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Abstract

We study a decision maker who faces a dynamic decision problem in which the
process of information arrival is subjective. By studying preferences over menus of
acts, we derive a sequence of utility representations that captures the decision maker�s
uncertainty about the beliefs he will hold when choosing from a menu. In the most
general model of second-order beliefs, we characterize a notion of "more preference for
�exibility" via a subjective analogue of Blackwell�s (1951, 1953) comparisons of exper-
iments. We proceed to analyze a model in which signals are subsets of the state space.
The corresponding representation enables us to compare the behavior of two decision
makers who expect to learn di¤erently, even if they do not agree on their prior beliefs.
The class of information systems that can support such a representation generalizes
the notion of modeling information as a partition of the state space. We apply the
model to study a decision maker who anticipates subjective uncertainty to be resolved
gradually over time. We derive a representation that uniquely identi�es both the �l-
tration, which is the timing of information arrival with the sequence of partitions it
induces, and the decision maker�s prior beliefs.

Key words: Resolution of uncertainty, second-order beliefs, preference for �exibility,
valuing binary bets more, generalized partition.

1. Introduction

The study of dynamic models of decision making under uncertainty when a �ow of informa-

tion on future risks is expected over time is central in all �elds of economics. For example,

investors decide when to invest and how much to invest based on what they expect to learn

about the distribution of future cash �ows. The concepts of value of information and value of

�exibility (option value) quantify the positive e¤ects of relying on more precise information

structures.1

�First version September 2011. We thank David Ahn, Brendan Daley, Haluk Ergin, Itzhak Gilboa, Faruk
Gul, Peter Landry, Wolfgang Pesendorfer, and Roee Teper for useful advice.

yDepartment of Economics, University of Pennsylvania. E-mail: ddill@sas.upenn.edu
zDepartment of Economics, Duke University. E-mail: p.sadowski@duke.edu
1For a comprehensive survey of the theoretical literature, see Gollier (2001, chapters 24 and 25).
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A standard dynamic decision problem has three components: the �rst is a set of states

of the world that capture all relevant aspects of the decision environment. The second

component is a set of feasible intermediate actions, each of which determines the payo¤ for

any realized state. The third component is a description of the uncertainty that the decision

maker faces; it consists of an information structure, which is the set of possible signals about

the states that are expected to arrive over time, and the joint distribution of signals and

states.

In many situations, the analyst may be con�dent in his understanding of the relevant

state space and the relevant set of actions. He may, however, �nd it too restrictive to assume

that he is aware of all the relevant uncertainties that people face. People may have access to

private data which is unforeseen by others; they may interpret data in an idiosyncratic way;

or they may be selective in the data they observe, for example by focusing their attention

on speci�c signals. We collectively refer to those situations as �subjective learning�. A

natural question is whether we can rely on only the �rst two components above, and infer

an individual�s subjective process of learning solely from his observed choice behavior. If the

answer is in the a¢ rmative, we ask whether we can compare the behavior of individuals who

expect to learn di¤erently, and how such comparisons relate to the comparative statics for

incremental increases in informativeness when learning is objective. These questions will be

the subject of our analysis.

We consider an objective state space. Actions correspond to acts, that is, functions

from states to outcomes, and preferences are de�ned over sets (or menus) of acts. The

interpretation is that the decision maker (henceforth DM) initially chooses among menus

and subsequently chooses an alternative from the menu. If the ultimate choice of an act

takes place in the future, then the DM may expect information to arrive prior to this choice.

Analyzing today�s preferences over future choice situations (menus of acts rather than the

acts themselves) allows us to capture the e¤ect of the information the DM expects to learn

via his value for �exibility. The preference relation over menus of acts is thus the only

primitive of the model, leaving the uncertainty that the DM faces, as well as his ultimate

choice of an act, unmodeled.

As a concrete example, consider a DM who is currently renting an apartment on a month-

to-month lease and deliberates about buying a condominium at a nonnegotiable price. While

the physical properties of the condominium are easily assessed, its value also depends on cir-

cumstances which are not characteristics of the condominium itself, about which the DM

is uncertain, and which we refer to as states of the world. These can be, for example, the

location of public schools or the demographic distribution of people across di¤erent neigh-

borhoods. Availability of the condominium can be guaranteed for thirty days. Buying the
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condominium today saves the DM one month�s rent. Delaying the purchase decision by

one month allows him to conduct market research �gathering and interpreting formal and

informal information about the state of the world �which enables him to make a more in-

formed decision. The choice between buying today and delaying the purchase decision can be

thought as a choice between a degenerate menu, where the DM purchases the condominium

and saves the monthly rent, and the menu that contains the options to buy or not.

Section 2 outlines the most general model that captures subjective learning: the DM acts

as if he has beliefs over the possible posterior distributions over the state space that he might

face at the time of choosing from the menu. The model is parameterized by a probability

measure on the collection of all possible posterior distributions. This probability measure,

which we refer to as a second-order belief, is uniquely identi�ed from choice behavior. We

use this representation (�rst derived in Takeoka (2004)) to compare preference for �exibility

among decision makers. We say that DM1 has more preference for �exibility than DM2 if

whenever DM1 prefers to commit to a particular action rather than to maintain multiple

options, so does DM2. We show that DM1 has more preference for �exibility than DM2 if

and only if DM2�s distribution of �rst-order beliefs is a mean-preserving spread of DM1�s.

This result is analogous to Blackwell�s (1951, 1953) comparisons of experiments (in terms

of their information content) in a domain where probabilities are objective and comparisons

are made with respect to the accuracy of information systems. To rephrase our results in

the language of Blackwell, DM1 has more preference for �exibility than DM2 if and only

if DM2 would be weakly better o¤ if he could rely on the information system induced by

the subjective beliefs of DM1. In the condominium example above, we can consider two

individuals who agree on their current evaluation of the condominium. Then one DM is

willing to pay a larger fee (for example, a higher additional monthly rent) than the other

DM to delay the decision whether or not to purchase the condominium if and only if he

expects to be better informed by the end of the month.

The most general model does not allow the comparison of two individuals in terms of the

information they expect to learn, unless they agree on their prior beliefs, because information

may be tacit, that is, it cannot be described in terms of the objective state space. A

describable signal is an element of the power set of the objective state space. The model

outlined in Section 3 considers learning from describable signals. The DM has beliefs about

which information set he might be in at the time he chooses from the menu. For any

information set, he calculates his posterior beliefs by excluding all states that are not in that

set and applying Bayes�law with respect to the remaining states. We characterize the class

of information systems that admit such a representation as a natural generalization of a set

partition. The requirement on information systems turns out to be closely related to the
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notion of a balanced collection of weights, as introduced by Shapley (1967) in the context of

cooperative games. This representation allows us to compare the behavior of two individuals

who expect to learn di¤erent amounts of information, without requiring that they share the

same initial beliefs. Their behavior di¤ers in the value they derive from the availability of

binary bets as intermediate actions; roughly speaking, DM1 �values binary bets more�than

DM2 if for any two states, he is willing to pay more in order to have the option to bet on one

state versus the other. In this case, DM1 expects to receive more information than DM2, in

the sense that given the true state of the world, he is more likely to be able to rule out any

other state (i.e. to be in an information set that contains the true state but not the other

state.)

Lastly, reconsider the condominium example, and assume that the availability of the

condominium is not guaranteed, but rather the agent is given the right of �rst refusal in

case another o¤er arrives within the next thirty days. In this situation, DM�s information

set at any point in this time interval may become the relevant one for his purchase decision.

In Section 4 we provide a representation, which suggests that the DM behaves as if he has

in mind a �ltration, indexed by continuous time. Both the �ltration, which is the timing of

information arrival with the sequence of partitions it induces, and the DM�s prior beliefs are

uniquely determined from choice behavior. In this context, DM1 values binary bets more

than DM2 if and only if he expects to learn earlier in the sense that his �ltration is �ner at

any given point in time. DM1 has more preference for �exibility than DM2 if and only if

they also share the same prior beliefs.

Several papers have explored the idea of subjective learning. As mentioned earlier,

Takeoka (2004) derives the most general model of second-order beliefs. We show that even

this general setting allows very intuitive comparative statics. Hyogo (2007) derives a repre-

sentation that features second-order beliefs on a richer domain, where the DM simultaneously

chooses a menu of acts and takes an action that might in�uence the (subjective) process of

information arrival. Dillenberger, Lleras, and Sadowski (2011) study a model in which the

information system is partitional, that is, signals correspond to information sets that do not

intersect. Since a partition is a special case of a generalized partition, the model is a special

case of the one outlined in Section 3. Learning by partition can also be viewed as a special

case of the model in Section 4, where the DM does not expect to learn gradually over time,

that is, he forms his �nal beliefs at time zero, right after he chose a menu. Takeoka (2007)

uses a di¤erent approach to study subjective temporal resolution of uncertainty. He ana-

lyzes a di¤erent domain, where the DM chooses between what one might term �compound

menus�(menus over menus etc.). We compare the two di¤erent approaches in Section 5.2,

while reevaluating our domain in light of the results from Section 4.
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More generally, our work is part of the preferences over menus literature initiated by

Kreps (1979). Most papers in this literature study uncertainty over future tastes (and not

over beliefs) without assuming an objective state space. Kreps (1979) studies preferences

over menus of deterministic alternatives. Dekel, Lipman, and Rustichini (2001) extend Kreps�

domain of choice to menus of lotteries. Some of the axioms that lead to the most general

representation of second-order beliefs are adapted from Dekel et al.�s paper. Our proof of

that theorem relies on a sequence of geometric arguments that establish the close connection

between our domain and theirs. In the setting of preferences over menus of lotteries, Ergin

and Sarver (2010) provide an alternative to Hyogo�s (2007) approach of modeling costly

information acquisition.

1.1. A formal preview of the representation results

Let S be a �nite state space. An act is a mapping f : S ! [0; 1], where [0; 1] is interpreted as

a utility space.2 Let F be the set of all acts. Let K (F) be the set of all non-empty compact
subsets of F . Preferences are de�ned over K (F). Theorem 1 derives a (second-order beliefs)
representation, in which the value of a set F is given by

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ,

where p (�) is a unique probability measure on �(S), the space of all probability measures on
S. The axioms that are equivalent to the existence of such representation are familiar from

the literature on preferences over menus of lotteries�Ranking, vNM Continuity, Nontrivi-

ality, and Independence�adapted to our domain, in addition to Dominance, which implies

monotonicity in payo¤s, and Set Monotonicity, which captures preferences for �exibility.

We then study a specialized model in which signals are subsets of the state space, that

is, elements of 2S. We impose two additional axioms, Finiteness and Context Independence.

Finiteness implies that the probability measure p in Theorem 1 has �nite support. (Finite-

ness is obviously necessary since 2S is �nite.) To formulate Context Independence, we �rst

identify through preferences a special subset of menus that we term saturated (De�nition

6). We show that if F is saturated then f 2 F implies that there exists a posterior �f in

the support of p in Theorem 1, with the following properties: (i) f is optimal (maximizes

the expected utility among all the acts in F ) given �f and only given �f ; and (ii) f yields

positive payo¤s only on those states that gets positive probability under �f . Given these

properties, Context Independence has the �avor of Savage�s sure-thing principle. Suppose

2This allows us to abstract from deriving the DM�s utility function over monetary prizes, which is a
standard exercise.
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that given his prior beliefs, the DM prefers committing to the act g to committing to the

act f , where both g and f yield positive payo¤s only on a subset E � S. The axiom then

requires that the DM would prefer to replace f with g in any saturated menu that contains

f . With these additional axioms, Theorem 3 derives an (information set) representation in

which the value of a set F is given by

V (F ) =
P

I22S max
f2F

�P
s2If (s)

� (s)

� (I)

�
� (I) ,

where � is a probability measure on S and � is a probability measure on 2S, such thatP
I22S js2I

�(I)
�(I)

= 1 for all s 2 S. The pair (�; �) is unique. The condition that
P

I22S js2I
�(I)
�(I)

=

1 for all s 2 S implies that the probability of being in information set I when the state of
the world is s is the same for all states s 2 I. To say this di¤erently, the DM behaves as if

he can infer no information about relative probabilities from the information set.

A natural question is which information structures 	 � 2S are admissible, in the sense
that there exists an information set representation in which 	 is the support of �. Theorem 4

shows that 	 is admissible if and only if it is a generalized partition; 	 � 2S is a generalized
partition of a set S 0 � S if there exists k � 1 and a function � : 	 ! N+ such that for all
s 2 S 0,

P
I2	js2I � (I) = k. In this case we say that S

0 is covered k times by 	. Note that

the usual notion of a set partition is implied if k = 1.

Lastly, we show that the same domain can capture the e¤ect of subjective gradual res-

olution of uncertainty. To this end, we reinterpret menus as choice situations in which the

opportunity to choose form the menu arrives randomly. We use the notion of saturated

menus to impose an additional axiom, Hierarchy, which implies that the support of � in

Theorem 3 has a hierarchical structure. This allows us to interpret information as becoming

more precise over time: Theorem 7 provides an (exclusive tree) representation in which the

value of a set F is given by

V (F ) =
R
[0;1]

�P
P2Pt maxf2F

�P
s2Sf (s)� (s jP )

�
� (P )

�
dt,

where � is a probability measure on S and fPtg is a �ltration indexed by t 2 [0; 1]. The pair
(�; fPtg) is unique. In this context, DM1 values binary bets more than DM2 if and only if
fP1t g is �ner than fP2t g (i.e., for any t, all events in fP2t g are measurable in fP1t g). DM1
has more preference for �exibility than DM2 if and only if both also share the same prior

beliefs (i.e., �1 = �2).

The remainder of the paper is organized as follows: Section 2 studies the most general
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model of uncertainty about future beliefs. Section 3 studies a special case in which signals

correspond to information sets. Section 4 further specializes the model to situations in which

uncertainty is expected to be resolved gradually over time, and the pattern of its resolution

matters. Section 5 suggests a reinterpretation and an application of the model outlined in

Section 4 to cases in which at any point in time the DM chooses an act from the menu and

derives a utility �ow from it. The section concludes by comparing our methodology to other

approaches to the study of subjective temporal resolution of uncertainty. Most proofs are

relegated to the appendix.

2. A general model of subjective learning

Let S = fs1; :::; skg be a �nite state space. An act is a mapping f : S ! [0; 1]. Let

F be the set of all acts. Let K (F) be the set of all non-empty compact subsets of F .
Capital letters denote sets, or menus, and small letters denote acts. For example, a typical

menu is F = ff; g; h; :::g 2 K (F). We interpret payo¤s in [0; 1] to be in �utils�; that
is, we assume that the utility function over outcomes is known and payo¤s are stated in

its units. An alternative interpretation is that there are two monetary prizes x > y, and

f (s) = ps (x) 2 [0; 1] is the probability of getting the greater prize in state s.
Let � be a preference relation over K (F). The symmetric and asymmetric components

of � are denoted by � and �, respectively. We impose the following axioms on �:

Axiom 1 (Ranking). The relation � is a weak order.

De�nition 1. Let �F+(1� �)G := f�f + (1� �) g : f 2 F; g 2 Gg, where �f+(1� �) g
is the act that yields �f (s) + (1� �) g (s) in state s.

Axiom 2 (vNM Continuity). If F � G � H then there are �; � 2 (0; 1), such that

�F + (1� �)H � G � �F + (1� �)H.

Axiom 3 (Nontriviality). There are F and G such that F � G:

Axiom 4 (Independence). For all F; G; H, and � 2 [0; 1],

F � G, �F + (1� �)H � �G+ (1� �)H:

In the domain of menus of acts, Axiom 4 implies that the DM�s preferences must be

linear in payo¤s. This is plausible since we interpret payo¤s in [0; 1] directly as �utils�, as

discussed above.
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Axiom 5 (Set monotonicity). If F � G then G � F .

Axiom 5 was �rst proposed in Kreps (1979). It captures preference for �exibility, that is,

bigger sets are weakly preferred. The interpretation of f (�) as a vector of utils requires the
following payo¤-monotonicity axiom.

Axiom 6 (Domination). If f � g and f 2 F then F � F [ fgg :

Axioms 1-6 are necessary and su¢ cient for the most general representation of subjective

learning, which is derived in Takeoka (2004).

Theorem 1 (Takeoka (2004)). The relation � satis�es Axioms 1�6 if and only if it can

be represented by:

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ,

where p (�) is a unique probability measure on �(S), the space of all probability measures
on S.

Proof. See Appendix 6.1
The representation in Theorem 1 suggests that the DM is uncertain about which �rst-

order beliefs � he will have at the time he makes a choice from the menu.

Since our axioms are slightly di¤erent from Takeoka�s and since his working paper is

unpublished, for readers�convenience we present our proof in the appendix. Another related

work, Dekel, Lipman, and Rustichini (2001), analyzes choice over menus of lotteries and �nds

a representation that suggests uncertainty about the DM�s tastes (a relevant corrigendum is

Dekel, Lipman, Rustichini, and Sarver (2007)). Our proof relies on a sequence of geometric

arguments that establish the close connection between our domain and theirs. The parameter

p is uniquely identi�ed in the representation above, because p and � are required to be

probability measures. Such natural normalization does not exist in Dekel et al. (2001,

2007), and therefore they can only jointly identify the parameters in their representation.

2.1. More preference for �exibility and the theorem of Blackwell

We now connect a notion of preference for �exibility with the DM�s subjective learning.

De�nition 2. DM1 has more preference for �exibility than DM2 if for all f 2 F and for

all G 2 K (F),
ffg �1 G implies ffg �2 G
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Expressed in words, DM1 has more preference for �exibility than DM2 if whenever DM1

prefers to commit to a particular action rather than to retain an option to choose, so does

DM2.3 In what follows, when we discuss a particular individual i, we denote by V i the

representation of his preferences and by � (pi) the corresponding support of his second-order

beliefs.

Remark 1. De�nition 2 is equivalent to the notion that if DM1 and DM2 are endowed with
the same act, then DM1 has a greater willingness to pay to acquire additional options. That

is, for all f; h 2 F with f � h and for all G 2 K (F),

ffg �1 ff � hg [G implies ffg �2 ff � hg [G;

where (f � h) (s) = f (s) � h (s). The act h is interpreted as the state-contingent cost of
acquiring the options in G. De�nition 2 clearly implies this condition. The converse follows

from taking h = f .

De�nition 2, however, does not imply a greater willingness to pay to add options to any

given menu. In particular, even if DM1 has more preferences for �exibility than DM2, it

may be possible to �nd G � F 2 K (F) and an act hc with hc (s) = c for all s and f � hc,
such that both V 2 (F � c) > V 2 (G) and V 1 (F � c) � V 1 (G) hold, where

F � c := ff � hc jf 2 F g :

For example, suppose S = fs1; s2g and that both DM1 and DM2 think the two states are
equally likely. DM1 expects to learn the true state for sure, that is, �1 (p) = f(1; 0) ; (0; 1)g,
whereas DM2 expects to learn nothing, that is, �2 (p) = f(0:5; 0:5)g. Let G = f(k; 0) ; (0; k)g
and let F = f(k; 0) ; (0; k) ; (k; k)g. Then V 1 (F � c) < V 1 (G) for all c > 0 (since DM1 can
guarantee himself a payo¤ of k from menu G), whereas for c 2

�
0; k

2

�
, V 2 (F � c) > V 2 (G).4

Claim 1. Suppose DM1 has more preference for �exibility than DM2. Then

ffg �1 fgg if and only if ffg �2 fgg :
3De�nition 2 is analogous to the notion of �more aversion to commitment�as appears in Higashi, Hyogo,

and Takeoka (2009, De�nition 4.4, p. 1031) in the context of preferences over menus of lotteries.
4In fact, de�ning more preference for �exibility as a greater willingness to pay to add options to any given

menu would result in an empty relation. To see this, suppose that �1 6=�2 and, for simplicity, that �
�
p1
�

and �
�
p2
�
are �nite. Using Theorem 1, there is a �rst-order belief �, such that p1 (�) > p2 (�). It is easy

to construct a menu that generates payo¤ k � � under belief � and payo¤ k under any other belief. DM1
then would be willing to pay more than DM2 to add an act that yields k on �, hence DM2 would not have
more preference for �exibility than DM1. But by a symmetric argument, DM1 would also not have more
preference for �exibility than DM2.
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Proof. Let G = fgg for some g 2 F . Applying De�nition 2 implies that if ffg �1 fgg then
ffg �2 fgg. That is, any indi¤erence set of the restriction of �1 to singletons is a subset of
some indi¤erence set of the restriction of �2 to singletons. The linearity (in probabilities)
of the restriction of V i (�) to singletons implies that these indi¤erence sets are planes that
separate any n�dimensional unit simplex, for n � (jSj � 1). Therefore, the indi¤erence sets
of the restriction of �1 and �2 to singletons must coincide. Since the restrictions of �1 and
of �2 to singletons share the same indi¤erence sets and since both relations are monotone,
they must agree on all upper and lower contour sets. In particular, ffg �1 fgg if and only
if ffg �2 fgg.
We now compare subjective information systems in analogy to the notion of better infor-

mation proposed by Blackwell (1951, 1953) in the context of objective information. De�nition

3 below says that an information system is better than another one if and only if both sys-

tems induce the same distribution of prior probabilities, and all posteriors probabilities of

the latter are a convex combination of the posterior probabilities of the former.

De�nition 3. DM1 expects to be better informed than DM2 if and only if DM2�s distrib-
ution of �rst-order beliefs is a mean-preserving spread of DM1�s (in the space of probability

distributions), that is

(i) Mean preserving: R
�(S)

� (s) dp1 (�) =
R

�(S)

� (s) dp2 (�)

for all s 2 S; and
(ii) Spread (garbling): there exists a nonnegative function k : � (p1)� � (p2)! R+, such

that R
�(p2)

k (�; �0) d�0 = 1

for all � 2 � (p1), and
�0 (s) =

R
�(p1)

� (s) k (�; �0) d�

for all �0 2 � (p2) and s 2 S.

Theorem 2. If DM1 and DM2 have preferences that can be represented as in Theorem 1,

then DM1 has more preference for �exibility than DM2 if and only if DM1 expects to be

better informed than DM2.5

5The characterization of preference for �exibility via Blackwell�s comparison of information systems is
speci�c to our context, where this preference arises due to uncertainty about learning. Krishna and Sadowski
(2011) provide an analogous result in a context where preference for �exibility arises due to uncertain tastes.
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Proof. Blackwell (1953, Theorem 8) establishes that DM2�s distribution of �rst-order beliefs
is a mean-preserving spread of DM1�s if and only if V 1 (G) � V 2 (G) for any G 2 K (F).
At the same time, V 1 (ffg) = V 2 (ffg) for any f 2 F . Hence, V 1 (ffg) � V 1 (G) implies

V 2 (ffg) � V 2 (G). Conversely, suppose V 2 (G) > V 1 (G) for some G 2 K (F) : Then
continuity implies that there exists f 2 F with V 2 (G) > V 2 (ffg) = V 1 (ffg) > V 1 (G).

3. Subjective learning with objectively describable signals

The model in Section 2 is the most general model that captures subjective learning. In

Theorem 2 we compare the behavior of two individuals who share the same prior beliefs

but expect to learn di¤erently. We would like to be able to perform such a comparison

even if the two individuals disagree on their prior beliefs; for example, one individual might

consider himself a better experimenter than the other, even though he holds more pessimistic

beliefs about the state of the world. Disagreement on prior beliefs may not matter if we try

to compare the amount of information the two individuals expect to learn contingent on

the true state of the world. Distinct priors, however, generically imply that the contingent

priors are also di¤erent. To see this, let, for i = 1; 2, �i be a vector of DMi�s prior beliefs

and let ai(s js0 ) be the probability he assigns to state s contingent on the true state being
s0.6 Then Ai := (ai(s js0 ))s;s0 is a stochastic matrix and Bayes�law implies �iAi = �i, that
is, �i is the stationary distribution of A. If each entry of A is strictly positive, then A is

an indecomposable matrix and the stationary distribution is unique. In that case, di¤erent

priors, �1 and �2, must correspond to di¤erent stochastic matrices, A1 and A2. But since

the rows of Ai are the state-contingent priors of DMi, there must be at least one state s,

contingent on which a comparison as in Theorem 2 is impossible.

In order to compare the amount of information each DM expects to learn contingent on

the state, we need to be able to describe information independently of the induced changes

in beliefs. To this end, we now consider a more parsimonious model of learning in which

signals correspond to information sets, that is, to learning a subset of the objective state

space. The DM�s beliefs can then be understood as uncertainty about the information set he

will be in at the time of choosing from the menu. We maintain the assumptions of Theorem

1 and develop a language that allows us to formulate, in terms of behavior, the assumption

that the DM cannot draw any inferences from learning an information set besides knowing

that states outside that set were not realized. To say this di¤erently, we axiomatize the most

general representation in which the relative probability of any two states is the same across

6The probability individual i assigns to �rst-order belief � 2 �(S) contingent on state s0 2 �
�
�i
�
is

li (� js0 ) := �(s0)pi(�)
�i(s0) . Then ai(s js0 ) =

P
�2�(S)

� (s) li (� js0 ).
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all information sets that contain them.7 In Section 3.1, we further identify the largest class

of (subjective) information systems that can accommodate this type of learning. This class

generalizes the notion of modeling information as a partition of the state space. Finally, in

Section 3.2, we compare two individuals according to the amount of information each expects

to acquire without restricting them to have the same prior beliefs.

Since there are only �nitely many distinct subsets of S, the support of the function p,

� (p), in Theorem 1 must be �nite. This restriction is captured by the following axiom:

Axiom 7 (Finiteness). For all F 2 K (F), there is a �nite set G � F with G � F .8

Dekel, Lipman, and Rustichini (2009) show that Axiom 7 indeed implies that � (p) is

�nite. The intuition is clear: if for any F there is a �nite subset G of F that is as good as

F itself, then only a �nite set of �rst-order beliefs can be relevant.

De�nition 4. Given f 2 F , let fxs be the act

fxs (s
0) =

(
f (s0) if s0 6= s
x if s0 = s

Note that � (f) := fs 2 S jf (s) > 0g = fs 2 S jf 0s 6= f g.

De�nition 5. A menu F 2 K (F) is fat free if for all f 2 F and for all s 2 � (f), F �
(Fn ffg) [ ff 0s g.

If a menu F is fat free, then for any act f 2 F and any state s 2 � (f), eliminating s
from � (f) reduces the value of the menu.9 In particular, removing an act f from the fat-free

menu F must make the menu strictly worse.

De�nition 6. A menu F 2 K (F) is saturated if it is fat free and satis�es
(i) for all f 2 F and s =2 � (f), there exists " > 0 such that F � F [ f "s for all " < "; and
(ii) If G * F then F [G � (F [G) n fgg for some g 2 F [G.
7I.e., S must be large enough to contain all random variables that the DM considers informative. Sub-

jectivity, therefore, does not refer to the information content of a signal, but only to whether or not the DM
learns a particular signal.

8We impose Axiom 7 mainly for clarity of exposition. Alternatively, it is possible to strengthen De�nition
5, De�nition 6, and Axiom 8 below to apply to situations where Finiteness may not hold. In that case,
Axiom 7 is implied.

9Our notion resembles the notion of �fat-free acts� suggested by Lehrer (2008). An act f is fat-free if
when an outcome assigned by f to a state is replaced by a worse one, the resulting act is strictly inferior to
f . In our setting, a �nite fat-free set contains acts, for all of which reducing an outcome in any state in the
support results in an inferior set.
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De�nition 6 says that if F is a saturated menu, then (i) if an act f 2 F does not yield
any payo¤ in some state, then the DM�s preferences are insensitive to slightly improving f

in that state; and, (ii) adding an act to a saturated menu implies that there is at least one

act in the new menu that is not valued by the DM. In particular, the extended menu is no

longer fat-free.

To better understand the notions of fat-free and saturated menus, consider the following

example.

Example 1. Suppose that there are two states S = fs1; s2g. If the act f yields positive
payo¤s in both states but only one of them is non-null, then ffg is not fat-free. If both
states are non-null and f does not yield positive payo¤s on one of them, then the set ffg
is not saturated according to De�nition 6 (i). If the two states are non-null and f yields

positive payo¤s in both, then ffg is fat-free, but it is not necessarily saturated. For example,
if the DM expects to learn the true state for sure, that is, �1 (p) = f(1; 0) ; (0; 1)g, then for
g = (f (s1) + "; 0), both ff; gg � ffg and ff; gg � fgg, which means that ffg is not
saturated according to De�nition 6 (ii).

Claim 2. A saturated menu F , with f (s) < 1 for all f 2 F and all s 2 S, always exists.
Furthermore, if F is saturated, then F is �nite.

Proof. See Appendix 6.2
In all that follows, we only consider saturated menus that contain acts f with f (s) < 1 for

all s 2 S. For ease of exposition, we refrain from always explicitly stating this assumption.

Claim 3. If F is saturated, then F is isomorphic to the set of �rst-order beliefs.

Proof. See Appendix 6.3
Claim 3 connects the de�nition of a saturated menu with the idea that the DM might be

required to make a decision when his state of knowledge is any one of his �rst-order beliefs

from the representation of Theorem 1. Claim 3 then says that any act in a saturated menu

is expected to be chosen under exactly one such belief.

The next claim demonstrates that the support of any act in a saturated menu coincides

with that of the belief under which the act is chosen. For any act f in a given saturated

menu F , let �f 2 � (p) be the belief such that f = argmax
f 02F

P
s2Sf

0 (s)�f (s). By Claim 3,

�f exists and is unique.

Claim 4. If F is saturated and f 2 F then � (f) = � (�f ).
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Proof. Suppose f (s) > 0 and �f (s) = 0. Then F � (Fn ffg) [ ff 0s g, which is a contra-
diction to F being fat-free (and, therefore, to F being saturated.) Suppose f (s) = 0 and

�f (s) > 0. Then for any " > 0, F � F [ff "sg , which is a contradiction to F being saturated.

We are now ready to state the central axiom of this section.

Axiom 8 (Context independence). Suppose F is saturated and f 2 F . Then for all g
with � (g) = � (f),

fgg � ffg implies (Fn ffg) [ fgg � F

Suppose the DM prefers committing to g over committing to f , where both g and f

pay strictly positive amounts only on the event � (f). The axiom then requires that the

DM would prefer to replace f with g on any saturated menu that contains f . In light of

Claim 4, the axiom is similar to Savage�s sure-thing principle. To see this, recall that Claim

4 suggests f is chosen from the saturated menu F only in the event � (f). We can rephrase

the axiom as follows: whenever two acts, f and g, di¤er at most on the event � (f), then

their unconditional ranking agrees with their ranking conditional on � (f).10

De�nition 7. The pair (�; �) is an information set representation if � is a probability mea-
sure on S and � is a probability measure on 2S, such that

P
I22S js2I

�(I)
�(I)

= 1 for all s 2 � (�),
and

V (F ) =
P

I22�(�) max
f2F

�P
s2If (s)

� (s)

� (I)

�
� (I)

represents �.

Consider the probability of learning the information set I given that the true state s is

contained in I, Pr (I js 2 I ). De�ne p (I) := �(I)
�(I)
. Observe that for any s 2 I,

Pr (I js 2 I ) = Pr (s jI ) � (I)
� (s)

=
� (s)

� (I)

� (I)

� (s)
=
� (I)

� (I)
= p (I)

10The requirement that F is saturated guarantees that if F includes an act h that dominates g but not
f , then preferences for which the unconditional ranking of f and g does not agree with their conditional
ranking on � (f) are not precluded. For example, let S = fs1; s2g and assume that the DM ex-ante thinks
the two states are equally likely. Suppose that the DM expects to learn the true state for sure, that is
� (p) = f(1; 0) ; (0; 1)g. For " > 0 small enough, consider the following three acts: g = (1; "), h = (1; 2"), and
f =

�
1
3 ;

1
3

�
. Let F = fh; fg. Then � (g) = � (f) and fgg � ffg, but

(Fn ffg) [ fgg = fh; gg � fhg � fh; fg = F:

The menu F , however, is not saturated (and is not even fat-free) since, for example, F � (Fn ffg) [
�
f0s1
	
.
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is independent of s. Since p is a probability measure on 2S, consistency requires that

P
I22�(�)js2I

� (I)

� (I)
=
P

I22�(�)js2I p (I) = 1;

as in De�nition 7.

The fact that Pr (I js 2 I ) is independent of s (conditional on s 2 I) re�ects the idea
that the DM cannot draw any inferences from learning an information set other than that

states outside that information set were not realized. Indeed, for any s; s0 2 I,

Pr (s jI )
Pr (s0 jI ) =

� (s)

� (s0)

independent of I.

Theorem 3. The relation � satis�es Axioms 1�8 if and only if it has an information set

representation, (�; �). Furthermore, the pair (�; �) is unique.

Proof. See Appendix 6.4
In contrast to the representation in Theorem 1, the representation in Theorem 3 suggests

that S is large enough to capture the subjective resolution of uncertainty. To say this di¤er-

ently, consider a subjective state space that includes all (possibly only privately observable)

random variables the DM might consider informative about the objective state s 2 S. This
subjective state space might be larger than S. The representation suggests that any event

in the larger subjective state space that the DM considers informative is measurable in S.

3.1. Admissible information structures

In Theorem 3, signals are identi�ed with information sets and the relative probability of any

two states is the same across all information sets that contain them. We now identify the

class of information systems, 	, such that there is an information set representation (�; �)

with � (�) = 	.

De�nition 8. A set S 0 � S is covered k times by a collection of sets 	 � 2S if there is a

function � : 	! N+, such that for all s 2 S 0,
P

I2	js2I � (I) = k

De�nition 9. A collection of sets 	 � 2S is a generalized partition of a set S 0 � S, if there
exists k � 1, such that S 0 is covered k times by 	.

In the context of cooperative games, Shapley (1967) introduces the notion of a balanced

collection of weights. Denote by C the set of all coalitions (subsets of the set N of players).
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The collection (L)L2C of numbers in [0; 1] is a balanced collection of weights if for every

player i 2 N , the sum of L over all the coalitions that contain i is 1. Suppose 	 � 2S is

a generalized partition of a set S 0 � S. Then there exists k � 1 such that for all s 2 S 0,P
I2	js2I

�(I)
k
= 1. In the terminology of Shapley, the collection

�
�(I)
k

�
I2	

of numbers in

[0; 1] is, thus, a balanced collection of weights.

To better understand the notion of generalized partition, consider the following example.

Example 2. Suppose S = fs1; s2; s3g. Any partition of S, for example ffs1g ; fs2; s3gg, is a
generalized partition of S (with k = 1). A set that consists of multiple partitions, for example

ffs1g ; fs2; s3g ; fs1; s2; s3gg, is a generalized partition of S (in this example with k = 2).

The set ffs2; s3g ; fs1; s2; s3gg is not a generalized partition of S, because
P

Ijs12I � (I) <P
Ijs22I � (I) for any � : ffs2; s3g ; fs1; s2; s3gg ! N+. The set ffs2; s3g ; fs1g ; fs2g ; fs3gg,

however, is a generalized partition of S with

� (I) =

(
2 if I = fs1g
1 otherwise

Lastly, the set ffs1; s2g ; fs2; s3g ; fs1; s3gg is a generalized partition of S (with k = 2), even
though it does not contain a partition.

An empirical situation that gives rise to a generalized partition consisting of two parti-

tions is an experiment that reveals the state of the world if it succeeds, and is completely

uninformative otherwise. For a concrete example that gives rise to a generalized partition

that does not contain a partition, consider the sequential elimination of n candidates, say

during a recruiting process. If k candidates are to be eliminated in the �rst stage, then the

resulting generalized partition is the set of all (n� k)-tuples.

De�nition 10. Given 	 � 2S, let S	 :=
�
s 2 S

��s 2 SI2	I
	
.

De�nition 11. A collection 	 � 2S is admissible if there exists an information set repre-

sentation (�; �) with � (�) = 	.

Theorem 4. A collection 	 is admissible if and only if 	 is a generalized partition of S	.

Proof. See Appendix 6.5
To illustrate Theorem 4, let us consider a speci�c example. An oil company is trying to

learn whether there is oil in a particular location. Suppose the company can drill a hole to

determine accurately whether there is oil, s = 1, or not, s = 0. In that case, the company
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learns the partition ff0g ; f1gg and � (I) = � (I) provides an information set representation
given the �rm�s prior beliefs � on S = f0; 1g.
Now suppose that with some positive probability the test may not be completed (for

some exogenous reason, which is not indicative of whether there is oil or not). The company

will either face the trivial partition ff0; 1gg, or the partition ff0g ; f1gg, and hence 	 =

ff0; 1g ; f0g ; f1gg. Suppose the company believes that the experiment will succeed with
probability q. Then � (f0; 1g) = 1 � q, � (f0g) = q� (0) and � (f1g) = q� (1) provides an

information set representation given the company�s prior beliefs � on S = f0; 1g.
Finally, suppose the company is trying to assess the size of an oil �eld by drilling in l

proximate locations and hence the state space is f0; 1gl. As before, any test may not be
completed, independently of the other tests. This is an example of a situation where the

state consists of l di¤erent attributes (i.e., the state space is a product space), and the DM

may learn independently about any of them. Such learning about attributes also gives rise

to a generalized partition that consists of multiple partitions and can be accommodated. To

�nd an information set representation based on any generalized partition, 	, for which there

is a collection � of partitions whose union is 	, based on any probability distribution q on

�, and based on any measure � on S = f0; 1g, one can set � (I) =
P

P2�jI2P q (P)� (I). We
refer to the pair (q;�) as a random partition.

Remark 2. If the state space is de�ned via the value of all random variables the DM

observes, then Bayesian learning gives rise to an information system that is a partition.

Conversely, learning can always be described via a partition, if the state space is made

su¢ ciently large. To attain a state space that is surely large enough, one could follow

Savage and postulate the existence of a grand state space that describes all conceivable

sources of uncertainty. However, a larger state space requires a much larger collection of

acts, which poses a serious conceptual problem, as in many applications the domain of

choice (the available acts) is given. In that sense, acts should be part of the primitives of the

model.11 Our approach instead identi�es a behavioral criterion for checking whether a given

state space (e.g. the one acts are naturally de�ned on in a particular application) is large

enough: behavior satis�es Axiom 8 if and only if the resolution of any subjective uncertainty

corresponds to an event (an information set) in the state space. Theorem 4 demonstrates

11Gilboa, Postlewaite, and Schmeidler (2009a, 2009b) point out the problems involved in using an analytical
construction, according to which states are de�ned as functions from acts to outcomes, to generate a state
space that captures all conceivable sources of uncertainty. First, since all possible acts on this new state
space should be considered, the new state space must be extended yet again, and this iterative procedure
does not converge. Second, the constructed state space may include events that are never revealed to the
DM, and hence some of the comparisons between acts may not even be potentially observable. (A related
discussion appears in Gilboa (2009, Section 11.1.)
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that this does not require a state space in which learning generates a partition. To emphasize

our point, reconsider the drilling example, with S = f0; 1g and a probability q for the test
to be completed. This is a random partition with p (f0g ; f1g) = q and p (f0; 1g) = 1 � q.
Suppose we enlarge the state space to be S �X, where X = fsuccess, failureg. While this
state space naturally describes the DM�s learning via a partition, acts that condition on X

may not be available: it is plausible that the payo¤ of drilling rights does not depend on the

success or failure of the test drill, but only on the availability of oil. Under our assumptions,

the domain of acts that are de�ned on S is su¢ cient to allow the description of expected

information as events.

3.2. Comparing valuations of binary bets

Fix 0 < k < c < 1� k and s; s0 2 � (�), such that fcg � ffg, where

f (bs) =
8><>:
c+ k if bs = s
0 if bs = s0
c otherwise

Let

f 0 (bs) = ( c+ k if bs = s
c otherwise

Implicitly de�ne v(s) by fc+ v(s)g � ff 0g. The amount v(s) is unique and nonnegative.
It captures the DM�s willingness to pay for additional payo¤s in state s. Implicitly de�ne

w (s; s0) by fc+ w (s; s0)g � fc; fg. The amount w (s; s0) captures the DM�s willingness to
pay for the ability to bet on state s versus s0. Let

� (s; s0) =

(
w(s;s0)
v(s)

if v (s) > 0

0 otherwise

be the value the DM derives from being able to bet on state s versus s0 in terms of the

value of additional payo¤s in state s. Corollary 1 in Appendix 6.6 establishes that � (s; s0)

is independent of any k and c that satisfy the premise above and that � (s; s0) = � (s0; s).

De�nition 12. DM1 values binary bets more than DM2 if for all s; s0 2 S
(i) v1 (s) = 0, v2 (s) = 0; and

(ii) �1 (s; s0) � �2 (s; s0).

Given Theorem 3, a natural measure of the amount of information that a DM expects

to receive is how likely he expects to be able to distinguish any state s from any other
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state s0 whenever s is indeed the true state. Using Bayes�rule, Pr (fI js 2 I, s0 =2 I g js) =P
Ijs2I, s0 =2I

�(I)
�(I)
.12

Theorem 5. DM1 values binary bets more than DM2 if and only if � (�1) = � (�2) and

P
Ijs2I, s0 =2I

�1 (I)

�1 (I)
�
P

Ijs2I, s0 =2I
�2 (I)

�2 (I)

for all s; s0 2 � (�1)

Proof. See Appendix 6.6
Theorem 5 enables us to compare the behavior of two individuals who expect to learn

di¤erent amounts of information, without requiring that they share the same prior beliefs.

In contrast, Theorem 2 requires agreement on the prior beliefs.

We conclude this section by establishing that having more preferences for �exibility (De-

�nition 2) is stronger than valuing binary bets more (De�nition 12).

Theorem 6. If DM1 has more preference for �exibility than DM2, then DM1 values binary
bets more than DM2.

Proof. See Appendix 6.7
The Blackwell criterion for comparing information systems is often considered too strong

because it only allows the comparison of information systems that generate identical under-

lying beliefs. We demonstrate in Theorem 2 that the behavioral counterpart of this criterion

is the notion of �more preference for �exibility.�The behavioral notion of �valuing binary

bets more� is weaker, that is, it allows more comparisons, as established in Theorem 6.

Suppose, for example, that both � (�1) and � (�2) form a partition of S. Then it is easy to

verify that DM1 has more preference for �exibility than DM2 if and only if DM1�s partition

is �ner and both share the same prior beliefs. In this example, the weaker comparison of

�valuing binary bets more�corresponds exactly to dropping the requirement that the prior

beliefs are the same.13

4. Subjective temporal resolution of uncertainty

Suppose that the DM anticipates uncertainty to resolve gradually over time. The pattern

of resolution might be relevant if, for example, the time at which the DM has to choose an

12Pr (fI js 2 I, s0 =2 I g js ) = Pr(sjfIjs2I, s0 =2I g )Pr(fIjs2I, s0 =2I g)
�(s) =

�P
Ijs2I, s0 =2I

�(s)
�(I)

�(I)

�(fIjs2I, s0 =2I g)

�
�(fIjs2I, s0 =2I g)

�(s)

=
P

Ijs2I, s0 =2I
�(I)
�(I) :

13We do not provide a formal proof of this assertion at this point, as it is a corollary of Theorem 8 below.
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alternative from the menu is random and continuously distributed over some interval, say

[0; 1]. An alternative interpretation is that at any given point in time t 2 [0; 1] the DM
chooses one act from the menu. At time 1, the true state of the world becomes objectively

known. The DM is then paid the convex combination of the payo¤s speci�ed by all acts

on the menu, where the weight assigned to each act is simply the amount of time the DM

held it. That is, the DM derives a utility �ow from holding a particular act, where the

state-dependent �ow is determined ex-post, at the point when payments are made. In both

cases, the information available to the DM at any point in time t might be relevant for his

choice. This section is phrased in terms of random timing of the second-stage choice. Section

5.1 discusses the utility �ow interpretation in more detail.

In a context where the �ow of information over time is objectively given, it is common

to describe it as a �ltered probability space, that is, a probability space with a �ltration on

its sigma algebra. We would like to replicate this description in the context of subjective

learning. To that end we now re�ne the information set representation (�; �) in Theorem 3,

such that it can be interpreted as follows: the DM holds beliefs over the states of the world

and has in mind a �ltration indexed by continuous time. Using Bayes�law, the �ltration and

prior beliefs jointly generate a subjective temporal lottery. We achieve this re�nement by

imposing an additional axiom on �, which uses the notion of saturated menus to imply that
the support of � has a hierarchical structure. Our domain is rich enough to allow both the

�ltration, that is the timing of information arrival and the sequence of partitions induced by

it, and the beliefs to be uniquely elicited from choice behavior.

De�nition 13. An act f contains act g if � (g) ( � (f).

De�nition 14. Acts f and g do not intersect if � (g) \ � (f) = ;.

Axiom 9 (Hierarchy). If F is saturated and f; g 2 F then either f and g do not intersect
or one contains the other.

In order to interpret two distinct information sets in � (�) that both contain state s as

being relevant at di¤erent points in time, they must be ordered by set inclusion. Using Claim

3, this is the content of Axiom 9.

We now introduce exclusive trees. Such trees can be described as a pair of a probability

measure � on S and a �ltration fPtg indexed by t 2 [0; 1].14

De�nition 15. The pair (�; fPtg) is an exclusive tree if � is a probability measure on S
and fPtg is a �ltration indexed by t 2 [0; 1].
14Slightly abusing notation, we will identify a �ltration with a sequence of partitions of the state space.
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Note that there can only be a �nite number of times at which the �ltration fPtg becomes
strictly �ner. That is, there exists a �nite set ft1; :::; tTg � (0; 1), such that Pt0 � Pt is
equivalent to t < t0 if and only if t0 2 ft1; :::; tTg. The de�nition does not require P0 = fSg.

Theorem 7. The relation � satis�es Axioms 1�9 if and only if there is an exclusive tree,

(�; fPtg) ; such that � is represented by

V (F ) =
R
[0;1]

�P
P2Pt maxf2F

�P
s2Pf (s)� (s)

��
dt:

The pair (�; fPtg) is unique.

Proof. See Appendix 6.8
If the DM faces an (exogenously given) random stopping time that is uniformly distrib-

uted on [0; 1],15 then Theorem 7 can be interpreted as if the DM holds prior beliefs � and

expects to learn over time as described by the �ltration fPtg.
We now brie�y sketch the proof of Theorem 7. Given an information set representation

(�; �) as in Theorem 3, Axiom 9 allows us to construct a random partition (q;�) as de�ned

at the end of Section 3.1 (i.e. � (I) =
P

P2�jI2P q (P)� (I)), where the partitions in � can
be ordered by increasing �neness. If the DM faces a random stopping time that is uniformly

distributed on [0; 1], then it is natural to interpret q (P) as the time for which the DM expects

partition P to be relevant. This interpretation is captured in the time dependency of fPtg.
The construction of (q;�) is recursive. First, for each state s 2 S, we �nd the largest set
in � (�) that includes s. The collection of those sets constitutes P1. The probability q (P1)
corresponds to the smallest weight any of those sets is assigned by � relative to the prior �,

that is, q (P1) = minI2P1
�
�(I)
�(I)

�
. To begin the next step, we calculate adjusted weights, �1,

as follows: for any set I 2 P1, let �1 (I) = � (I) � q (P1)� (I). For any set I 2 � (�) nP1,
let �1 (I) = � (I). � (�1) then consists of all sets I 2 P1 with a relative weight �(I)

�(I)
> q (P1)

and all sets in � (�) nP1. Recursively, construct Pn according to �n�1. By Theorem 3,P
I22S js2I

�(I)
�(I)

= 1 for all s 2 � (�), which guarantees that the inductive procedure is well
de�ned. It must terminate in �nite time due to the �niteness of 2S.

Remark 3. At the time of menu choice, the DM holds beliefs over all possible states of the

world. If he expects additional information to arrive before time-zero (at which point his

beliefs commence to be relevant for choice from the menu), then time-zero information is

15It is straightforward to accommodate any other exogenous distribution of stopping times. An alternative
interpretation is that the distribution of stopping times is not uniform because of an external constraint,
but because the DM subscribes to the principle of insu¢ cient reason, by which he assumes that all points
in time are equally likely to be relevant for choice.
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described by a non-trivial partition of bS, the set of all non-null states, that is, P0 6= nbSo. If
one wants to assume that the (subjective) �ow of information cannot start before time-zero,

then the following additional axiom is required.

Axiom 10 (Initial node). If F is saturated, then there exists f 2 F such that f contains
g for all g 2 F with g 6= f .

Under the assumptions of Theorem 7, if � also satis�es Axiom 10, then P0 =
nbSo. That

is, the tree (�; fPtg) has a unique initial node.

4.1. Revisiting the behavioral comparisons

We can characterize the notion of preference for �exibility and the value of binary bets via

the DM�s subjective �ltration.

De�nition 16. DM1 learns earlier than DM2 if fP1t g is weakly �ner than fP2t g :

Theorem 8. (i) DM1 values binary bets more than DM2 if and only if DM1 learns earlier
than DM2;

(ii) DM1 has more preference for �exibility than DM2 if and only if DM1 learns earlier

than DM2 and they have the same prior beliefs, �1 = �2.

Proof. See Appendix 6.9
Theorem 8 shows that under the assumptions of Theorem 7, the characterization of �more

preference for �exibility�di¤ers from that of the weaker notion of �valuing binary bets more�

solely by requiring that the prior beliefs are the same.

5. Discussion

5.1. A di¤erent interpretation: utility �ow

In Section 4 we suggest that cases in which the DM derives a utility �ow from choosing an

act at any point in time can be accommodated in our setting. We now elaborate on this

interpretation. Consider a company that produces laptop computers and is preparing the

scheduled release of a new model. At any point in time prior to the launch, the company

can choose one of many development strategies, each of which speci�es how to allocate

development e¤ort among di¤erent features of the product. For example, one development

strategy might divide the time equally between improving the screen and expanding the

memory. Another might to focus exclusively on enlarging the keyboard. The value of
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the di¤erent collections of features at the time of launch depends on consumers� tastes

and competing products, as summarized by the state of the world, and on the e¤ort spent

developing them. As the launch approaches, the company may become more informed about

the underlying state of the world and may adjust its development strategy accordingly.

Suppose that, given the state of the world, the value generated by the development process

is the sum of the values added by the di¤erent strategies the company pursued prior to

launch. The added value from any particular strategy is simply the value it would have

generated had it been pursued consistently, weighted by the amount of time it was pursued.

Formally, given a collection of possible development strategies F , let a : [0; 1] ! F be a

development process, or a particular path of strategy choices, that is, a (t) is the strategy

f 2 F that DM chooses at time t. Given the state of the world s 2 S, the payo¤ from the

process a is R
[0;1]

a (t) (s) dt

In light of this separability of payo¤s over time, Theorem 7 provides an intuitive repre-

sentation of choice between sets of development strategies. The representation suggests that

given a set of strategies F , at every point in time the company chooses the strategy that

performs best under its current beliefs: if its information at time t is Pt, then its strategy

choice, a (t), will satisfy

a (t) 2 argmax
f2F

�P
s2Sf (s)� (s jPt )

�
Take Apple as an example of a company that many perceive as standing out from their

competitors; it is generally accepted that Apple has �vision,�the ability to identify the next

big thing before its competitors. According to our behavioral comparison, Apple should

derive more value from �exibility than the competition. At the same time, �vision� has

no immediate implications for the amount of �exibility a �rm chooses. One can think of

research expenditures as a proxy for �exibility: the more a company spends on research, the

more development options it has. Our predictions are then in line with the observation that

Microsoft vastly outspends Apple on research to less e¤ect, Apple gets more �bang for their

research buck.�16

5.2. Reevaluation of our domain

In this paper we study preferences over sets of feasible intermediate actions, or menus of

acts. For the �rst two representation theorems (Theorems 1 and 3), we adopt the usual

16See http://gizmodo.com/#!5486798/research-and-development-apple-vs-microsoft-vs-sony
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interpretation that the DM has to choose an alternative from a menu at some prespeci�ed

future point in time. While this interpretation of the domain allows preferences to be a¤ected

by the DM�s expectations regarding the resolution of uncertainty, preferences are insensitive

to the timing of resolution as long as all resolution happens before the choice of an alternative.

An illustrative example is provided in Takeoka (2007), who proceeds to derive a subjective

two-stage compound lottery by specifying the sets of feasible intermediate actions at di¤erent

points in time, that is, by analyzing choice between what one might term �compound menus�

(menus over menus etc.). The domain of compound menus provides a way to talk about

compound uncertainty (without objective probabilities). It has the advantage that it can

capture situations where the DM faces intertemporal trade-o¤s, for example if today�s action

may limit tomorrow�s choices. However, while only the initial choice is modeled explicitly,

the interpretation of choice on this domain now involves multiple stages, say 0, 1=2, and 1,

at which the DM must make a decision. That is, the pattern of information arrival (or, at

least, the collection of times at which an outside observer can detect changes in the DM�s

beliefs) is objectively given. In that sense, the domain only partially captures subjective

temporal resolution of uncertainty. Furthermore, the domain of compound menus becomes

increasingly complicated, as the resolution of uncertainty becomes �ner.17

In Section 4 we take a di¤erent approach to study subjective temporal resolution of

uncertainty: we specify a single set of feasible intermediate actions, which is the relevant

constraint on choice at all points in time. At the �rst stage, the DM chooses a menu of acts

and only this choice is modeled explicitly. The innovation lies in our interpretation of choice

from the menu. Whether we think of an exogenous distribution for the stopping time or of

a model where the DM derives a utility �ow (as suggested in Section 5.1), the information

that the DM has at any point in time might be relevant for the DM�s ultimate choice from

a menu. Our domain has the obvious disadvantage that it does not accommodate choice

situations where the set of feasible actions may change over time. That said, our approach

allows us (as we argue in the text) to uniquely pin down the timing of information arrival

in continuous time, the sequence of induced partitions, and the DM�s prior beliefs from the

familiar and analytically tractable domain of menus of acts.

17Note that the set of menus over acts is in�nitely dimensional. Hence, even the three-stage model considers
menus that are subsets of an in�nite dimensional space.
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6. Appendix

6.1. Proof of Theorem 1

It is easily veri�ed that any preferences with a second-order beliefs representation as in

Theorem 1 satisfy the axioms. We proceed to show the su¢ ciency of the axioms.

We can identify F with the set of all k�dimensional vectors, where each entry is in [0; 1].
For reasons that will become clear below, we now introduce an arti�cial state, sk+1. Let

F 0 :=
n
f 0 2 [0; 1]k � [0; k]

���Pk+1
i=1 f

0 (si) = k
o
:

Note that the k + 1 component in f 0 equals k �
Pk

i=1f
0 (si). For f 0 2 F 0, denote by

f 0k 2 F the vector that agrees with the �rst k components of f 0. Since F and F 0 are

isomorphic, we can look at preferences on K (F 0), ��, de�ned by: F 0 �� G0 , F � G, where
F :=

�
f 2 F

��f = f 0k for some f 0 2 F 0	 and analogously for G.
Claim 5. The relation �� satis�es the independence axiom.

Proof. Using the de�nition of �� and Axiom 4, we have, for all F 0; G0, and H 0 in K (F 0)

and for all � 2 [0; 1],

F 0 �� G0 , F � G, �F + (1� �)H � �G+ (1� �)H ,
(�F + (1� �)H)0 �� (�G+ (1� �)H)0 , �F 0 + (1� �)H 0 �� �G0 + (1� �)H 0:

Let

F 00 :=
n
f 0 2 [0; k]k+1

���Pk+1
i=1 f

0 (si) = k
o
:

Let F k+1 :=
��

k
k+1
; :::; k

k+1

�	
2 K (F 0). Observe that for F 00 2 F 00 and " < 1

k2
, "F 00 +

(1� ")F k+1 2 K (F 0). De�ne ��� on K (F 00) by F 00 ��� G00 , "F 00 + (1� ")F k+1 ��
"G00 + (1� ")F k+1 for all " < 1

k2
.

Claim 6. The relation ��� is the unique extension of �� to K (F 00) that satis�es the inde-

pendence axiom.

Proof. Note that the (k + 1)-dimensional vector
�

k
k+1
; :::; k

k+1

�
2 intF 0 � F 00, hence F k+1 �

intF 0 � F 00. We now show that ��� satis�es independence. For any F 00; G00; H 00 2 K (F 00)
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and � 2 [0; 1],

F 00 ��� G00 , "F 00 + (1� ")F k+1 �� "G00 + (1� ")F k+1 ,
�
�
"F 00 + (1� ")F k+1

�
+ (1� �)

�
"H 00 + (1� ")F k+1

�
= " (�F 00 + (1� �)H 00) + (1� ")F k+1 ��
�
�
"G00 + (1� ")F k+1

�
+ (1� �)

�
"H 00 + (1� ")F k+1

�
= " (�G00 + (1� �)H 00) + (1� ")F k+1 , �F 00 + (1� �)H 00 ��� �G00 + (1� �)H 00

The �rst and third , is by the de�nition of ���. The second , is by Claim 5.18

This argument shows that a linear extension exists. To show uniqueness, let b� be any

preference relation over K (F 00), which satis�es the independence axiom. By independence,

F 00 b� G00 , "F 00+ (1� ")F k+1 b� "G00+ (1� ")F k+1. Since b� extends ��, they must agree
on K (F 0). Therefore, "F 00 + (1� ")F k+1 b� "G00 + (1� ")F k+1 , "F 00 + (1� ")F k+1 ��
"G00+(1� ")F k+1. By combining the two equivalences above, we conclude that de�ning b�
by F 00 b� G00 , "F 00+(1� ")F k+1 �� "G00+(1� ")F k+1 is the only admissible extension of
��.
The domain K (F 00) is formally equivalent to that of Dekel, Lipman, Rustichini, and

Sarver (2007, henceforth DLRS) with k+1 prizes. (The unit simplex is obtained by rescaling
all elements of F 00 by 1=k, that is, by rede�ning F 00 as

n
f 0 2 [0; 1]k+1 :

Pk+1
i=1 f

0 (si) = 1
o
.)

Applying Theorem 2 in DLRS,19 one obtains the following representation of ���:

bV (F 00) = R
M(S)

max
f 002F 00

�P
s2S[fsk+1gf

00 (s) b� (s)� dbp (b�)
where M (S) :=

nb� ���Ps2S[fsk+1gb� (s) = 0 andPs2S[fsk+1g (b� (s))2 = 1o. Given the nor-
malization of b� 2M (S), bp (�) is a unique probability measure. Note that bV also represents
�� when restricted to its domain, K (F 0).

18The (=) sign in the third and in �fth lines are due to the fact that F k+1 is a singleton menu. For a
singleton menu ffg and � 2 (0; 1) ;

� ffg+ (1� �) ffg = ffg

while, for example,

� ff; gg+ (1� �) ff; gg = ff; g; �f + (1� �) g; �g + (1� �) fg ;

is not generally equal to ff; gg :
19DLRS provide a supplemental appendix which shows that, for the purpose of the theorem, their stronger

continuity assumption can be relaxed to the weaker notion of vNM continuity used in the present paper.
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We aim for a representation of � of the form

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ,

where f (�) is a vector of utils and p (�) is a unique probability measure on �(S), the space
of all probability measures on S.

We now explore the additional constraint imposed on bV by Axiom 6 and the de�nition

of ��.

Claim 7. b� (sk+1) � b� (s) for all s 2 S, bp�almost surely.
Proof. Suppose there exists some event E �M (S) with bp (E) > 0 and b� (sk+1) > b� (s) for
some s 2 S and all b� 2 E. Let f 0 = (0; 0; :::; 0; "; 0; :::; k � ") ; where " is received in state s
and k� " is received in state sk+1. Let g0 = (0; 0; ::0; 0; 0; :::; k). Then ff 0; g0g �� ff 0g. Take
F 0 = ff 0g (so that F 0 [ fg0g �� F 0). But note that Axiom 6 and the de�nition of �� imply
that F 0 �� F 0 [ fg0g, which is a contradiction.
Given our construction of bV , there are two natural normalizations that allow us to replace

the measure bp onM (S) with a unique probability measure p on �(S).

First, since sk+1 is an arti�cial state, the representation should satisfy � (sk+1) = 0,

p�almost surely. For all s 2 S and for all b�, de�ne � (b� (s)) := b� (s) � b� (sk+1). SincePk+1
i=1 f

0 (si) = k and � simply adds a constant to every b�,
argmax
f 002F 00

�P
s2S[fsk+1gf

00 (s) � (b� (s))� = argmax
f 002F 00

�P
s2S[fsk+1gf

00 (s) b� (s)�
for all b� 2 � (bp), the support of bp. Furthermore, by Claim 7, � (b� (s)) � 0 for all s 2 S,bp�almost surely.
Second, we would like to transform � � b� into a probability measure �. Let

� (s) := � (b� (s)) = �Ps02S� (b� (s0))� :
(recall that � (b� (sk+1)) = 0). Since this transformation a¤ects the relative weight given to
event E � M (S) in the representation, we need p to be a probability measure on I that

o¤sets this e¤ect, as implied by the uniqueness in DLRS. Hence, we have the Radon-Nikodym

derivative
dp (�)

dbp (b�) =
P

s2S� (b� (s))R
M(S)

�P
s2S� (b� (s))� dbp (b�) :
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Therefore, � is represented by

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) :

6.2. Proof of Claim 2

We will construct a menu that satis�es De�nition 6 with f (s) < 1 for all f 2 F and all

s 2 S. Let F�(S) := ff 2 F : kfk2 = 1g be the positive segment of the k � 1 dimensional
unit sphere. There is an isomorphism between �(S) and F�(S) with the mapping � !
argmax
f2FS

�P
s2Sf (s)� (s)

�
. For L � �(S) let FL � F�(S) be the image of L under this map-

ping. Finiteness of � (p) implies that F�(p) is �nite. Let f�(p);� := argmax
f2F�(p)

�P
s2Sf (s)� (s)

�
and (implicitly) de�ne ��(p);f by f = argmax

f2F�(p)

�P
s2Sf (s)��(p);f (s)

�
. Because F�(S) is the

positive segment of a sphere, � (s) > 0 for � 2 � (p) if and only if f�(p);� (s) > 0. This

implies that F�(p) � F�(p)n ffg [ ff 0s g for all f 2 F�(p) and s 2 S with f (s) > 0.

Hence, F�(p) is fat-free (De�nition 5). We claim that F�(p) is a saturated menu. Con-

sider condition (i) in De�nition 6. If f (s) = 0, then ��(p);f (s) = 0. Hence, there ex-

ists " > 0 such that F�(p) � F�(p) [
n
f
f(s)+"
s

o
for all " < ". Finally, consider condition

(ii) in De�nition 6. Let G * F�(p). If F�(p) [ G � F�(p) then the condition is triv-

ially satis�ed. Suppose F�(p) [ G � F�(p). Then, there exist � 2 � (p) and g 2 G withP
s2Sg (s)� (s) >

P
s2Sf�(p);� (s)� (s). Then F�(p) [G �

�
F�(p) [G

�
n
�
f�(p);�

	
.

6.3. Proof of Claim 3

If F is saturated and f 2 F , then there exists � such that f = argmax
�P

s2Sf (s)� (s)
�
(if

not, then F � Fn ffg). We should show that if f = argmax
�P

s2Sf (s)� (s)
�
, then for all

�0 6= �, f =2 argmax
�P

s2Sf (s)�
0 (s)

�
. Suppose to the contrary that there exist � 6= �0 such

that f = argmax
�P

s2Sf (s)� (s)
�
and f 2 argmax

�P
s2Sf (s)�

0 (s)
�
. Then f (s) > 0 for

all s 2 � (�) [ � (�0) by De�nition 6 (i). We construct an act f 0, which does better than f
with respect to belief �0 and does not change the argmax with respect to any other belief in

which f was not initially the best. Since � 6= �0, there exist two states, s and s0, such that
�0 (s) > � (s) and �0 (s0) < � (s0). Let

f 0 (bs) =
8><>:
f (bs) if bs =2 fs; s0g
f (bs) + " if bs = s
f (bs)� � if bs = s0 ;
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where "; � > 0 are such that:

(1) "�0 (s)� ��0 (s0) > 0, and
(2) "� (s)� �� (s0) < 0.
The two conditions can be summarized as "

�
2
�
�0(s0)
�0(s) ;

�(s0)
�(s)

�
� (0;1). Note that one can

make " and � su¢ ciently small (while maintaining their ratio �xed) so that, by continuity,

f 0 does not change the argmax with respect to any other belief in which f was not initially

the best. Hence f 0 =2 F and F [ f 0 � F [ f 0n fgg for all g 2 F [ f 0, which is a contradiction
to F being saturated.

6.4. Proof of Theorem 3

To show that the axioms are necessary for the representation, we only verify that the repre-

sentation implies Axiom 8, as the other axioms follow exactly as in the case of Theorem 1.

Suppose then that F is saturated with f 2 F , and let g satisfy � (g) = � (f) and fgg � ffg,
which implies that

V (fgg)� V (ffg) =
P

I22�(�)
P

s2I [g (s)� f (s)]� (s)
� (I)

� (I)
(1)

=
P

s2S
P

I22�(�)js2I [g (s)� f (s)]� (s)
� (I)

� (I)

=
P

s2S [g (s)� f (s)]� (s)
P

I22�(�)js2I
� (I)

� (I)

=
P

s2S [g (s)� f (s)]� (s) � 0:

Since F is saturated, Claim 3 and Claim 4 imply that there exists If 2 � (�) such that

V (F ) =
hP

s2Iff (s)� (s)
i � (If )
� (If )

+
P

I22�(�)=If max
f 02F=ffg

�P
s2If (s)

� (s)

� (I)

�
� (I)

�
hP

s2Ifg (s)� (s)
i � (If )
� (If )

+
P

I22�(�)=If max
f 02F=ffg

�P
s2If (s)

� (s)

� (I)

�
� (I)

� V ((Fn ffg) [ fgg) ,

where the �rst inequality uses Equation (1) and the second inequality is because the addition

of the act g might increase the value of the second component. Therefore, (Fn ffg)[fgg � F .
The su¢ ciency part of Theorem 3 is proved using the following claims:

Claim 8. Suppose F is saturated and f 2 F . Then for all g with � (g) = � (f),

fgg � ffg implies (Fn ffg) [ fgg � F:
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Proof. For " > 0 small enough, let

h (s) =

(
f (s) + " if s 2 � (f)

0 if s =2 � (f)

Then fgg � fhg and � (h) = � (g). Theorem 1 implies that F [ fhg � F . Let

F 0 :=

(
argmax
f 02F[fhg

�P
s2Sf

0 (s)� (s)
������ � 2 � (p)

)
:

Then F 0 � F [ fhg and F 0 is saturated. By Axiom 8,

F 0n fhg [ fgg � F 0

Furthermore, F 0n fhg � Fn ffg and, by Axiom 5 (Set Monotonicity), Fn ffg [ fgg �
F 0n fhg [ fgg. Collecting all the preference rankings established above completes the proof:

Fn ffg [ fgg � F 0n fhg [ fgg � F 0 � F [ fhg � F

Claim 9. If �; �0 2 � (p) and � 6= �0 then � (�) 6= � (�0)

Proof. Suppose there are �; �0 2 � (p), � 6= �0, but � (�) = � (�0). Let FM be the saturated

menu constructed in Claim 2. Then there are f; g 2 FM with f 6= g but � (f) = � (g).

Without loss of generality, suppose that fgg � ffg. For " > 0 small enough, let

h (s) =

(
g (s) + " if s 2 � (f)

0 if s =2 � (f)

and let

F :=

�
arg max

f2FM[fhg

�P
s2Sf (s)� (s)

�
j� 2 � (p)

�
F is a saturated menu with F � FM [ fhg. For " > 0 small enough, f; h 2 F . Furthermore,
fhg � fgg � ffg. Then, by Claim 8 Fn ffg = (Fn ffg) [ fhg � F , which contradicts

Axiom 5.

So far we have established that in Theorem 1 we can replace the integral over �(S)

according to the measure p with a summation over 2S according to the measure �. The
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uniqueness of � is implied by the uniqueness of p in Theorem 1.

V (F ) =
P

I22S max
f2F

�P
s2Sf (s)� (s jI )

�
� (I)

Let � (s) =
P

Ijs2I � (s jI ) � (I). The uniqueness of (�; p) in Theorem 1 implies that � (s)
is unique as well.

Claim 10. For all s; s0 2 I 2 � (�),

� (s jI )
� (s0 jI ) =

� (s)

� (s0)

Proof. Suppose to the contrary that there are s; s0 2 I 2 � (�) such that

� (s jI )
� (s0 jI ) <

� (s)

� (s0)
:

Given a saturated menu F , let fI := argmax
f2F

Pbs2S f (bs)� (bs jI ). By continuity, and since
fI (s

0) > 0, there exists an act h with

h (bs) =
8><>:
fI (bs) if bs =2 fs; s0g
fI (bs) + " if bs = s
fI (bs)� � if bs = s0 ;

where "; � > 0 are such that:

(1) "� (s)� �� (s0) > 0, and
(2) "� (s jI )� �� (s0 jI ) < 0
Note that using Claim 3 and Claim 4 one can make " and � su¢ ciently small (while

maintaining their ratio �xed), so that, by continuity and �niteness of � (�), h does not

change the argmax with respect to any other belief in � (�). Then fhg � ffIg, but F �
Fn ffIg [ fhg, which contradicts Axiom 8.

Claim 11. For all s 2 S and all I 2 � (�), � (s jI ) = �(s)
�(I)
.

Proof. Using Claim 10,

� (I) :=
P

s02I� (s
0) =

� (s)

� (s jI )
P

s02I� (s
0 jI ) = � (s)

� (s jI )

) � (s jI ) = � (s)

� (I)
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Claim 12. For all s 2 � (�),
P

I22S js2I
�(I)
�(I)

= 1.

Proof. Using Claim 11,

� (s) :=
P

I22S js2I � (s jI ) � (I) =
P

I22S js2I
� (I)

� (I)
� (s)

)
P

I22S js2I
� (I)

� (I)
= 1

6.5. Proof of Theorem 4

We have already observed that an information set representation exists if and only if there

exists p : 	 ! (0; 1], such that for all I, p (I) = Pr (I js 2 I ) for any s 2 I. We now show
that such a p exists if and only if 	 is a generalized partition of S	.

(if) Let 	 be a generalized partition of S	. Let k � 1 be the number of times that S	 is
covered by 	. Set p (I) = �(I)

k
for all I 2 	.

(only if) Suppose that p (I) 2 Q\ (0; 1] for all I 2 	. Rewrite the vector p by expressing all
entries using the smallest common denominator, � 2 N+. Then 	 is a generalized partition
of size �. To see this, let � (I) := �p(I) for all I 2 	. Then

P
I2	js2I � (I) =

P
I2	js2I �p (I) = �

P
I2	js2I Pr (I js 2 I ) = �

for all s 2 S	.
It is thus left to show that if there exists p 2 (0; 1]j	j such that for all I 2 	, p (I) =

Pr (I js 2 I ) for any s 2 I, then there is also p0 2 [Q \ (0; 1]]j	j with this property. Note that
p is a solution for the system of linear equations Ap = 1, where A is a jS	j � j	j matrix
with entries ai;j 2 f0; 1g, p is a j	j � 1 vector, and 1 is a jS	j � 1 vector of ones.
Let bP be the set of solutions for the system Ap = 1. Then, there exists X 2 Rk (with

k � j	j) and an a¢ ne function f : X ! Rj	j such that bp 2 bP implies bp = f (x) for some
x 2 X. We �rst make the following two observations:
(i) there exists f as above, such that x 2 Qk implies f (x) 2 Qj	j

;

(ii) there exists an open set eX � Rk such that f (x) 2 bP for all x 2 eX
To show (i), apply the Gauss elimination procedure to get f and X as above. Using the

assumption thatA has only rational entries, the Gauss elimination procedure (which involves

a sequence of elementary operations on A) guarantees that x 2 Qk
implies f (x) 2 Qj	j

.

To show (ii), suppose �rst that p� 2 bP \ (0; 1)j	j and p� =2 Qj	j. By construction,

p� = f (x�), for some x� 2 X. Since p� 2 (0; 1)j	j and f is a¢ ne, there exists an open
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ball B" (x�) � Rk such that f (x) 2 bP \ (0; 1)j	j for all x 2 B" (x
�), and in particular

for x0 2 B" (x
�) \ Qk

(6= �). Then p0 = f (x0) 2 [Q \ (0; 1]]j	j. Lastly, suppose that

p� 2 bP \ (0; 1]j	j and that there are 0 � l � j	j sets I 2 	, for which p (I) is uniquely
determined to be 1. Then set those l values to 1 and repeat the above procedure for the

remaining system of j	j �l linear equations.

6.6. Proof of Theorem 5

By Theorem 3, vi(s) = k�i (s) for i = 1; 2. Consider the set fc; fg. Since conditional on any
I 3 s; s0

Pr (s jI )
Pr (s0 jI ) =

� (s)

� (s0)

and since fcg � ffg,
Pbs2I f (bs) �(bs)�(I)

> c
Pbs2I �(bs)�(I)

if and only if s 2 I but s0 =2 I. These
are the only events in which DM expects to choose f from fc; fg. Therefore, wi (s; s0) =
k�i (s) Pri (fI js 2 I, s0 =2 I g js) and

�i (s; s
0) = Pri (fI js 2 I, s0 =2 I g js) =

P
Ijs2I, s0 =2I

�i (I)

�i (I)
:

Corollary 1. � (s; s0) is independent of any k and c (that satisfy the premise in the beginning
of the section) and � (s; s0) = � (s0; s).

Proof. The proof of Theorem 5 establishes that � (s; s0) =
P

Ijs2I, s0 =2I
�(I)
�(I)

independently of

k and c. Theorem 3 implies that
P

Ijs2I, s0 =2I
�(I)
�(I)

= 1�
P

Ijs2I, s0 =2I
�(I)
�(I)

=
P

Ijs2I, s0 =2I
�(I)
�(I)
, and

hence � (s; s0) = � (s0; s).

6.7. Proof of Theorem 6

We �rst establish that in the context of Theorem 3, De�nition 3 can be rewritten as follows:

De�nition 17. DM2�s distribution of �rst-order beliefs is a mean-preserving spread of
DM1�s if and only if

(i) �1 = �2, and

(ii) for all I 2 2S P
I0�I�

1 (I 0) �
P

I0�I�
2 (I 0)

In light of Theorem 2 and the �niteness of � (�), it is su¢ cient to establish the following:

Claim 13. DM1 has more preference for �exibility than DM2 if and only if items (i) and
(ii) in De�nition 17 hold.
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Proof. (if) DM1 expects to be better informed than DM2; He, therefore, expects to be
able to imitate DM2�s choice from any menu by simply ignoring the additional information

(with an appropriate probability he pretends to be in a larger information set). Hence, he

expects to derive weakly more value from any menu. Since both derive the same value from

singletons, where there is no choice to be made from the menu (and therefore information is

irrelevant), DM1 must weakly prefer a menu over a singleton whenever DM2 does.

(only if)
(i) Taking G = fgg implies that they have the same preferences on singletons, and hence

the same beliefs.

(ii) Suppose that there is I 2 2S with
P

I0�I �2 (I
0) >

P
I0�I �1 (I

0) : Obviously I is a

strict subset of the support of �. De�ne the act

f :=

(
� > 0 if s 2 I
0 if s =2 I

Let c denote the constant act that gives c > 0 in every state, such that � > c > �(I)
�(I00)� for all

I 00 that are a strict super set of I. Then Vi (ff; cg) = c + (� � c)
P

I0�I �i (I
0). Finally, pick

c0 such that

(� � c)
P

I0�I�2 (I
0) > c0 � c > (� � c)

P
I0�I�1 (I

0)

to �nd ff; cg �2 fc0g but fc0g �1 ff; cg, and hence DM1 cannot have more preference for
�exibility than DM2.

We are now ready to prove Theorem 6, which states that if DM1 has more preferences

for �exibility than DM2, then DM1 values binary bets more than DM2.

Proof of Theorem 6. Suppose �1 = �2. Then DM1 values binary bets more than DM2 if
and only if

P
Ijs2I, s0 =2I

�1(I)��2(I)
�(I)

� 0 for all s; s0 2 � (�1). In particular, for any I 2 � (�) the
condition holds for all s; s0 2 I, and thus

P
I0�I

�1(I0)��2(I0)
�(I0) � 0 must hold. We now show that

this condition is implied by item (ii) in De�nition 17. That is, we show that if there exists an I

for which
P

I0�I
�2(I0)��1(I0)

�(I0) > 0, then there exists I 00 such that
P

I0�I00 �
2 (I 0) >

P
I0�I00 �

1 (I 0).

Suppose this is not the case. Then �1 (I) � �2 (I) � 0 for any singleton I. For any I

with jIj = 2 we must have �2 (I) � �1 (I) �
P

I0�I �
1 (I 0) � �2 (I 0). But then, since � is

increasing with respect to the order of set inclusion, �
2(I)��1(I)
�(I)

�
P

I0�I
�1(I0)��2(I0)

�(I0) also holds.

Continue inductively in this manner to establish that for any I we must have �2 (I)��1 (I) �P
I0�I �

1 (I 0) � �2 (I 0), which implies that there is no I for which
P

I0�I
�2(I0)��1(I0)

�(I0) > 0, a

contradiction.
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6.8. Proof of Theorem 7

It is easy to check that any preferences with an exclusive tree representation as in Theorem

7 satisfy Axiom 9. The rest of the axioms are satis�ed since Theorem 7 is a special case of

Theorem 3.

To show su¢ ciency, �rst observe that by Axiom 9 and Claim 3, I,I 0 2 � (�) implies that
either I � I 0, or I 0 � I, or I \ I 0 = ;. This guarantees that for anyM � � (�) and s 2 � (�),
argmax
I2M

fjIj js 2 I g is unique if it exists.

For any state s 2 � (�), let Is1 = argmax
I2�(�)

fjIj js 2 I g. De�ne T1 := fIs1 js 2 � (�)g. Let

�1 = min
I2T 1

�
�(I)
�(I)

�
. Set

�1 (I) =

(
� (I)� �1� (I) if I 2 T1

� (I) if I =2 T1

Let �n : � (�) ! [0; 1] for n 2 N. Inductively, if for all s 2 � (�) there exists I 2 � (�n)
such that s 2 I, then for any s 2 � (�) let Isn+1 = argmax

I2�(�n)
fjIj js 2 I g. De�ne Tn+1 :=�

Isn+1 js 2 � (�)
	
. Let �n+1 = min

I2Tn+1

�
�n(I)
�(I)

�
. Set

�n+1 (I) =

(
�n (I)� �n+1� (I) if I 2 Tn+1

�n (I) if I =2 Tn+1

Let N + 1 be the �rst iteration in which there exists s 2 � (�) which is not included in
any I 2 � (�N). Axiom 7 implies that N is �nite and that (T n)n=1;::;N is a sequence of

increasingly �ner partitions, that is, for m > n, Ism � Isn for all s, with strict inclusion for

some s.

Claim 14. � (I) = � (I)
P

n�N jI2Tn �n for all I 2 � (�).

Proof. First note that by the de�nition of N , � (I) � � (I)
P

n�N jI2Tn �n for all I 2
� (�). If the claim were not true, then there would exist I 0 2 � (�) such that � (I 0) >

� (I 0)
P

n�N jI02Tn �n. Pick s
0 2 I 0. At the same time, by the de�nition of N , there exists

s00 2 � (�) such that if s00 2 I 2 � (�) then � (I) = � (I)
P

n�N jI2Tn �n. We have,

� (s00) =
P

I2�(�) Pr (s
00 jI ) � (I) =

P
I2�(�) Pr (s

00 jI )� (I)
P

n�N jI2Tn �n

=
P

n�N Pr
�
s00
���Is00n ���Is00n � �n = � (s00)Pn�N�n
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where the last equality follows from Claim 11. Therefore,
P

n�N�n = 1. At the same time

� (s0) =
P

I2�(�) Pr (s
0 jI ) � (I) >

P
I2�(�) Pr (s

0 jI )� (I)
P

n�N jI2Tn �n

=
P

n�N Pr
�
s0
���Is0n ���Is0n � �n = � (s0)Pn�N�n = � (s

0) ;

which is a contradiction.

Claim 14 implies that � (�N+1) = ;. Let �m := 0 and for t 2 [0; 1) de�ne the �ltration
fPtg by

Pt := Tn, for n such that
Pn�1

m=0�m � t <
Pn

m=0�m.

The pair (�; fPtg) is thus an exclusive tree.

Claim 15. If � also satis�es Axiom 10, then P0 = f� (�)g

Proof. Suppose to the contrary, that there are fS 0; S 00g � P0 such that S 0 \ S 00 = ; and
S 0 [ S 00 � � (�). Then, any saturated F includes some act h with � (h) � S 0 and another

act g with � (g) � S 00, but it does not include an act that contains both h and g, which

contradicts Axiom 10.

Claim 16. If
�b�;n bPto� induces a representation as in Theorem 7, then

�b�;n bPto� =

(�; fPtg).

Proof. � is unique according to Theorem 3. Suppose that fPtg 6=
n bPto. Then, without

loss of generality, there exists t and I 2 � (�), such that I 2 Pt and bI � I 2 bPt. Let
M = fI 0 2 � (�) : I � I 0g. Then, according to (�; fPtg), � (M) � t, while according to�b�;n bPto�, � (M) < t, which is a contradiction.
6.9. Proof of Theorem 8

(i) DM1 does not learn earlier than DM2 , there exists t such that P1t is not �ner than P2t
, there exists two states s; s0, such that s; s0 2 I for some I 2 P1t , but s; s0 =2 I 0 for any
I 0 2 P2t , Pr2 (fI js 2 I, s0 =2 I g js) = �2 (s; s0) � 1 � t, but Pr1 (fI js 2 I, s0 =2 I g js) =
�1 (s; s0) < 1� t , DM1 does not value binary bets more than DM2.

(ii) For i = 1; 2, let

ti (I) = min
�
t
��I is measurable in P it 	

if de�ned, otherwise let ti (I) = 1. Let

�i (I) = max
�
t
��I 2 P it 	�min�t ��I 2 P it 	
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if de�ned, otherwise let �i (I) = 0. Under the assumptions of Theorem 7,

P
I0�I�

i (I 0) =
P

I0�I�
i (I 0)�i (I) = �i (I)

�
1� ti (I)

�
Hence, DM1 learns more than DM2 if and only if �1 = �2 and t1 (I) � t2 (I) for all I, which
is equivalent to fP1t g being weakly �ner than fP2t g.
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