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A NEW APPROACH TO THE

ENVELOPE THEOREM�

FRANCESCO RUSCITTIy

Abstract

We study the di¤erentiability of the value function of a constrained opti-
mization problem. We consider the envelope-theorem framework of Mil-
grom and Segal (2002), and we accomplish two goals. We show how one
can relax Milgrom and Segal�s assumption that the choice set does not
vary with parameters. More importantly, we develop a new approach to
proving the di¤erentiability of the value function. The key idea and main
mathematical tool we employ in our approach are a novel feature in the
literature dealing with the di¤erentiability of the value function.

JEL classi�cation: C60, C61, C65.
Keywords: value function, uniform convergence, di¤erentiability, cor-

respondences.

1 Introduction

This paper deals with envelope theorems for constrained maximization prob-
lems. That is, we study a parameterized maximization problem and we address
the di¤erentiability of the value function associated with the optimization prob-
lem. The standard textbook approach to the envelope theorem1 posits that
the objective function (and the functions de�ning the constraints) is twice con-
tinuously di¤erentiable in the choice variables. This allows for the use of the
implicit function theorem to obtain a local di¤erentiable selection of maximiz-
ers. These assumptions are rather strong, and thus it would be desirable to
relax them. To this end, Milgrom and Segal (2002) develop an approach to the
envelope theorem under minimal assumptions on the objective function and the
choice set. They also discuss several economic applications of their theorems.
Indeed, Milgrom and Segal assume, in the �rst part of their paper, that the

�We thank David Khaski for reading the manuscript and drawing the �gures.
yDepartment of Economics, University of Rome III, 77 Via Silvio D�Amico, 00145,

Roma (Italy). E-mail: fruscitti@uniroma3.it
1See, e.g., A. Mas-Colell et al. (1995), and H. Varian (1992).
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choice set lacks any topological and algebraic structure, which is remarkable. In
particular, Milgrom and Segal do not assume that the objective function is dif-
ferentiable in the choice variables. On the other hand, the authors assume that
the choice set does not vary with the parameter that appears as argument of the
objective function. The latter assumption is quite stringent. Therefore, our �rst
objective in this paper is to show that it is still possible to easily characterize
the derivative of the value function even though we dispense with Milgrom and
Segal�s assumption that the choice set is constant, and we do not assume that
the objective function is di¤erentiable in the choice variables. Speci�cally, un-
like Milgrom et al. (2002), we do not require that the choice set be independent
of the parameter. In our framework the feasible set is a �function� of the given
parameter, and we formalize this relation by means of a correspondence that
maps the parameter space into the control-variables space. It turns out that we
only need to assume that this correspondence satis�es fairly mild assumptions,
such as lower hemicontinuity and convex-valuedness. We remark that this way
of relating parameters to choice variables is very standard, especially in dynamic
programming models. In contrast to Milgrom and Segal (2002), though, we need
to put some structure on the choice set. Speci�cally, in the �rst part of section
3 we assume that the choice set is a convex subset of a �nite-dimensional linear
space. As in Milgrom and Segal (2002), we show that the derivative of the value
function reduces to the well-known envelope theorem formula.

The second and main objective we pursue in this paper is as follows: we retain
the framework of Milgrom and Segal (2002), and in the �nal part of section 3
and in section 4 we introduce another approach to the envelope theorem. Our
approach is novel, to the best of our knowledge. It hinges on a simple theorem
on uniform convergence, from real analysis, which has been overlooked in the
literature about the di¤erentiability of the value function. We assume that the
choice set is an arbitrary compact metric space. Hence, notice that the choice set
may be in�nite-dimensional. The assumption that the choice set be a compact
metric space ensures that the choice set is separable. In turn, separability plays a
crucial role in our approach. Recall that an arbitrary compact topological space
need not be separable. This is why we need the choice set to be a metric space.
Also, we show that our approach can be nicely combined with the approach put
forward in the seminal paper by Benveniste and Sheinkman (1979).

The paper is structured as follows: in section 2 we set up the background and
notation, and we state three theorems that will be used to prove our results. In
Section 3 we lay out the assumptions and illustrate how our approach works. In
Section 4 we drop a key assumption and we replace it with a weaker one. We
then show that combining our approach with Benveniste and Scheinkman�s still
enables us to prove the di¤erentiability of the value function under the milder
assumption. Finally, in section 5 we point out some drawbacks of our approach,
and we outline directions for future research.
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2 Background

Following Milgrom and Segal (2002), the problem envelope theorems are con-
cerned with is the following:

LetX denote an arbitrary choice set, and let the relevant parameter be t 2 [0; 1].
Letting f : [0; 1]�X ! R denote a parameterized objective function, the value
function V and the optimal choice correspondence (set-valued function) X� are
given by:

V (t) = sup
x2X

f(t; x);

X�(t) = fx 2 X : f(t; x) = V (t)g:

Note that in Milgrom and Segal (2002) the choice set X is independent of the
parameter t.
In the sequel we shall invoke the following theorem from real analysis (see
Sohrab, 2003, Theorem 8.3.4):

Theorem 1.2 Let (fn)
1

n=1 be a sequence of di¤erentiable functions de�ned on
[a; b] such that (fn (x0))

1

n=1 converges for some x0 2 [a; b]. If the sequence
�

f
0

n

�1

n=1
of derivatives converges to a function g uniformly on [a; b], then the

sequence (fn)
1

n=1 converges uniformly on [a; b] to a di¤erentiable function f and
we have

f
0

(x) = lim
n!1

f
0

n (x) = g (x) for all x 2 [a; b] :

We shall also employ the following theorem from convex analysis (see Rockafel-
lar, 1970). It was �rst used by Benveniste and Scheinkman (1979) to prove the
di¤erentiability of the value function arising in dynamic economic models.

Theorem 2.2 Let f be a real valued concave function de�ned on a convex set
D � Rn. If W is a concave di¤erentiable function in a neighborhood N of x0
in D with the property that W (x0) = f (x0) and W (x) � f (x) for all x in N ,
then f is di¤erentiable at x0. Moreover, the di¤erential of f at x0 coincides
with the di¤erential of W at x0.

In what follows, int (�) denotes the interior in the range space of the correspon-
dences at hand. To allow for the choice set to depend on the parameter t, and
characterize the derivative of V , we shall make use of the following theorem:

Theorem 3.2 Let � : M � R
n be a lower hemi-continuous correspondence,

where M is an arbitrary metric space. Suppose that � is convex-valued, and that
for some �x 2 X, int�(�x) is non-empty. Then, for any compact set K � int�(�x),
there exists a neighborhood V (�x) of �x such that K � �(x0) for all x0 2 V (�x).

The above theorem was �rst proven by Zhou (1995). An alternative proof based
on a simple separation argument can be found in Bagh et al. (2010). In the

3



special case in which M is �nite-dimensional, a proof of Theorem 3.2 can be
derived from Proposition 4.15 and Theorem 5.9 in Rockafellar and Wets (2009)2 .
Note that when the compact set K is a singleton, Theorem 3.2 implies the
following property of �. If �y 2 int�(�x), then there exists a neighborhood V (�x)
of �x such that �y 2 �(x0) for all x0 2 V (�x). This is the property we will need to
use later on in the proof of Proposition 1.3.

3 The mathematical framework

Refer to the envelope-theorem framework set-forth above in the background
paragraph. Next, we shall relax the assumption that the choice set is inde-
pendent of the parameter, and we shall characterize the derivative of the value
function. We shall think of X as a given control-variables space, but we shall
let the feasible set, as a subset of X, vary with the parameter t. Theorem
3.2 will play a key role in accomplishing this. Here is how we formalize the
correspondence relating the parameter to the admissible control variables.

Let t 2 [0; 1], and let � : [0; 1] � X, where X � Rn. De�ne the parameterized
objective function by f : G� ! R, where

G� := f(t; x) 2 [0; 1]�X : x 2 � (t)g

is the graph of �.

We can now re-de�ne the value function V and the (possibly empty-valued)
optimal choice correspondence X� as follows:

V (t) = supx2�(t) f (t; x)

X� (t) = fx 2 � (t) : f (t; x) = V (t)g

Assumption 1. 3 � : [0; 1] � X is lower hemicontinuous with convex values.
Furthermore, there exists a t 2 [0; 1] such that int� (t) 6= ?.

The following proposition should be compared to Theorem 1 in Milgrom and
Segal (2002). By using Theorem 3.2 one can easily prove:

Proposition 1.3 Suppose that Assumption 1.3 holds. Assume that x� 2 X� (t),
with x� 2 Int� (t), and suppose that @f

@t
(t; x�) exists. If t > 0 and V is left-

hand di¤erentiable at t, then V
0

(t�) � @f
@t
(t; x�). If t < 1 and V is right-hand

di¤erentiable at t, then V
0

(t+) � @f
@t
(t; x�). If t 2 (0; 1) and V is di¤erentiable

at t, then V
0

(t) = @f
@t
(t; x�).

Proof. By Theorem 3.2, there exists a neighborhood of t in [0; 1], say N (t),

such that x� 2 �
�

t
0

�

for each t
0

2 N (t). Clearly, for any t
0

2 N (t) we have

2We thank A. Bagh for pointing this out to us.
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f
�

t
0

; x�
�

� f (t; x�) � V
�

t
0

�

� V (t)

From this point onward we can simply follow the original proof of Theorem 1
in Milgrom and Segal (2002): for t < 1, we can just perform their argument on
(t; 1) \N (t). For t > 0, we can just perform their argument on (0; t) \N (t).�

Assumption 2.3 � : [0; 1] � X is lower hemicontinuous with convex graph.
Furthermore, there exists a t0 2 (0; 1) such that int� (t0) 6= ?.

The following proposition should be compared to Corollary 3 in Milgrom and
Segal (2002). In Corollary 3, Milgrom and Segal place additional structure on
the choice set which is assumed to be convex. Also, the authors assume that
the objective function is jointly concave and the choice set does not vary with
the parameter. By exploiting Proposition 1.3 one can easily prove:

Proposition 2.3 Suppose that Assumption 2.3 holds, and let f : G� ! R be
concave. Assume that there exists a x� 2 X� (t0), with x

� 2 Int� (t0), such
that @f

@t
(t0; x

�) exists. Then V is di¤erentiable at t0 and V
0

(t0) =
@f
@t
(t0; x

�).

Proof. Pick two arbitrary
�

t
0

; x
0

�

,
�

t
00

; x
00
�

2 G�, and any � 2 [0; 1]. By

convexity of G�, concavity of f , and by de�nition of V , we have that:

V
�

�t
0

+ (1� �) t
00
�

� �f
�

t
0

; x
0

�

+ (1� �) f
�

t
00

; x
00
�

.

Taking the supremum of the right-hand side over x
0

2 �
�

t
0

�

and x
00

2 �
�

t
00
�

,

yields

V
�

�t
0

+ (1� �) t
00
�

� �V
�

t
0

�

+ (1� �)V
�

t
00

�

.

Hence, V is concave, and therefore V is directionally di¤erentiable at t0 with
V

0

(t0+) � V
0

(t0�) (see Rockafellar, 1970). On the other hand, by Proposition
1.3 we know that V

0

(t0�) �
@f
@t
(t0; x

�) � V
0

(t0+). Thus, V is di¤erentiable

at t0 and V
0

(t0) =
@f
@t
(t0; x

�) :�

Remark 1.3 Note that V
0

(t0) =
@f
@t
(t0; x

�) is the standard envelope-theorem
formula one obtains under the assumptions that x� is an interior strict maxi-
mizer and f is twice di¤erentiable with respect to x.

Let us now turn back to the original Milgrom and Segal�s framework in which
X is �xed (see the �rst part of the background section above). In what follows
we shall present a new approach to the envelope theorem. For simplicity, and
to illustrate the key idea underlying our approach, we begin with a set of quite
strong assumptions on f . In section 4 below we shall relax these assumptions,
and we shall use them in conjunction with some convexity assumptions to guar-
antee that the value function is still well-de�ned, continuous, and di¤erentiable
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at a speci�c point in the parameter space. We stress that, in what follows, X
can well be in�nite-dimensional.

Assumption 3.3 X is a compact metric space.

It follows from Assumption 3.3 that X is separable. Hence, there exists a dense
subset of X, say T , which is countable. Put T = fx1; x2; :::xn; ::::g :

Assumption 4.3 f : [0; 1] � X ! R is continuous in the product topology
(jointly continuous).

Given Assumptions 3.3 and 4.3, by Berge maximum theorem V (t) is continuous.

Now de�ne

	(t) = sup
x2T

f (t; x) .

The following result will come in handy:

Lemma 1.3 Under Assumption 3.3, if V : [0; 1] ! R, and f (t; �) : X ! R is
lower semicontinuous for each t 2 [0; 1], then 	 = V .

Proof: Fix an arbitrary t 2 [0; 1], and pick any xi 2 T . Clearly f (t; xi) �
V (t). Thus, 	 : [0; 1] ! R is well de�ned and 	(t) � V (t). We claim that
	(t) = V (t). For, if 	(t) < V (t), then we can pick �x 2 X such that 	(t) <
f (t; �x) � V (t). Because T is dense in X, there exists a sequence in T , say
(xn), that converges to �x. Therefore, by virtue of lower semicontinuity we can
�nd a N such that f (t; xn) > 	(t) for each n � N , which is a contradiction:�

Remark 2.3 Clearly the above result holds under Assumptions 3.3 and 4.3.
Note that in view of Lemma 1.3 we can restrict attention to 	.

Next, de�ne:

fn : [0; 1]! R by fn (t) = f (t; xn) for each xn 2 T ,

and note that fn 2 C ([0; 1]) for each n 2 N (this follows from Assumption 4.3).

Assumption 5.3 The sequence (fn) is monotonically increasing, i.e., f1 (t) �
f2 (t) ::::: for all t 2 [0; 1].

Figure 1 on the next page illustrates Assumption 5.3.

Lemma 2.3 If Assumptions 3.3, 4.3, and 5.3 hold, then fn ! 	 uniformly.

Proof: From Lemma 1.3 we know that 	 = V , and therefore 	 2 C ([0; 1]). By
Assumption 5.3 it will su¢ce to prove that fn ! 	 pointwise. Dini�s theorem
will then yield the desired result (see Aliprantis and Border, 2006, Theorem
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2.66). To this end, �x an arbitrary t 2 [0; 1] and pick any " > 0. By de�nition
of 	(t) there exists a N such that �" < 	(t) � fN (t) < ". But the sequence
(fn) is increasing (Assumption 5.3), hence �" < 	(t) � fn (t) < " for each
n � N . To �nish the proof invoke Dini�s theorem.�

Hereafter we shall assume that @f
@t
(t; xn) 2 C ([0; 1]) for each n. Note that we

do not require the objective function to be di¤erentiable in the choice variables.

Assumption 6.3 The sequence
�

@f
@t
(t; xn)

�

is equicontinuous and uniformly

bounded.

Proposition 3.3 If Assumptions 3.3, 4.3, 5.3, and 6.3. hold, then the value
function V is continuously di¤erentiable on (0; 1).

Proof: By Assumption 6.3 the sequence
�

@f
@t
(t; xn)

�

has a subsequence, say
�

@f
@t
(t; xnk)

�

, that converges uniformly (this follows from Arzela�-Ascoli theo-

rem). Clearly, (fnk) converges uniformly to 	 (see Assumption 5.3 and Lemma
2.3). Since 	 = V (see Lemma 1.3), it follows from Theorem 1.2 that V is

di¤erentiable on (0; 1), and dV
dt
(t) is equal to the uniform limit of

�

@f
@t
(t; xnk)

�

.

Finally, recall that C ([0; 1]) equipped with the uniform metric is complete.

This implies that the uniform limit of
�

@f
@t
(t; xnk)

�

belongs to C ([0; 1]). Hence,
dV
dt
(t) is continuous. �
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4 Combining our approach with Benveniste and

Scheinkman�s

In this section we relax Assumption 5.3 which, arguably, is quite stringent. We
replace it with a milder assumption, and we show how one can use Theorem
1.2 in conjunction with Theorem 2.2 to prove the di¤erentiability, at a certain
point, of the value function of the parameterized optimization problem at hand.
In what follows, X need not be a linear space in its own right. Hence, again we
stress that X can be in�nite-dimensional.

Assumption 1.4 X is a convex and compact subset of a metric linear space.

Assumption 2.4 f : [0; 1] � X ! R is jointly concave and continuous in the
product topology.

Clearly, Lemma 1.3 still holds, so we can restrict attention to 	. We retain the
assumption @f

@t
(t; xn) 2 C ([0; 1]) for each n, and Assumption 6.3. Instead of

Assumption 5.3, we posit:

Assumption 3.4 There exists a t0 2 (0; 1) such that the sequence (fn (t0))
1

n=1

is monotonically increasing, i.e., f1 (t0) � f2 (t0) ::::::

Figure 2 below illustrates Assumption 3.4.

Proposition 1.4 If Assumptions 1.4, 2.4, 3.4, and 6.3 hold, then V is di¤er-
entiable at t0.

Proof: By assumptions 1.4 and 2.4, 	 = V is concave on [0; 1] (see Corol-
lary 3 in Milgrom and Segal, 2002). Given Assumption 3.4, it should be clear
that (fn (t0))

1

n=1 converges to 	(t0) (see the proof of Lemma 2.3). By virtue

of Assumption 6.3, the sequence
�

@f
@t
(t; xnk)

�1

k=1
converges uniformly. Clearly,
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(fnk (t0))
1

k=1 converges to 	(t0). From Theorem 1.2 it follows that the se-
quence (fnk)

1

k=1 converges uniformly on [0; 1] to a di¤erentiable function f ,
thus (fnk)

1

k=1 converges pointwise to f . In particular, (fnk (t0))
1

k=1 converges
to f (t0). Therefore we must have 	(t0) = f (t0). By Assumption 2.4, fnk (t)
is concave on [0; 1] for each k. Since (fnk)

1

k=1 converges uniformly to f , then f
is concave on [0; 1] as well3 . Now we claim that f (t) � 	(t) for each t 2 [0; 1].
Indeed, assume, by way of contradiction, that there is a �t 2 [0; 1] such that
f (�t) > 	(�t). But since (fnk (�t))

1

k=1 converges to f (�t), for k large enough we
get fnk (�t) > 	(�t), which is impossible. Finally, by theorems 1.2 and 2.2, V is
di¤erentiable at t0, and

dV
dt
(t0) is equal to limk!1

@f
@t
(t0; xnk) :�

5 Concluding remarks and future research

This paper ought to be viewed as a work in progress that needs to be improved.
It still exhibits a few weaknesses which we summarize brie�y.

First and foremost, it remains to verify that our construction is well-posed, that
is that the results herein obtained are invariant to the choice of the dense and
countable subset of the feasible set (given the assumptions, there exists at least
one such a subset).

Secondly, the paper lacks examples that illustrate the scope of the assumptions
and the applicability of the model. For instance, it would be interesting to con-
struct economic models (presumably dynamic programming models) for which
Milgrom and Segal�s approach does not work but our approach does work.

Finally, one might want to relax the assumption that the optimal solution is
interior, and allow for boundary solutions. This issue has been already studied
by Rincon-Zapatero et al. (2009) in a dynamic programming context.
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