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Abstract

In this paper we try to evaluate the asymptotic fairness of bonus-malus
systems, assuming the simplest case when there is no hunger for bonus.
The asymptotic fairness has to be understood as the bonus-malus sys-
tem ability in assessing the individual risks in the long run (see Lemaire
[1995] p.xvi). Firstly we de..ne the asymptotic fairness of a bonus-malus
system following an expression that can be found in Lemaire [1985] p.
168. Secondly, we de..ne a measure of the global asymptotic fairness
considering the structure function of the risk group. Finally we try to
calculate, for each set of transition rules and a given structure func-
tion, the scale of premiums that brings the global asymptotic fairness
closest to the ideal situation where each insured pays in the long run
a premium corresponding to its own claim frequency. This is possible
thanks to the application of a multiobjective optimization technique
named Goal Programing. We give an example illustrating the fact that
the ideal case could be fairly well approached.

Keywords: bonus-malus system, asymptotic fairness, Goal Pro-
gramming, simplex method.
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1 Introduction

Many criteria have been de..ned to evaluate bonus-malus systems (BMS)
in an attempt to facilitate their design. These actuarial tools have been
collected in Lemaire [1985, 1995, 1998]. The birth process of these cri-
teria seems to be almost the same, consisting in the identi..cation of
some property that a BMS should verify, followed by the de..nition of
some measure that rates the degree of ful..llment for a given BMS. For
instance, it is known that the relative stationary average level (RSAL)
measures the degree of clustering of policies in the lowest classes (high
discount classes) of the BMS, an important phenomenon which can re-
sult in a harmful decrease of the average premium level. The RSAL
is de..ned in such a way that, as written in Lemaire [1995] p.64, a
low value of RSAL indicates a high clustering of policies in the high-
discount BMS classes. A high RSAL suggests a better spread of policies
among classes.” Others examples of tools for BMS evaluation are the
coeCcient of variation of the insured’s premiums, and the elasticity or
eCciencv of a BMS (L aimaranta [19721. De Pril [19781. | emaire [1995.



the BMS has not yet reached the steady-state (Lemaire [1995] p.86).
Both the RSAL and the elasticity are dependent on the policy risk level
through the claim frequency _; though the last one could be generalized
to a measure of global elasticity if the structure function of a given risk
group was introduced in the discussion (Lemaire [1995] p.89), (De Pril
[1978] p.62).

Following these guidelines, the aim of this paper is to focus on an-
other tool for BMS evaluation consisting in a measure of the BMS
fairness. As stated in Lemaire [1995] p.xvi, the most important tar-
get of a BMS is ”...to better asses individual risks, so that everyone
will pay, in the long run, a premium corresponding to its own claim
frequency”. Taking this idea in mind, we could think about two ex-
treme situations. Firstly when there is no BMS and every policy pays
the same pure premium P: we consider this case as being unfair be-
cause good risk (with low risk parameter ) will pay the same as the
bad ones (those with higher ). Secondly, the case where fairness is
asymptotically attained is when every insured will pay in the long run
a premium corresponding to its own risk, the discrimination between
insureds being then asymptotically perfect. For instance this would be
the case if Exact Credibility (also named Bayesian bonus-malus) was
applied through an in..nite number of periods (Lemaire [1995] p.163).
We consider this second case as being representative of perfect fairness.
We will try to rate all the intermediate cases where a BMS has been
designed to improve the ..rst situation (absence of BMS, unfairness)
while never reaching in practice the second one (Bayesian case, perfect
fairness).

As the measure of fairness will also use the mean asymptotic pre-
mium, it will only work for a BMS in the steady-state, i.e. it will
evaluate the asymptotic fairness of a BMS. At a ..rst stage we will
de..ne it depending on the policy risk level. Afterwards, considering
the structure function of some risk group will allow us to de..ne the
global asymptotic fairness, in a similar way as in the referred case of
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optimal scale of premiums. By means of the expression commercial re-
quirements we try to refer to some conditions that the designer should
like the BMS to verify in order to get it market competitive and attrac-
tive to the insureds. For instance constraints referred to the maximum
and minimum premiums, and to the size of the dicerences between the
premiums of consecutive bonus-malus classes, could be translated into
linear restrictions to be included in the de..nition of the feasible set.

Finally it is very important to point out that we will not consider
hunger for bonus or any other phenomenon that could infuence the
distributions of the number of claims to be explained in the next section.
Thus we will assume that these distributions will remain the same along
the in..nity of time periods.

2 Basic assumptions. Bonus-malus sys-
tems as Markovian chains

Given a risk group, we assume that the level of risk of each policy is
represented by a risk parameter , > 0; the expected number of claims
per period. We suppose that it is not possible to determine the true
value of this parameter for each policy, and we suppose that across the
group there exists a random variable =& (the structure variable) whose
realizations are the values of the risk parameter for policies belonging
to that group. The distribution function associated to the structure
variable will be noted U(,) and named structure function. We suppose
that @ is independent of time. The random variables N¢ j @ = _; num-
ber of claims of a policy in successive periods 1;::: ;t, conditioned to
some value _ of the risk parameter, are supposed to be mutually inde-
pendent and identically distributed with common distribution function
pk(.): This distribution function is assumed to be Poisson with param-
eter _: Therefore the unconditioned random variable N will be Poisson
mixed with the structurg function. We also assume that the individ-
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company uses a BMS when the following conditions hold:

2 There exists a ..nite number of classes (C4; ::;; C,,) such that each
policy stays in one class through each period (usually a year).

2 The premium for each policy depends only on the class where it
stays.

2 The class for a given period is determined by the class in the
preceding period and the number of claims reported in that period
(Markovian Condition).

Every bonus-malus system is determined by three elements:

2 The initial class, where the new policies are assigned.

2 The premium scale b= (ba; 2 bn), where by is the premium for
policies in the class Cj. The highest discount class will be Cy:

2 The transition rules, that is, the rules that de..ne the conditions
for a policy in class C; to be transferred to class C; in the next
period.

It is useful to express the transition rules by means of transforma-
tions Tk such that Tx(i) = j when insureds in class C; reporting k
claims are transferred to class C;j in the next period. Transformations
T, are usually described by means of matrices,

Ty = it§<j¢
where

t = 1if (i) =]
i 0if Tx(i) & j
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The conditional transition matrix given that @ = _, is de..ned as

M(.) = (i (.))

Therefore, it is possible to interpret a BMS as a Markov chain. This
chain is homogeneous, since we have assumed that each claim fre-
guency . is stationary in time. If we also assume that the chain is
ergodic and not cyclic then it is a regular chain (see for instance Ke-
meny and Snell [1992] p.37), and there exists a stationary conditional
probability distribution 7(,) = (%1(.); %n(.)), where Y%;(,) is de..ned
as the limit value, when the number of periods tends to in..nity, of the
conditional probability for a policy to belong to class C;, given that
a = _. It is known that the stationary distribution coincides with
the L'-normalized left eigenvector associatqg, with the unit eigenvalue
of M(,); that is: T(,) = %(,)M(,) and ., %i(,) = 1. It is also
possible to de..ne the stationary unconditional probability distribution
T = (Yaq; 125 %) for an arbitrary policy belonging to the risk group, as
the mean values of the stationary conditional probability distributions
U1 (L); (L))
Z 4
Yo = Yi(L)du(,) 1=1;::1;n D
0

The distributions ¥; and %;(,) can be interpreted as the probability for a
policy (independently of the value of the risk parameter and conditioned
to & = _ respectively) to belong to class C; when stationarity in the
strict sense is approached.

A concept of the utmost importance is the mean asymptotic pre-
mium paid by a policy with risk parameter _: Following Lemaire (1985,
1995), it is de..ned as:

X
bi 1/4i(,); > 0:

i=1
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so every insured pays the same pure premium Efag. This case is
unfair because the dicerence Efag j . is positive for the good risks
with parameter Efag denoting that they are paying too much,
while the same dizerence is negative for the bad risks with parameter
. . Efog; meaning that they are not paying enough. The second case
(Bayesian case) is told perfectly fair because the dicerence between
the premium paid and the insured’s risk parameter _ is asymptotically
null. We can therefore represent graphically both situations in ..gure 1,
where the straight line y;(,) = Efag j . (taking Efag = 0:5) stands
for the ..rst one while the second is drawn by means of the constant
function yo(,) =0 (, > 0):

FIGURE 1

If we considered a BMS in the stationary state, the situation should
be an intermediate one between those two extreme cases. Recalling the
commentaries made in Lemaire [1985] p. 168, the asymptotic fairness
could then be represented by means of the following function:

X
y.)=  bi%i(.)i. @3]

i=1

This is the dicerence between the mean asymptotic premium paid by
a policy with risk parameter _, and the insured’s risk parameter.

Let us suppose the usual situation where the transition rules have
been de..ned with the aim of discriminating between the good risks and
the bad ones when stationarity in the strict sense is approached: the
best ones, with , neighboring zero, will nourish the high discount class
with probability near to one (i.e., lim_wo+%;(,) = 1), while the worst
ones will get into the high penalized class with probability tending to
one (i.e.,, lim_w+1%n(,) = 1). It is not di¢cult to check that the
asymptotic fairness y(.) will then verify the following limits:



risk parameter. We de..ne these two mean values as

o >

y*(,) = max bi%(,) i .;0 4)
_ ('X D
y'(,) = imin bi%i(,) i ;0

and we will refer to them as the deviations or rating errors for each
.- These mean values could be helpful in BMS evaluation, because
dicerent BMS will furnish dicerent y8(_), opening the possibility to
compare them for each _-value. The aim of this comparison would
be to clarify which system succeeds in achieving the goal of better
assessing individual risks in the long run.

Deepening in the BMS evaluation from the point of view of its
asymptotic fairness, the two extreme cases corresponding to yo(.); y1(.)
may give us some helpful ideas in addition to some hints on situations
that should not be recommendable at all. For instance a BMS that
produced an y(,) such that y(,) . yi(,) for the major part of good
risks belonging to the group, would be such an inappropriate tool that
would increase the unfairness of y;(,) instead of decreasing it. On
the other side, it seems that a good property for a BMS would be to
have an y(.) more resembling to yo(.) than is yi(,). This idea of
y(, ) neighboring yo(,) will be precisely de..ned when talking about the
global asymptotic fairness.

Example 1 Let us consider a risk group characterized by means of the
structure function with support f_; =j0:15:j =1;:::,10g and prob-
ability masses fu; : j = 1;:::;10g resumed in table 1:

TABLE 1

Its mean value is Efoa = :4999278192. We consider four bonus-malus



The conditioned stationary distributions 7(_) are:

2(-§1j.)ei?
(i.2+4. e j2e2)(jl+ei.+ _ei.)
i2(-ilj.)et-(ef-jl)
(i.2+4 e j2e2)(jl+ei-+ _ei.)
_ i2(e-i1i.)
1/43(,) - i52+4b e- i 2e25)
(e-§1i.)(. %ei?> j4 ei-+2 ei% j2ei-+2)e-
(i.2+4_ e j2e2)(jl+ei-+ _ei.)

() =

1/42(5) -

Yu () =

These functions %;(,) (i = 1;2;3;4) are plotted in ..gure 2

FIGURE 2

For example the conditioned stationary distributions for policies with
risk parameter , = 0:15 and _, = 1:5 over the bonus-malus classes are
respectively

7(0:15) = (:8500328302; :1375644193; :01168746555; :0007153086397)
7(1:5) = (:02873363342; :1000415774; :2551924280; :6160323610)

The unconditioned stationary distribution is found to be:
7 = (:5191041945; :2993384494; :1247758108; :05678154546)  (6)

The Bayes Scale, which is a very well known tool for calculating the
associated scale of premiums for a given set of transition rules (see for
example Pesonen [1963] and Norberg [1976]), has been applied giving

the following scale of premiums (5

b = :4426318548; b5 =:5134106322;
b® = :6037333145; bhP =:7245472036



FIGURE 4

The intersection between yg(,) and y,(,) has abscissa , = :5192668518,
and the central value (De Prill (1978)) is , = :4962203680: The rating
errors yj§ foreach _; (J =1;:::;10) are summarized in table 2:

TABLE 2

The rating errors yj§ may be interpreted as the mean value that a policy
with risk parameter _; will pay in excess or in default in the steady-
state. For example, every insured with risk parameter _1 = 0:15 would
pay in mean an excess of :3044530309 monetary units (see table 2).
This means that the mean asymptotic premium for that class is equal
to

0:15 + :3044530309 = :4544530309: @)

As :4544530309=0:15 = 3:029686873 this means that the premium paid
by these insureds in the steady-state would be approximately a 303%
of their true risk parameter _1. A general look to table 2 tells us that
policies with _;  0:45 will pay too much (yj+ > 0) while those with
.j - 0:60 will not pay enough (y;* > 0). We can conclude that:

2 The discrimination between good and bad risks in the steady-state
Is more or less achieved by the transition rules (look to the plots
in ..gure 2).

2 The best risks will pay a lower excess or even in some cases a
default (see ..gures 3 and 4):

ye(.) Yi(.); 8., 2[0;0:5]

2 The risks with a higher claim frequency will pay a bigger or lower



Thanks to the last example we must keep conscious that the com-
parison between the asymptotic fairness of two dicerent BMS could be
such a harmful task. This is because we should have to compare two
plots point by point, ignoring the whole perspective of the risk group.
Pointwise comparisons could give way to cumbersome and rather bor-
ing explanations that, at the end, could be useless because they would
not have take into account the distribution of the structure variable &
over the risk group.

In order to surpass this faw we will have to formalize the already
mentioned resemblance or neighboring between the asymptotic fairness
of a given BMS (i.e. the function y(,)) and the perfect asymptotic
fairness represented by the constant function yo(,): For that sake we
will have to introduce the structure function in the analysis.

The way we have chosen to measure to what extent is y(,) resem-
bling to yo(.) is by means of its L1(U) norm, this is to say the integral
of the absolute value of y(,) with respect to the structure function.
The idea lying behind is quite simple. It is clear that

+1

jyo(,)i dU(,) =0;

thus the lesser will be
+1

y()idu(,); ®

the closer will be y(_) to yo(.) in L*(U) norm: If ever we obtained
an asymptotic fairness for which the integral (8) was null, then we
could conclude that y(,) = Yo(.) almost surely (that is, for every
. 2S K (0;+1) such that Pfa 2 Sg = .dU(,) = 1); and the
situation of perfect fairness would have been achieved. Naturally, this
will never occur for the reasons explained along the discussion about
the y-shape (see the limits (3)), though it could be approached and this
will be such an interesting skill for us.

We hawve chosen to integrate the absolute value of the asymptotic



Example 3 (Example 1 continued) If we came back to the BMS de..ned
in example 1, we could calculate its global asymptotic fairness. For this
sake we would only have to multiply each non null yj§ by the probability
of the respective _; then summing up all these products. This way we
get the following result:

Y(Ro:b"; U) = :1206712878 (10)

On the other hand, multiplying (Efag § ;) by the probability masses
uj and summing up these products will give us the global asymptotic
fairness when no BMS has been de..ned:

3
JETag § .jj uj = :1450322574 (11)
i=1
Therefore, comparing (10) and (11) we can conclude that the fairness
is eaectively improved by the transition rules and the Bayes scale calcu-
lated in example 1. In connection with the justi..cation of the absolute
value, observe that removing it will drive us to wrong conclusions be-
cause
X
(Efog i _-,j)uj "0
i=1
Thanks to the global asymptotic fairness it would be possible to
compare a single BMS applied to dicerent risk groups and also the
ecect of dimerent BMS applied to the same group, although the very
interesting problem would be the minimization of the global asymptotic
fairness Y with respect to any of its variables. For instance, given a
structure function, it would be interesting to ..nd the pair (R;b) that
produces the minimum Y-value. This problem seems so complex, that
it is better to reformulate it in the following terms: given a set of
transition rules and a structure function U, ..nd the optimal scale of
premiums minimizing Y :



4 Optimization of the global asymptotic
fairness

As Goal Programming has been rarely applied in Actuarial Science, we
think it will be useful to make a short presentation of it. This last
follows largely the one made in Vilar [2000]. For a broad introduction
to the topic of Goal Programming we refer to Romero [1991, 1993].

4.1 General comments on Linear Goal Program-
ming

Suppose that the modelling process of some optimization problem has
given us many objective functions ¥ = (f;;:::;f,) that should be
optimized simultaneously. When applying Goal Programming we must
clearly establish what would be the best or ideal values (call them
T = (f];:::; F3)) for these objective functions, then looking to them
as goals we would like to attain keeping in mind that it is probably not
possible to match them simultaneously. In other words, if a decision
vector X such that f(X) = f did not exist, we would look at least for
another X which gave us the nearest values to the ideal T This is done
as follows.

Supposing that the objective functions are linear, write them as
constraints of a new mathematical program, each one equated to its
ideal or best value f;'; then add to the ..rst member of each restriction
two deviation variables yi; jy;” G = 1;:::; m): These variables stand
for negative (how much we are down to the ideal value f;") and positive
deviation (how much we exceed) respectively. This way we obtain the
following set of equality constraints:

J=Lnnmi )y iy =1

We de...ne the feasible set of a new mathematical program by means of
these m linear constraints plus nonneaativity constraints on the devi-



Therefore, as a result of this process we get the following linear math-
ematical program:
+
min T+ y 12
& o' +y5) (12)

8 L
%fl(ﬂ)ﬂ/l' iy =T

s:it: ' S 5
2 () +yihiyn =T
TRy Lo
i .
Coordinates of the feasible solutions are IY; yAiyrony iy sinan

optimal feasible solution, at least one coordinate in each pair (yji ;yj+)
must be null; when both vanish, the ideal value fj' is attained. Program
(12) is a way of presenting a linear goal program. Its simplicity consists
in being linear, so the simplex algorithm can be executed to solve it.

4.2 Calculating the optimal scale of premiums.

Suppose we are given a structure function U: As our method requires
this distribution to be of the discrete type, if it was of the continu-
ous or mixed types we would have to discretize it by means of some
well known discretization method discussed in the actuarial literature
(see for instance Klugman, Panjer, Willmot [1998] p.607, Vilar [2000]).
From hereafter the structure function will be considered of the discrete
type and its probability function will be noted

J=L:0mPf, = 0=y

Taking this last comment in mind, the global asymptotic fairness is
now written as:

- oo XX -
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where the unknowns are the premiums b = (bs; :::;bn): Next we can try
to calculate the scale of premiums that brings the mean asymptotic
premiums closest to the ideal situation stated in (14).

For that sake, following the presentation made in section 4.1, we
only have to add to the ..rst member of (14) the deviation variables
y}, iyj, join the nonnegativity constraints for these variables, and
proceed to minimize the weighted sum of these deviation variables. The
weights are the probability masses (uj);“:1 for we have to minimize the
expression (13) which is the integral of the absolute value. Following
these steps we obtain the linear mathematical program:

o i N 15
I 4 v, -
n(_;lyrz;_:l(y, Yi Ui (15)
& n bl/ B i -yt = _. [ R
- b)Y Y=L G =nm)
yhiyy -0 G=1:m)

Now comes a crucial stage, for it is time to be aware that we have
chosen to calculate the scale of premiums b by means of the resolution
of an optimization problem. As a general rule, the optimums found in
the resolution of a mathematical program will satisfy the properties
expressed in the de..nition of the feasible set. An optimum isin partic-
ular a feasible solution, therefore if substituted in the constraints it will
verify them all, but it does not have to verify any other property that
has not bheen expressed as a constraint of the mathematical program.
Looking to the linear program (15), it is clear that an optimal feasi-
ble solution will satisfy the property of bringing the mean asymptotic
premium closest to the ideal situation of perfect fairness (in the sense
already explained in (8)), but it is not forced to furnish solutions satis-
fying any other requirement as could be for instance the nonnegativity
and monotony of the scale, or the ..nancial equilibrium of the BMS. In
other words, program (15) is only the halfway in modelling the calcula-
tion of a scale of premiums using this multiobjective technique, because



include the properties of monotony and nonnegativity of the scale of
premiums.

The ..nancial equilibrium of a BMS is such a well established con-
cept in Actuarial Science. Roughly speaking, it states that when a BMS
Is acting in the long run, the mean value of the total pure premium in-
comes must be equal to the mean value of the total claim payments
made by the insurance company. This is very important indeed from
both the theoretical and practical sides, because a risk group endowed
with a BMS that did not verify this property could get ruined in the
long run. The Bayesian bonus-malus actually veri..es this property
(Lemaire [1995] p.161), as does the already mentioned Bayes Scale of
premiums (Norberg [1976]). For instance the transition rules and the
Bayes Scale of premiums calculated in example 1 would give a BMS in
..nancial equilibrium. To express this property we only have to write
down the two mean values then equalling them. The mean value of the
total pure premiums incomes in the steady-state is

X
b; %; (16)

i=1
where

>
Yi=  Y(,j)up (i=1;:::;n)
i=1
are the unconditioned stationary probabilities (see (1)). On the other
side, the mean value of the total payments in the steady-state is:

X
Efag = .jUj: (17)

=1

Equalling (17) and (16) gives the ..nancial equilibrium constraint:



Thus coming back to (15), a feasible solution such that (18) is positive
(respectively negative) indicates an unbalance worth to the insurance
company (respectively to the insureds).

The constraints named as commercial requirements of the scale of
premiums are not so obvious as the later, calling for a more delicate
treatment because of the subjectivity involved in the modelling process.
Firstly, we think that it should be out of discussion that the scale of
premiums ought to be nonnegative and monotone. Therefore it could
be necessary to include the following set of restrictions:

0 by @ bp

Secondly, in a competitive environment the insurance company may
want to have a scale of premiums attractive to its insureds. To calculate
such a scale, many questions could be asked and studied. The aim of
the following list is not to be exhaustive, though we think that these
three questions could be considered along an analysis on what scale
would be more adequate for the insurance company:

2 |s it possible to set a bound for the dicerence between the pre-
miums corresponding to the cheapest and dearest bonus-malus
classes? For instance this could be translated into a linear re-
striction in two dicerent ways. The ..rst one is straightforward:
noting the bound M we could set

The second one consists in forcing the cheapest and dearest pre-
miums to be respectively lower and greater than certain percent-
ages Cy; C,, of a given premium that we call central; noting b;,
(1 <i¢ < n) the central premium we get

br . Cibi



2 |s it advantageous to set the premium of a determinate bonus-
malus class equal to a certain level of the initial pure premium?
This would be equivalent to set one of the decision variables equal
to a constant: b = K

As a mater of fact, it is up to the decision maker to decide what
kind of property should he ask his scale of premiums to verify and
how to write it down. There are only two technical limitations: the
property may be expressed by means of a linear constraint in b =
(bg; by yrs iyl ya); and the resulting linear program must
be feasible, i.e. the feasible set must be dicerent from the empty set
(feasible solutions must exist).

Summing-up the discussion, we should join to the de..nition of the
feasible set of the linear program (15), the ..nancial equilibrium con-
straint and a subset of constraints aimed to model some characteristics
of the scale of premiums related to the market environment. If both
the constraints and the way chosen for expressing them were adequate,
the resulting linear program would be feasible and we would be able to
solve it by means of the simplex algorithm.

Therefore, the optimum value for the global asymptotic fairness
would depend not only on the transition rules and the structure func-
tion, but also on the commercial requirements expressed as linear con-
straints. Thus it will be useful to express this dependence of the optimal
value by means of some notation; writing C for the set of constraints
that expresses the commercial requirements, from hereafter we will note
Y. the optimal value for the global asymptotic fairness correspond-
ing to it. In the following example we show how it is possible to calcu-
late the optimal scale that satis...es all these ful..llments.

Example 4 Let us come back to the transition rules (5) and the struc-
ture function (see table 1) already used in example 1. In order to min-
imize the global asymptotic fairness, we consider all the scales of pre-

miiime h = (h.-h.-h.-h.\ caticfsinn the fallowinn linear ranctrainte and



where the stationary unconditioned probabilities %; are the same as in
(6).

Commercial constraints. Following the last discussion, we arbitrar-
ily set the following requirements for the scale of premiums:

1. Let the premium of the highest discount class (i.e. the ..rst bonus-
malus class) be at least the 30% of the premium of class 3. This
Is to say:

by _ 0:3bs (19)

2. Let the premium of the more expensive class (i.e. class 4) be at
most twice the premium of class 3. This is to say:

by, 2bs (20)

3. Let the premium in every bonus-malus class be at least 10% more
expensive than the premium in the precedent class. That is:

biv1 . L1:lbi; 1=1;23: (21)

Observe that the monotony is assumed through the last restrictions
(21). As we will see soon in the resolution, it is not necessary to
write down the nonnegativity restrictions on the scale of premi-
ums. We will write C; for the set of commercial constraints that
have been just de..ned.

Finally, as we want our BMS to be the closer the better to perfect
fairness in the steady-state, we have to minimize the same objective as
in (15). Therefore, the linear goal program that we are going to solve
is the following:

i~ Dam VA TR o N 7 AN\



the nonnegativity constraints on the deviation variables. Solving it by
means of the simplex method, we obtain the following optimal scale of
premiums b :

b] = :2827527095; b = :4293238448;
b3 = :9425090315; bj = 1:885018063

We stress on the fact that scale b would give a BMS in ..nancial equi-
librium closest to the perfect fairness represented through yy(.) (in the
sense explained in (8)), given the transition rules (5) and the commer-
cial requirements C;. The (optimal) deviation variables associated to
this scale are indicated in table 3:

TABLE 3

which clearly improve the ones obtained in example 1 (see table 2).
Noting y“(,) the asymptotic fairness of this new BMS, we can plot it
in ..gure 5, where we can also ..nd the plots of y;(.) and ys(.):

FIGURE 5

The optimal value for the global asymptotic fairness is
Y Ro:Uic, = 103443138919 (23)

Comparing (23) with (10), we conclude that this last scale gives a bet-
ter global asymptotic fairness than the one calculated in example 1. We
recall that it has not been necessary to assume the nonnegativity con-
straints on the premiums. The ratios between successive premiums are

jol bu bD
=2 =152, =2 722 =2
bl b3 bs

Looking to table 3 we remark that the excess paid by the best policies
(those with _1 = 0:15) remains the greatest among the whole risk group.
This can motivate the calculation of a new optimal scale of premiums

"2



The new set of commercial constraints containing (24), (20) and
(21) will be noted C,: Therefore, the new linear program is

XX
min (v +y{)y; (25)
gy) o
G b)Y Y =L (=1000510)
%)ﬁ;;y,—* .0 (G=1::510)
n_b;Y; = :4999278192
b]_ - O:Olbg
by 2bs
T obis1 o Lilbi; 1=1;2;3:

S:t

Solving (25) we obtain the scale of premiums b (satisfying also the
..nancial equilibrium constraint):

bi® = :01600753544; b3” = :9384912706;
b3® = 1:032340398; by," = 1:442028527

Table 4 presents the optimal values for the deviation variables:

TABLE 4

In ..gure 6 we can see the plots of the functions y4(.);y"(.) and y™(,):
Recall that the perfect fairness would be represented graphically by means
of the abscissas axe:

FIGURE 6

The optinlggl value of the global asymptotic fairness corresponding to the
optimum b is

Yo .. = 1003095965614 (26)



2 Restricting ourselves to the policies with risk parameter _; = 0:15
the fairness has been improved, because we have gone from y;" =
11617726831 (see table 3) to y;” = :0058068755 (see table 4): Re-
peating the calculations made in example 1 (see (7)), this means
that the best policies in the risk group, which were paying un-
der the commercial requirements C; the 207% of their true risk
parameter

;3117726831

0:15 +:1617726831 = :3117726831 ) ST = 2:078484554,

are now only paying under C, the 103% of 1 :

:1558068755
0:15 + :0058068755 = :1558068755 ) o 1:038712503:

Recall that these calculations are valid for policies in the steady-
state.

2 Perfect fairness has been achieved for policies with risk parameters
.2 =0:30 and _3 = 0:45; for their optimal deviation variables are
null. The frequency of these policies is equal to

Uz +us = 6372578
approximately a 63:7% of the whole risk group.

2 0On the other hand, it is clear from tables 3 and 4 that the scale
b makes worse the fairness for the worst policies, i.e. those with
risk parameters f_j :j = 7;8;9;10g: But this is not relevant from
the global point of view, because the frequency of these policies is
equal to



the individual mean claim amount EfXg. As a matter of fact,
we think that a general characteristic of the scale of premiums
b s to approach the perfect asymptotic fairness while preserv-
ing the ..nancial equilibrium by means of a decreasing of the ..rst
premium at the price of increasing the second and third ones.

2 Finally, a look to ..gure 6 and to the optimal value (26), tells us
that the situation of perfect fairness symbolized by means of the
constant function yy(.) = 0; has not been reached (as we expected)
though it has been fairly well approached over the most signi..cant
values of the risk parameter.

5 Summary and conclusions

In this paper we try to show how it would be possible to analyze and
evaluate the asymptotic fairness of a BMS applied to a risk group. In
other words, we try to quantify to what extent does a BMS achieve
the goal of better assessing individual risks in the long run. Having
in mind this objective, the best case would correspond to a Bayesian
bonus-malus (i.e. Exact Credibility) acting through an in..nite number
of periods as it is known that the dicerence between the premium paid
by each insured and his true parameter _ would be asymptotically null.
Thus we can represent this case by means of the limit null function
Yo(.) = 0; and refer to it as the case of perfect fairness. On the other
hand, the worst case would be represented by the absence of any BMS,
so every insured would pay the same pure premium. As we assume the
simplest case where all the distributions remain the same along the
in..nity of periods (i.e. bonus hunger is not considered), and the mean
claim amount is supposed to be EfXg = 1; we can represent this case
by means of the function y1(,) = Efag j .; where @ is the structure
variable over the risk group. This case is told unfair because the good
risks will pay the same pure premium as the bad ones. We can then



with risk parameter _; when approaching the steady-state: Analyzing
the deviations associated to a BMS could be helpful to decide if the
BMS is worth to the insureds with a certain risk parameter or to the
insurance company (see example 1).

The leading idea of our analysis is to realize that the more resem-
bling will be y(,) to the constant null function yy(.); the higher will
be the asymptotic fairness of the corresponding BMS. Nevertheless,
when comparing the asymptotic fairness of two BMS we are driven to
pointwise comparisons between the corresponding y(,) that could be
harmful and useless because we would not have take into account the
composition of the risk group, i.e. its structure function. _

To overcome this di¢culty, we de..ne a measure Y(R;b;U) of the
global asymptotic fairness (9), associated to a set consisting of some
transition rules R, a scale of premiums b, and a structure function U
characterizing the risk group. The measure Y is de..ned as the integral
owver [0;+1] of jy(,)j; the absolute value of y(,): We try this way
to quantify the degree of resemblance between an asymptotic fairness
y(.) corresponding to a given BMS and the null function yo(,): The
almost sure identity between y(,) and yo(,) would correspond to Y = 0;
although this situation cannot actually be reached by any BMS. With
this measure we are able to rate the asymptotic fairness of dicerent
BMS: the lower will be the measure, the higher will be the asymptotic
fairness of the BMS introduced in a given risk group. This is what we
have done in examples 3 and 4.

Although this represents an achievement, the very interesting prob-
lem would actually consist in optimizing the global asymptotic fairness
Y., (b) with respect to the scale of premiums, considering given the
transition rules and the structure function. If we were able to solve this
problem we might compare the optimal values of the global asymptotic
fairness associated to dicerent transition rules, each one equipped with
its optimal scale of premiums, applied to a given risk group character-
ized by means of a structure function U.
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optimums found this way are useless, because the feasible set of this
linear program does not take into account very important properties
that a scale of premiums should verify, as are for instance the ..nan-
cial equilibrium or some conditions that we have named commercial
requirements.

We have found that including these conditions as linear constraints
in the de..nition of the feasible set can produce feasible linear programs
as are for instance (22) and (25). Therefore, in this paper it is shown
how it is possible to calculate, by means of Linear Goal Programming,
scales of premiums that jointly match the following goals:

2 Bring the asymptotic fairness closest to the perfect fairness rep-
resented by the Bayesian case.

2 Verify the condition of ..nancial equilibrium.

2 Verify some conditions, to be de..ned by the decision maker, re-
lated to the monotony and nonnegativity of the scale of premiums,
to the maximum and minimum premiums, and ..nally to the ra-
tios between premiums in consecutive bonus-malus classes. These
conditions are named commercial requirements.

Example 4 is intended to show that the ideal situation of perfect
fairness could be fairly well approached, at least for the major part of
policies belonging to a risk group (see table 4 and ..gure 6).

When trying to minimize the global asymptotic fairness by means
of this methodology, the only limitation is to translate the conditions
imposed to the scale of premiums into linear constraints that ..nally
produce a feasible program. Newertheless, infeasibility would be also
a valuable information, because it would denounce the nonexistence of
the scale of premiums satisfying the conditions written down in the
de..nition of the feasible set.

We think that matching simultaneously those three goals repre-
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modelling a practical problem by means of an optimization method, is
that the optimums have not to verify any other conditions than the
ones stated in the feasible set. Thus using this argument, the neces-
sity of including the remainder conditions could be justi..ed as inherent
to the modelling process. We could also note that thinking that the
asymptotic fairness is sensible to dicerent commercial requirements is
not a strange idea. Newertheless, we have to stress that a linear goal
program that included only the constraints related to the asymptotic
fairness and the ..nancial equilibrium constraint would still result in
useless optimums: for instance we could get scales with the same pre-
mium in many bonus-malus classes, or non monotonic scales, or even
more, scales with negative premiums.
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Figure 1 : The two functions y1(,) = Efag j , (taking Efag ~
0:5) representative of the case where no BMS has been de..ned, and
Yo(,) = 0 where ewery risk is paying in the long run a premium corre-
sponding to its own claim frequency.



Figure 2: Plots of the stationary conditioned distributions %;(_)
(i = 1;2;3;4) corresponding to the transition rules (5).



Figure 3 : Plots of the functions y1(.); ys(.); and yo(,): The sec-
ond one corresponds to the asymptotic fairness of the BMS de..ned in
example 1.



Figure 4 : Adetail of ..gure 3 over the _ jinterval [0:48; 0:55]; where
we can appreciate the central value and the intersection between y1(.);
and yg(.):



Figure 5: Plots of the functions y°(,) (asymptotic fairness in the
optimized case); y1(.) and yg(.) (case of the Bayes scale of premiums,
see example 1). The optimal value for the global asymptotic fairness is

RoUc, — :03443138919:



Figure 6 : Plots of the three functions y1(,); y°(,) and y*°(,): The
optimal value for the global asymptotic fairness corresponding to the
last case is Yix ..c, = :003095965614: Remember the case of y*(, ) gave
us the optimal value Y& ., = :03443138919:



.j 0.15 0.30 0.45 0.60 0.75

- 0.90 1.05 1.20 1.35 1.50

uj © 02036232 :02039220 :002342893 :002511476 000620741

Table 1: The structure function.



NE 0.15 0.30 0.45 0.60 0.75

yj+ :.3044530309 .1695400958 .0391483628 0 0

y-li : 0 0 0 .0861875930 .2074495780
. 0.90 1.05 1.20 1.35 1.50

yj - 0 0 0 0 0

yit .« .3271380522 .4482204418 5728807610 .7020168509 .8355064740

Table 2: The deviation variables corresponding to the Bayes scale
calculated in example 1.



.j 0.15 0.30 0.45 0.60 0.75

yj+ 1617726831 .0609319672 0 0 0

yi 0 0 0098250314 .043786144 .043503
. 0.90 1.05 1.20 1.35 1.50

yj - 0 0 .0080295938 0 0

yit ©  .022555679 0 0 .0071117622 .0071117649

Table 3: The optimal deviations associated to the optimal scale of
premiums b :



.j - 0.15 0.30 0.45 0.60 0.75

y; . .0058068755 0 0 .0040047857 .0056127103
yi 0 0 0 0 0

.. 0.90 1.05 1.20 1.35 1.50

yj - 0 0 0 0 0

yid © .0044224675 .0339965124 .0865322326 .1609985415 .2538702075

Table 4: The optimal deviations associated to the optimal scale of
premiums b :



