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Abstract 

 

The main contribution of this paper is twofold: (i) it surveys different types of 

simulation for supply chain management; (ii) it discusses several methodological 

issues. These different types of simulation are spreadsheet simulation, system 

dynamics, discrete-event simulation, and business games. Which simulation type 

should be applied, depends on the type of managerial question to be answered by the 

model. The methodological issues concern validation and verification, sensitivity, 

optimisation, and robustness analyses. This sensitivity analysis yields a shortlist of the 

truly important factors in large simulation models with (say) a hundred factors. The 

robustness analysis optimises the important factors controllable by management, 

while accounting for the noise created by the important non-controllable, 

environmental factors. The various methodological issues are illustrated by a case 

study involving the simulation of a supply chain in the mobile communications 

industry in Sweden. In general, simulation is important because it may support the 

quantification of the benefits resulting from supply chain management. 

 

Keywords: logistics; performance measurement; Taguchi, risk analysis; uncertainty 

analysis; screening, sequential bifurcation 

  

1. Introduction 

 

Simulation analysts may want to quantify the benefits resulting from supply chain 

management (SCM), in order to support decision making at two levels: 

(i) the strategic level, including (re)designing a supply chain 
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(ii) the operational level, including setting the values of control policies. 

Kleijnen and Smits (2003) distinguish four simulation types for SCM:  

(i) spreadsheet simulation 

(ii) system dynamics (SD) 

(iii) discrete-event dynamic systems (DEDS) simulation 

(iv) business games. 

Spreadsheets may be part of production control software. SD simulation may explain 

the bullwhip effect. DEDS simulation may predict fill rate values. Business games 

may educate and train users (‘games’ must be distinguished from ‘gaming’; the latter 

derives analytical solutions including Nash equilibria; see Lau and Lau 2004 for a 

SCM application). In Section 2, I summarize these four simulation types and their role 

in SCM.  

From the viewpoint of methodology, I distinguish four types of issues in 

simulation (in SCM and in other application domains): 

(i) validation and verification (V & V)  

(ii) sensitivity or ‘what-if’ analysis 

(iii) optimisation 

(iv) robustness, risk, or uncertainty analysis. 

To address these four methodological issues, a variety of techniques may be used. I, 

however, focus on the use of statistical methods for the design of experiments (DOE). 

In Section 3, I describe these methods and illustrate their application through a case 

study—detailed in Kleijnen et al. (2004a, b). DOE is important in simulation, because 

—by definition—simulation is an experimental method; i.e., the analysts experiment 

with different input values and different model structures (representing different 

policies, etc.) of the simulation model—treated as a black box (by definition, a black 
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box means that only the inputs and outputs of that box are observed, not its internal 

operation). 

Note: Some methods do not treat the simulation model as a black box; 

examples are Perturbation Analysis and Score Function methods; see Spall (2003). 

Unfortunately, these methods require that more mathematical conditions are satisfied, 

and that analysts are mathematically sophisticated. 

In practice, simulation is a method that is relatively often used—when 

compared with other quantitative models. Several reasons may explain this 

popularity: no mathematical sophistication is needed (see the preceding Note), 

multiple responses are natural in simulation (in SCM, these responses may be the fill 

rate or service percentage, stocks including work in progress or WIP, sales, etc.). 

These various responses are discussed by Gunasekaran et al. (2003) and Kleijnen and 

Smits (2003). 

Simulation may give insight into the causes and effects of the supply chain 

performance: which inputs (or factors) significantly affect which outputs? Indeed, 

simulation can help to understand causality, as simulation is a methodology that does 

not treat a system (for example, a supply chain) as a black box (DOE treats the 

simulation as a black box, as we saw above). For example, modern simulation 

software may model individual events such as order arrivals and machine breakdowns 

in great detail; see Kelton et al. (2004)’s manual for simulation in the Arena software. 

(Vamanan et al. 2004 compare Arena and other ‘commercial off the shelf’ (COTS) 

software; Biswas and Narahari 2004 present object-oriented software for simulation 

models and other model types of supply chains.)  

The main contribution of this paper is twofold: 

(i) it surveys major tools and techniques for the simulation of supply chains 
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(ii) it discusses several methodological issues, including a novel methodology for 

the robust design of supply chains. 

The remainder of this paper is organized as follows. The four simulation types 

that Kleijnen and Smits (2003) distinguish, are discussed in the four separate 

subsections of Section 2. Section 3 summarizes a case study that is detailed in 

Kleijnen et al. (2004a,b); this study illustrates sensitivity analysis—used to derive a 

shortlist with the most important factors—and robustness analysis—inspired by 

Taguchi, and bootstrapping to derive a confidence region for the best input values. 

Section 4 gives conclusions. A list with 46 references for further study is included. 

 

2. Four simulation types for supply chain management  

 

By definition, a simulation model has the following three characteristics: 

i. It is a quantitative, mathematical, computer model. 

ii. It is a dynamic model; i.e., it has at least one equation with at least one 

variable that refers to at least two different points in time (examples are difference 

equations; more examples will follow below). 

iii. This model is not solved by mathematical analysis; instead, the time paths of 

the dependent variables (outputs) are computed—given the initial state of the 

simulated system, and given the values of the exogenous (input) variables. 

Aspect (iii) implies that simulation does not give a ‘closed form’ solution. 

Instead, the simulation analysts experiment with different input values and model 

structures, to see what happens to the output—so-called sensitivity analysis. Next the 

analysts may perform V & V, optimisation, and robustness analyses (see Sections 1 

and 3). 
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In the following four subsections, I summarize the four simulation types. 

 

2.1  Spreadsheet simulation 

 

Corporate modelling has become popular with the introduction of spreadsheet 

software; see Plane (1997) and Powell (1997). Indeed, this type of simulation has 

made simulation credible for managers. 

A simple example of an equation that is easy to program through a spreadsheet 

is: 

 

new inventory = old inventory + production -  sales.    (1)  

 

Equation (1) may be called a bookkeeping equation, a balance equation, a 

difference equation, etc. Such equations are also part of the more sophisticated 

simulation types discussed below. 

Spreadsheets have been used to implement manufacturing resource planning 

(MRP), which is an important subsystem of SCM; see Sounderpandian (1989). A 

recent spreadsheet model of Vendor Managed Inventory (VMI) in supply chains is  

presented in Disney and Towill (2003). However, this type of simulation is often too 

simple and unrealistic; DEDS simulation provides a more realistic model (see Section 

2.3 below). 

 

2.2 System dynamics (SD) 
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Forrester (1961) developed industrial dynamics, which he later extended and called 

system dynamics. In fact, Forrester has already developed a model for the following 

supply chain—without using the term 'supply chain'. His supply chain (which is 

theoretical, academic) has four links, namely retailer, wholesaler, distributor, and 

factory. He examines how these links react to deviations between actual and target 

inventories. He finds that ‘common sense’ strategies may amplify fluctuations in the 

demand by final customers—up the supply chain. Much later, Lee et al. (1997) 

identified this amplification as one of the bullwhip effects; also see Disney and Towill 

(2003).  

A recent case study is provided by Higuchi and Troutt (2004), who use SD to 

model the supply chain for the Japanese pet-toy called Tamagotchi. Spengler and 

Schrőter (2003) also use SD; they study spare parts in closed-loop supply chains at 

Agfa-Gevaerts. Ashayeri and Keij (1998) model the distribution chain of Edisco (the 

European distribution arm of the US company Abbott Laboratories). Reviews of SD 

simulation of SCM are Angerhofer and Angelidis (2000), Beamon (1998), Otto and 

Kotzab (2003), and Van der Pol and Akkermans (2000). 

From a methodological viewpoint, SD views companies as systems with six 

types of flows, namely materials, goods, personnel, money, orders, and information 

(examples of these input flows are production and sales; example output flows are fill 

rate and average WIP). Besides flows, SD distinguishes stocks (for example, WIP at a 

given point in time). SD assumes that managerial control is realized through the 

changing of rate variables (for example, production and sales rates), which change 

flows—and hence stocks. A crucial role in the SD worldview is played by the 

feedback principle; i.e., a manager compares a target value for a specific performance 
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metric with its realization, and—in case of undesirable deviation—the manager takes 

corrective action. An example equation is   

 

Inventory.K = Inventory.J + DT (Production_rate.JK - Sales_rate.JK) (2) 

 

where Sales_rate.JK denotes the sales rate during the interval between the points of 

time J and K; DT denotes the length of that interval; etc. For more details on SD, I 

refer to a recent SD textbook such as Sterman (2000), which has 982 pages! 

 

2.3 Discrete-event dynamic system (DEDS) simulation  

 

A DEDS simulation is more detailed than the preceding two simulation types, as is 

illustrated by comparing equations (1) and (2) with the following example DEDS 

equation: 

 

Waiting time of job i =  max(0, Waiting time of jobi – 1 + Service time of jobi - 1    

- Interarrival time of jobi).       (3) 

 

DEDS simulation has the following two characteristics: 

(i) It represents individual events (for example, the arrival of an individual 

customer order; see equation 3), whereas SD has a much more aggregated view 

including flows. 

(ii) It incorporates uncertainties (for example, customer orders arrive at random 

points in time; see again equation 3; machines break down at random points of time, 

and require random repair times). The other three types of simulation models remain 
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relevant—even when eliminating randomness! For example, most SD models have no 

randomness, and yet their behaviour remains counter-intuitive because of the non-

linear feedback loops. (Most econometric models are also sets of non-stochastic, non-

linear difference equations.) Also see Gaonkar (1977).  

For more details on DEDS simulation I refer to the many textbooks on this 

type of simulation, including the most popular (83,000 copies sold) one—Law and 

Kelton (2000). 

DEDS simulation is an important method in SCM. For example, Banks et al. 

(2002) survey many SCM simulation studies—at IBM and Virtual Logistics—and 

they discuss strategic and operational SCM, distributed SCM simulation, commercial 

packages for SCM simulation, etc. Indeed, DEDS simulation is already part of the 

MRP/ERP toolbox for quantifying the costs and benefits of strategic and operational 

policies (ERP: Enterprise Resource Planning); see Vollmann et al. (1997). In Section 

3, I shall discuss a recent example of DEDS simulation that models three alternative 

designs for a supply chain in the mobile communications industry in Sweden—

centred on the Ericsson company.  

 

2.4. Business games 

 

It is relatively easy to simulate technological and economic processes, but it is much 

more difficult to model human behaviour. A solution is to let managers themselves 

operate within the simulated 'world', which may consist of a supply chain and its 

environment. Such an interactive simulation is called a business or management 

game.  
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Games may be used for both educational and research goals. For their 

education usage, I refer to Riis et al. (2000) and Ten Wolde (2000). For research 

usage, I refer to Kleijnen (1980). For example, Kleijnen (1980, pp. 157-186) uses an 

IBM management game to quantify the effects of information accuracy on return on 

investment (ROI). Another example is the use of games to study the confidence that 

managers have in their decisions. More recent references are given by Kleijnen and 

Smits (2003) and Riis et al. (2000). 

 There are strategic and operational games: 

(i) Strategic games include several teams of players who represent companies 

that compete with each other in the simulated world. These players interact with the 

simulation model during (say) five to ten rounds. The simulation model may be a SD 

model; a famous example is the beer game, which illustrates the bullwhip effect (see 

Simchi-Levi et al. 2003, Sodhi 2001, and again Sterman 2000). The game may also be 

a corporate, economic, business model that illustrates the effects of prices, sales 

promotion, and research & development decisions on profits; see Kleijnen (1980, pp. 

157-186). Also see Riis et al. (2000). 

(ii) Operational games include a single team—which may consist of one or more 

players—interacting with the simulation model either during several rounds or in real 

time. This are games against nature. Examples are games for training in production 

scheduling; see again Riis et al. (2000). 

 

2.5 The roles of different simulation types in SCM 

 

Which of the four simulation types is applied in SCM depends on the problem to be 

solved. For example, SD aims at qualitative insight (not exact forecasts); for example, 
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SD can demonstrate the bullwhip effect. DEDS simulation can quantify fill rates, 

which are random variables. Games can educate and train users, since the players are 

active participants in the simulated world. Moreover, games can be used in research to 

study the effects of qualitative factors (such as type of decision support system, DSS) 

on profits, etc.  For brevity’s sake, I refer back to the publications that were discussed 

in the four preceding subsections. 

 

3. V & V, sensitivity, optimisation,  and robustness analyses: a case study 

 

In this section, I summarize a case study that is detailed in Kleijnen et al. (2004a,b). 

This study illustrates the importance of V & V, sensitivity analysis, optimisation, and 

robustness analysis (which were mentioned in Section 1). The study concerns the 

strategic level of SCM; it uses DEDS simulation. 

 

3.1 Overview 

 

The case study consists of three simulation models that represent three alternative 

designs for a supply chain. Figure 1 illustrates that a newer configuration has fewer 

operations and tests. Figure 2 shows one of the simulation models—buffers 

(inventories) are located before and after every test station and operation; products are 

transported between all operations and test stations. The output is the steady-state 

mean costs of the total supply chain. Details are given by Persson and Olhager (2002). 

Kleijnen et al. (2004a) derive a shortlist with the most important factors; this 

process is also called screening. They apply a method called sequential bifurcation 

(SB).  I shall summarize this study in Section 3.3. 
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Next, Kleijnen et al. (2004b) derive a robust solution; i.e., they find 

appropriate values for the factors that management can control, while accounting for 

the randomness of the environmental factors. Their solution is inspired by Taguchi’s 

approach for designing robust physical products; i.e., the important factors are divided 

into controllable and environmental factors. Kleijnen et al. (2004b) systematically 

investigate these controllable factors (using a reduced so-called central composite 

design). They randomly combine the environmental factors into scenarios (using 

Latin Hypercube Sampling, LHS). Then they estimate the controllable factor values 

that minimize the output’s expected value and variance respectively. A confidence 

region for these optima is derived through bootstrapping. This confidence region can 

be used to select a (compromise) robust solution. I shall summarize that study in 

Section 3.4. 

Note: The SCM literature distinguishes between robustness and flexibility. A 

flexible supply chain can react to a changing environment by adapting its operations. 

A robust supply chain keeps its design fixed, and can still accommodate many 

changes in its environment. So the two concepts focus on operational and strategic 

decisions respectively. Also see Van Landeghem and Vanmaele (2002) and Zhang et 

al. (2003). The effects of flexibility on supply chain performance are evaluated 

through simulation by Garavelli (2003). 

Note: Robustness is also important outside DEDS simulation. For example, 

deterministic simulation—via non-linear difference equations—for Computer Aided 

Engineering (CAE) often aims at the optimal design of products such as automobiles, 

airplanes, etc.; see Simpson et al. (2001) for a survey. The coefficients of these 

equations are not exactly known, and the resulting solution cannot be exactly 

implemented, so the optimal solution should be ‘robust’. In Mathematical 
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Programming, the search for robust solutions has made most progress and reached 

maturity, I think; see Ben-Tal and Nemirovski (2000). 

 

3.2 Validation and verification (V & V) 

 

The simulation model for the ‘old’ supply chain depicted in Figures 1 and 2 was 

validated and verified through discussions with Ericsson engineers; see again Persson 

and Olhager (2002). This establishes face validity; see Law and Kelton (2000).  

Quantitative V & V may use DOE to check whether the estimated effects of 

changing inputs of the simulation model agree with the experts’ qualitative 

knowledge about the system. A simple example is a queuing simulation: does an 

increase in simulated traffic give an increased average waiting time? A case study is 

reported by Kleijnen (1995): does the DEDS simulation give correct signs for the 

estimated  effects of inputs (such as sonar tilt angle) on the output (detection of mines 

at the sea bottom)?  

If data on the real-world output are available, then real and simulated outputs 

may be compared statistically. An overview of the role of different statistical 

techniques—dependent of the availability of data—in V & V is Kleijnen (1999). 

 

3.3 Screening through sequential bifurcation  

 

The total number of potentially important factors in the three simulation models is 92 

in the Old model, 78 in the Current model , and 49 in the Next Generation model. The 

most important factor is defined as the one with the highest ‘main effect’—also called 

the ‘first-order effect’; see the SB assumptions below. 
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The SB method simulates relatively few scenarios (factor combinations); for 

example, Kleijnen et al. (2004a) simulate only 42 scenarios to find the 11 most 

important factors among the 92 potentially important factors. To realize this 

efficiency, SB uses two basic assumptions: 

(i) A first-order polynomial—possibly augmented with two-factor interactions—

can adequately approximate the input/output (I/O) behaviour of the underlying 

simulation model. (Such approximations are also called metamodels, because they 

model the underlying simulation model’s I/O behaviour.) 

(ii) The signs (or directions) of all main effects are known, so factors can be 

defined such that all main effects are non-negative (otherwise, main effects might 

compensate each other). 

Because of assumption (i), SB simulates only two values per factor, namely a 

high and a low value. (In the case study, most factors change by 5 % of the base 

value; a few other factors by 25 %.) Estimation of main effects unbiased by two-

factor interactions is enabled by a so-called foldover design, which doubles the 

number of scenarios that would be simulated in case the polynomial were known to 

have first-order effects only.  

To estimate the statistical significance of the estimated effects, each scenario 

needs replication—using different, non-overlapping pseudo-random numbers (PRN). 

In the case study, this number of replicates is selected to be five. 

In the case study, SB turns out to give only eleven important factors for the 

Old model, nine for the Current model, and seven for the Next Generation model. In 

all three simulation models, factor # 92 is the most important factor; this is the 

demand for product 1, which accounts for 90% of total demand. The other important 

factors represent yield and transportation. See Kleijnen et al. (2004a) for details. 
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3.4 Robustness analysis 

 

Taguchi is the Japanese engineer who designed cars (for Toyota) that operate 

satisfactorily in many environments; see Taguchi (1987). His method is applied to 

simulation by Al-Aomar (2002) and Tsai (2002). Next, Kleijnen et al. (2004b) use 

Taguchi’s view but not his statistical methods, because simulation experiments enable 

the exploration of many more factors and scenarios than are possible in real-life 

experiments. 

Kleijnen et al. (2004b) try to minimize expected cost (as in classic 

optimisation), but also consider cost variance due to environmental disturbances (as 

Taguchi proposes). 

For illustration purposes, I focus on the Current model. After the SB screening 

(Section 3.3), there remain only three important controllable factors (and six 

important environmental factors). The challenge is to ‘optimise’ these controllable 

factors, denoted by (say) jx  (j = 1, … , k ). A second-order polynomial 

approximation of the I/O behaviour of the simulation model is 
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with the overall mean 0 , the first-order effects j , the interactions (cross-products) 

'; jj , and the error term ie —which represents noise caused by both the PRN and the 

lack of fit of the approximation in (4)—in scenario i. 
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To estimate the coefficients  of the second-order polynomial in (4), 

Kleijnen et al. (2004b) augment the 2
k
 full factorial design with a one-factor-at-a-time 

design—so each factor is observed at more than two values. 

For the environmental factors, robustness analysis is not interested in a 

functional relationship like (4). Following Taguchi, Kleijnen et al. (2004b) treat these 

factors as noise. Unlike Taguchi, they sample environmental scenarios through LHS; 

see McKay, Beckman, and Conover (1979). 

Next—as in a Taguchian design—the design (‘inner array’) for the 

controllable factors is crossed (combined) with the design (‘outer array’) for the 

environmental factors.  

Unlike SB (Section 3.3), this crossed design is not replicated: the standard 

error in each design point due to pure replication (using different PRN) turns out to be 

much smaller than the standard error across the environmental scenarios. 

The optimisation of (4) for different environmental scenarios should account 

for the box constraints on the inputs: only changes of 5% and 25% are allowed. 

Mathematically, these constraints are incorporated through Lagrangian multipliers, 

which quantify the shadow prices of the constraints.  All controllable factors turn out 

to minimize the mean costs when they are set at their lower boundary values. 

(Because these bounds are specified rather arbitrarily, I raise the question whether 

these boundary values should not be revised—and followed-up by a new analysis?) 

Next, the response variable y in (4) is replaced by the output variance. One 

factor again has its optimal value at its lower boundary. The other factors, however, 

have conflicting optimal values when considering both outputs.  Yet, these optimal 

input values are only estimates, so maybe the truly optimal inputs are the same for 

both outputs (mean and variance)? To answer this question, a confidence region is 
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needed for the optimal values. 

Standard confidence regions do not hold, because the estimated optimal 

simulation inputs are non-linear functions of the simulation outputs and the 

corresponding regression estimates. Yet, a confidence region can be computed 

through bootstrapping.  

Assuming that the estimated regression parameters ˆ corresponding with (4) 

are normally distributed, the bootstrap resamples from a multi-variate normal 

distribution with a vector of means equal to the original estimates ˆ , and with a 

covariance matrix equal to the estimated matrix that is a standard output of regression 

software. The resulting bootstrapped estimated regression parameters (say) *ˆ  give 

estimated optimal inputs *
x̂ . Bootstrapping repeats this sampling (say) 1,000 times, 

to get a confidence region for the values that minimize the mean and the variance of 

the output respectively. Using this region, management may select a robust solution 

that satisfies their preferences. 

Note: Bootstrapping is computationally inexpensive, compared with the 

computer effort required to generate the simulation output.  

Finally, comparing the optimum solution for the controllable factors 

accounting for many environmental scenarios—generated through LHS—and the 

solution accounting for a single scenario—namely the base scenario—suggest that 

risk considerations do make a difference; see Kleijnen et al. (2004b). 

 

4. Conclusions 

 

In this paper, I surveyed four types of simulation, and discussed four methodological 

issues. These four simulation types are spreadsheets, SD, DEDS, and gaming. I 
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explained how different types can answer different questions in SCM. For example, 

SD—possibly run as a game—suffices for demonstrating the bullwhip effect to 

supply chain stakeholders. DEDS is needed to estimate the probability of realizing a 

required fill rate—especially in a turbulent environment. 

Once a simulation model has been built, it is necessary to perform V &V, 

sensitivity analysis, optimisation and robustness analysis of that model. V & V may 

use statistical techniques, including DOE. Sensitivity analysis serves several goals: it 

provides insight into the behaviour of the supply chain (including interactions 

between factors), and gives a shortlist of critical factors. Optimising the critical 

control factors may support Business Process Redesign (BPR). In practice, it is more 

important to find robust solutions than the optimal solution. 

This paper summarized a novel methodology for searching for such a robust 

solution. This solution gives values for those factors that management can control, 

while accounting for the randomness of the environmental factors.  

This robustness methodology was inspired by Taguchi’s approach. 

Technically, however, other designs were proposed; for example, LHS. Moreover, a 

confidence region for the estimated optima was proposed, based on bootstrapping; 

management may use that region to select a compromise, robust solution. 

The methodological issues were illustrated through a case study, namely 

simulation models of different supply chain configurations for Ericsson in Sweden.  
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Figure 1: The three supply chain structures: (a) the old, (b) the current, and (c) the 

next generation  
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