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ABSTRACT. This paper compares multi-criteria decision aiding (MCDA) and data 
envelopment analysis (DEA) approaches for assessing renewable energy plants, in 
order to determine their performance in terms of economic, environmental, and social 
criteria and indicators. The case is for a dataset of 41 agricultural biogas plants in 
Austria using anaerobic digestion. The results indicate that MCDA constitutes an 
insightful approach, to be used alternatively or in a complementary way to DEA, 
namely in situations requiring a meaningful expression of managerial preferences 
regarding the relative importance of evaluation aspects to be considered in 
performance assessment. 
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1. INTRODUCTION 

Over the last two decades, a growing environmental awareness has changed the focus 
of energy planning processes from an almost exclusive concern with cost 
minimization of supply-side options to the need of explicitly including multiple and 
conflicting aspects, such as cost and environmental issues, in decision support models. 
Its is now widely recognized that the largest source of atmospheric pollution is fossil 
fuel combustion, on which current energy production and use patterns rely heavily. 
Therefore, most crucial environmental problems derive from energy demand to 
sustain human needs and economic growth. Despite of this, their effective potential is 
far from being exploited, and Renewable Energy Sources (RES) are becoming 
increasingly important as supply-side options to satisfy energy needs, taking into 
account their dispersed generation capabilities, low levels or absence of pollutant 
emissions, and waste valuation potential. However, some drawbacks can also be 
associated with RES, such as their intermittent nature, as in the case of wind turbines, 
and various types of environmental impacts. 

                                                 
1 Paper presented at the 19th Mini EURO Conference on Operational Research Models and Methods in 
the Energy Sector (ORMMES’06), Coimbra, Portugal, 6-8 September 2006. 



 2

The Kyoto Protocol and the EU Renewables Directive are examples of ambitious 
political goals, which fostered the development of generation technologies based on 
RES. In this paper we address the case of the effective promotion of agricultural 
biogas plants in Austria, which use mainly energy crops (silage) for digestion, through 
guaranteed feed-in tariffs for electricity sold to the grid. 

The assessment of the global performance of different entities (potential solutions, 
courses of action) can no longer be based on a single-dimensional axis of evaluation, 
such as cost or benefit. Multiple, incommensurate and often conflicting axes of 
evaluation of distinct nature are inherently at stake. Therefore, economic, technical, 
societal, and environmental aspects must be explicitly taken into account in models 
for decision support, rather than aggregated in a single indicator (generally of 
economic nature). 

DEA is generally used to evaluate the efficiency of Decision Making Units (DMUs), 
which are comparable organizational entities performing similar tasks in a 
homogeneous operating environment. The introduction of preference managerial 
information is often relevant when assessing the units’ performance. In fact, a 
manager is not indifferent as to whether a unit is efficient, using a less important 
combination of inputs and/or outputs and neglecting inputs/outputs of the utmost 
importance. 

Uncertainty is an intrinsic characteristic of real-world problems arising from multiple 
sources of distinct nature. Uncertainty emerges from the ever-increasing complexity 
of interactions within social, economic and technical systems, characterized by a fast 
pace of technological evolution, changes in market structures, and new societal 
concerns. It is generally impracticable that decision aid models could capture all the 
relevant inter-related phenomena at stake, get through all the necessary information, 
and also account for the changes and/or hesitations associated with the expression of 
the stakeholders’ preferences. Besides structural uncertainty associated with the 
global knowledge about the system being modeled, input data may also suffer from 
imprecision, incompleteness, or be subject to changes. In this context, it is important 
to provide managers and decision makers with robust conclusions. The concept of 
robust solution is generally linked to a certain degree of “immunity” to data 
uncertainty, to an adaptive capability (or flexibility) regarding an uncertain future or 
ill-specified preferences, guaranteeing an acceptable performance even under 
changing conditions (drifting from “nominal data”). 

This paper uses both DEA and MCDA approaches for assessing the efficiency of 41 
agricultural biogas plants, with the purpose of obtaining complementary insights 
about these evaluations as well as the underlying methodologies. This has led us to 
face the issue of how can MCDA methods be used in the context of efficiency 
evaluation, trying to keep the spirit behind DEA, while being able to use MCDA’s 
capabilities of incorporating the preferences of a decision maker.  

The paper is organized as follows. Section 2 introduces and compares the two 
analytical frameworks studied. Section 3 describes the case study and how DEA and 
MCDA have been applied. The main results obtained are reported in section 4. In 
section 5 a discussion of the findings is made and some conclusions are drawn. 
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2. COMPARISON OF ANALYTICAL FRAMEWORKS 
 
2.1 DEA 
The attainment of high levels of performance is a key issue for the success of every 
organization. Therefore, an adequate management framework is necessary for 
evaluating the current performance, identifying benchmarks to use in seeking 
improvements, and understanding why some units in a particular organization are 
operating (in)efficiently. 

DEA is a non-parametric performance measurement technique, based on linear 
programming, for assessing the relative efficiency of DMUs. DMUs are homogeneous 
entities (such as sales outlets, electricity distribution companies, bank branches, 
schools, university departments, etc.) with some decision autonomy, operating a 
production process that converts a set of inputs into a set of outputs. DEA models use 
these inputs and outputs to compute an efficiency score for a given DMU when this 
DMU is compared with all the other DMUs. The relative efficiency of a DMU is 
defined as a ratio between the sum of its weighted output levels to the sum of its 
weighted input levels. In contrast to other parametric econometric approaches, such as 
stochastic frontier analysis, DEA does not assume any specific functional form, thus 
avoiding problems of model misspecification. 

In DEA, a DMU is considered efficient if there is no other DMU, or a linear 
combination of inputs and outputs of several DMUs, that can improve one input or 
output, without worsening the value of at least another one. The frontier is defined by 
the observed values of the (relatively) efficient DMUs. If a DMU does not belong to 
this envelopment surface (the convex hull of the efficient DMUs) and lies in its 
interior, then that DMU is operating inefficiently. DEA models usually return an 
efficient projection point of operation on the frontier for each inefficient DMU, thus 
identifying the DMUs that can be used as performance benchmarks for the DMUs that 
are operating inefficiently. 

Three basic DEA models are generally distinguished (see Charnes et al., 1994, for a 
presentation and comparative analysis of these models): 

1) CCR model – This model was presented in the seminal work of Charnes, Cooper 
and Rhodes (1978). The CCR model is based on the radial minimization 
(maximization) of all inputs (outputs) and assumes an environment of Constant 
Returns to Scale (CRS); 

2) BCC model – The Banker, Charnes and Cooper (1984) model is the Variable 
Returns to Scale (VRS) version of the CCR model. The difference between the 
two types of envelopment surfaces, CRS and VRS, is the presence of a convexity 
constraint; 

3) Additive model – The additive model originates in the work of Charnes et al. 
(1985). This model maximizes the L1 distance (also known as “city-block 
distance”) of the DMU under analysis to the observed efficient frontier and 
assumes VRS. 

DEA models have been extensively used to assess the performance of DMUs in a 
broad range of real-world problems. However, some important issues regarding the 
application of DEA with real-world data remain. Firstly, the complete weight 
flexibility assumed by DEA models often leads to efficiency results that are difficult 
to justify. The freedom of each DMU to choose the weights of inputs and outputs that 
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show it under the best possible light can lead to the assignment of very low weights. 
In practice, this means that certain inputs or outputs are effectively ignored (a 
disturbing effect of the free specialization allowed in DEA models, which is not 
generally acceptable in practice). 

Moreover, the inputs and outputs can be weighted in a manner that contradicts the 
views and/or preferences of the organization and their stakeholders, or even in a quite 
counterintuitive manner by valuing secondary inputs or outputs more than priority 
ones (Joro and Viitala, 2004). In fact, the inputs and outputs are not generally equally 
relevant and some preference information must be included in the analysis. Also, 
whenever the number of inputs and outputs grows the trend is that more DMUs 
become efficient, thus impoverishing the discriminating power of the DEA models. 

One of the techniques generally used to circumvent these issues is the introduction of 
additional restrictions on the variation allowed for the weights. These restrictions 
(absolute lower and upper bounds on weights or the ordering of input or output 
weights) intend to capture value judgments elicited from the managers on the 
perceived importance of inputs and outputs. However, as pointed out by some authors 
(Podinovski, 2004), the resulting efficiency score of weight-restricted models cannot 
be interpreted as a realistic improvement factor (because the efficient radial target of 
an inefficient DMU is no longer technologically feasible). 

In real-world problems, in which inputs or outputs are less tangible, the application of 
DEA models is also problematic. In fact, market costs and prices may not be readily 
available, which introduces an additional degree of uncertainty to the results. 

Another issue associated with DEA is the need of having in the DMUs set units with 
comparable production levels. A very large unit is at once deemed efficient because 
there are no other units with a similar production level. DEA models also lead to an 
amplification of the scale effect because small units are often appointed as scale 
efficient. 

 
2.2 MCDA 

These considerations led us to envisage the use of MCDA models to perform 
efficiency evaluation. However, instead of attempting to assign an efficiency measure 
to each DMU we believe that, in most real-world situations, assigning the DMUs to 
ordered efficiency categories is sufficient for analysis and provides more confidence 
on the results, in the sense of robustness to changes either in data or managers’ 
preferences, than a single numerical figure. Moreover, a more detailed analysis within 
each efficiency category is always possible whenever it is found useful to improve the 
discrimination of the evaluation model. 

In assessments of the performance of DMUs in which technical, economic and 
environmental aspects are at stake for, it is often important to use known standards (or 
theoretical maxima) and efficiency profiles. Also, there are situations in which DMUs 
must be appraised for efficiency on an “as they come” basis, i.e., they are not included 
in a given set of DMUs. This required capability of evaluating each DMU in absolute 
terms, and not just in comparison with other peers, as well as the need to include 
evaluation aspects expressed in different units and even measured qualitatively (that 
is, allowing independence towards scales), can be achieved using the ELECTRE TRI 
method (Yu, 1992). 
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The ELECTRE TRI method belongs to the ELECTRE family of multi-criteria 
methods developed by Bernard Roy and his co-workers (Roy, 1991; 1996). 
ELECTRE methods are based on the construction and exploitation of a so-called 
outranking relation between courses of action (DMUs in our context). Roy 
distinguishes three main problem types: choice, ranking and sorting (or classification). 
ELECTRE TRI is devoted to the sorting problem, which consists in assigning each 
alternative to one of a set of pre-defined ordered categories according to a set of 
evaluation criteria. The categories (Ch) are defined by specifying their boundaries (bh) 
by means of reference actions, in terms of the performance they achieve in each 
criterion (see fig. 1). 

 

 
Figure 1. Definition of categories Ch with reference actions bh. 

 

The assignment of each alternative a to a category Ch is done by comparing its value 
in each criterion to the performances of the reference actions. The procedure assigns 
each action to the highest category such that its lower bound blw is outranked by a. 
The outranking relation is verified by comparing a credibility index, computed using 
the differences in performance and the criterion weights, with a cutting level λ (λ ∈ 
[0.5,1]) which defines the “majority requirement”, hence the exigency of the 
classification. For further details about ELECTRE TRI see Yu (1992) and Mousseau 
et al. (1999), among others. 

In the present application of dealing with an efficiency evaluation problem by means 
of a multi-criteria sorting model the software package IRIS 2.0 (Dias and Mousseau, 
2003) has been used. IRIS implements a methodology developed by Dias et al. (2002) 
that is based on the ELECTRE TRI method, but which accepts uncertainty in the input 
parameters. The main characteristics of this software package are: 

• Acceptance of imprecision regarding the criterion weights and the cutting level 
through the definition of intervals for each parameter, or the definition of linear 
constraints. 

• Acceptance of classification examples, with the input of the better and worse 
category that each action can be assigned to. This is translated into constraints on 
the parameters that guarantee that those example results are reproduced. 

• Inference of a combination of parameters that limits the violation of the 
constraints in the case of inconsistency, by minimizing the maximum deviation. It 
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is also possible to find the constraint subsets, which must be removed to restore 
consistency. 

• Inference of a central combination of parameters through the maximization of the 
minimum slack associated with the constraints, when the constraints are 
consistent. For each alternative, it is shown which category represents this central 
combination, and the other possible classifications that respect the imposed 
constraints. 

Multi-criteria methods usually require a set of parameters that embody the preferences 
of the decision makers. The ELECTRE TRI method requires the specification of the 
reference profiles associated with the categories (b0,…,bh), the criterion weights, and 
the cutting level (λ). Also, a set of indifference (qj), preference (pj) and veto (vj) 
thresholds for each criterion and reference profile can be defined. Indifference and 
preference thresholds characterize the acceptance of imprecision in the judgment by 
considering as indifferent two actions when their performances in each criterion j 
differ less than a specified amount qj. Moreover, the transition from indifference to 
preference is made gradual, changing linearly from qj to pj. The veto thresholds are 
aimed at capturing situations in which very bad scores in any criterion should prevent 
an alternative of being classified in the best category or if these bad scores should 
force it to be classified in the worst category, independently of having very good 
scores in all other criteria. This enables, as it is often required in practice, to introduce 
a certain level of non-compensation into the evaluation model.  

A relevant issue in this context is the meaning of the weights in ELECTRE methods. 
In this type of methods, weights are perceived as true coefficients of importance 
assigned to the criteria, and not just as technical devices for translating the 
performances in the several criteria into a common value measure. Therefore, they are 
scale independent (that is, they are not linked to the scales in which each criterion is 
measured), thus making them easier to be specified by managers. These parameters 
bear the preference information and insights into the sorting process. In principle, they 
must be elicited from managers and stakeholders (preferably via an analyst with 
expertise on the methodological component). It must be noticed that this method 
imposes a non-negligible burden associated with the specification of all the 
parameters required. However, some of these parameter data can be preset according 
to the experience of the analyst, in general associated with previous case studies. For 
instance, indifference and preference thresholds can be fixed as percentages (say 1% 
and 10%, respectively) of the value ranges in each category. 

The IRIS software allows for the consideration of uncertainty in the weights (as well 
as in the cutting level). This feature contributes to reducing the data requirements and 
increasing the confidence in the results. 
 

3. CASE STUDY 

In Austria, an effective promotion of renewable energy technologies has been pursued 
in recent years, driven by the need to achieve ambitious energy and climate policy 
goals. Examples of this trend are the goals contained in the Kyoto Protocol (-13% 
greenhouse gas emissions by 2008/12, relative to 1990 levels) or the EU Renewables 
Directive (renewable electricity share of Austria to be raised to 78.1% by 2008, 
compared to e.g. 70% in 1997). In particular, the last few years witnessed a 
remarkable boom in the construction of agricultural biogas plants due to the 
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introduction of feed-in tariffs between 10.3-16.5 Cents€/kWhel, guaranteed for a 
period of 13 years, for ‘biogas’ electricity fed into the grid (Green Electricity Act, 
2002). As a consequence, the number of plants rose from 110 at the end of 2003 to 
more than 200 by the end of year 2004 (Madlener et al., 2006). These plants use 
mainly energy crops (silage) for digestion.  

However, up to now the promotion of energy crop digestion was hardly linked to any 
cost effectiveness or energy efficiency or other performance criteria. As a result many 
different technologies and specific applications occurred on the market, some of 
which were either not very productive, energy-efficient, or reliable.  

Due to the attractive feed-in tariffs granted, anaerobic digestion of energy crops 
currently mainly aims at the generation of electricity. As a consequence, the heat 
energy produced in co-generation units remains largely wasted. Also, many plants use 
electricity for cooling purposes, in order to prevent adverse effects from self-heating 
of crop digesters. Therefore, in many cases up to two thirds of the available technical 
energy potential remains unused (Braun et al., 2005; Walla, 2005). 

A monitoring and benchmarking project was initiated in 2004, which includes a 
detailed investigation of 41 Austrian energy crop digestion plants (cf. research 
database entry #8289 in www.rdb.ethz.ch). The project also aims at creating and 
establishing an evaluation system for the transparent assessment and benchmarking of 
the productivity of biogas plants by means of energetic, business economic, ecological 
and socio-economic criteria, characterizing the overall production cycle of biogas. 
Since anaerobic digestion has the potential of reducing greenhouse gas emissions 
(Braschkat et al., 2003), an important objective of the project is to evaluate the 
environmental impacts through the overall “crops to energy” process. Finally, positive 
and negative socio-economic impacts have been accounted for to a limited extent by 
means of a questionnaire survey among plant operators (subjective valuation, 
supplemented by measurable data).  

 
4. RESULTS 
 

4.1 Description of the data and parameters used 
The DMUs are a representative set of energy crop digestion plants in Austria, aimed 
at covering the whole spectrum of existing plant types and operating conditions. 
Samples were taken from the substrate, digester, fermentation residues and biogas 
plant types. Also cooling, safe transport and appropriate storage were scrutinized. 
Installations are geographically well distributed over the country. They range from 
small-scale installations (down to 18 kWel) in agricultural regions to larger scale 
plants (up to 1.7 MWel). Single substrate (energy crops) installations as well as co-
digestion plants (agricultural by-products and industrial bio-wastes) have been 
considered in the analysis.  

The main groups of evaluation aspects at stake for assessing the efficiency of energy 
crop digestion plants are: (1) substrate provision, storage and pre-treatment; (2) biogas 
production (digestion); (3) net utilization of heat and electricity; (4) digestate handling 
and disposal; and (5) methane emissions.  

In a first series of model specification, the following criteria have been considered for 
evaluating the efficiency of the energy crop digestion plants (for the sake of 
comparison between the DEA and the MCDA approaches): (1) labor (i.e. time) spent 
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for plant operation; (2) amount of substrate (organic dry substance, ODS) used; (3) 
amount of biogas produced or net electricity produced; and (4) methane emissions to 
the atmosphere (an undesirable output that contributes to the greenhouse gas problem, 
measured in CO2 equivalents). For further details on data collection see Braun et al. 
(2005). 

 
4.2 DEA 
Figure 2 depicts the outcome of the DEA for two different model specifications (CCR 
and BCC output-oriented). In each of the model specifications reported, we have used 
substrate and labor as factor inputs and the amount of net electricity and external heat 
as (desirable) outputs.2 Methane emissions have been considered as well in these first 
models. Some descriptive statistics are displayed in Table 1. 

 
Table 1: Descriptive statistics (N = 41) 

 Mean SD Min Max
Inputs:  
i1 – LABOR 1 581.29 1 934.47 50.42 10 950.00
i2 – ODS 1 450.13 1 184.93 119.94 5 029.62
Outputs:  
o1 – ELECPROD_NET 1 871 946.00 1 813 348.00 123 600.80 7 760 000.00
o2 – HEATUSE_EXT 735 319.80 1 099 279.00 0.00 6 000 000.00
o3 – METHANE  1 345.04 1 302.59 83.73 5 354.67

 

As can be seen in fig. 2, DMUs 12, (for BBC also 15), 17, 18, 20 and 28 form the 
efficiency frontier. For the case of the CCR model, 14 DMUs are below an (arbitrarily 
chosen) efficiency score of 0.6 and three below 0.5, while for the BCC model only 10 
DMUs are below 0.6 and none below 0.5.  

We also studied the sensitivity of the results with respect to the inputs and outputs 
considered in the DEA model. Interestingly, DMUs 12, 17, 20 and 28 are always on 
top of the rankings, determining the efficiency frontier, irrespective of whether labor 
is included as an input or not and whether the output is electricity only, heat and 
electricity, or biogas only.  

For the CCR model, the ranking of the best is more sensitive. In particular, the 
efficiency frontier is often determined by one or two DMUs only (12 and 28 ranking 
on top or at least showing a very high score). 

                                                 
2 ‘Net electricity’ and ‘external heat’ refer to the amount of electricity and heat delivered by the biogas 
plant for external consumption (i.e. net of what the biogas plant consumes itself), including farm 
operations not directly related to the biogas plant. 
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(a) CCR-O 

 
(b) BCC-O 

Figure 2. DEA results (inputs: substrate used, labor spent; outputs: net electricity 
produced, external heat used). 
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(a) CCR-O 

 
(b) BCC-O 

Figure 3. DEA results (inputs: substrate used, labor spent, methane emissions; 
outputs: net electricity produced, external heat used). 

 

CCR and BCC models were also built keeping the same inputs and outputs but adding 
methane emissions, which are considered an undesirable output, as another “input” to 
be minimized. These results are depicted in fig. 3. The main consequence of 
incorporating this new factor into the analysis is that DMUs 32 and 33 join the set of 
efficient solutions in both models. Note that DMU 33 was one of the worst-
performing units, with scores lower than 0.5, before adding methane emissions, and it 
becomes efficient due to a very good performance on this new evaluation dimension. 
On the other end of the spectrum, DMUs 5, 14, 26, 31, and 39 turn out to be the least 
efficient units. 



 11

4.3 MCDA 
Four efficiency categories are defined to classify the DMUs according to their 
efficiency: C1 = “Poor”, C2 = “Fair”, C3 = “Good”, C4 = “Very good”. The aim is to 
assign each plant to one of these ordered categories according to the multiple 
evaluation criteria. 

To define the different categories, it is necessary to set the category bounds b0,…,b4 
according to ncrit criteria/indicators which we denote as the evaluation functions gj(.) 
(j=1,…,ncrit). The decision maker must set these bounds, taking into account that 
according to an indicator gi(.), a DMUk with gi(DMUk)∈[ gi(bj-1), gi(bj)[ should be 
placed into Cj. It then becomes clear that the DEA’s inputs and outputs cannot be 
taken as sorting criteria without some sort of adaptation. For instance, in which 
efficiency category should a DMU with electricity production (indicator o1) of 900 
000 be sorted? Clearly, this question regarding efficiency cannot be answered without 
knowing at least the dimension of the plant. 

One of the modeling options is to consider as sorting indicators the ratio of inputs and 
outputs regarding some surrogate for the dimension of the plant, e.g., the amount of 
organic dry substrate (ODS) used. The indicators would then be Labor/ODS (g1=i1/i2), 
Electricity/ODS (g2=o1/i2), and Heat/ODS (g3=o2/i2). Another option, which we have 
used in the experiments described below, is to use all ratios between the outputs and 
the inputs in the DEA model. That is, the multiple efficiency indicators are ratios 
combining an output to maximize or minimize (in the numerator) with an input. Thus, 
the following indicators have been considered: Electricity/Labor g1=o1/i1 (max), 
Electricity/ODS g2=o1/i2 (max), Heat/Labor g3=o2/i1 (max), Heat/ODS g4=o2/i2 (max), 
Methane/Labor g5=o3/i1 (min), and Methane/ODS g6=o3/i2 (min). The corresponding 
input data for the MCDA model is displayed in table 2. Although this approach leads 
to a high number of indicators as the number of criteria increases, it mimics the spirit 
of DEA: to allow each DMU to be evaluated according to multiple indicators and to 
choose the most favorable indicators (within the constraints that the decision maker 
may impose, as we will illustrate). 

After the performance data of the 41 energy crop digestion plants for the different 
criteria have been introduced, the reference profiles are required, which define the 
limits between each category (see table 3). The profiles were defined such that 
approximately 1/4 DMUs would be placed in each category according to each 
indicator individually. Hence, for each indicator gj and for each category Ck, there are 
approximately 10 plants that would be sorted into that category according to that 
indicator. The cutting level is specified within the interval [0.51, 0.67], that is it may 
vary from a simple majority to a 2/3-majority requirement. 
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Table 2. Efficiency indicators for the DMUs (most efficient DMUs marked boldface) 

DMU 
g1 (max) 
Elec./Labor 

g2 (max) 
Elec./ODS 

g3 (max) 
Heat/Labor 

g4 (max) 
Heat/ODS 

g5 (min) 
Meth./Labor 

g6 (min) 
Meth./ODS

1 2 206.991 1 082.766 195.339 95.835 1.606 0.788
2 941.380 1 556.940 517.732 856.273 0.680 1.125
3 1 897.554 1 182.872 1 079.137 672.698 1.348 0.841
4 4 767.123 1 059.745 399.384 88.784 3.499 0.778
5 570.919 899.147 254.237 400.401 0.430 0.677
6 3 547.623 1 212.243 1 656.495 566.034 2.491 0.851
7 1 667.605 1 037.066 309.368 192.393 1.213 0.754
8 2 712.902 1 106.421 319.744 130.403 1.922 0.784
9 668.526 1 333.570 342.466 683.148 0.479 0.955

10 1 510.743 1 299.587 67.042 57.672 1.057 0.909
11 2 922.523 1 239.889 0.000 0.000 2.078 0.882
12 584.381 1 874.742 13.699 43.946 0.428 1.374
13 877.005 817.373 141.554 131.929 0.650 0.606
14 1 259.058 836.539 724.638 481.461 0.946 0.629
15 1 018.011 1 449.703 1 111.607 1 582.990 0.741 1.055
16 391.082 1 169.178 525.862 1 572.117 0.284 0.851
17 2 451.587 1 030.552 2 935.537 1 233.986 1.661 0.698
18 12 814.425 1 240.897 1 361.426 131.835 9.329 0.903
19 3 358.980 1 249.741 131.297 48.850 2.462 0.916
20 2 948.888 1 542.860 2 280.068 1 192.933 2.035 1.065
21 2 683.032 1 522.066 1 107.011 628.000 1.888 1.071
22 1 331.480 1 546.134 983.607 1 142.178 0.961 1.116
23 1 815.422 1 060.299 909.091 530.955 1.314 0.768
24 238.030 972.222 220.892 902.222 0.175 0.713
25 326.726 910.051 370.844 1 032.934 0.238 0.663
26 215.415 776.641 230.476 830.943 0.163 0.589
27 967.473 924.996 767.306 733.617 0.715 0.683
28 1 051.796 1 777.230 1 365.962 2 308.078 0.727 1.228
29 541.403 1 450.509 95.969 257.118 0.384 1.029
30 575.414 959.090 0.000 0.000 0.426 0.710
31 606.061 973.056 378.788 608.160 0.464 0.745
32 434.164 703.549 797.383 1 292.132 0.334 0.541
33 281.450 666.980 438.141 1 038.308 0.201 0.476
34 3 782.516 1 160.557 2 025.586 621.493 2.740 0.841
35 665.000 1 005.947 89.644 135.605 0.495 0.748
36 1 438.356 1 440.257 919.823 921.039 0.996 0.998
37 1 865.707 1 286.238 180.396 124.367 1.329 0.916
38 966.605 1 128.946 122.638 143.234 0.713 0.833
39 596.763 806.948 582.192 787.244 0.468 0.632
40 401.017 1 104.740 131.338 361.815 0.275 0.759
41 3 563.288 1 368.967 205.479 78.942 2.537 0.975
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Table 3. Category definitions for each indicator 

Category 
g1 (max) 
Elec./Labor 

g2 (max) 
Elec./ODS 

g3 (max) 
Heat/Labor 

g4 (max) 
Heat/ODS 

g5 (min) 
Meth./Labor 

g6 (min) 
Meth./ODS

C1 - Poor < 575 < 950 < 150 < 130 > 1.80 > 0.97 
C2 - Fair [575, 1000[ [950, 1125[ [150, 375[ [130, 530[ ]0.9, 1.8] ]0.82, 0.97]
C3 - Good [1000, 2300[ [1125, 1300[ [375, 950[ [530, 880[ ]0.45, 0.9] ]0.71, 0.82]
C4 - Very 
       good ≥ 2300 ≥ 1300 ≥ 950 ≥ 880 ≤ 0.45 ≤ 0.71 
 
 
Table 4. Pessimistic, 50% majority, and pessimistic classifications 

DMU Optimistic 
50% 

majority Pessimistic  DMU Optimistic
50% 

majority Pessimistic
1 3 2 1  22 4 4 1 
2 4 3 1  23 3 3 2 
3 4 3 2  24 4 3 1 
4 4 3 1  25 4 4 1 
5 4 2 1  26 4 3 1 
6 4 3 1  27 4 3 1 
7 3 2 2  28 4 4 1 
8 4 2 1  29 4 2 1 
9 4 3 2  30 4 2 1 

10 3 2 1  31 3 3 2 
11 4 2 1  32 4 4 1 
12 4 2 1  33 4 4 1 
13 4 2 1  34 4 3 1 
14 4 3 1  35 3 2 1 
15 4 4 1  36 4 3 1 
16 4 3 1  37 3 2 1 
17 4 4 2  38 3 2 1 
18 4 3 1  39 4 3 1 
19 4 2 1  40 4 2 1 
20 4 4 1  41 4 2 1 
21 4 4 1      

 

Table 4 presents some conclusions that may be drawn without making any distinction 
between the relative importance of each indicator. The left column (“Optimistic”) 
indicates the classification that would result if the DMU was allowed to choose an 
indicator, i.e., if the DMU was allowed to specify the ELECTRE TRI weights of the 
indicators, setting one of them to have a weight equal to 1 and all the remaining 
indicators as weighing 0. These are the classifications that are more in accordance 
with the spirit behind DEA. The middle column (“50% majority”) indicates the 
classification that would result if we required the support of at least half of the 
indicators: a DMU is classified into category Ch if and only if three out of six 
indicators place it in that category (or in a better one). Finally, the rightmost column 
(“Pessimistic”) indicates the worst category suggested by some indicator. This means 
that a DMU is classified into category Ch if and only if all the six indicators place it in 
that category (or in a better one). Let us note that it may happen that a DMU can be 
classified into categories C1 or C4, but not C2 or C3. This may occur when a DMU is 
evaluated as belonging to C1 according to some indicators and belonging to C4 
according to all the remaining indicators. If the indicators placing it in C4 are 
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sufficient for the required majority (cutting level), then the DMU is sorted into C4, 
while otherwise it is sorted into C1. 

If the DMUs were entirely free to choose the weights to assign to the indicators, then 
33 of them would be sorted into C4 (including all the efficient DMUs according to 
DEA) and the remaining eight into C3. This means that all of the DMUs would be 
sorted into the top two categories if each DMU was allowed to be judged according to 
only one of the six indicators, that single indicator being chosen by the DMU. In order 
to decrease the number of DMUs in the best categories several options can be 
envisaged: to make the category bound more demanding (i.e., to increase the bj 
performances), and/or to require the support of more than one indicator (e.g. the 
support of half of the indicators, as depicted in table 4, and/or to add information 
about the relative power of the indicators. 

ELECTRE TRI allows to incorporate the managerial judgment about how important 
each indicator is and whether a very low performance in some indicators may be an 
impediment to reach the highest categories. Using IRIS, it is possible to compute the 
range of categories for a DMU that is compatible with a set of parameter constraints. 
Let us first consider, for instance, the following constraints as an illustrative case: 

 (a) The manager states that the most important output is electricity, followed 
by methane emissions (to be minimized), and lastly by heat. This implies that the 
importance of g1 (electricity/labor) cannot be lower than the importance of g5 
(methane/labor), which in turn cannot be lower than the importance of g3 (heat/labor). 
Analogously, the importance of g2 (electricity/ODS) cannot be lower than the 
importance of g6 (methane/ODS), which in turn cannot be lower than the importance 
of g4 (heat/ODS). 

 (b) Concerning the inputs, the manager states that ODS is more important than 
labor. This implies that the importance of g2 (electricity/ODS) cannot be lower than 
the importance of g1 (electricity/labor). Analogously the importance of g4 (heat/ODS) 
cannot be lower than the importance of g3 (heat/labor), and the importance of g6 
(methane/ODS) cannot be lower than the importance of g5 (methane/labor). 

The results corresponding to these requirements are shown in table 5. The column 
“Suggested” indicates the classification corresponding to the weight values inferred 
by IRIS (k2=0.2667, k1=k6=0.2, k4=k5=0.1333, k3=0.0667). The column “Optimistic” 
corresponds to a situation where the DMUs could choose their weights (provided that 
the imposed constraints were satisfied). Optionally, the ELECTRE TRI models also 
allow incorporating veto thresholds, such that, for instance, a DMU that is classified 
as C1 according to a given indicator will not be able to reach category C4 in a multi-
criteria evaluation. Supposing the manager would consider that the most important 
indicator is g2 (electricity/ODS) should also have some veto power, such that a DMU 
with a ratio less than 950 could not achieve category C4, then the only change would 
be that DMUs 32 and 33 could no longer reach C4 due to their low performance under 
that indicator. 

Similar types of ad-hoc robustness analysis could easily be carried out in order to 
capture the imprecision associated with the specification of some parameters and 
identify those for which small changes reveal to have more impact on the results. A 
form which is easily perceived by managers is to ask for intervals for some 
parameters (for instance, the weights), aimed at capturing information that is not 
precisely known but can be taken as bounded within some acceptable limits.  
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When taking the suggested parameters inferred by IRIS, taking into account the 
constraints on the indicator (criterion) weights, the results may be rather different 
from those obtained with DEA. However, the MCDA analysis may complement the 
DEA analysis by providing another perspective from which the conclusions of DEA 
may be strengthened or weakened. In our illustrative example, among DEA-efficient 
DMUs, only DMUs 17 and 20 reach C4 using the sorting of IRIS, and these are the 
two only DMUs among the 41 to reach that category. Despite being DEA-efficient, 
IRIS sorts DMUs 32 and 33 in C1, reflecting their poor performances in two of the 
indicators that weigh more (g1 and g2). Concerning the worst DMUs according to 
DEA, DMUs 5 and 25 are sorted into the worst category, whereas DMUs 14, 31 and 
39 are sorted into C2. 
 
Table 5. Classification subject to importance constraints 

DMU IRIS suggestion Optimistic  DMU IRIS suggestion Optimistic 
1 2 3  22 3 4 
2 3 4  23 3 3 
3 3 3  24 2 3 
4 2 3  25 1 4 
5 1 2  26 1 3 
6 3 3  27 2 3 
7 2 3  28 3 4 
8 2 3  29 1 4 
9 2 4  30 2 2 

10 2 3  31 2 3 
11 2 3  32 1 4 
12 2 4  33 1 4 
13 2 2  34 3 3 
14 2 3  35 2 2 
15 3 4  36 3 4 
16 3 3  37 2 3 
17 4 4  38 2 3 
18 2 3  39 2 3 
19 2 3  40 2 2 
20 4 4  41 1 4 
21 3 4     

 

 
5. DISCUSSION AND CONCLUSIONS 
DEA is a data oriented approach and it requires no a priori specification of the 
functional form of the production model converting inputs into outputs. Units are then 
free to choose their most favorable weights for becoming efficient when compared 
with their peers. On the other hand, this can present a disadvantage whenever over-
specialization must be avoided in the consumption of inputs or the production of 
outputs, which amounts to practically ignore some inputs and outputs. Moreover, 
managerial preference information is often required since inputs and outputs do not 
have generally the same importance in assessing the efficiency of operational units. 
Therefore, models for efficiency evaluation must explicitly incorporate meaningful 
techniques to take weights into account, understood as coefficients of relative 
importance of inputs and outputs. This has been the main motivation for the use of 
MCDA techniques, in order to assess the extent in which these could overcome those 
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characteristics of DEA, and what adaptations would be needed. Therefore, we are not 
proposing MCDA as an approach to replace DEA as a performance evaluation tool 
but rather as a complementary technique, namely as far as the meaningful introduction 
of managerial preferences is concerned. 
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