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Descriptive Analysis of Matrix-Valued Time-Series

In this article we present a technique of data analysis applied to three-dimensional tables
as, for instance, matrix-valued time-series. The main goal of the method is to describe the evo-
lution of the statistical units with respect to time in a space summarizing the set of matrices.
Moreover, our technique points out similar statistical units provided by a classification of their
trajectories.

1. Introduction

study a set of observations of p variables measured on n statistical units. Nevertheless, few
methods [Kroonenberg (1983)], [Escoufier (1985)], [Casin (1995), (1996)] are developed to
analyse repeated observations of nx p matrices. Without loss of generality we will consider repeti-
tions of these matrices only over the time.
As a global approach we conduct a three-steps analysis of this type of data:

‘ arge data sets are common in most sciences. In particular, factor analysis is widely used to

1. Analysing each data matrix to get an idea of the data structure at time t, t € {1,...,T};

2. Constructing and analysing the T x p matrix whose rows contain the means or medians
of each data matrix to get an idea of the global evolution of the process under study;

and, finally,

3. Finding a common space to describe the evolution of statistical units and relationships
between variables with respect to time.

In the article we have mainly developed the third point with techniques based on Principal
Component Analysis (PCA). PCA is also a way to perform the above mentioned first and second
steps.

The concern of Section 2 will be the construction of the common space, on which the data sets
will be projected. The choice of that space is based on an optimality criterion applied to measures
of dispersion. In Section 3 we present a descriptive method of analysis of matrix valued time series
which consists in projections, with respect to time, of statistical units or variables on principal di-
rections of the common space. We call these projections trajectories, and we classify them to exhi-
bit similarities. In Section 4 we apply our method to a 26 x 8 x 26 matrix: 26 years of observations of
8 variables of rates of mortality in 26 Swiss cantons.

We define a data set as a three-dimensional matrix denoted by K= (X;e)izi njcipi=i, 1+
where x;; represents the value of the j” variable for the /" statistical unit at time t.

Another way to define such a data set is given by K={X,|t =1,...,T}, where X, is the nxp
matrix of observations at time t.

The first step in the analysis of our data sets is to perform PCA on the T matrices X, to explore
the structure of each matrix in order to point out important changes in the structure of the data. In
this article we do not discuss this type of question.
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The second step consists in applying PCA to X, the T x p matrix of the means over statistical
units, which t “row equals (X1t )j=1,p- The goal of this PCA is to summarize and exhibit the global
evolution of the T matrices in subspaces generated by principal axes of X,,.

In the third step, PCA is conducted on X = (X;.), the nx p mean matrix over the time, to define
directions of projection of statistical units or variables to study their evolution with respect to t. We
remark that if T=1, there is no common space to define, and usual PCA provides exactly what we
search for. Let us recall that the optimum properties of PCA are direct consequences of the pro-

’
perties of the Rayleigh quotient r, (v) = w where V'is the variance-covariance matrix related
to X. vV
Hence the concern of this article is to extend the PCA approach for the cases when T > 1.
In this context the following question arises: how to define V, when T matrices of sizenx p have
to be analysed simultaneously, and the common space will be defined through a criterion based
on a ratio similar to r, (v).

2. General Framework

Given a data setK there exists at least four ways to define the matrix V with respect to X,
a matrix constructed by means of the set of matrices X,.

Let us consider "=(1 1 ... 1), the identity matrix /, and X{ =(I—11/n)X,. To simplify the
notation let X, = X and V, = (X{)'X¢.

LX=0G X o X, W=DV

XX, XX, ... X{Xq
X0X, :
2. X:(X1 X2 XT)r W2 = : . '
XIX, XiX, .. XiX:
X, 0 ... 0 XX, 0 0 )
0 X, 0 0 XX, 0 |
3 X= . . . ’ W3 = . . ’
0 0 ... X 0 0 ... XX

GivenV, letT'={v,,v,,...,v,} be a set of rorthogonal vectors and let us define (", V) =er(vk)
as the sum of the squared lengths of the projections of the rows of Xonv, ,k =1,2,...,r.In cases
Tand4v, e R? andpdefines a global measure of dispersion of the data set captured by the space
generated by the vectors of .

Atanytimet, ¢(,V,)is the dispersion of the data matrix X, captured by the space generated
by T As

eTW) =3 0T 1),
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%(p(l“,l/% ) measures the mean dispersion of the data set captured by the space generated by the

setT.
Cases 2 and 3 are not relevant to our problem as the dimension of the projection directions do
not match the original data.
In Case 4 we have
W, = Zch +>CCXIX,

i)

and we can write
oT,W,) Zcr(p(l"\/ +Zc c; 00X X),

which shows that the dispersion captured by I’ |5 composed of a within each year part and
a between every couple of years part.

Moreover, if
¢ =

~ -

then ]
oCW,) = Tz[cpmwl) +> o XX )j.

i#j

As in the standard PCA we can consider a dual approach based on the study of the columns
instead of the rows of the data matrices, and we define for A = {u,,u,,...,u,}, a set of orthogonal
vectors, W(A, V') er Ug).

In that framework we should solve the following optimisation problem (OP):
mraX(p(F,V) and m/\axw(A,V')

to get the directions of projections of the statistical units and the variables on their respective
optimal subspace.

In fact, essentially for computational reasons we consider a slightly different optimisation
problem and we solve OP sequentially. We start to solve OP withT" and A containing one vector.
Then we solve OP, withT" and A still containing only one element, under the constraint of
orthogonality of that solution to the previous one and so on.

Itis well known that such solutions are given by the singular value decomposition of the above
given X matrix. The obtained eigenvectors generate the common spacesI'. and A..

Classical methods as generalized PCA, generalised canonical analysis, or STATIS method fit in
that general framework [Antille (2001)].

3. Trajectories

In the previous section we proposed a way to obtain a common space to represent the data
set.

In the common spacel’., atany timet, the statistical units have their respective positions given
by X.D, where D is the pxr matrix of eigenvectors of X'X. Similarly, at any time t, X;G gives the
coordinates of the variables in A., where G is the nxr matrix of eigenvectors of XX'; and wherer,
with r <rank(X), is equal to the number of eigenvectors we select to describe the data.
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A k-dimensional trajectory of the /™ statistical unit with respect to time is defined by
pi =piipiri...;pr) where p, = XDy, X isthei™ row of X, and Dy, is a pxk sub-matrix of D;
the coordinates of the t " vertex of that trajectory are given by p,. As k can be seen as a degree of
freedom left to the analyst there are as many as 2 trajectories; some of them being interesting for
graphical purposes, others for clustering statistical units.

Among the one-dimensional or two-dimensional trajectories only those corresponding to the
largest singular values have statistical interpretation. The one-dimensional trajectories should be
plotted versus the time, and graphical comparisons are quite easy (see Figures 4 and 5). The two-
dimensional trajectories have to be plotted in the plane generated by two chosen principal axes
(see Figure 3)

In order to compare trajectories we propose two distinct points of view, a location and an
evolution one.

In the location approach, comparisons are based on distances between vertices of trajectories
i and j, defined by

ds(i,j) =

Dit _pjr

p!

pi=pil, =2
t
H Hp being the L, — norm. In this case two trajectories are equal if they match exactly.

In the evolution approach, proximities are based on distances betweene,?, lags of order g for
the trajectory i, and e}’ — lags for j, where

e =py =Py t=q+1...T,1<qg<T -],

with too large values of g being meaningless. In this case two trajectories are similar if they are
linked by a translation.

Asit can be easily seen, graphical presentations of trajectories are often useless as there are too
many overlappings or simply too many trajectories on the plot. Clustering trajectories provide
a way to detect similar statistical units with respect to the defined principal axes.

4. Application

As an illustration of our descriptive approach to analysing matrix-valued time-series we study
the evolution of 8 mortality causes in the 26 Swiss cantons during 26 years. As there exist impor-
tant geographical, economic, and cultural differences between cantons we expect to point out
these differences by analysing our set of data, a 26 x 8 x 26 matrix. Moreover, sizes of the popu-
lation are also very different, so we have to consider the percentages of death due to infection, tu-
mour, diabetes, hart disease, respiration, accident, suicide, and others for each canton. To con-
struct the common space we choose the mean matrix over the time and perform a PCA on that
matrix after standardization. In that case the Kaiser criterion implies that only the first three com-
ponents are interesting as they capture 74.11% of the total dispersion. Eigenvectors, correlation
with the axes, and contribution of the variables to the construction of the axes are given in Table 1.
As computation was performed on a standardized matrix, correlations are equal to the coordina-
tes of the variables on the corresponding axis. Figure 1 contains the representation of the variables
in the common space of dimension two. As it can be seen, the first axis opposes heart disease to
infection and other causes of death, and the second axis opposes accident to tumour and dia-
betes.
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Table 1
Eigenvectors, correlation, and contribution of the variables
| cP1 | P2 | cP3

Infection -45 -81 199 13 16 1.64 03 03 .06
Tumour -34 -61 11.27 -49 -60 2437 25 26 597
Diabetes 30 54 8.72 -37 -45 13.57 44 47 19.00
Heart disease 52 94 2671 14 A7 2.05 -16 -.18 272
Respiration -.26 -47 6.82 -25 -30 6.18 -19 -20 3.50
Accident -14 —-25 1.85 .70 84 47.63 A5 16 214
Suicide -10 =17 93 =17 =21 2.98 -.80 -87 6524
Others -49 -.88 238 A3 15 1.58 12 13 137

The locations of the cantons (the list of abbreviations is provided in the appendix to the paper)
on the first PCA plane provide information on the similarities of causes of death; for instance, on
the first axis we observe that GE and VS have the highest rate of mortality due to infection as
pointed out on Figure 1.

The main interest of this descriptive method is due to the possibility of following graphically
the evolution of cantons with respect to time and making comparisons. The weakness of the me-
thod is a large amount of information, which could be included in such projections. Drawing all
the trajectories does not make sense as, usually, they will overlap, and the figure will be almost co-
vered by lines. Drawing trajectories for a few cantons, which seems similar on the compromised
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Figure 1. Plot of the variables on the first PCA plane
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Figure 2. Plot of the cantons on the first PCA plane

space, allows exhibiting differences as shown on Figure 3 for GE and VS on the first PCA plane. Dra-
wing one-dimensional trajectories, as for examples first PCA versus time or second PCA versus
time, is sometimes more informative (as shown on Figure 4 and Figure 5, again for GE and VS.) Dif-
ferences are obvious.

g
= —— GE
3 —@— VS
w

0 0.2 0.4 First PC 0.6 0.8 1

Figure 3. Trajectories of GE and VS on the first PC plane

These plots provide information to compare cantons or, more generally, to compare statistical
units.

Plots of variables versus time allow observing the evolution of causes of death as shown on
Figure 6, where we see the increase of diabetes. The trajectory of the infections changed sharply
around 1985, when the AIDS started to be counted as an infection.
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Time
Figure 4. Trajectories of GE and VS, first PC versus time
| \A
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= —B— GE2
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Time
Figure 5. Trajectories of GE and VS, second PC versus time
& —o— diabetes
2 m— infections

-1.5

Time
Figure 6. Diabetes and infections, first PC versus time

For general comparison we suggest using classification of trajectories. Figure 7 presents a clas-
sification tree of the cantons performed on Euclidean distances between two-dimensional trajec-
tories of the cantons with respect to the first PCA plane. As it can be seen, the structure provided
by the classification is close to the latent structure shown on Figure 2. This fact is explained by the
repartition of causes of death, which was almost stable during the observation period as the
structure reflected by time is similar to the one given by the common space.
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Figure 7. Classification tree of cantons based on two-dimensional trajectories

5. Conclusion

In this article a descriptive method of analysing three-dimensional matrices is presented.
Principal component analysis of a matrix, summarizing the data, provides directions of projections
of statistical units for construction of their trajectories with respect to time. Plots, clustering
methods, and classification trees of trajectories allow comparison of the evolution of the units. For
the variables a dual approach can be performed, and comparisons with respect to time are possible.

Appendix
The following table contains the list of abbreviations of the Swiss cantons.
Table 2

1. Zurich ZH |8.Glarus GL | 15.Appenzell R AR | 22.Vaud VD
2.Berne BE |9.Zug 7G| 16.Appenzell | Al | 23.Valais VS
3.Lucerne LU | 10.Fribourg FR | 17.5t Gallen SG | 24.Neuchatel NE
4. Uri UR |[11.Solothurn SO | 18.Grisons GR [25.Geneva GE
5.Schwytz SZ | 12.Basel-City BS |19.Aargau AG |26.Jura Ju
6.Obwalden OB | 13.Basel-L BL [20.Thurgau TG

7.Nidwalden NI | 14. Schaffhausen SH | 21.Ticino Tl
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X. AHmune

JlleckpunTUBHDBINA aHaNN3 BpeMeHHbIX pAA0B
CMaTpuLiaMu B KayecTBe 3HaYeHUN

B Hacmoswel cmamee Mbl Npedcmagigaem mMemoo aHanu3a OaHHbIX, NpUMeHsemell 071
mpexmepHbix Mabsul, Hanpumep, 019 8peEMeHHbIX PA008 C MAMPUUAMU 8 Kayecmae 3Haqe-
HUU. OcHo8HAg 3a0a4a 0aHHO20 Memood — ONUCAHUE 380/I0UUU CMAamucmuyeckux eouHuU
OMHOCUMENIBHO 8peMeHU 8 NPOCMPAHCMBe, CyMMUPYIOUEeM MHOXecmsao mMmampuy. bosee
Mo20, 3Ma MexHUKA N0380/AeM 8bIA8UMb NOXOXUE CMamucmuyeckue eouHUUbl, 0bHapy-
MKEHHbIE HA OCHOBE KNACCUGUKAyuU ux mpaekmopud.

KpaTkoe nsnoxexHue

PYMHblE MACCKBbI JaHHbIX YaCTO BCTPEYAIOTCA B HAYYHbIX MCCNeoBaHMAX. B uacTHoCTH, dak-
TOPHbI aHaNM3 LWMPOKO NPUMEHSAETCA ANA M3YUYeHUa MHOXKeCTBa HabmoaeHn p nepemeH-
HbIX, M3MEPEHHbBIX ANA N CTaTUCTUYECKNX eIVHWL. TeM He MeHee, cpeau CyLeCTBYIOWMX
[Kronenberg (1983)], [Escoufier (1985)], [Casin (1995), (1996)] kpaliHe Mano MEeTOAO0B A8 aHanm3a
MaTpuL pasmepHoOCTU Tnxp.
[N 3TOro TMNa AaHHbIX MOXET ObITb MPOBeAEH TPEXCTYNeHYaThI aHanm3.

e AHaNM3 KaXkAoM MaTpULbl AAHHbBIX /1A MOMyYeHNA TOUeUHbIX NpeCTaBAeHn 06 UX CTPyK-
Type.

o KOHCTpymMpoBaHue 1 aHanma matpuLbl T X p, UblM CTROKM COLlepKaT CpeaHue NN MeavaHHble
3HAYEHUs KaxkAoW MaTpuLibl AaHHBIX A1A MOAyYeHWs NpeAcTaBneHys o rmobanbHOM 3BOMOLMN
“3ydyaemoro npotjecca.

e HaxoxaeHne oblero NpocTpaHCTBa ANA OMNMCaHMA 3BOMOLNKU CTAaTUCTUUYECKUX eanHUL
1 B3aMMOOTHOLLEHWI MeXy nepeMeHHbIMN OTHOCUTENbHO t € T.

Kaxabl 13 3TUX WaroB OCHOBAH Ha aHanum3e rnaBHbIX KOMMNOHEHT (AfK), BbINOAHEHHOM ANA
Pa3nnyHbIX MaTpuL. ObLLEer3BECTHO, YTO ONTVMalbHble CBOMCTBA AK ABNAIOTCA HEMOCPEACTBEH-

!

o . v v
HbIM CNeAcTereM CBONCTB oTHoweHuA Pened (Rayleigh) r, (v) = ——, roe V — KoBapuraunoHHas
V'V

MaTpKLia 3TOro MHOXKeCTBA flaHHbIX. B JaHHOM KOHTEKCTe BO3HMKAET Cliefytolmii BONPOC: Kak on-
penenuTb V, korga MatpuLbl T pasMepomMn x p AOMKHbI ObiTb MPOaHaNN3MPOBaHbl O4HOBPEMEHHO?
Torna obljee NPOCTPaHCTBO OyaeT onpeAeneHo Yepe3 KpUTepuii, OCHOBAHHbIN Ha OTHOLLIEHWN,
CXOOHOM C 1y (V).

B cTaTbe NpeacTaBneHo yeTbipe pasHbix CNocoba onmcaHnsa MHOXECTB MaTpUL,. Takum obpa-
30M, Mbl UMeeM YeTblpe pasnyHble KOBapMaLIMOHHbIE MaTPULbI V, cnonb3yemble Ana onpeaene-
HUA YeTblpex rnobanbHbix Mep ancnepcun oI, V) = er (V4 ) MHOXeCTBa AaHHbIX, OXBAaUYEHHbIX
NPOCTPAHCTBOM, MOPOXAEHHBIM MHOXECTBOM OPTOroHaNbHbIX BekTopos I = {v,,v,,...,v,}. Kak
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M B Cllydae CTaHAapTHOro AfK, npu Mcnonb3oBaHWW ABOMCTBEHHOIO MOAXOAA Mbl MOMyYaem
YA V") = erl (Uy ) — rnobanbHyto Mepy Ancnepcrn B ABOMCTBEHHOM MPOCTPaHCTBE.

[pu TakoM NOCTaHOBKe 3aflauu, A1A MOAYYEHWA HanpaBAeHWU MPOEeKUW CTaTucTuue-
CKMX eAVHWLL 1 MEPEMEHHbIX Ha X COOTBETCTBYIOLLEE ONTMMANbHOE MOANPOCTPAHCTBO, Mbl AO/K-
Hbl PeLINTb CReayoLLYo ONTUMM3aLMOHHYO 3aaady: max e[, V) u maxy(A,V ") Obuien3sectHo,

Tr A

YTO peLleHns 3ToM 3aAaun NONyYaTCsa CNeKTpanbHbiM pasnoxervem V iun V' 311 cobcTBeHHbIe
BEKTOPbI reHepupyioT oblie NPOCTpaHCTBa. Knaccuueckre Metofbl, Takue Kak 0606uleHHble
AlK, kaHoHWYecKnit aHanu3 unu meton CTATMC COOTBETCTBYIOT 3TOM NOCTaHOBKe 3afdaun [Antille
(2001)1.

JleCcKpUNTVBHbIV METOA aHaNM3a BPeMeHHbIX PALOB C Mampuyamu 8 kayecmae 3HaveHud, ob-
Cy»[Jaemblil B HAaCTOALLEN CTaTbe, COCTOUT B MPOEUMPOBaHWM OTHOCUTENTbHO BPEMEHW CTaTUCTW-
YECKUX efIMHWIL] UK NMepemMeHHbIX Ha OCHOBHble HanpaBgsieHya obLero NpocTpaHcTea. Mbl Hasbl-
BaeM 3TV MPOEKUUN MPdekmopuamu. Pa3mepHOCTb TPAeKTOPUM PaBHa Pa3sMePHOCTY NOAMNPO-
CTPaHCTBA, Ha KOTOPOE NPOM3BOANTCA NpoeKunA. Cpean OAHOMEPHbIX UK ABYMEPHbBIX TPAEKTO-
PUA MOTYT ObITb CTATUCTUYECKM MHTEPNPETUPOBAHbLI TOTbKO TPAeKTOPWM, COOTBETCTBYIOL(ME
MaKCVIMasnbHbIM COOCTBEHHbBIM 3HaueHWsAM. O[HOMEPHbIE TPAEKTOPUN O KHbI ObITb HAHECEHbI Ha
rpaduk NpoTue T, UTO NO3BONAET AOCTATOUYHO NPOCTO NPOU3BOANTL Frpaduyeckme CpaBHeHUA
(pnc. 4 v 5). [IBymepHbIe TPaeKTOPMM HAHOCATCA Ha MIIOCKOCTb, reHeprpyemyto ABYMA MMaBHbIMU
ocamu (puc. 3).

[ina CpaBHeHWUA TPaeKTopUiA, Ha OCHOBaHWM Knaccupukaumm, mMbl npeanaraem MCcnonb3o-
BaTb [1BE Pa3Hble TOUKM 3pEHNA — PaCcNoNoxeHua 1 3BonoLmm. C TOYKK 3pEeHMA PACNONOKEHNS,
CPaBHEHMA OCHOBbIBAIOTCA Ha PACCTOAHMAX MEXAY BePLUIMHAMM ABYX UK Oonee TpaekTopun.
B 3TOM Ciyyae [Be TPaeKToOpUIM PaBHbl, €C/IM OHM MOMHOCTBIO COBMadatoT. B moaxoae, 0CHOBaH-
HOM Ha 3BOJIIOLMMK, CPAaBHEHWA CTPOATCA Ha PACCTOAHNAX MeXIY BPEMEHHbIMN MHTEpBaNaMu Of-
HOrO 1 TOrO »Ke NopAfKka g AnA AByx unv bonee TpaekTopui. B 3Tom criyyae aBe TpaekTopum no-
NOOHbI, ecnu CBA3aHbl NepemMelleHnem. Knactepbl TpaekTopui AatoT BO3MOXHOCTb BbIABATbL
CXOAHbIE CTAaTUCTMYECKME eAUHULIbI OTHOCUTENBHO YKe ONPeAeSIEHHbIX [MaBHbIX OCeN.

B KauecTBe MNIOCTPALMM BbILUEN3NTOKEHHOTO U3YYaeTCA YPOBEHb CMEPTHOCTN MO 8 NMpu-
YMHaM B 26 LIBEMLIAPCKNX KAHTOHAx B TeueHe 26 neT. [Ins KOHCTpyupoBaHus obLero npocTpaH-
CTBa BblOpaHa MaTpuLa CPeaHMX 3HAUYEHWI 33 3TOT Mepuo BpeMeHn 1 nposeaeHa AlK 3tol
MaTpVLbl moche CcTaHAaapTM3aumn. Ha puc. 1 Bocnpon3seeHbl nepemMeHHble B obllem npocT-
PaHCTBE Pa3mMepHOCTM 2. Kak MOKa3aHOo Ha pUCyHKe, nepBad OCb NPOTUBOMNOCTABAAET Cep-
AEUYHO-COCYANCTbIE U MHOEKLUMOHHbBIE 3a00MeBaHNA APYTMM NPUYMHAM CMEPTM, a Ha BTOPOW
ocn — AanabeT — camoybuiicTBam. NonoxKeHne KaHTOHOB Ha MIOCKOCTY MepBbIX BYX MaBHbIX
KOMMOHeHT AaeT nHOPMaLMI0 O CXOACTBAX B NPUUMHAX CMEPTHOCTU. HO OCHOBHOW MHTepec
[IAaHHOTO 1ECKPUNTUBHOIO METOAA 3aKN0YaeTCA B MONYUYEeHUM rpadmyeckoro MHCTpyMeHTa 1A
NpeacTaBNeHVA 3BOMIOUMM KAHTOHOB BO BPEMEHW 1 BO3MOXKHOCTM CPaBHWBATb MX (pUC. 4 1 5).
OTobpaxeHne «nepeMeHHbIX MPOTUB BPeMeHW» MO3BOMSET HabMnoaaTe 3BOMOLMIO NPUYMH
cmMepTHOCTK (purc. 6). Ans rnobanbHOro cpaBHeHMA peKOMeHIyeTCa MCNOMb30BaThb KnacCuduKa-
Ut TpaekTopui (puc. 7). CTpykTypa, NpeacTaBneHHasn 3Ton kKnaccubnkaumen, 6/1M3Ka CKpbl-
TOW (NAaTEHTHOW), NOKa3aHHOW Ha PUC. 2. ITOT GpaKT 0OBACHAETCA TeM, UYTO pacnpeaeneHmne
NPVYMH CMEPTHOCTM OCTaBaNOCh NPAKTUYECKN HEU3MEHHbBIM B TeUeHe BCero nepmnoaa Habnio-
OeHnA.
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