1 to analyze the portfolio-reshu­ ing e¤ect of a

tax reform that increased the after-tax capital income on bonds relative to stocks in Denmark in

1987. We use a panel data set constructed from administrative records covering two years before

and after the reform to estimate a portfolio share equation for bonds as a function of marginal tax
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rates on capital income. The analysis presented here follows the literature on taxation and portfolio

structure, e.g., Feldstein (1976), Hubbard (1985), King and Leape (1998), Samwick (2000), Poterba

and Samwick (2002), Poterba (2002) and Alan, Crossley, Atalay, and Jeon (2010). These papers

analyze (repeated) cross sections of households.6 Here the analysis is extended by using panel

data and controlling for time�invariant correlated heterogeneity, i.e., �xed e¤ects. Controlling for

correlated unobserved �xed factors is likely to be important in this context, since the portfolio

composition of a household is likely to be in�uenced by time�invariant factors such as risk aversion

and time discounting.

In the next subsection we give a brief overview over the tax reform. After this, we introduce

the data and present the results.

5.1 The Tax Reform

The tax reform, announced in 1985 and implemented in 1987, broke the link between the marginal

tax rates on earned income and capital income. Before the reform, all income was taxed at the

same marginal tax rate. With the reform the tax rate on positive capital income for high-income

households was decreased from 73 percent to 56 percent. The reform thereby increased the after-

tax return on interest-bearing assets and therefore encouraged households to shift their portfolios

toward such assets. The reform also changed the tax value of interest deductions from 73 to about

50 percent, and this substantially increased the cost of debt, primarily mortgages, for leveraged

high-income households. For such households the reform e¤ectively brought a negative wealth

shock, giving them a strong incentive to lower their debt burden.7

The exact changes, however, di¤ered across municipalities. The Danish income tax system is

built around a proportional local government tax and a progressive tax collected by the central

government. While the progressive schedule is the same for everybody in Denmark, the local

6Bakija (2000) uses the limited panel module of the American Survey of Consumer Finances (SCF) to study

portfolio changes around the 1988 tax reform. However, his data set is very small (984 households) and unrepre-

sentative due to the well-known attrition problem in the SCF panel module; see Kennickell and Woodburn (1997).

More important in this context, the estimators applied do not exploit the full potential of the panel data in handling

unobserved heterogeneity. Ioannides (1992) also employs the 1983-1986 SCF panel module but does not control for

unobserved heterogeneity.

7Alan and Leth-Petersen (2006) document that the reduced value of the interest deduction led households to

liquidate �nancial assets to lower their mortgage debt. This was possible because pre-payment of mortgage debt is

not restricted in Denmark.
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Figure 11: Marginal Tax Rate for High�Tax Municipality.

government tax rates vary across municipalities. A tax ceiling, however, insured that the marginal

tax rate could be at the maximum 73 percent. After the reform the tax ceiling on earned income

was reduced to 68 percent in the highest bracket8 and 56 percent in the middle bracket. Capital

income was now taxed at the same rate independently of the level of earned income. The marginal

tax rates across tax brackets before and after the reform are summarized in Table 1 (see Appendix

2)

The application of a tax ceiling together with the heterogeneous local government tax rates

implies that the reform had di¤erential e¤ects on people living in di¤erent municipalities. Figures

11 and 12 illustrate the changes in marginal tax rates due to the reform for a high-tax and a low-tax

municipality, respectively.

For a high-income person living in the municipality with the high local government tax, the

marginal tax rate on positive net capital income falls by 14.5 percentage points and the marginal

tax rate on negative net capital income falls by 20.5 percentage points. For a similar person living

in the municipality with the low local government tax rate, the marginal tax rate on positive

8Approximately 20 percent of the population belong in the top bracket.
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Figure 12: Marginal Tax Rate for Low�Tax Municipality.

net capital income falls by 16.1 percentage points and negative net capital income falls by 22.1

percentage points. It is these di¤erences in changes of marginal tax rates that we will exploit for

identifying the e¤ect of changes in marginal tax rates on the portfolio allocation when using the

�xed e¤ects estimator.

The marginal tax rates on capital income refer to income received in the form of dividends on

stocks and interest payments from interest bearing accounts and bonds. Both before and after the

reform, realized capital gains/losses associated with trading assets were generally not taxed. The

exemption from this rule is capital gains from corporate stocks held for less than three years. Such

capital gains are taxed as earnings. Dividend payments were low relative to interest received from

bonds.9 This suggests that lowering the marginal tax rate on positive capital income a¤ected bonds

and stocks di¤erentially, favoring mainly income from bonds. In the empirical analysis we therefore

focus on reshu­ ing between bonds and stocks.

9The median household in the sample holding stocks received dividends corresponding to 2 percent of the value of

the stocks. The median household in the sample holding bonds received interest payments from these corresponding

to 10 percent of the value of the bonds.
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5.2 Data

The data set is drawn from a random sample of 10 percent of the Danish population observed in

the years 1984 to 1988. Information on portfolio allocations, income, wealth and demographics is

collected and merged from di¤erent public administrative registers for all adult members of the

household that the sampled person belongs to. Portfolio and income information is obtained from

the income tax register. The portfolio information exists because Denmark had a wealth tax that

required all wealth holdings to be reported to the tax authorities. This information allows us

to break the wealth of each household into holdings of stocks and bonds. �Stocks� includes all

holdings of publicly and privately traded stocks, and �bonds� includes government and corporate

bonds. The holdings of stocks and bonds are self�reported through the tax return and then audited

by the tax authority.

5.2.1 Sample selection

For our analysis we exclude observations if one of the household members is self-employed, since

register data are not likely to contain a good measure of own business wealth and because taxable

income is quite volatile for those individuals. Sampled individuals younger than 18 or older than

60 are dropped as are students and individuals living together with his/her parents or living in

a common household, i.e., a household with more than one family. To keep the focus on the

importance of tax incentives, we include only stable couples, i.e., couples where the partner is the

same in 1984 through 1988. On the same grounds we also exclude couples moving in the sample

period. For the purpose of the analysis we require that households entering the sample be observed

in all years in the period 1984-1988 so that we have a balanced panel.

Our objective is to investigate whether households reshu­ e their portfolios in response to a

change in tax incentives. As in most industrialized countries many Danish households have fairly

undiversi�ed portfolios. Since the decrease in the value of interest deductions generated a large

negative wealth shock, clearly, these households are not likely to engage in portfolio reshu­ ing and

hence cannot give us a clean answer regarding portfolio readjustments. We therefore construct a

sub-sample of households holding positive amounts of stocks or bonds of at least 5,000 DKK in

1984. We also require households to hold a positive amount of either stocks or bonds throughout the

rest of the observation period. This selection is introduced because we want to focus on households

with a potential to reshu­ e between stocks and bonds. Also renters are deselected because there
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are few renters with diversi�ed portfolios.10 The �nal subsample includes 8,577 households.11

5.3 Results

In this section we investigate if households reshu­ ed their portfolio of bonds and stocks as a response

to the changes in relative after-tax returns on assets brought about by the 1987 tax reform. To do,

this we employ the estimator presented above and estimate a portfolio share equation where the

fraction of bonds in �nancial wealth, de�ned as the sum of bonds and stocks, is regressed on the

marginal tax rate on positive capital income and some control variables.

The distinguishing feature of our data set is the panel dimension. This facilitates estimating

portfolio share equations allowing for correlated unobserved time�invariant heterogeneity. This is

important because we believe that unobserved time�invariant factors, such as risk aversion and

time preferences, are correlated with wealth. High risk aversion may, for example, lead to a higher

portfolio share of safe assets, such as bonds, for a given level of wealth.

Before the reform, capital income and earnings were lumped together and taxed according to a

progressive tax scheme. This implies that households choose their tax bracket when choosing their

portfolios and that the marginal tax rate on capital income is likely to be an endogenous regressor.

We address this by calculating the marginal tax rate on capital income based on the household�s

income in 1984, the year before the reform was announced, but using current year rules. In this way

the individual level tax bracket is allocated based on information that was predetermined relative

to the portfolio response to the reform.

We regress portfolio shares on the marginal tax rate on positive capital income, the log of total

�nancial assets, i.e., assets held in stocks and bonds, and a set of year dummies. Tax rate changes

vary across municipalities, but most of the change in tax rates is common across municipalities.

Year dummies control for the e¤ect of this common part, thereby also removing the major part

of the wealth e¤ect brought about by the reform. E¤ectively, by introducing year dummies, the

coe¢ cients on marginal tax rates are identi�ed by di¤erences in changes of marginal tax rates.

Year dummies may also pick up common e¤ects related to �uctuations in assets. Financial assets

10For assessing portfolio reshu­ ing renters could have been included. We have chosen to leave them out of this

analysis because there are only a few renters (898) with positive �nancial wealth of at least 5000 DKK in 1984.

Moreover, renters generally do not provide a good comparison group for homeowners, since di¤erent preference

parameters may govern their behavior.

11See Alan and Leth-Petersen (2006) for a more detailed analysis.
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control for any remaining wealth e¤ect that might be present.12

Table 2 of Appendix 2 presents the parameter estimates from estimating random e¤ects Tobit

and �xed e¤ects censored regression models for the portfolio share of bonds in �nancial wealth.

The estimated parameter on the marginal tax rate is negative.13 If year dummies and �nancial

assets pick up the wealth e¤ect related to the reform, in particular the e¤ect of the reduction in

the value of interest deduction that led households to liquidate �nancial assets, then this is exactly

what economic theory predicts. Households should substitute from stocks toward bonds, whose

relative after-tax return increased, and this is what the results indicate.

Considering the corresponding random e¤ects estimates, we can see that the parameter esti-

mates on �nancial assets and on year dummies are quite di¤erent, and the test of equality of all

the parameters in the random e¤ects and �xed e¤ects speci�cations rejects.

6 Concluding Remarks

This paper constructs estimators for panel data regression models with individual speci�c hetero-

geneity and two�sided censoring and truncation. Following Powell (1986) the estimation strategy is

based on moment conditions constructed from re�censored or re�truncated residuals. While these

moment conditions do not identify the parameter of interest, they can be used to motivate objective

functions that do. This part is the main methodological contribution of the paper. We apply one

of the estimators to study the e¤ect of a Danish tax reform on household portfolio choice. We �nd

that a random e¤ects speci�cation can be rejected in favor of the ��xed�e¤ects speci�cation stud-

ied here, although both models yield the same sign of the key parameter that one would anticipate

from economic theory. The estimators are fairly easy to implement and a link to a program that

calculates the leading estimator is provided at http://www.princeton.edu/~honore/stata.

12An alternative identi�cation strategy could be based on comparing the behavior of households in di¤erent tax

brackets. Households in the lowest tax bracket faced only very small changes in marginal tax rates on capital income,

and households in the middle tax bracket faced di¤erent changes in marginal tax rates than households in the highest

tax bracket. In our case this is not a natural approach to follow. High�and low�income people are di¤erent in terms

of wealth levels and portfolio composition and possibly di¤erent with respect to preference parameters such as the

discount rate and the level of risk aversion. Households in lower tax brackets therefore do not represent a natural

control group for high�income households.

13As explained in Honoré (2008), the parameter estimates for both the random e¤ects and the �xed e¤ects models

can be converted to marginal e¤ects by multiplying them by the fraction of observations that are not censored.
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7 Appendix 1: Proofs and Derivations

7.1 Two�Sided Censoring

This section provides justi�cation for the statements about the estimators for the model with two�

sided censoring. We �rst verify that u (yit; yis; x0it� � x0is�) in equation (8) does indeed yield the

di¤erence in the re-censored residuals de�ned in (6) and (7). Write d = x0it� � x0is�, and consider

�rst the case where d > 0. In this case, the di¤erence in the re-censored residuals is

max fyit � d; 0g �min fyis; 1� dg

which is most easily analyzed by considering a number of cases for d between 0 and 1. As mentioned

earlier, the contribution to the moment condition should be 0 when d is outside the interval between

�1 and 1,which is consistent with the de�nition of u:

There are four cases based on combinations of whether yit � d � 0 and yis � 1� d:14

� Case 1 (yit � d � 0 and yis � 1 � d): In this case, max fyit � d; 0g � min fyis; 1� dg =

(yit � d)� (1� d) = yit � 1.

� Case 2 (yit � d � 0 and yis � 1 � d): In this case, max fyit � d; 0g � min fyis; 1� dg =

0� (1� d) = d� 1.

� Case 3 (yit � d � 0 and yis � 1 � d): In this case, max fyit � d; 0g � min fyis; 1� dg =

(yit � d)� yis = yit � yis � d.

� Case 4 (yit�d � 0 and yis � 1�d): In this case, max fyit � d; 0g�min fyis; 1� dg = 0�yis =

�yis.

Case 3 corresponds to values of d close to (or at) 0. Speci�cally, the region for Case 3 is

(0;min fyit; 1� yisg) = (0; c3). Noting that c2 � 0, it is clear thatmax fyit � d; 0g�min fyis; 1� dg =

yit � yis � d is consistent with the de�nition of u in equation (8).

Case 2 corresponds to values of d close to (or at ) 1, speci�cally the region (max fyit; 1� yisg ; 1) =

(c4; 1), and it is again clear that u delivers max fyit � d; 0g �min fyis; 1� dg.

The region that de�nes the other two cases is (min fyit; 1� yisg ;max fyit; 1� yisg) = (c3; c4).

Cases 1 and 4 give di¤erent expressions depending on whether yit or 1 � yis is larger, but these

14Since both the di¤erence in the re-censored residuals and u are continuous in d, it is not necessary to distinguish

between closed and open intervals in the following discussion.
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expressions correspond exactly to the two cases for the max in the de�nition of u in (8) over the

interval (c3; c4).

The case d < 0 is dealt with in exactly the same manner.

We now turn to the question of why

E
�
U
�
yit; yis; (xit � xis)0 b

��
is uniquely minimized at the true �. This is the key for consistency of the proposed estimator.

The result follows from the following lemma

Lemma 3 Suppose

yi1 = mami f0; � + "i1; 1g

and

yi2 = mami f0; "i2; 1g

where "i1 and "i2 are identically distributed random variables with support on the whole real line.

Then

arg max
d2[�1;1]

E [U (yi1; yi2; d)] =

8>>><>>>:
�1 if � � �1

� if �1 < � < 1

1 if � � 1

Proof: For 1 � d � 0

E [u (yi1; yi2; d)] = E [max fyi1 � d; 0g �min fyi2; 1� dg]

= E [max fmami f0; � + "i1; 1g � d; 0g �min fmami f0; "i2; 1g ; 1� dg]

= E [max fmami f0� d; � � d+ "i1; 1� dg ; 0g �mami f0; "i2; 1� dg]

= E [mami f0; � � d+ "i1; 1� dg �mami f0; "i2; 1� dg]

If "i1 (and "i2) have full support, then this is negative for d > � and positive for d < �.

For �1 � d � 0

E [u (yi1; yi2; d)] = E [min fyi1; 1 + dg �max fyi2 + d; 0g]

= E [min fmami f0; � + "i1; 1g ; 1 + dg �max fmami f0; "i2; 1g+ d; 0g]

= E [mami f0; � + "i1; 1 + dg �max fmami fd; "i2 + d; 1 + dg ; 0g]

= E [mami f0; � + "i1; 1 + dg �mami f0; "i2 + d; 1 + dg]
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If "i1 (and "i2) have full support, then this is negative for d > � and positive for d < �.

Since

E
�
U 0 (yi1; yi2; d)

�
= E [u (yi1; yi2; d)]

the argument above shows that

arg max
d2[�1;1]

E [U (yi1; yi2; d)] =

8>>><>>>:
�1 if � � �1

� if �1 < � < 1

1 if � � 1

�

Corollary 4 Consider the model

y�it = x0it� + "it

yit =

8>>><>>>:
0 if y�it < 0

y�it if 0 � y�it � 1

1 if y�it > 1

for t = 1; 2. If "it is stationary conditional on (xi1; xi2) with support on the whole real line, then

the set of solutions to

max
b
E
�
U
�
yi1; yi2;mami

�
�1; (xi1 � xi2)0 b; 1

	��
is �

b : P
�
mami

�
�1; (xi1 � xi2)0 b; 1

	
= mami

�
�1; (xi1 � xi2)0 �; 1

	�
= 1

	

The Corollary above requires that the errors are stationary conditional on the regressors. This is

much more general than the usual assumption that the individual� speci�c e¤ect and the contem-

poraneous errors interact additively. To see that E
�
U�
�
yit; yis; (xit � xis)0 b

��
in (12) is uniquely

minimized, it is convenient to assume that "it and "is are independent and identically distrib-

uted conditional on some individual� speci�c e¤ect, vi. With this assumption, the argument for

why E
�
U�
�
yit; yis; (xit � xis)0 b

��
is uniquely minimized follows essentially the same logic as above.

Speci�cally, when 1 � d � 0

� (u (yit; yis; d)) = � (mami f0; � � d+ "it; 1� dg �mami f0; "is; 1� dg)

Let � = (xit � xis)0 �.
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If "it and "is are independent and identically distributed conditional on vi, then

E [� (u (yit; yis; �))jxit; xis] = E [E [� (u (yit; yis; �))j �i; xit; xis]jxit; xis]

= E [E [� (mami f0; "it; 1� �g �mami f0; "is; 1� �g)j �i; xit; xis]jxit; xis] = 0

because mami f0; "it; 1� �g � mami f0; "is; 1� �g is symmetrically distributed conditional on �i,

and � (�) is an odd function.

For d > �

mami f0; � � d+ "it; 1� dg �mami f0; "is; 1� dg

� mami f0; "it; 1� dg �mami f0; "is; 1� dg

with probability 1 (conditional on �i), and since � is increasing

E [� (mami f0; � � d+ "it; 1� dg �mami f0; "is; 1� dg)j �i; xit; xis]

� E [� (mami f0; "it; 1� dg �mami f0; "is; 1� dg)j �i; xit; xis] = 0

The line of argument is the same when d < �. Strict inequalities follow from a full support

assumption on "i1 (and "i2).

We therefore have that E [U� (yit; yis; d)jxit; xis] is decreasing to the left of (xit � xis)0 � and

increasing to the right. Hence it is minimized at d = (xit � xis)0 �. Subject to a rank condition,

this implies that E
�
U�
�
yit; yis; (xit � xis)0 b

���xit; xis� is minimized at b = �:
7.2 Two�Sided Truncation

The following Lemma (combined with the obvious rank�condition) establishes that minimization

of E
�
R�
�
yi1; yi2; (xi1 � x2i)0 b

��
will identify � if the distribution of " is log�concave. This is the

assumption that was made in a number of other papers (including Honoré (1992), Honoré and

Powell (1994) and Abrevaya (1999); see also the discussion in Chen (forthcoming)). In Section

2.2, we only consider the case with (two�sided) truncation at 0 and 1. It is just as easy to prove

identi�cation for general individual� and time�speci�c truncation points. In the following we

therefore denote the truncation points by L and U .

Lemma 5 Let (L;U) be a vector of random variables such that L < U with probability 1. Assume

that " is independent of (L;U) and has a continuous, log�concave distribution with support on the

whole real line. Let yit = �it+"it for some real number, �it, and consider two draws (yi1; Li1; Ui1) and
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(yi2; Li2; Ui2) from the distribution of (y; L; U) conditional on L < y < U . then E [R� (yi1; yi2; d)]

is uniquely minimized at d = �i1 � �i2.

7.3 Proof of Lemma 5.

Let E denote expectation conditional on truncation and E� in population.

The moment condition can then be written as

E [� (4yi �4di) 1 fLi2 � di2 � yi1 � di1 � Ui2 � di2g 1 fLi1 � di1 � yi2 � di2 � Ui1 � di1g]

= E [� (4yi �4di) 1 fLi2 +4di � yi1 � Ui2 +4dig 1 fLi1 �4di � yi2 � Ui1 �4dig]

= E[� (4"i +4�i �4di) 1 fLi2 � (4�i �4di) � "i1 + �i2 � Ui2 � (4�i �4di)g

1 fLi1 + (4�i �4di) � "i2 + �i1 � Ui1 + (4�i �4di)g]

where 4ai = ai1 � ai2. Letting �i = (4�i �4di)

= E[� (4"i + �i) 1 fLi2 � �i2 � �i � "i1 � Ui2 � �i2 � �ig 1 fLi1 � �i1 + �i � "i2 � Ui1 � �i1 + �ig]

= E�[� (4"i + �i) 1 fLi2 � �i2 � �i � "i1 � Ui2 � �i2 � �ig 1 fLi1 � �i1 + �i � "i2 � Ui1 � �i1 + �ig

1 fLi1 � yi1 � Ui1g 1 fLi2 � yi2 � Ui2g]
1

P (Li1 � yi1 � Ui1; Li2 � yi2 � Ui2)
:

It su¢ ces to show that this is nonpositive for �i < 0, strictly negative in a neighborhood to the

left of 0, 0 for �i = 0; nonnegative for �i > 0, and strictly positive in a neighborhood to the right

of 0. Now consider the term

E�[� (4"i + �i) 1 fLi2 � �i2 � �i � "i1 � bj � �i2 � �ig 1 fLi1 � �i1 + �i � "i2 � Ui1 � �i1 + �ig

1 fLi1 � �i1 � "i1 � Ui1 � �i1g 1 fLi2 � �i2 � "i2 � bj � �i2g]:

De�ning wi1 = 1
2 ("i1 � "i2) and wi2 =

1
2 ("i1 + "i2) (so "i1 = (wi1 + wi2) and "i2 = wi2 � wi1

and 4"i = 2wi1)
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E�[� (4"i + �i) 1 fLi2 � �i2 � �i � "i1 � Ui2 � �i2 � �ig 1 fLi1 � �i1 + �i � "i2 � Ui1 � �i1 + �ig

1 fLi1 � �i1 � "i1 � Ui1 � �i1g 1 fLi2 � �i2 � "i2 � Ui2 � �i2g]

= E�[� (2wi1 + �i) 1 fLi2 � �i2 � �i � wi1 + wi2 � Ui2 � �i2 � �ig

1 fLi1 � �i1 + �i � wi2 � wi1 � Ui1 � �i1 + �ig

1 fLi1 � �i1 � wi1 + wi2 � Ui1 � �i1g

1 fLi2 � �i2 � wi2 � wi1 � Ui2 � �i2g]

= E�[� (2wi1 + �i)

1

�
Li2 � �i2 � wi2 �

1

2
�i � wi1 +

1

2
�i � Ui2 � �i2 � wi2 �

1

2
�i

�
1

�
�Ui1 + �i1 + wi2 �

1

2
�i � wi1 +

1

2
�i � �Li1 + �i1 + wi2 �

1

2
�i

�
1

�
Li1 � �i1 � wi2 +

1

2
�i � wi1 +

1

2
�i � Ui1 � �i1 � wi2 +

1

2
�i

�
1

�
�Ui2 + �i2 + wi2 +

1

2
�i � wi1 +

1

2
�i � �Li2 + �i2 + wi2 +

1

2
�i

�
]

= E�[� (2wi1 + �i)

1fmax
�
Li2 � �i2 � wi2 �

1

2
�i;�Ui1 + �i1 + wi2 �

1

2
�i; Li1 � �i1 � wi2 +

1

2
�i;�Ui2 + �i2 + wi2 +

1

2
�i

�
� wi1 +

1

2
�i �

min

�
Ui2 � �i2 � wi2 �

1

2
�i;�Li1 + �i1 + wi2 �

1

2
�i; Ui1 � �i1 � wi2 +

1

2
�i;�Li2 + �i2 + wi2 +

1

2
�i

�
g]

= E�
�
� (2wi1 + �i) 1

�
�ci � wi1 +

1

2
�i � ci

��
= E�

�
E�
�
� (2wi1 + �i) 1

�
�ci � wi1 +

1

2
�i � ci

�����wi2; Li1; Ui1; Li2; Ui2��
where ci = min

�
Ui2 � �i2 � wi2 � 1

2�i;�Li1 + �i1 + wi2 �
1
2�i; Ui1 � �i1 � wi2 +

1
2�i;�Li2 + �i2 + wi2 +

1
2�i
	
.

Strict log�concavity of "it, implies that wi1 is strictly unimodal and symmetric conditional on wi2.
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It therefore follows that

E�
�
E�
�
� (2wi1 + �i) 1

�
�ci � wi1 +

1

2
�i � ci

�����wi2; Li1; Ui1; Li2; Ui2��8>>>>>>>>><>>>>>>>>>:

� 0 if �i < 0

< 0 if �i < 0, P
�
�ci � wi1 + 1

2�i � ci
�
> 0

= 0 if �i = 0

� 0 if �i > 0

> 0 if �i > 0, P
�
�ci � wi1 + 1

2�i � ci
�
> 0:

Since the "�s (and hence the wi�s) are continuous, the condition that P
�
�ci � wi1 + 1

2�i � ci
�
> 0

will be satis�ed if P (ci > 0) > 0.

We will next show that for �i 2 (0; k), P (ci > 0) > 0 for some k > 0. Note that

1 fci > 0g = 1

�
�Li1 + �i1 + wi2 �

1

2
�i > 0

�
� 1
�
Ui1 � �i1 � wi2 +

1

2
�i > 0

�
�1
�
�Li2 + �i2 + wi2 +

1

2
�i > 0

�
� 1
�
Ui2 � �i2 � wi2 �

1

2
�i > 0

�
= 1

�
wi2 > Li1 � �i1 +

1

2
�i

�
� 1
�
Ui1 � �i1 +

1

2
�i > wi2

�
�1
�
wi2 > Li2 � �i2 �

1

2
�i

�
� 1
�
Ui2 � �i2 �

1

2
�i > wi2

�
= 1

�
Ui1 � �i1 +

1

2
�i > wi2 > Li1 � �i1 +

1

2
�i

�
� 1
�
Ui2 � �i2 �

1

2
�i > wi2 > Li2 � �i2 �

1

2
�i

�
:

This will have positive probability provided that

P

�
Li1 � �i1 +

1

2
�i < Ui2 � �i2 �

1

2
�

�
> 0

which follows from Lemma 6.

Lemma 6 If (U1; V1) and (U2; V2) are two independent draws of a random vector (U; V ) with

P (U < V ) = 1, then there exists a k > 0 such that for 0 < � < k, P (U1 < V2 � �) > 0.

Proof. Since V � U > 0 with probability 1, there exists an m > 0 such that P (V � U > m) �
1
2 . Now consider the space f(u; v) : v � u > mg. This can be divided into a countable number

of regions, Ak, such that for (u1; v1) ; (u2; v2) 2 Ak, ju1 � u2j < m
2 and jv1 � v2j < m

2 . Since

P (V � U > m) = 1
2 , at least one of these regions, Ak, must have positive probability. Hence there

is positive probability that (U1; V1) and (U2; V2) in the statement of the lemma both belong to this

Ak, in which case U1 < V1 �m < V2 � m
2 .
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8 Appendix 2: Empirical Results

Table 1: Marginal tax rates before and after

implementation of the 1987 tax reform

Before Reform After Reform

Tax bracket Earnings + Cap inc Tax bracket Earnings inc < 0 inc: > 0(1)

0-113 M + 19:75 0� 130 M + 22:00 M + 22:00 M + 22:00

113-186 M + 34:15 130� 200 M + 28:00 M + 22:00 M + 28:00

186- M + 44:95 200� M + 40:00 M + 22:00 M + 28:00

Tax ceiling 73 Tax ceiling 68:00=56:00(2) 56:00

Note: M is the local government tax rate. Threshold values for the tax brackets are given

in 1000 DKK. Thresholds are adjusted yearly. Threshold values used in the table are for 1986

(before the reform) and 1987 (after the reform). The marginal tax rates refer to personal income

(as opposed to household income).

(1) The tax brackets for positive net capital income refer to the sum of earnings and positive

net capital income.

After the reform positive capital income is taxed progressively up to the �rst threshold, 130,000

DKK. For a married couple the progression threshold is 260,000 based on the sum of their joint

positive net capital income and earnings.

(2) The 68 percent tax ceiling applies only to the top bracket.
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Table 2:. Random and Fixed E¤ects Censored Regression Estimates

of the Portfolio Share of Bonds in Financial Wealth.

Fixed E¤ects Random E¤ects

MTR capital income �0:130 �0:206

(0:071) (0:045)

Ln(Financial Assets) 0:177 0:085

(0:008) (0:003)

D85 �0:214 �0:157

(0:006) (0:006)

D86 �0:314 �0:248

(0:009) (0:006)

D87 �0:318 �0:285

(0:013) (0:008)

D88 �0:383 �0:331

(0:013) (0:008)

Constant � 0:047

(0:046)

# households/observations 8,577 / 42,885

# left/right censored obs 7,529 / 15,655

Test of Parameter Equality (d.f.) 167 (6)

Standard errors in parenthesis
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