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ABSTRACT 

This paper studies the sensitivity problems of the benchmarking methods used in the regulation practice. Three 

commonly used methods have been applied to a sample of 52 electricity distribution utilities to estimate their 

cost efficiency. These methods include stochastic frontier, corrected ordinary least squares and data 

envelopment analysis. The results indicate that both efficiency scores and ranks are significantly different across 

various models. Especially considerable differences exist between parametric and non-parametric methods.  
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1. INTRODUCTION 
 

Regulatory reform and incentive regulation of power distribution utilities have been 

used more and more in many countries. In traditional cost-of-service regulation systems 

companies recover their costs with a risk-free fixed rate of return and therefore have little 

incentive to minimize costs. The incentive-based schemes on the other hand, are designed to 

provide incentive for cost-efficiency by compensating the efficient companies and punishing 

the inefficient ones. Main categories of incentive-based schemes used for electricity utilities 

are: price or revenue cap regulation schemes, sliding-scale rate of return, partial cost 

adjustment, menu of contracts, and yardstick regulation.1 Such payment systems are usually 

based on benchmarking that is, identifying the “best-practice” company(ies) to which all 

companies are compared. Inefficiency can be resulted from technological deficiencies or non-

optimal allocation of resources into production. Both technical and allocative inefficiencies 

are included in cost-inefficiency, which is by definition, the deviation from minimum costs to 

produce a given level of output with given input prices.  

In benchmarking applications the regulator is generally interested in accounting for a 

measure of firms’ inefficiencies such as X-factors in price cap regulation, in order to reward 

(or punish) companies accordingly. If the estimated inefficiency scores are sensitive to the 

benchmarking method, a more detailed analysis to justify the adopted model is required. 

However, in most cases it is difficult to identify the ‘right’ model among the set of legitimate 

ones.  Bauer et al. (1998) have proposed a series of criteria that can be used to evaluate if the 

results obtained from different methods are mutually “consistent”, that is, lead to comparable 

inefficiency scores and ranks. In particular, it is important that different models identify more 

or less the same companies as the “best” and “worst” practices. Authors like Jamasb and 

Pollit (2003) show that there are substantial variations in estimated efficiency scores and rank 
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orders across different methods.2 These variations may be explained by large estimation 

errors and inconsistency problems of individual efficiency scores in cross sectional data, as 

pointed out in Horrace and Schmidt (1996), Street (2003) and Jensen (2000).  

The efficiency estimates could be improved using panel data. In contrast with cross-

sectional data, panels provide information on same companies over several periods. Citing 

several examples taken from other industries, Kumbhakar and Lovell (2000)3 conclude that 

different panel data models are likely to generate rather similar efficiency rankings, especially 

at the top and bottom of the distribution. However, as pointed out in Farsi and Filippini 

(2004), in electricity networks applications, the conventional panel models cannot solve the 

discrepancies in individual efficiency estimates. Other studies such as Greene (2005, 2004), 

Farsi et al. (2005, 2006) and Alvarez et al. (2004) applied recently developed alternative 

panel data models in other industries. However, few studies have applied such models in 

electricity distribution networks. Moreover, the use of panel data in regulation practice 

remains extremely rare.  

In line with other examples like Jamasb and Pollit (2003), this paper studies the 

discrepancies in efficiency estimates from cross-sectional data. Several benchmarking models 

have been applied to a sample of 52 companies operating in Switzerland. Both stochastic and 

deterministic frontier approaches have been considered. The efficiency scores and ranks as 

well as the “best” and “worst” practices are compared across different models. The 

substantial observed variations suggest that consistency criteria such as those proposed by 

Bauer et al. (1998) are far from satisfied. Such discrepancies may suggest that the efficiency 

estimates should be used at the sector level rather than for individual companies. However, 

using an aggregate efficiency score for all companies although more accurate overall, could 

                                                                                                                                                                                         
1 See Joskow and Schmalensee (1986) for a review of regulation models and Jamasb and Pollitt (2001) for an 
survey of different regulation practices in electricity markets around the world.  
2 Other authors like Horrace and Schmidt (1996), Street (2003) and Jensen (2000) reported substantial errors 
and inconsistency problems in the estimation of individual efficiency scores in cross sectional data. 
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be counterproductive in that it may punish the relatively efficient companies and reward those 

that are less efficient than average. It is recommended that rather than using the inefficiency 

estimates in a mechanical way, the benchmarking analysis should be used as a 

complementary instrument in incentive regulation schemes. 

The rest of the paper proceeds as follows: Section 2 provides a discussion of the 

concept of cost efficiency and an overview of the main benchmarking methods. The model 

specification along with a brief description of the data is given in Section 3. The estimation 

results are presented and discussed in Section 4 and the conclusions are summarized at the 

end.   

 

2. COST EFFICIENCY AND BENCHMARKING METHODS 

Inefficiency in production can result from two sources: inefficiency in the adopted 

technology and the suboptimal allocation of resources. These two efficiency concepts are 

respectively referred to as technical and allocative efficiency. Overall cost inefficiency of a 

given company is the sum of these two inefficiencies.4 Basically, a simple indicator of 

inefficiency can be defined as the ratio of an output measure to an aggregate measure of 

inputs. Such indicators do not require a multivariate analysis. However, given that simple 

indicators cannot account for the environmental factors and other production characteristics, 

more elaborate methods are generally preferred. These methods are generally based on 

distance functions. The inefficiency of a production unit is measured as its distance form a 

frontier (envelope) that is the locus of the optimal production plans. Such distances are 

                                                                                                                                                                                         
3 See page 107. 
4 In benchmarking analysis, the firm’s inefficiency is limited to technical and allocative inefficiencies. The 
inefficiency due to the suboptimal size of the production unit (scale inefficiency) is generally excluded from 
benchmarking analyses because in regulated industries the company’s size is usually determined by demand 
factors.  
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measured by distance functions defined in the space of output(s) or input(s), resulting 

respectively in output-oriented and input-oriented measures of efficiency.5  

The methods used for measuring inefficiency are commonly referred to as frontier 

approaches. There are several frontier methods to estimate the efficiency of individual firms. 

Two main categories are non-parametric methods originated from operations research, and 

econometric approaches.6 In non-parametric approaches like DEA, the cost frontier is 

considered as a deterministic function of the observed variables but no specific functional 

form is imposed.7 Moreover, non-parametric approaches are generally easier to estimate and 

can be implemented on small datasets. Parametric methods on the other hand, allow for a 

random unobserved heterogeneity among different firms but need to specify a functional form 

for the cost or production function. The main advantage of such methods over non-parametric 

approaches is the separation of the inefficiency effect from the statistical noise due to data 

errors, omitted variables etc. The non-parametric methods’ assumption of a unique 

deterministic frontier for all production units is unrealistic. Another advantage of parametric 

methods is that these methods allow statistical inference on the significance of the variables 

included in the model, using standard statistical tests. In non-parametric methods on the other 

hand, statistical inference requires elaborate and sensitive re-sampling methods like bootstrap 

techniques.8  

Apart from a few exceptions, all the parametric methods consider a stochastic frontier. 

Thus, this group of methods is often labeled as Stochastic Frontier Analysis (SFA). The main 

exception with a deterministic frontier is the COLS method. In this approach the 

inefficiencies are defined through a constant shift of the OLS residuals (cf. Greene, 1980). As 

                                                            
5 See Kumbhakar and Lovell (2000) for an extensive discussion. 
6 See Coelli et al. (1998), Chapters 6 and 7, and Simar (1992) for an overview of non-parametric approaches and 
Kumbhakar and Lovell (2000) for a survey of parametric methods. 
7 See Coelli et al. (2003) for more details on DEA.  
8 These methods are available for rather special cases and have not yet been established as standard tests. See 
Simar and Wilson (2000) for an overview of statistical inference methods in non-parametric models. 
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the entire stochastic term is considered as inefficiency, the frontier remains deterministic. In 

SFA models, on the other hand, the residuals are decomposed into two terms, a symmetric 

component representing statistical noise and an asymmetric one representing inefficiency. 

This approach is due to Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck 

(1977).  

DEA method is the most commonly used approach in practice. In a sample of N 

companies with a k-input-m-output production function with variable returns to scale (VRS), 

the measurement of cost efficiency using DEA method reduces to the following minimization 

problem:  
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where wi and xi are kx1 vectors respectively representing input prices and quantities for firm i 

(i= 1, 2, ...., N); yi is an mx1 vector representing the given output bundle; X and Y are 

respectively input and output matrices namely, a kxN and a mxN matrix consisting of the 

observed input and output bundles for all the companies in the sample; N is an Nx1 vector of 

ones; and λ is an Nx1 vector of non-negative constants to be estimated. The VRS property is 

satisfied through the convexity constraint (Nλ=1) that ensures companies are benchmarked 

against companies with similar size.  

The minimization problem given in (1) can be solved by linear programming (LP) 

methods. The LP algorithm finds a piece-wise linear isoquant in the input space, which 

corresponds to the minimum costs of producing the given output at any given point. The 

solution gives the minimum feasible costs for each company namely, ' *
i iw x , where *

ix  is the 

optimal input bundle for firm i. The cost-efficiency of each production plan is then estimated 

as its distance to the envelope. Namely, firm i’s cost efficiency is therefore obtained by:  
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where o
ix  is the observed input bundle used by company i.  

 COLS approach is based on the OLS estimation of a parametric cost function, usually 

expressed in logarithms:  

 ( )ln ,i i i iC f y w ε= + , (3) 

where Ci is the actual costs incurred by company i, and f() is the cost function; and εi is the 

stochastic error term. After correcting this term by shifting the intercept such that all residuals 

εi are positive, the COLS model can be written as:  

 ( ) { } { }  0ln , min ,  with mini i i i i i i i i iC f y w u uε ε ε ≥= + + = − , (4) 

where ui is a non-negative term representing the firm’s inefficiency. The cost-efficiency of 

firm i is then given by: exp( )i iEff u= . 

 The main shortcoming of this method is that it confounds inefficiency with statistical 

noise: the entire residual is classified as inefficiency, thus the cost frontier is deterministic. In 

the stochastic frontier model the error term is composed of two uncorrelated parts: The first 

part ui, is a one-sided non-negative disturbance reflecting the effect of inefficiency, and the 

second component vi, is a symmetric disturbance capturing the effect of noise. Usually the 

statistical noise is assumed to be normally distributed, while the inefficiency term ui is 

assumed to follow a half-normal distribution.9 The SFA model can be written as:  

 ( )ln ,i i i i iC f y w u v= + + , (5) 

This model with a normal-half-normal composite error term can be estimated using 

Maximum Likelihood Estimation method. Similarly the cost-efficiency of firm i is given by: 

exp( )i iEff u= . 

                                                            
9 Other extensions of this model have also considered exponential and truncated normal distributions for the 
inefficiency term. See for instance Battese and Coelli (1992). 
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3. MODEL SPECIFICATION AND DATA 

In this section we study a simple example of benchmarking on power distribution 

utilities to illustrate the potential differences and the resulting problems faced by the 

regulator. The example has been chosen from the Swiss power distribution sector. The 

sample consists of 52 utilities operating in 1994. The cost efficiency of these companies has 

been analyzed by three benchmarking methods: DEA, COLS and SFA.  

A triple-input single-output production function has been considered. The output is 

measured as the total number of delivered electricity in kWh, and the three input factors are 

set as capital, labor and the input power purchased from the generator. Capital price is 

measured as the ratio of capital expenses (depreciation plus interest) to the total installed 

capacity of the utility’s transformers in kVA.10 The capital costs are approximated by the 

residual costs that is, total costs minus labor and purchased power costs. Labor price is 

defined as the average annual salary of the firm’s employees. For those companies that 

produce part of their power the average price of input electricity is assumed to be equal to the 

price of purchased power. 

The costs of distribution utilities consist of two main parts: the costs of the purchased 

power and the network costs including labor and capital costs. There are therefore two 

alternatives for measuring cost efficiency in power distribution utilities: total costs approach 

and network costs approach. The network costs approach has a practical advantage in that the 

estimated average costs can be directly used in a price-cap formula.11 However, this approach 

neglects the potential inefficiencies in the choice of the generator and also in the possibilities 

of substitution between capital and input energy. In this paper we use the first approach based 

on the total costs. 

                                                            
10 Because of the lack of inventory data the capital stock is measured by the capacity of transformers, which are 
the main device used to transfer electricity in the network.  
11 Notice that the price cap is generally applied to the network access.  
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In addition to input prices and output, several output characteristics are included. The 

resulting specification of the cost function can be written as:  

C = C(Y, PK , PL , PP , LF, CU, AS)     (6), 

where C represents total cost; Y is the output in kWh; PK , PL and PP are respectively the 

prices of capital, labor and input power; LF is the ‘load factor’ defined as the ratio of utility’s 

average load on its peak load; CU is the number of customers; and AS the size of the service 

area served by the distribution utility.12 

For the parametric models used in this paper we have chosen a Cobb-Douglas 

functional form. The condition of linear homogeneity in input prices is imposed by dividing 

the input prices by the price of purchased electricity. The cost function can therefore be 

formulated as:  
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where ri represents the residuals, namely, a mean-zero iid error term for COLS and a 

composite normal-half-normal iid term for SFA model, as described respectively in equations 

(4) and (5). In the case of COLS model the cost function in (6) can be estimated using the 

OLS method, whereas in the SFA case, Maximum Likelihood Estimation (MLE) method can 

be used. The SFA model requires a distribution assumption about the residuals. Here we 

assume a half-normal distribution for the inefficiency term and a normal distribution for the 

statistical error. 

The specification given in (6) can be readily used in the DEA method. In this method 

there is no need to specify any functional form. The quantities of labor, capital stock and the 

amount of input energy are considered as input. Labor and capital inputs are respectively 
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measured as the number of full-time equivalent employees and the installed capacity of the 

transformers.13 The output (Y) and the five output characteristics in (6) are considered as 

output. With the exception of load factor (LF) all these characteristics take resources, thus can 

be considered as an output. As for the load factor, since a higher LF implies a smoother 

demand, thus lower costs, the corresponding output characteristics in the DEA model is 

defined as the inverse of LF. Therefore, the DEA model can be considered as a production 

with three inputs and six outputs. We assume variable returns to scale (VRS) for the DEA 

model.14 The descriptive statistics are given in Table 1. 

 

Table 1. Descriptive statistics (52 observations) 

  
Mean 

Standard 
Deviation 

 
Minimum 

 
Maximum 

 
Total annual costs per kWh 
output (CHF) 

 
 

.188 

 
 

.0275 

 
 

.150 

 
 

.276 

 
Annual output (Y) in GigaWh  

 
 

258.65 

 
 

350.01 

 
 

17 

 
 

1474.8 
 
Number of customers (CU) 

 
26160.5 

 
32260 

 
2648 

 
126,655 

 
Load Factor (LF) 

 
.5593 

 
.0628 

 
.3689 

 
.6594 

 
Service Area (AS) in km2 

 
18,558 

 
41,673 

 
176 

 
198,946 

 
Average annual labor price (PL) 
per employee (CHF 1000)  

 
 

101.88 

 
 

28.38 

 
 

45.26 

 
 

204.13 
 
Average capital price (PK) in 
CHF per kVoltAmpere 
installed capacity  

 
 

95.64 

 
 

40.23 

 
 

32.31 

 
 

199.32 

 
Average price of input power 
(PP) in CHF/kWh  

 
 

.103 

 
 

.0213 

 
 

.0613 

 
 

.139 
     

 

- All monetary values are in 1996 Swiss Francs (CHF). 
 

                                                                                                                                                                                         
12 This specification is a simplified version of the model used in Farsi and Filippini (2004). The dummy 
variables are excluded. 
13 Note that the measurement unit of input factors is not relevant, as long as the prices are defined such that the 
resulting costs have the same unit. 
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4. ESTIMATION RESULTS 

The three models have been applied to cross sectional data from 52 companies’ 

operation in 1994. The cost frontier parameters for COLS and SFA methods are given in the 

appendix (Table A.1). Summary statistics of the estimated efficiency scores are given in 

Table 2. The efficiency scores are normalized to a scale between 0 and 1, where the highest 

value (1) implies a perfectly efficient company and the difference with 1 approximates the 

percentage of the total costs that that the company can potentially save. As the results in 

Table 2 suggest, the studied companies are on average about 86 to 92 percent efficient. The 

COLS efficiency scores are lower by 6 percent on average, than the other models. COLS and 

DEA methods are similar in that neither accounts for stochastic variation in the frontier. 

However, the DEA model has a non-parametric frontier, which can be considered as an 

almost perfectly flexible functional form. The average efficiency estimate is quite similar 

between SFA and DEA models, suggesting that a rigid model like COLS can underestimate 

the efficiency. These results also suggest that in our example, allowing for stochastic 

variation or a perfectly flexible functional form have at least on average, a similar effect on 

efficiency estimates.  

The correlation coefficients between the efficiency scores obtained from different 

models are given in Table 3. Although the COLS and SFA estimates show a quite high 

correlation, their correlation with the DEA estimates is relatively low. These results suggest 

that the efficiency ranking of the studied companies could considerably change depending on 

the adopted model. The correlation coefficients between efficiency ranks show a very similar 

pattern, thus are not reported in the paper.  

 

                                                                                                                                                                                         
14 The alternative assumption would be constant returns to scale. This assumption is too restrictive because it 
implies that all companies operate at the optimal scale. See Coelli et al. (1998) for more details. 
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Table 2. Summary statistics of efficiency scores (1994) 

 DEA SFA COLS  

Minimum .734 .819 .727 
Maximum 1 .977 1 
Average .917 .920 .858 
Median .932 .937 .864 

95 percentile 1 .973 .984 
N 52 52 52 

 
 

Table 3. Correlation between efficiency from different models (1994) 

  DEA SFA COLS  
 DEA 1 .563 .603 
 SFA .563 1 .961 

 

In order to see the differences in ranking individual companies, we studied the rank 

status of the ten most efficient and least so companies according to the SFA method. Table 4 

lists the efficiency ranks of these 20 companies based on the two other models. The results 

indicate a quite similar ranking across the two parametric methods (SFA and COLS), which 

is considerably different from that of DEA. However, the differences are less important for 

the first ten companies. In fact, the DEA model predicts a higher than 98% efficiency for all 

these companies. Notice that according to this model, 19 companies are perfectly efficient 

and 24 companies have an efficiency of higher than 95%. But for the ten companies at the 

bottom of the list, the differences are quite considerable. For instance, two of these companies 

are evaluated as perfectly efficient by the DEA model. On the other hand among the 19 

companies evaluated as 100% efficient by DEA, ten are less than 95% efficient and three are 

less than 90% efficient.  

Overall, our comparison shows that the DEA model predicts perfect efficiency more 

often than SFA. This might be due to the fact this model has no restriction on the functional 

form, thus provides more flexibility to account for unobserved differences among companies. 
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On the other hand, such perfect efficiency scores might be due to the sensitivity of the DEA 

model to outlier values and/or to the ‘curse of dimensionality’, a general problem in non-

parametric methods with a large number of variables.15 Unfortunately, there is no simple 

method to identify the extent of such problems especially for individual companies.  

 

Table 4. Efficiency ranking for the “best” and “worst” practices (1994) 

Companies ordered 

according to SFA DEA* COLS 

1 22 1 
2 1-19 2 
3 1-19 4 
4 1-19 3 
5 1-19 5 
6 1-19 6 
7 20 7 
8 1-19 8 
9 1-19 9 

10 1-19 10 
. 
. 
. 

. 

. 

. 

. 

. 

. 
43 1-19 43 
44 47 44 
45 41 46 
46 39 45 
47 45 47 
48 46 49 
49 1-19 48 
50 34 50 
51 52 51 
52 38 52 

 

* According to DEA method 19 companies are 100% efficient. 

 

The above example illustrates a main problem in benchmarking analysis, that is the 

discrepancy of the results across different methods. In some cases, the sensitivity of 

efficiency estimates is so high that a slight change in the model’s assumptions or including an 

additional variable might change the results considerably. Given the extremely large variety 

                                                            
15 See Simar and Wilson (2000) for a discussion of ‘curse of dimensionality’ and Simar (2003) for the outliers 
issue. 



 13

of models and specifications, this problem does not appear to have a clear solution. However, 

as our example suggests the sensitivity problems are less severe if the efficiency is estimated 

at the sector level rather than for individual companies.  

 

5. CONCLUSION 

With a frontier analysis of a cross-section of electricity distribution utilities, we 

illustrated the sensitivity problems of the benchmarking methods used in the regulation 

practice. Three commonly used methods have been applied to a sample of 52 electricity 

distribution utilities to estimate their cost efficiency. The results indicate that the efficiency 

estimates are significantly different across various models. This discrepancy appears to be 

high especially when the efficiency scores or ranks are considered for individual companies 

rather than the entire sector. We observed significant differences across models, in both 

efficiency ranks and scores. These differences are especially considerable between parametric 

methods and DEA approach. The results also suggest that the consistency conditions 

proposed by Bauer et al. (1998) are difficult to satisfy in the context of power distribution 

utilities.   
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Appendix 

Table A1. Cost frontier parameters- 1994 

 

 

* significant at p=.05; The sample includes 52 companies. 

 
 

 OLS SFA 

 Coeff. Std. Err. Coeff. Std. Err.

lnY .845* .052 .867* .051 

lnCU .103 .053 .079 .054 

lnAS .048* .013 .047* .011 

lnLF -.213* .127 -.210 .119 

lnPL .145* .034 .150* .029 

lnPK .171* .029 .169* .025 

Constant -3.053* .675 -3.345* .650 

σu (half-normal) - - .105 .042 

σv (normal) - - .056 .024 

R2 0.995 - - - 


