



Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# Differences in Characteristics of Religious Groups in India: As Seen From Household Survey Data

Kentaka Aruga

**CEPE Working Paper Nr. 26** August 2003

**CEPE** ETH Zentrum, WEC CH-8092 Zürich www.cepe.ethz.ch

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich





# Abstract

Characteristics of religious groups are an important area that needs to be studied in order to improve the effectiveness of policies aimed at reducing the fertility rate. This paper analyzes the socio-economic characteristics of the religious groups, Hinduism, Muslim, Christianity, and Sikhism, by using a large micro level household survey data set for India. The paper analyzes the characteristics among religious groups not only in terms of averages of religious households but also by using regression models. According to the results of the analyses, there are considerable differences in the socio-economic characteristics among religions. What factors lead to these different characteristics is an important question to be addressed in future studies. The results of this study imply that different policies are needed for different religious groups in order to improve their household conditions and wellbeing.

*Keywords: Micro level household data, Socio-economic characteristics of religious groups, Religion dummy, Religious state dummy.* 

**Acknowledgements:** I am officially a doctoral student at the University of Tokyo and worked on this paper as a guest researcher for four months at CEPE, ETH. I would like to thank the AGS, Alliance for Global Sustainability for giving me a chance to work at CEPE, ETH. Especially I want to give special thanks to Prof. Toru Iwami, my adviser at the University of Tokyo, and Prof. Daniel Spreng and Dr. Shonali Pachauri, my advisers at CEPE, for helping me using the data and writing the paper. Furthermore, I would like to acknowledge the National Sample Survey Organisation, Department of Statistics of the Government of India, for supplying a large amount of micro level household survey data.

### 1 Introduction

According to the National Family Heath Survey (NFHS), India's population outstripped the one billion-population mark in May 2000<sup>1</sup>. Although the actual number of people in India itself is increasing, the exponential growth rate of population has been decreasing since the 1960s. This change in population growth is a result of change in fertility rate, mortality rate, and movement or migration of people. Since it is impossible to find a place to emigrate a number of people outside India, decrease of fertility rate is the factor that can contribute the most to the reduction of future population growth. However, the total fertility rate of India in 2003 is 2.91<sup>2</sup>, which is far from the 'goal of replacement fertility level' of 1.0<sup>3</sup>.

Several policies such as raising literacy rate, particularly of women, improving the status of women, and spreading knowledge about abortion and contraception are considered effective in reducing fertility. Although many efforts have been made to reduce the fertility rate in India, it seems that there is variation in the effects of these policies between different regions, education and income levels, religions, ages, and so on. Such policies are beneficial in reducing the fertility rate, but the problem is that the way they affect people depends on which social group they belong to. So we may need different programs and policies for each different social studies and learn the characteristics of the social groups before adopting and formulating policies aimed at reducing fertility.

Among various characteristics of social groups in India, I believe those of religious groups are very important and need to be taken account of. There are several reasons for this. First, India being known as a land of spirituality and philosophy and as a birthplace of some of the world's major religions, more than 99% of Indians belonged to some kind of religion in 1999<sup>4</sup>. Therefore, it is conceivable that most Indians are more or less influenced by religion. Second, there are two hypotheses that are prevalent among scholars who study the relationship between religion and contraception. One is the 'pure religion effect,' which supposes the intellectual content of religious belief affects people's contraceptive behaviors<sup>5</sup>. In other words, this is an effect of the peculiar characteristics of each religion seen in its rituals or scriptures upon fertility. The other is the 'characteristics' hypothesis. This hypothesis indicates that what we think as religious differentials in contraceptive behavior may be socio-economic differences between the members of each social group<sup>6</sup>. It suggests that within a religious group, there are social and economic differences among its members, such as differences in education level, income, status of women, and so on. While religion has effects on fertility rate, the effects may be resulted from certain social economic characteristics of the members of religious group. There are many studies that analyze effects of religion on fertility, but not many have been done to examine the characteristics of each religious group.

Therefore, in this paper, characteristics of households affiliated to the religious groups of Hinduism, Muslim, Christianity, and Sikhism are investigated using micro level household data for India. The raw data that are used for the analyses are taken from the National Sample

<sup>&</sup>lt;sup>1</sup> International Institute for Population Sciences, 2000: p.4.

<sup>&</sup>lt;sup>2</sup> CIA, 2003.

<sup>&</sup>lt;sup>3</sup> International Institute for Population Sciences, 2000: p.4-5.

<sup>&</sup>lt;sup>4</sup> International Institute for Population Sciences, 2000: p.23.

<sup>&</sup>lt;sup>5</sup> lyer, 2002b: p.4.

<sup>&</sup>lt;sup>6</sup> lyer, 2002b: p.15.

Survey (NSS) Round 50 for 1993-1994<sup>7</sup>. Using this data, there are mainly two analyses done in the paper.

The first analysis is to find out the characteristics of these religious groups by focusing the analysis in the differences in variables such as the number of children, per capita expenditure, the area covered by the dwelling, the total quantity of land possessed, the literacy of head of household, and other variables that are important to determine the characteristics of households. Regression models have been built to analyze the difference in these variables among religious groups. However, it was not possible to build a meaningful model to analyze the difference in some of the variables since NSS data lack information on factors that are needed in order to apply the variables into models. So the difference in characteristics among religious groups for such variables is analyzed only by comparing the average figures.

The second analysis is an alternative analysis of the first analysis, which examines whether the same characteristics among religious groups as the first analysis can be seen in a state that has a high percentage of a certain religion. This analysis is done in order to ascertain that there do exist certain characteristics among religious groups, since it can be supposed that if there are peculiar characteristics in religious groups, these characteristics should be also seen in a state that has a high percentage of one of the religions.

An analysis on the relationship among socio-economic characteristics of religious groups and fertility is the ultimate goal of my study. As a step toward this purpose, this paper probes into characteristics of the above-mentioned religious groups. In doing so, I use a large sample database. I think this is important because other previous studies of this kind have used small sample data and focused only on education in relation to fertility among different religious groups.

In the first section, previous studies that have been done on the difference in characteristics of religious groups in India will be reviewed and this paper will be placed in the context of the previous studies. In section 2, the data will be described and the differences between religious groups in India will be looked at in terms of simple statistics. In section 3, methods and models that are used in the paper to analyze the characteristics of religious groups will be explained. Section 4 will describe the results of the analysis. Finally, in section 5, some broad conclusions will be drawn.

### 2 Previous studies in this area

Among studies on characteristics of religious groups in India, Sriya Iyer's study is one of the closest to the study of this paper. There are some studies that focus on the effect of religious difference on fertility, but there are only a few that examine other effects on fertility such as education, living conditions, income, and so on. And when it comes to socio-economic characteristics of religious groups in India and their effects on fertility, the definitive works would be those of Sriya Iyer<sup>8</sup>.

Using the household survey data from Ramanagaram, a region in the southern state of Karnataka, she explores the differences in fertility, education, per capita expenditure, and ownership of consumer items among religious groups. The data she collected relates to a total number of 201 households, which consists of 111 Hindu households, 75 Muslim households, and

<sup>&</sup>lt;sup>7</sup> NSSO, 1997d.

<sup>&</sup>lt;sup>8</sup> lyer, 2002a-d.

15 Christian households. Her study shows that Muslim households have 1.07 more children on average than the Hindu households, and 1.41 more on average than the Christian households<sup>9</sup>, which accounts with the data of 1998-99 NFHS that reveals Muslims to have the highest total fertility rate among all religions. Iyer also compares the religious groups in terms of income and wealth by calculating the mean monthly total expenditure, the mean monthly per capita expenditure, and the ownership of consumer items for each religious group. According to her results, Christian households have higher per capita expenditure and a higher proportion of households owning fans, chairs and benches compared with Hindu and Muslim households. So the Christians in the Ramanagaram region seems to be better off than the Hindus and the Muslims<sup>10</sup>.

This paper will examine not only the differences in fertility between religious groups but also the disparities in terms of other characteristics. What distinguishes this paper from other studies is that it includes also the religious group of Sikhs besides Hindus, Muslims, and Christians and that it uses a large quantity of micro level household data collected from all over India. Previous studies related to characteristics of religious groups in India were mostly focused on one religion or comparisons between Hindus and Muslims based on small sample data. So I believe it is important to analyze the characteristics of religious groups by using large sample data.

# 3 Overview of the data and the characteristics of religious groups

#### 3.1 About the data

The data used for the analyses are from the National Sample Survey (NSS) Round 50 for 1993-1994. It contains 115,354 households located in 6951 villages and 4650 urban blocks and covers the entire area of India with some exceptions in the "interior areas of Nagaland, Andaman & Nicobar Islands, and Ladakh and Kargil districts of Jammu & Kashmir<sup>11</sup>." The NSS has "information on quantity and value of household consumption with a reference period of last 30 days preceding the data of interview<sup>12</sup>."

The household samples were chosen by a stratified two-stage sampling design. For the first stage units, census villages were chosen in the rural sector, and Urban Frame Survey blocks and census enumeration blocks were chosen in the urban sector. After certain villages and blocks were determined by the first frame sampling, households were selected randomly according to their affluence level from these villages and blocks chosen as samples in the first stage. The detail of the sampling procedure is described in one of the reports of "Sarvekshana<sup>13</sup>."

Although it is possible to obtain the data for rural and urban areas separately, the household data for whole India is used in the analysis. The first reason for this is that a comparison of tables 3, 4, and 5 shows that the characteristics of religious groups in both rural and urban areas are quite similar to those of whole India. In every table, Sikhs and Jains have

<sup>&</sup>lt;sup>9</sup> lyer, 2002b: p.18.

<sup>&</sup>lt;sup>10</sup> lyer, 2002a: p.86-87.

<sup>&</sup>lt;sup>11</sup> NSSOa, 1997: p.1.

<sup>&</sup>lt;sup>12</sup> NSSOa, 1997: p.1.

<sup>&</sup>lt;sup>13</sup> NSSOa, 1997, p.1

higher monthly expenditure, Christians and Jains have lower percentage of households whose head is illiterate, and Muslims have higher number of children among the religious groups. Second, effects of the rural-urban gap can be analyzed in the model by creating a rural dummy, which shows the difference between households that belong to rural and urban areas. Third, if the analyses were done separately of rural and urban areas, the samples would have been too small. As it will be shown in tables 3 and 4, the samples of other religions are very small compared with Hindus. So it was preferable to use the whole Indian sample in order to increase the sample size of other religions.

The religions that are analyzed in this paper are Hinduism, Muslim, Christianity, and Sikhism. There are also data on other religions such as Buddhism, Jainism, and Zoroastrianism, but as it can be seen in tables 1 and 5, the numbers of the samples for these religions are too small to be used for the analysis. In particular, it would not be meaningful to include these religions in the second analysis, which analyzes the characteristics of religious states by creating the 'religious state dummies<sup>14</sup>,' since there are too many states that have none or few households that belong to these religions<sup>15</sup>. So in this paper the households of these religions are clubbed together in the category of 'others,' which also includes the households with 'other religion' and households without any religion.

#### 3.2 Differences between religious groups seen in the survey data

Before introducing the models used in this paper we look at some socio-economic differences of each religious group observable from simple statistical averages such as proportions of each religion in India, and averages of variables that characterize the religious households.

First, to understand the composition of religions in India, see table 1 in the appendix<sup>16</sup>. This table illustrates the distribution of religious groups in each Indian state and in all India<sup>17</sup>. As seen from the bottom of the table, of all the Indian households, 84.28% are Hindus, 10.21% are Muslims, 2.44% are Christians, 1.68% are Sikhs, 0.71% are Buddhists, and only 0.24% are Jains. This distribution of households by religion in NSS Round 50 for 1993-94 is very close to the distribution of religion of households as enumerated in the 1998-99 NFHS<sup>18</sup>.

Now look at the distribution of religious groups in the states. In the NSS data, although the number of household samples in each state corresponds with its population ratio as a proportion to the all-Indian population, the sample of religious households in each state does not accord with the ratio of religions within each state. However, the distribution of three main religions in every state, which can be seen in table 1, is very similar to those observed in the Census of India 1991<sup>19</sup>. So the results of table 1 do reveal much of the real distribution of religious groups among each state. As seen in the table, it seems that religious groups tend to concentrate in certain states. Although more than 80% of the people in India are Hindus, they are minorities in some states like Arunachal Pradesh, Lakshadweep, Mizoram, Nagaland, and Punjab. So it may be possible to hypothetically create a region that is dominated by a certain religion to see if this region with a high percentage of a certain religion has the same

<sup>&</sup>lt;sup>14</sup> The details are explained in the next section.

<sup>&</sup>lt;sup>15</sup> See table 1.

<sup>&</sup>lt;sup>16</sup> All the tables in this paper are created using the NSS round 50. Percentages and means are calculated using the weights for each individual household, which are provided on the raw data tape.

<sup>&</sup>lt;sup>17</sup> States that were created after 1993-94 are not included in table 1 because NSS round 50 was done in 1993-94.

<sup>&</sup>lt;sup>18</sup> "Eighty-two percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh" in the NFHS 1998-99 (International Institute for Population Studies, 2000: p.22).

<sup>&</sup>lt;sup>19</sup> Census of India, 1991.

characteristics as the characteristics shown by that religious group. This will be tested in this paper using the 'religious state dummies.'

The distribution of religious groups also differs in the rural-urban ratio. Table 2 depicts this disparity. About 76% of the Sikhs, and 75% of the Hindus live in rural areas, which illustrates that Sikhs and Hindus live more in rural areas compared with other religions. In contrast, Muslims, Christians, Buddhists, Jains, and Zoroastrians are more concentrated in urban areas. This is conspicuous in Muslims, since they constitute 13% of the urban households, while they occupy 9% of the rural households.

| ·                                | No<br>Answers | Hinduism | Muslim | Christian<br>ity | Sikhism | Buddhism | Jainism | Zoroastria<br>nism | Others |
|----------------------------------|---------------|----------|--------|------------------|---------|----------|---------|--------------------|--------|
| Rural                            | 78.44         | 74.6     | 65.84  | 68.86            | 75.86   | 67.48    | 26.73   | 0.03               | 76.09  |
| Urban                            | 21.56         | 25.4     | 34.16  | 31.14            | 24.14   | 32.52    | 73.27   | 99.97              | 23.91  |
| Persentages within<br>rural area | 0.03          | 85.64    | 9.16   | 2.29             | 1.73    | 0.66     | 0.09    | 0                  | 0.4    |
| Persentages within<br>urban area | 0.03          | 80.53    | 13.12  | 2.86             | 1.52    | 0.87     | 0.67    | 0.05               | 0.35   |

| Table 2 | Rural- urban | percen | tages | of re | eligious | groups | and |
|---------|--------------|--------|-------|-------|----------|--------|-----|
|         | percentages  | within | rural | and   | urban a  | rea    |     |

The differences between households located in rural areas and urban areas can be observed in table 3 and table 4. Comparing these tables, it is easy to find out that in all the aspects except in the total quantity of land possessed, households in rural areas are worse off than those in urban areas. To examine this effect from the rural-urban gap, a rural dummy is used in the analysis, which will be explained in the next section.

Finally, see tables 3, 4, and 5 to have an overview of the difference in characteristics among religious groups. These tables illustrate the simple statistical averages of variables analyzed in this paper<sup>20</sup>. In every table, Sikhs and Jains have higher monthly per capita and total expenditure, a higher percentage of households with access to commercial energy, and larger area of dwelling among all the religions. So it seems that Sikhs and Jains are better off compared with other religions. In contrast, in both rural and urban areas, Muslims and Buddhists have poorer living conditions. As seen in all tables, they are worse off in terms of per capita expenditure, area of dwelling, condition of houses, and total quantity of land possessed. However, there are characteristics that are peculiar only in certain religious groups.

Muslims have the largest numbers of children in all tables while Christians have smaller numbers of children in their households. This matches with other studies, where Muslim households have the highest and Christian households have the lowest fertility rate among the religious groups<sup>21</sup>. Muslims having more children in their households is conspicuous when comparing them with Sikhs. Although both Muslims and Sikhs have larger size in their household size compared with other religions, Muslims have more children while Sikhs have more adults in their households.

Christians and Jains have a higher provability of having an educated person as their head of household compared with other religious groups. In every table they have a lower percentage with households whose head is illiterate.

Sikhs are less likely to have access to tap water. This is really a characteristic particularly seen in the Sikh households. Although the Sikhs have higher expenditure, and

<sup>&</sup>lt;sup>20</sup> Percentages and means in the tables are calculated using the weights for each individual household, which are provided on the raw data tape.

<sup>&</sup>lt;sup>21</sup> Iyer, 2002b: p.18. International Institute for Population Sciences, 2000.

|                | Numbers of<br>households | Mean monthly<br>per capita<br>expenditure<br>(Rupies) | Mean monthly<br>total<br>expenditure<br>(Rupies) | Average total<br>quantity of land<br>possessed<br>(Hectares) | Households<br>with<br>commercial<br>energy (%) | Average size<br>of the<br>households | Average<br>numbers of<br>children | Households<br>whose head is<br>illiterate (%) | Households<br>without<br>sufficient<br>food (%) | Area covered by<br>the dwelling per<br>households<br>(Square feet) | Housenoids | Households<br>with tap water<br>(%) |
|----------------|--------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|------------|-------------------------------------|
| No answers     | 24                       | 254.76                                                | 1144.09                                          | 4.39                                                         | 12.19                                          | 4.49                                 | 1.77                              | 25.06                                         | 0                                               | 387.66                                                             | 9.06       | 23.14                               |
| Hinduism       | 56035                    | 278.59                                                | 1354.21                                          | 1.05                                                         | 5.18                                           | 4.86                                 | 1.78                              | 53.74                                         | 0.87                                            | 464.07                                                             | 20.48      | 19.81                               |
| Muslim         | 6054                     | 267.05                                                | 1411.78                                          | 0.60                                                         | 4.86                                           | 5.29                                 | 2.32                              | 58.17                                         | 1.62                                            | 443.17                                                             | 26.3       | 12.6                                |
| Christianity   | 3718                     | 331.17                                                | 1473.83                                          | 0.71                                                         | 5.77                                           | 4.45                                 | 1.41                              | 32.02                                         | 0.83                                            | 474.47                                                             | 20.73      | 23.54                               |
| Sikhism        | 1643                     | 438.04                                                | 2315.70                                          | 1.68                                                         | 10.43                                          | 5.29                                 | 1.78                              | 58.89                                         | 0                                               | 512.17                                                             | 14.78      | 12.83                               |
| Buddhism       | 658                      | 223.67                                                | 1032.00                                          | 0.57                                                         | 6.47                                           | 4.61                                 | 1.76                              | 50.74                                         | 2.14                                            | 285.59                                                             | 24.76      | 40.68                               |
| Jainism        | 71                       | 391.21                                                | 1734.69                                          | 1.14                                                         | 40.26                                          | 4.43                                 | 1.17                              | 37.99                                         | 0                                               | 552.35                                                             | 7.32       | 70.54                               |
| Zoroastrianism | 1                        | 413.61                                                | 4136.10                                          | 8.80                                                         | 100                                            | 10.00                                | 3.00                              | 0                                             | 0                                               | 2400.00                                                            | 0          | 100                                 |
| Others         | 1002                     | 314.12                                                | 1525.86                                          | 1.13                                                         | 4.41                                           | 4.86                                 | 1.77                              | 56.78                                         | 0.08                                            | 413.70                                                             | 16.5       | 29.68                               |
| All            | 69206                    | 281.40                                                | 1377.70                                          | 1.01                                                         | 5.29                                           | 4.90                                 | 1.82                              | 53.7                                          | 0.93                                            | 461.91                                                             | 20.92      | 19.33                               |

#### Table 3 Average household characteristics among different religious groups in rural area

Table 4 Average household characteristics among different religious groups in urban area

|                | Numbers of<br>households | Mean monthly<br>per capita<br>expenditure<br>(Rupies) | Mean monthly<br>total<br>expenditure<br>(Rupies) | Average total<br>quantity of land<br>possessed<br>(Hectares) | Households<br>with<br>commercial<br>energy (%) | Average size<br>of the<br>households | Average<br>numbers of<br>children | Households<br>whose head is<br>illiterate (%) | Households<br>without<br>sufficient<br>food (%) | Area covered by<br>the dwelling per<br>households<br>(Square feet) | Households | Households<br>with tap water<br>(%) |
|----------------|--------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|------------|-------------------------------------|
| No answers     | 13                       | 1006.02                                               | 3925.51                                          | 0.38                                                         | 32.85                                          | 3.90                                 | 1.67                              | 0.31                                          | 0                                               | 650.67                                                             | 0          | 77.98                               |
| Hinduism       | 35388                    | 469.20                                                | 2035.05                                          | 0.17                                                         | 60.09                                          | 4.34                                 | 1.39                              | 20.84                                         | 0.54                                            | 401.21                                                             | 10.4       | 71.92                               |
| Muslim         | 6059                     | 349.12                                                | 1818.34                                          | 0.09                                                         | 45.69                                          | 5.21                                 | 2.06                              | 37.46                                         | 0.64                                            | 356.13                                                             | 13.53      | 65.96                               |
| Christianity   | 2794                     | 546.15                                                | 2213.97                                          | 0.11                                                         | 55                                             | 4.05                                 | 1.19                              | 8.84                                          | 0.77                                            | 461.17                                                             | 7.75       | 72.89                               |
| Sikhism        | 934                      | 722.73                                                | 3439.69                                          | 0.28                                                         | 74.3                                           | 4.76                                 | 1.53                              | 18.71                                         | 0.54                                            | 528.32                                                             | 3.18       | 71.5                                |
| Buddhism       | 327                      | 374.48                                                | 1700.14                                          | 0.04                                                         | 66.02                                          | 4.54                                 | 1.54                              | 25.5                                          | 0.14                                            | 252.98                                                             | 19.83      | 89.85                               |
| Jainism        | 373                      | 693.55                                                | 3415.76                                          | 0.14                                                         | 94.01                                          | 4.93                                 | 1.23                              | 1.89                                          | 0                                               | 708.71                                                             | 0.85       | 96.18                               |
| Zoroastrianism | 35                       | 1156.44                                               | 3638.66                                          | 0.03                                                         | 66.02                                          | 3.15                                 | 0.63                              | 14.36                                         | 0                                               | 690.99                                                             | 14.36      | 100                                 |
| Others         | 225                      | 455.90                                                | 2019.37                                          | 0.32                                                         | 55.37                                          | 4.43                                 | 1.50                              | 36.65                                         | 0                                               | 337.34                                                             | 20.43      | 69.73                               |
| All            | 46148                    | 458.04                                                | 2040.71                                          | 0.16                                                         | 58.53                                          | 4.46                                 | 1.48                              | 22.61                                         | 0.55                                            | 399.71                                                             | 10.68      | 71.49                               |

#### Table 5 Average household characteristics among different religious groups in all India

|                | Numbers of<br>households | Mean monthly<br>per capita<br>expenditure<br>(Rupies) | Mean monthly<br>total<br>expenditure<br>(Rupies) | Average total<br>quantity of land<br>possessed<br>(Hectares) | Households<br>with<br>commercial<br>energy (%) | Average size<br>of the<br>households | Average<br>numbers of<br>children | Households<br>whose head is<br>illiterate (%) | Households<br>without<br>sufficient<br>food (%) | Area covered by<br>the dwelling per<br>households<br>(Square feet) | Households<br>disatisfied with<br>the house (%) | Households<br>with tap water<br>(%) |
|----------------|--------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|
| No answers     | 37                       | 399.59                                                | 1743.78                                          | 3.52                                                         | 16.65                                          | 4.36                                 | 1.75                              | 19.72                                         | 0                                               | 444.37                                                             | 7.1                                             | 34.97                               |
| Hinduism       | 91423                    | 323.00                                                | 1527.14                                          | 0.82                                                         | 19.13                                          | 4.73                                 | 1.68                              | 45.38                                         | 0.79                                            | 448.11                                                             | 17.92                                           | 33.05                               |
| Muslim         | 12113                    | 294.81                                                | 1550.65                                          | 0.43                                                         | 18.81                                          | 5.26                                 | 2.24                              | 51.1                                          | 1.28                                            | 413.44                                                             | 21.93                                           | 30.83                               |
| Christianity   | 6512                     | 393.90                                                | 1704.35                                          | 0.52                                                         | 21.11                                          | 4.33                                 | 1.34                              | 24.8                                          | 0.81                                            | 470.33                                                             | 16.69                                           | 38.91                               |
| Sikhism        | 2577                     | 501.43                                                | 2587.04                                          | 1.34                                                         | 25.87                                          | 5.16                                 | 1.72                              | 49.19                                         | 0.13                                            | 516.07                                                             | 11.98                                           | 26.99                               |
| Buddhism       | 985                      | 272.18                                                | 1249.28                                          | 0.40                                                         | 25.84                                          | 4.59                                 | 1.69                              | 42.53                                         | 1.49                                            | 274.98                                                             | 23.16                                           | 56.67                               |
| Jainism        | 444                      | 618.79                                                | 2966.33                                          | 0.41                                                         | 79.64                                          | 4.79                                 | 1.22                              | 11.54                                         | 0                                               | 666.91                                                             | 2.58                                            | 89.32                               |
| Zoroastrianism | 36                       | 1155.79                                               | 3638.80                                          | 0.03                                                         | 66.03                                          | 3.15                                 | 0.63                              | 14.36                                         | 0                                               | 691.46                                                             | 14.36                                           | 100                                 |
| Others         | 1227                     | 345.69                                                | 1643.86                                          | 0.94                                                         | 16.59                                          | 4.76                                 | 1.71                              | 51.97                                         | 0.06                                            | 395.44                                                             | 17.44                                           | 39.26                               |
| All            | 115354                   | 325.18                                                | 1553.96                                          | 0.78                                                         | 19.45                                          | 4.78                                 | 1.73                              | 45.44                                         | 0.83                                            | 445.37                                                             | 18.2                                            | 33.2                                |

larger quantity of land and area of dwelling in average than the Buddhists, they have a lower provability of having access to tap water in average compared with the Buddhists.

In sum, Sikh, Christian, and Jain households are more likely to fare well in their living conditions compared with Hindu, Muslim, and Buddhist households, and there seems to be a considerable difference in the characteristics of religious group. However, since the figures in the tables are only the average and percentage of households, a further analysis is done in this paper using regression analysis. In the next section, methods and models that are used for the analyses will be explained.

## 4 Methods and models used for the analyses

There are two kinds of analyses done in this paper. The first analysis is to see the difference in characteristics of Hindus, Muslims, Christians, and Sikhs by using religion dummies. The second analysis is to examine whether a region with a high percentage of a certain religion has the same characteristics as those analyzed in the first analysis or not. The models used in the two analyses are the same except in the first analysis religion dummies are used, whereas religious state dummies, which will be explained later, are used in the second analysis. If the results of the analysis using religious state dummies, it will be revealed that there are certain peculiar characteristics among the religious groups.

Before going into the details of the methods, the models that are used in the analyses will be described. Although building models for every variable in tables 3, 4, and 5 was attempted, it was not possible to make a sensible model to describe the religious difference in some of the variables such as area covered by the dwelling per household, numbers of children per household, and sufficiency of food. This is due to lack of data sources that were necessary to be included in the model in order to analyze the variable. For example, to analyze the numbers of children per household it is necessary to have data on the female education level, contraception rate, and amount of social welfare each household receives but these data are not available in the NSS data. However, models for the monthly per capita expenditure, total quantity of land possessed, access to commercial energy, literacy of the head of household, condition of the house, and access to tap water had quite a good fit. So socio-economic differences among religions are analyzed using models created for these six items.

First, see table 6 in the appendix to understand the definitions of variables that are used in the analyses. These variables are taken from questions on 'household characteristics,' 'particulars of household members,' 'perception of household regarding sufficiency of food,' and 'particulars of dwelling unit' of the NSS. Variables can be organized as the following:

- 1. Variables for household characteristics
  - pcexp, LAND, COME, SELFEMPL, REGEARN, RELIGION<sub>i</sub>
- 2. Variables for particulars of household members hhsize, CHILD, MALE, ILLITERATE
- 3. Variable for perception of household regarding sufficiency of food INSUFFFOOD
- 4. Variables for particulars of dwelling unit area, BADHCOND, TAP

Some of the variables such as LAND, COME, SELFEMPL, and REGEARN are created in a certain way so as to be used in the analysis effectively.

The total possession of 1.0 hectares of land was selected to create the LAND dummy because as seen in table 5, Sikhs were the only religious group that possessed more than 1.0 hectare of total land in average of all India among the four religions. Using this dummy instead of the total quantity of land each household possessed improved the fit of the model, and the difference among religious groups in the possession of land became more apparent.

COME is a dummy variable that distinguishes the household with commercial energy for cooking from the household without it. A household belongs to COME when its primary source of energy for cooking is coke, coal, gas, or kerosene.

SELFEMPL and REGEARN are dummy variables created from a question asking the type of occupation of the head of household. The details for this are separate between the rural and the urban area. According to "Difference in Level of Consumption Among Socio-economic Groups<sup>22</sup>," households whose heads are self-employed in rural areas and regular wage/salary earning in urban areas have higher monthly per capita expenditure compared to the other households. So these two dummies are created to see whether households whose heads have well-paid jobs would be better off than the other households or not.

Using these variables, six models are used in this paper to analyze the characteristics of religious groups. All models are analyzed by the use of computer software, SAS version  $8.2^{23}$ . Below are the models used for the analyses:

#### Model 1

 $ln(pc exp) = \alpha + \beta_{1}LAND + \beta_{2}COME + \beta_{3}SELFEMPL + \beta_{4}REGEARN + \beta_{5}ln(hhsize) + \beta_{6}CHILD + \beta_{7}MALE + \beta_{8}ILLITERATE + \beta_{9}INSUFFFOOD + \beta_{10}ln(area) + \beta_{11}BADHCOND + \beta_{12}TAP + \beta_{13}RU + \sum \gamma_{i}RELIGION_{i}$ 

#### Model 2

 $LAND = \alpha + \beta_1 pc \exp thou + \beta_2 COME + \beta_3 SELFEMPL + \beta_4 REGEARN + \beta_5 hhsize + \beta_6 CHILD + \beta_7 MALE + \beta_8 INSUFFFOOD + \beta_9 area + \beta_{10} BADHCOND + \beta_{11} RU + \sum \gamma_i RELIGION_i$ 

#### Model 3

 $COME = \alpha + \beta_1 pc \exp thou + \beta_2 LAND + \beta_3 SELFEMPL + \beta_4 REGEARN + \beta_5 hhsize + \beta_6 CHILD + \beta_7 MALE + \beta_8 area + \beta_9 BADHCOND + \beta_{10} LAND + \beta_{11} RU + \sum \gamma_i RELIGION_i$ 

#### Model 4

 $ILLITERATE = \alpha + \beta_1 pc \exp thou + \beta_2 LAND + \beta_3 SELFEMPL + \beta_4 REGEARN + \beta_5 CHILD + \beta_6 MALE + \beta_7 area + \beta_8 BADHCOND + \beta_9 TAP + \beta_{10} RU + \sum \gamma_i RELIGION_i$ 

<sup>22</sup> NSSO, 1997b

<sup>&</sup>lt;sup>23</sup> SAS-Institute, 2001.

#### Model 5

 $BADHCOND = \alpha + \beta_{1}pc \exp thou + \beta_{2}LAND + \beta_{3}COME + \beta_{4}SELFEMPL + \beta_{5}REGEARN + \beta_{6}hhsize + \beta_{7}MALE + \beta_{8}ILLITERATE + \beta_{9}INSUFFFOOD + \beta_{10}area + \beta_{11}TAP + \beta_{12}RU + \sum \gamma_{i}RELIGION_{i}$ 

#### Model 6

 $TAP = \alpha + \beta_1 pc \exp thou + \beta_2 COME + \beta_3 SELFEMPL + \beta_4 REGEARN + \beta_5 area + \beta_6 BADHCOND + \beta_7 RU + \sum \gamma_i RELIGION_i$ 

Model 1 analyzes differences in per capita expenditure among religions. A log function is taken so that the coefficients will be easier to interpret and become more convenient to compare the difference in religious groups than the linear regression equation. Furthermore, the fit was much better when a log function was taken than regressing with a linear function<sup>24</sup>. Model 2 to model 6 are analyzed using logistic models. The logistic model has the form

$$\log(\frac{pr}{1-pr}) = \alpha + \sum_{j=1}^{J} \beta_j x_{ij}$$

where pr is the response probability to be modeled,  $\alpha$  is the intercept parameter,  $\beta$  is the vector of slope parameters, and x is the vector of explanatory variables. For example, the response variable in model 2 is LAND so that the pr in this model represents the probability of households having more than 1.0 hectare of land: pr(LAND=1). In model 2, the quantity

 $log(\frac{pr(LAND=1)}{1-pr(LAND=1)})$  is the odds-ratio of having more than 1.0 hectare of land. In models

through 3 to 6, the response variables are COME, ILLITERATE, BADHCOND, and TAP respectively, to analyze the difference among religions in these variables.

As mentioned before, two analyses are examined using these models. In the first analysis, religion-dummies HINDU, MUSLIM, CHRIST, SIKH, and OTHERS, are used for the RELIGION<sub>i</sub> dummy. In this examination, characteristics of religious groups are analyzed using these religion dummies and by comparing their estimated coefficients.

In the second analysis, state-dummies HDST, MUSST, CHST, SIKST, and OTHST, which are defined in table 6, are used for the RELIGION<sub>i</sub> dummy in the model. Since it can be seen from table 1 that the distribution of religions among states varies a lot and religions tend to concentrate in certain states, it is assumed that when a state is dominated by only one religion, that state should have the same characteristics as that one dominating religion. So a state with a high percentage of one religion is distributed into the state of that religion. To have an objective criterion to define that the percentage of a certain religion is relatively high in the state, the distribution of religion in all India is used as the standard percentage. Applying these assumptions, religious state dummies are created in the following way. When a state has a higher percentage of one religion than that of all India, then that state is defined as the state of that religion. Take Dadra & Nagar Haveli for example. This state is categorized as a Hindu state since Hinduism is the only religion that has a higher percentage than the percentage of Hinduism in this state is 97.99%,

<sup>&</sup>lt;sup>24</sup> The adjusted R-square rose from 0.1352 to 0.4593 when the log function was taken. By using the log form, the number of observations used for the regression decreased from 115353 to 114901 since there were households with zero area of dwelling but this effect was too small to change the results of the analyses.

which easily excels the percentage of that of all India, 84.28%. However, when a state has a higher percentage in more than one religion, that state is categorized as an 'others state.' States that do not have a high percentage in any of the four religions such as the state of Sikkim is also categorized as 'others state.' For exception, although Christianity is the only religion that has a higher percentage than that of all India in the state of Arunuchal Pradesh, this state is allocated to the 'others state' since more than half of the households in this state belong to the others' religion<sup>25</sup>. Using these methods, all the states in India are allocated to a certain religious state, whose detail is depicted in table 7 in the appendix.

Table 8 shows the distribution of religious groups within the religious states. Since the religious state is created in a way of having a high percentage of that religion, every religious state has a higher percentage in each religion compared with that of all India. However, Muslim states have a lower proportion of its religion compared to other states. This is because Muslims tend to be spread widely rather than being concentrated in one region so it is not possible to create a Muslim state with a higher percentage than the one in the table.

|                  | Hinduism | Muslim | Christianity | Sikhism | Others |
|------------------|----------|--------|--------------|---------|--------|
| Hindu state      | 91.01    | 6.28   | 1.25         | 0.42    | 1.04   |
| Muslim state     | 82.12    | 16.6   | 0.55         | 0.36    | 0.37   |
| Chrisitian state | 36.93    | 4.33   | 53.51        | 0.18    | 5.05   |
| Sikh state       | 56.34    | 4.3    | 1.24         | 37.11   | 1.01   |
| Others state     | 84.02    | 8.65   | 4.36         | 0.3     | 2.67   |

Table 8 Distribution of religious groups within the religious states

In every model, one of the religion dummies or state dummies are taken as the benchmark dummy to avoid singularity due to the use of binary dummy variables. The dummy variable that is used for the analyses as a benchmark dummy in each model is illustrated in table 9 in the appendix. The benchmark dummies in the table are chosen so as to have models with the best fit. Taking the benchmark dummy as shown in the table, the differences in characteristics among religious groups have been examined.

## 5 Results of the analysis

The results of the first analysis, an analysis to see the characteristic difference among religions by using the religion dummies, are depicted in table 10 in the appendix. In this analysis, all the coefficients of the variables in the models are significant at the 99% confidence level. Adjusted R-square for the analysis of model 1 and the max-rescaled R-squares for the analyses of models 2 to 6 are also listed in the table.

From model 1, it can be said that households with more land and area of dwelling, having access to commercial energy and tap water, and whose heads are male and literate have higher per capita expenditure. In contrast, households with large family, many children, having not enough food and bad house condition have lower per capita expenditure. Taking households whose religion is Sikhism as the benchmark, model 1 shows that religious group of Sikhs to have higher per capita expenditure compared with other religious groups. This matches with the statistics in tables 3, 4, and 5 where Sikhs have the highest mean monthly per capita expenditure of the four religions. Comparing other religious groups, Christians have higher per capita expenditure than Hindus and Muslims, which also accords with the statistics shown in tables 3, 4, and 5.

<sup>&</sup>lt;sup>25</sup> See table 1.

Model 2 shows the religious difference in the quantity of land possessed. The quantity of land possessed is higher when a household is located in rural areas. This is not tested but perhaps because the land prices are much lower in rural areas than in urban areas, as is the case in any country. However, it is natural to say that even in urban areas, owning more land is usually connected with wealth. In fact, it is seen in this model that households with higher per capita expenditure tend to own more land. In this model MUSLIM dummy is the benchmark. According to the analysis, it seems that Sikhs and Christians have higher probability of owning more than 1.0 hectare of land compared to Hindus and Muslims. Muslims have lower probability of having more land than Hindus and are the worst in this aspect, but this may be due to a higher percentage of them living in urban areas compared to other religions as shown in table 2. However, it is notable that Christians who tend to live more in urban areas have a higher probability of possessing more than 1.0 hectare of land compared to Hindus who live more in rural areas. This is different from table 5 where Hindus have more land than the Christians in terms of average total quantity of land possessed. However, according to the result of this model, when it comes to households that are wealthy enough to own more than 1.0 hectare of land, Christian households tend to have higher probability of owning more land compared with Hindu households<sup>26</sup>.

Model 3 illustrates the difference in the access to commercial energy for cooking among religious groups. Access to commercial energy for cooking appears to be highly connected to the households' material wealth since households with higher per capita expenditure and households that are located in urban areas have much higher probability of having commercial energy for their primary energy for cooking. Here too, MUSLIM is the benchmark dummy variable. According to the analysis, Sikhs have the highest probability of having access to commercial energy for cooking and this corresponds with the result of model 1 where Sikhs have the highest per capita expenditure of the four religions. In contrast Christians have the lowest probability of having commercial energy for cooking among the four religions although they have high per capita expenditure and live more in the urban areas. This may be because Christians have a different characteristic in their way of living, which affects their use of energy for cooking.

Model 4 demonstrates the difference among religions in households whose head is illiterate. The model shows that in every variable it is important for the head of the household to be literate: the household whose head is illiterate has a lower probability of having high per capita expenditure and good occupation. In rural areas there is a higher probability of having an illiterate person as the head of household. Taking MUSLIM as a benchmark dummy variable, Sikh households have the highest probability of having an illiterate person as their head of households have the lowest probability for this. The higher probability of Christian households having their heads to be educated match the findings of 1995 National Family Health Survey where Christians have a higher mean numbers of years of education compared with other religions<sup>27</sup>. However, it is odd that Sikh households have the highest probability of having an illiterate head for their household although they have the highest per capita expenditure of the four religions. This may be due to the peculiarity of the culture, attitudes toward life, work ethic, and so on of Sikh households, which needs to be explored further in another study.

Model 5 reveals that the household whose house is in bad condition is doing worse off not only with its house but also in terms of many other living conditions. Households with bad house condition do not have much per capita expenditure, land, commercial energy, well paid

<sup>&</sup>lt;sup>26</sup> In fact the percentages of households with more than 1.0 hectare of land among Hindu, Muslim Christian, and Sikh households are 22.85%, 12.39%, 24.57%, and 33.02% respectively. These figures change to 22.89%, 11.80%, 14.99%, and 30.95% when calculated with the weights. However, it seems that the figures using the weights severely underestimate the Christian households.

<sup>&</sup>lt;sup>27</sup> lyer, 2002a: p.77.

jobs, area of dwelling, or access to tap water, and seem also not to have enough food for living. So it can be said that households with bad house condition tend to be poor. According to the results of this model, Muslim and Hindu households are more likely to have bad house condition, which means that Muslim and Hindu households are more likely to be in poverty compared with other religious households. This result coincides with statistics in tables 3, 4, and 5 where the percentage of households dissatisfied with the house condition is higher among Muslim and Hindu households of the four religions.

Model 6 depicts the disparity of religious groups in the access to tap water. Here households with higher per capita expenditure, living in urban areas, and having access to commercial energy have a higher probability of having access to tap water. However, it seems that religious differences stand out from these factors regarding the access to tap water. Although Muslims live more in urban areas and are doing as well as the Hindus in terms of per capita expenditure, Muslims have a lower probability of having access to tap water than Hindus. Furthermore, Sikhs are the worst in terms of the access to tap water although they have the highest per capita expenditure and the highest probability of having commercial energy for cooking among the four religions. These results could be again due to the specific characteristics, living styles, and cultures or the religious belief toward water among Muslim and Sikh households, though the causes cannot be analyzed from this model.

Results of the second analysis, an examination to see whether a region with a high percentage of a certain religion has the same characteristics as those analyzed in the first analysis or not, have similar results to the first analysis, which have been explained above. The only model that did not have a significant result for this analysis was model 5. However, even in model 5, the tendency of estimated coefficients of the religious state dummies were very similar to those of the religion dummies in the first analysis. The tendency where Sikhs and Christians have a lower probability of having a humble house compared with Muslims and Hindus in model 5 of the first analysis is also seen when state dummies are used instead of religion dummies. The detail of the results is illustrated in table 11 in the appendix.

Also in model 4 of this analysis, the dummy variable TAP is not significant. Nevertheless, the state dummies are significant enough to explain the characteristics of religious states and here too the same result as the first analysis where Sikhs have a higher probability of illiterate people as their heads can be seen in the model: Sikh states have the highest probability of illiterate people as their heads among the religious states. Thus from the results of this analysis, it can be said that characteristics seen in the analysis using the religion dummies mostly accords with the analysis using the religious state dummies. Therefore, there do exist certain distinctions among religions in its socio-economic characteristics.

Table 12 is a summary of the two analyses and shows the ranks of religions in all the variables that are analyzed in the models 1 through 6<sup>28</sup>. As seen in the table, although Hindus are doing relatively well in their access to tap water, and literacy of the head of household, their per capita expenditure and condition of house are ranked lower among the four religious groups. This implies that they are more likely to suffer from poverty compared with the Christians and the Sikhs. Muslims are doing poorly in most of the aspects analyzed in this paper. They have lower per capita expenditure, and a little probability of possessing more than 1.0 hectare of land, do not have much access to tap water, and their houses are more likely to be in bad condition. In contrast Christians are doing quite well in every aspect except in their access to commercial energy for cooking. Sikhs are also comparatively well off but lack the literacy of their head of household, and have a low probability of having access to tap water.

 $<sup>^{28}</sup>$  In table 12, the four religions are ranked from the best to the worst by using numbers 1 to 4 for each variable: 1 is the best rank and 4 is the worst. Total points and average points in the table are the total and average of these numbers.

#### Table 12 Summary of the analyses

|              | pcexp | Land       | Commercial | Literacy | Condition | Тар   | Total  | Average |
|--------------|-------|------------|------------|----------|-----------|-------|--------|---------|
|              | peerp | possession | energy     | LITEIACY | of house  | water | points | points  |
| Hinduism     | 4     | 3          | 2          | 2        | 3         | 2     | 16     | 2.67    |
| Muslim       | 3     | 4          | 3          | 3        | 4         | 3     | 20     | 3.3     |
| Christianity | 2     | 2          | 4          | 1        | 2         | 1     | 12     | 2.00    |
| Sikhism      | 1     | 1          | 1          | 4        | 1         | 4     | 12     | 2.00    |

#### Summary ratings based on results of regression with state dummies

| Callinary       | in ge kae |                 |                      |          |                        |              |                 |                |  |
|-----------------|-----------|-----------------|----------------------|----------|------------------------|--------------|-----------------|----------------|--|
|                 | pcexp     | Land possession | Commercial<br>energy | Literacy | Condition<br>of house* | Tap<br>water | Total<br>points | Average points |  |
| Hindu state     | 3         | 3               | 3                    | 2        | 4                      | 1            | 16              | 2.7            |  |
| Muslim state    | 4         | 4               | 2                    | 3        | 3                      | 4            | 20              | 3.33           |  |
| Christian state | 2         | 2               | 4                    | 1        | 1                      | 2            | 12              | 2.00           |  |
| Sikh state      | 1         | 1               | 1                    | 4        | 2                      | 3            | 12              | 2.5            |  |

\*The results were not significant

# 6 Conclusion

This paper has analyzed the socio-economic characteristics of religious groups, which were abstracted from the micro level household survey data for India. From the analyses based on the use of the religion dummies and religious state dummies, it is shown that there are considerable differences in the socio-economic characteristics among religions.

While Hindus, Christians, and Sikhs do better than other religions in certain variables that are analyzed in this paper such as per capita expenditure, access to commercial energy for cooking, literacy of the head of household, and so on, Muslims fare the worst in most of the variables compared with other religions. However, it is interesting that none of the religions is better off than the others in all the variables. Sikhs have the highest monthly per capita expenditure but the education levels of their household heads are the lowest of the four religions. Furthermore, although having higher per capita expenditure increases the probability of households having access to tap water, Sikhs have lower a probability of households with access to tap water compared with other religions. Christians have a higher probability of having more land, good houses, and literate household heads but are less likely to have access to commercial energy for cooking of the four religions.

In this study, it was not examined what caused these differences in characteristics among religious groups. Since it was shown in this paper that regions with a high percentage of a certain religion have the same characteristics of that dominating religion, it should be important to study whether these characteristics are caused by the effect from the region where the religious groups tend to live or by the peculiarity of religion in its culture, attitudes toward life, work ethic, and so on.

However, it was meaningful to reveal and to learn that each religion has its distinct socioeconomic characteristics. It implies that different policies need to be devised for different religious groups to ameliorate their household conditions and wellbeing. In order to seek effective policies for different religious groups, the causes of different characteristics among religious groups have to be defined. To achieve this purpose, it is essential to do field research to obtain more information not only on socio-economic characteristics of religious groups and learn more about their conditions but also on their values and beliefs that may affect their socio-economic conditions.

# Appendix

|                         | No      |          | of nousenoids ac   |       |         |          |         | Zoroastria |        |  |
|-------------------------|---------|----------|--------------------|-------|---------|----------|---------|------------|--------|--|
|                         | Answers | Hinduism | Muslim             | ity   | Sikhism | Buddhism | Jainism | nism       | Others |  |
| Andaman &               |         |          |                    |       |         |          |         |            |        |  |
| Nicobar Islands         | 0       | 75.52    | 5.32               | 17.95 | 0.7     | 0.05     | 0       | 0          | 0.44   |  |
| Andhra Pradesh          | 0.15    | 89.83    | 6.98               | 2.84  | 0.01    | 0        | 0.03    | 0          | 0.16   |  |
| Arunachal               |         |          |                    |       |         |          |         |            |        |  |
| Pradesh                 | 0.12    | 30.93    | 0.61               | 7.59  | 0.02    | 8.04     | 0.1     | 0          | 52.58  |  |
| Assam                   | 0.05    | 73.08    | 23.56              | 2.99  | 0.11    | 0        | 0.03    | 0          | 0.19   |  |
| Bihar                   | 0.03    | 83.54    | 14.34              | 1.69  | 0.06    | 0        | 0.05    | 0          | 0.28   |  |
| Chandigarh              | 0       | 79.84    | 3.5                | 0     | 15.79   | 0        | 0       | 0          | 0.86   |  |
| Dadra & Nagar<br>Haveli | 0       | 97.99    | 1.26               | 0.52  | 0.17    | 0        | 0.04    | 0.02       | 0      |  |
| Darman & Diu            | 0       | 91.96    | 3.12               | 4.03  | 0.17    |          | 0.04    | 0.02       | 0.89   |  |
| Darman & Diu<br>Delhi   | 0       | 82.32    | 10.01              | 0.69  | 4.82    | Ŷ        | 0.87    | 0          | 0.89   |  |
| Goa                     | 0       | 68.06    | 4.06               | 27.35 | 4.62    | 0.35     | 0.87    | 0          | 0.94   |  |
| Gujara                  | 0       | 91.28    | <u>4.00</u><br>6.3 | 1.17  | 0.12    | 0.08     | 0.7     | 0.02       | 0.33   |  |
| Haryana                 | 0       | 90.31    | 4.98               | 0.32  | 4.02    | 0.08     | 0.05    | 0.02       | 0.33   |  |
| Himachal                | 0       | 90.31    | 4.90               | 0.52  | 4.02    | 0.05     | 0.05    | 0          | 0.20   |  |
| Pradesh                 | 0.05    | 96.23    | 1.64               | 0.04  | 0.67    | 0.76     | 0       | 0          | 0.6    |  |
| Jammu &<br>Kashmir      | 0.12    | 89.26    | 7.27               | 0.21  | 2.83    | 0        | 0.16    | 0          | 0.15   |  |
| Karnataka               | 0.04    | 86.71    | 10                 | 2.21  | 0.03    | 0        | 0.5     | 0          | 0.51   |  |
| Kerala                  | 0       | 62.09    | 17.82              | 19.47 | 0.03    | 0        | 0.03    | 0          | 0.5    |  |
| Lakshadweep             | 0       | 4.13     | 93.53              | 2.34  | 0       | 0        | 0       | 0          | 0      |  |
| Madhya<br>Pradesh       | 0.04    | 94.4     | 4.05               | 0.61  | 0.22    | 0.1      | 0.27    | 0.02       | 0.28   |  |
| Maharashtra             | 0.06    | 82.86    | 7.67               | 1.13  | 0.12    | 6.68     | 1.05    | 0.1        | 0.32   |  |
| Manipur                 | 0.06    | 54.06    | 9.34               | 34.59 | 0.06    | 0        | 0.2     | 0          | 1.68   |  |
| Meghalaya               | 0.05    | 13.3     | 2                  | 72.57 | 0.35    | 0        | 0       | 0          | 11.7   |  |
| Mizoram                 | 0       | 0.63     | 0.78               | 89.52 | 0       | 9.06     | 0       | 0          | 0      |  |
| Nagaland                | 0       | 12.57    | 1.44               | 85.63 | 0.25    | 0        | 0       | 0          | 0.1    |  |
| Orissa                  | 0       | 96.1     | 1.83               | 1.6   | 0.05    | 0        | 0.01    | 0          | 0.41   |  |
| Pondicherry             | 0       | 86.04    | 2.73               | 11.23 | 0       | 0        | 0       | 0          | 0      |  |
| Punjab                  | 0.07    | 41.45    | 1.28               | 1.59  | 55.28   | 0        | 0.11    | 0.03       | 0.19   |  |
| Rajasthan               | 0       | 90.63    | 6.79               | 0.12  | 1.49    |          | 0.51    | 0          | 0.46   |  |
| Sikkim                  | 0       | 73.22    | 1.75               | 2.01  | 0.47    | 22.24    | 0.06    | 0          | 0.2    |  |
| Tamil Nadu              | 0.01    | 89.45    | 4.91               | 5.36  | 0.01    | 0        | 0.07    | 0          | 0.2    |  |
| Tripula                 | 0       | 88.07    | 7.23               | 1.79  | 0       |          | 0       | 0          | 0.5    |  |
| Uttar Pradesh           | 0       | 84.02    | 15.12              | 0.03  | 0.71    |          | 0.05    | 0          | 0.06   |  |
| West Bengal             | 0       | 77.22    | 21.57              | 0.33  | 0.03    |          | 0.03    | 0          | 0.67   |  |
| All India               | 0.03    | 84.28    | 10.21              | 2.44  | 1.68    | 0.71     | 0.24    | 0.01       | 0.39   |  |

Table 1 Distribution of households according to religious groups in India (%)

#### Table 6 Variable definitions

| pcexp      | Monthly per capita expenditure in Rupees                                                                                                                                            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pcexpthou  | Monthly per capita expenditure in thousands of Rupees                                                                                                                               |
| LAND       | A dummy variable which represents a household with more than 1.0 hectares of land when the value is 1 and 0 otherwise                                                               |
| COME       | A dummy variable which represents a household with commercial energy for cooking when the value is 1 and 0 otherwise                                                                |
| SELFEMPL   | A dummy variable which represents the head of a household in a rural area is selfemployed when the value is 1 and 0 otherwise                                                       |
| REGEARN    | A dummy variable which represents the head of a household in an urban area is regular wage/ salery earning when the value is 1 and 0 otherwiss                                      |
| hhsize     | Size of the household                                                                                                                                                               |
| CHILD      | A dummy variable which represents a household with more than one child when the value is 1 and 0 otherwise                                                                          |
| INSUFFFOOD | A dummy variable which represents a household is insufficient with food when the value is 1 and 0 otherwise                                                                         |
| MALE       | A dummy variable which represents the head of a household is male when the value is 1 and 0 otherwise                                                                               |
| ILLITERATE | A dummy variable which represents the head of a household is illiterate when the value is 1 and 0 otherwise                                                                         |
| area       | Area covered by the dwelling per households in square feet                                                                                                                          |
| BADHCOND   | A dummy variable which represents the condition of a house is bad when the value is 1 and 0 otherwise                                                                               |
| TAP        | A dummy variable which represents a household with tap water when the value is 1 and 0 otherwise                                                                                    |
| RU         | A dummy variable which represents a household belongs to a rural area when the value is 1 and 0 otherwise                                                                           |
| HINDU      | A dummy variable which represents the religion of a household is Hinduism when the value is 1 and 0 otherwise                                                                       |
| MUSLIM     | A dummy variable which represents the religion of a household is Muslism when the value is 1 and 0 otherwise                                                                        |
| CHRIST     | A dummy variable which represents the religion of a household is Christianity when the value is 1 and 0 otherwise                                                                   |
| SIKH       | A dummy variable which represents the religion of a household is Sikhism when the value is 1 and 0 otherwise                                                                        |
| OTHERS     | A dummy variable which represents the religion of a household is other than Hinduisum, Muslism, Chrisitianity, and Sikhism when the value is 1 and 0 otherwise                      |
| HDST       | A dummy variable which represents a household belongs to the Hindu state when the value is 1 and 0 otherwise                                                                        |
| MUSST      | A dummy variable which represents a household belongs to the Muslim state when the value is 1 and 0 otherwise                                                                       |
| CHST       | A dummy variable which represents a household belongs to the Christian state when the value is 1 and 0 otherwise                                                                    |
| SIKST      | A dummy variable which represents a household belongs to the Sikh state when the value is 1 and 0 otherwise                                                                         |
| OTHST      | A dummy variable which represents a household belongs to the Others state when the value is 1 and 0 otherwise                                                                       |
| RELIGIONi  | Dummy variables for religious groups. A household is HINDU or HDST when i=1, MUSLIM or MUSST when i=2, CHRIST or CHST when i=3, SIKH or SIKST when i=4, and OTHERS or OTHSTwhen i=5 |

#### Table 7 Composition of religious states

| Hindu state      | Dadra & Nagar Haveli, Gujara, Himachal Pradesh, Karanataka, Madhya Pradesh, Orissa, Rajasthan, Tripula                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Muslim state     | Bihar, Lakshadweep, Uttar Pradesh, West Bengal                                                                                       |
| Chrisitian state | Andaman & Nicobar Islands, Goa, Manipur, Meghalaya, Mizoram, Nagaland                                                                |
| Sikh state       | Chandigarh, Dehli, Punjab                                                                                                            |
| Others state     | Andra Pradesh, Arunuchal Pradesh, Assam, Darman & Diu, Haryana, Jammu & Kashmir, Kerala, Maharashtra, Pondishery, Sikkim, Tamil Nadu |

# Table 9 Religion dummy and religious state dummies taken asthe benchmark dummy in each model

| the penci           | Intark Quinin | ny in each model           |
|---------------------|---------------|----------------------------|
| The first analysis  | Basic dummy   | $\sum RELIGION_i$          |
| Model 1             | SIKH          | HINDU+MUSLIM+CHRIST+OTHERS |
| Model 2             | MUSLIM        | HINDU+CHRIST+SIKH+OTHERS   |
| Model 3             | MUSLIM        | HINDU+CHRIST+SIKH+OTHERS   |
| Model 4             | MUSLIM        | HINDU+CHRIST+SIKH+OTHERS   |
| Model 5             | MUSLIM        | HINDU+CHRIST+SIKH+OTHERS   |
| Model 6             | SIKH          | HINDU+MUSLIM+CHRIST+OTHERS |
| The second analysis | Basic dummy   | $\sum RELIGION_{i}$        |
| Model 1             | MUSST         | HDST+CHST+SIKST+OTHST      |
| Model 2             | SIKST         | HDST+MUSST+CHST+OTHST      |
| Model 3             | CHST          | HDST+MUSST+SIKST+OTHST     |
| Model 4             | MUSST         | HDST+CHST+SIKST+OTHST      |
| Model 5             | MUSST         | HDST+CHST+SIKST+OTHST      |
| Model 6             | SIKST         | HDST+MUSST+CHST+OTHST      |

|                                                                                                                                                                                             | Moc                                                                                                                                                                                                                                                                                                                                                                                                                                    | lel 1 Depe                                                                                                                                                                        | ndent Vari                                                                                                                                                                       | iable: log(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cexp) Model 2 Response Variable:                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAND Model 3 Response Variable                                                                                                          |                                                                                                                                                                                        |                                                                                                                                                                                           | e Variable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COME             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                             | Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard<br>Error                                                                                                                                                                 | t value                                                                                                                                                                          | Pr> t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exponential<br>values for<br>dummies                                                                                                                               | Coefficient                                                                                                                                                                                  | Standard<br>Error                                                                                                                                                                                     | Wald Chi-<br>square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pr>ChiSq                                                                                                                                | Coefficient                                                                                                                                                                            | Standard<br>Error                                                                                                                                                                         | Wald Chi-<br>square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pr>ChiSq         |
| Intercept                                                                                                                                                                                   | 6.5931                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0113                                                                                                                                                                            | 583.46                                                                                                                                                                           | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                  | - 4.9179                                                                                                                                                                                     | 0.0589                                                                                                                                                                                                | 6975.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <.0001                                                                                                                                  | - 2.1553                                                                                                                                                                               | 0.0469                                                                                                                                                                                    | 2109.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <.0001           |
| pcexpthou                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                 | -                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                  | 0.3539                                                                                                                                                                                       | 0.0247                                                                                                                                                                                                | 204.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | 1.7436                                                                                                                                                                                 | 0.0330                                                                                                                                                                                    | 2786.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <.0001           |
| LAND                                                                                                                                                                                        | 0.1372                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0040                                                                                                                                                                            | 34.58                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1470                                                                                                                                                             | -                                                                                                                                                                                            | -                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                       | - 0.8443                                                                                                                                                                               | 0.0333                                                                                                                                                                                    | 641.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <.0001           |
| COME                                                                                                                                                                                        | 0.3434                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0040                                                                                                                                                                            | 85.18                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4098                                                                                                                                                             | - 0.8166                                                                                                                                                                                     | 0.0329                                                                                                                                                                                                | 615.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | -                                                                                                                                                                                      | -                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                |
| SELFEMPL                                                                                                                                                                                    | 0.0903                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0039                                                                                                                                                                            | 23.13                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0945                                                                                                                                                             | 1.8729                                                                                                                                                                                       | 0.0213                                                                                                                                                                                                | 7721.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <.0001                                                                                                                                  | - 0.3374                                                                                                                                                                               | 0.0348                                                                                                                                                                                    | 94.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.0001           |
| REGEARN                                                                                                                                                                                     | 0.1256                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0045                                                                                                                                                                            | 28.15                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1339                                                                                                                                                             | - 1.0260                                                                                                                                                                                     | 0.0567                                                                                                                                                                                                | 327.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | 0.6309                                                                                                                                                                                 | 0.0221                                                                                                                                                                                    | 815.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <.0001           |
| hhsize                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                 | -                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                  | 0.2271                                                                                                                                                                                       | 0.0044                                                                                                                                                                                                | 2705.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <.0001                                                                                                                                  | 0.055                                                                                                                                                                                  | 0.0045                                                                                                                                                                                    | 150.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <.0001           |
| log(hhsize)                                                                                                                                                                                 | - 0.3590                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0033                                                                                                                                                                            | - 108.55                                                                                                                                                                         | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.3016                                                                                                                                                           | -                                                                                                                                                                                            | -                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                       | -                                                                                                                                                                                      | -                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                |
| CHILD                                                                                                                                                                                       | - 0.1296                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0038                                                                                                                                                                            | - 33.85                                                                                                                                                                          | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.1215                                                                                                                                                           | - 0.2983                                                                                                                                                                                     | 0.0235                                                                                                                                                                                                | 161.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | 0.1103                                                                                                                                                                                 | 0.0227                                                                                                                                                                                    | 23.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.0001           |
| MALE                                                                                                                                                                                        | 0.0327                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0048                                                                                                                                                                            | 6.89                                                                                                                                                                             | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0333                                                                                                                                                             | 0.5558                                                                                                                                                                                       | 0.0353                                                                                                                                                                                                | 247.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | 0.2343                                                                                                                                                                                 | 0.0298                                                                                                                                                                                    | 61.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.0001           |
| ILLITERATE                                                                                                                                                                                  | - 0.2331                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0031                                                                                                                                                                            | - 74.16                                                                                                                                                                          | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.2079                                                                                                                                                           | -                                                                                                                                                                                            | -                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                       | -                                                                                                                                                                                      | -                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                |
| INSUFFFOOD                                                                                                                                                                                  | - 0.2514                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0154                                                                                                                                                                            | - 16.29                                                                                                                                                                          | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.2223                                                                                                                                                           | - 1.3531                                                                                                                                                                                     | 0.1710                                                                                                                                                                                                | 62.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <.0001                                                                                                                                  | -                                                                                                                                                                                      | -                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                |
| area                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                 | -                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                  | 0.0394                                                                                                                                                                                       | 0.0017                                                                                                                                                                                                | 545.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | 0.0158                                                                                                                                                                                 | 0.0016                                                                                                                                                                                    | 97.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.0001           |
| log(area)                                                                                                                                                                                   | 0.1246                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0017                                                                                                                                                                            | 75.38                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                  | -                                                                                                                                                                                            | -                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                       | -                                                                                                                                                                                      | -                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                |
| BADHCOND                                                                                                                                                                                    | -0.1649                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0041                                                                                                                                                                            | - 40.27                                                                                                                                                                          | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.1520                                                                                                                                                           | - 0.7728                                                                                                                                                                                     | 0.0286                                                                                                                                                                                                | 730.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | - 0.9656                                                                                                                                                                               | 0.0324                                                                                                                                                                                    | 888.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <.0001           |
| TAP                                                                                                                                                                                         | 0.1153                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0033                                                                                                                                                                            | 34.96                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1222                                                                                                                                                             | -                                                                                                                                                                                            | -                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                       | 0.9708                                                                                                                                                                                 | 0.0192                                                                                                                                                                                    | 2555.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <.0001           |
| RU                                                                                                                                                                                          | - 0.1464                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0044                                                                                                                                                                            | - 33.16                                                                                                                                                                          | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.1362                                                                                                                                                           | 0.5843                                                                                                                                                                                       | 0.0343                                                                                                                                                                                                | 290.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | - 1.9663                                                                                                                                                                               | 0.0268                                                                                                                                                                                    | 5369.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <.0001           |
| HINDU                                                                                                                                                                                       | -0.3756                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0093<br>0.0101                                                                                                                                                                  | - 40.61<br>- 37.27                                                                                                                                                               | <.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.3131                                                                                                                                                           | 0.8625                                                                                                                                                                                       | 0.0339                                                                                                                                                                                                | 645.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>&lt;.0001</u><br>-                                                                                                                   | 0.3461                                                                                                                                                                                 | 0.0282                                                                                                                                                                                    | - 150.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <.0001<br>-      |
| MUSLIM<br>CHRIST                                                                                                                                                                            | - 0.3755<br>- 0.2062                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0101                                                                                                                                                                            | - <u>37.27</u><br>- 19.07                                                                                                                                                        | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.3131<br>- 0.1863                                                                                                                                               | - 1.0621                                                                                                                                                                                     | -<br>0.0478                                                                                                                                                                                           | - 493.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <.0001                                                                                                                                | -<br>- 0.2789                                                                                                                                                                          |                                                                                                                                                                                           | -<br>36.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br><.0001      |
| SIKH                                                                                                                                                                                        | - 0.2062                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0106                                                                                                                                                                            | - 19.07                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 0.1003                                                                                                                                                           | 1.1620                                                                                                                                                                                       | 0.0478                                                                                                                                                                                                | <u>493.53</u><br>341.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <.0001                                                                                                                                  |                                                                                                                                                                                        | 0.0463                                                                                                                                                                                    | <u>30.20</u><br>178.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <.0001<br><.0001 |
| OTHERS                                                                                                                                                                                      | - 0.3190                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0.0128                                                                                                                                                                          | - 24.86                                                                                                                                                                          | - <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0.2731                                                                                                                                                           | 1.2096                                                                                                                                                                                       | 0.0596                                                                                                                                                                                                | 412.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         | 0.8714<br>0.4841                                                                                                                                                                       | 0.0652                                                                                                                                                                                    | 57.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.0001           |
| Adj R-Sqr                                                                                                                                                                                   | - 0.3 190                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0120                                                                                                                                                                            | 0.4612                                                                                                                                                                           | <.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2731                                                                                                                                                            | 1.2090                                                                                                                                                                                       | 0.0590                                                                                                                                                                                                | 412.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <.0001                                                                                                                                  | 0.4041                                                                                                                                                                                 | 0.0041                                                                                                                                                                                    | 57.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.000 T          |
|                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5512                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Max-rescaled                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   | -                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                    |                                                                                                                                                                                              | 0.44                                                                                                                                                                                                  | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                         |                                                                                                                                                                                        | 0.55                                                                                                                                                                                      | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Max-rescaled<br>R-Sqr                                                                                                                                                                       | Model 4                                                                                                                                                                                                                                                                                                                                                                                                                                | Response                                                                                                                                                                          | -<br>/ariable: II I                                                                                                                                                              | ITERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model 5                                                                                                                                                            | Response \                                                                                                                                                                                   | 0.44                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mo                                                                                                                                      | half Resno                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                             | Model 4                                                                                                                                                                                                                                                                                                                                                                                                                                | Response \<br>Standard                                                                                                                                                            | Wald Chi-                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Model 5                                                                                                                                                            | Response V<br>Standard                                                                                                                                                                       | ariable: BAI<br>Wald Chi-                                                                                                                                                                             | DHCOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         | <b>del 6</b> Respo<br>Standard                                                                                                                                                         | nse Variable:<br>Wald Chi-                                                                                                                                                                | TAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| R- Sqr                                                                                                                                                                                      | Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard<br>Error                                                                                                                                                                 | Wald Chi-<br>square                                                                                                                                                              | Pr>ChiSq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coefficient                                                                                                                                                        | Standard<br>Error                                                                                                                                                                            | ariable: BAI<br>Wald Chi-<br>square                                                                                                                                                                   | DHCOND<br>Pr>ChiSq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coefficient                                                                                                                             | Standard<br>Error                                                                                                                                                                      | nse Variable:<br>Wald Chi-<br>square                                                                                                                                                      | TAP<br>Pr>ChiSq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| R-Sqr<br>Intercept                                                                                                                                                                          | Coefficient<br>2.2371                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard<br>Error<br>0.0401                                                                                                                                                       | Wald Chi-<br>square<br>3116.64                                                                                                                                                   | Pr>ChiSq<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Coefficient<br>0.3085                                                                                                                                              | Standard<br>Error<br>0.0542                                                                                                                                                                  | ariable: BAI<br>Wald Chi-<br>square<br>32.40                                                                                                                                                          | DHCOND<br>Pr>ChiSq<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coefficient                                                                                                                             | Standard<br>Error<br>0.0544                                                                                                                                                            | nse Variable:<br>Wald Chi-<br>square<br>39.77                                                                                                                                             | TAP<br>Pr>ChiSq<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| R-Sqr<br>Intercept<br>pcexpthou                                                                                                                                                             | Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard<br>Error                                                                                                                                                                 | Wald Chi-<br>square                                                                                                                                                              | Pr>ChiSq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coefficient<br>0.3085<br>- 2.8168                                                                                                                                  | Standard<br>Error<br>0.0542<br>0.0724                                                                                                                                                        | ariable: BAI<br>Wald Chi-<br>square<br>32.40<br>1512.77                                                                                                                                               | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coefficient                                                                                                                             | Standard<br>Error                                                                                                                                                                      | nse Variable:<br>Wald Chi-<br>square                                                                                                                                                      | TAP<br>Pr>ChiSq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND                                                                                                                                                     | Coefficient<br>2.2371<br>- 2.7185<br>-                                                                                                                                                                                                                                                                                                                                                                                                 | Standard<br>Error<br>0.0401<br>0.0456<br>-                                                                                                                                        | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-                                                                                                                                   | Pr>ChiSq<br><.0001<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835                                                                                                                      | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290                                                                                                                                              | ariable: BAI<br>Wald Chi-<br>square<br>32.40<br>1512.77<br>405.21                                                                                                                                     | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coefficient<br>- 0.3430<br>0.5573<br>-                                                                                                  | Standard<br>Error<br>0.0544<br>0.0243                                                                                                                                                  | nse Variable:<br>Wald Chi-<br>square<br>39.77<br>524.22                                                                                                                                   | TAP<br>Pr>ChiSq<br><.0001<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME                                                                                                                                             | Coefficient<br>2.2371<br>- 2.7185<br>-<br>-<br>- 0.9443                                                                                                                                                                                                                                                                                                                                                                                | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234                                                                                                                              | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46                                                                                                                        | Pr>ChiSq<br><.0001<br><.0001<br>-<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590                                                                                                          | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334                                                                                                                                    | ariable: BAI<br>Wald Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38                                                                                                                           | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971                                                                                        | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192                                                                                                                                   | nse Variable:<br>Wald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31                                                                                                                   | TAP<br>Pr>ChiSq<br><.0001<br><.0001<br>-<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL                                                                                                                                 | Coefficient<br>2.2371<br>- 2.7185<br>-<br>-<br>0.9443<br>- 0.1165                                                                                                                                                                                                                                                                                                                                                                      | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170                                                                                                                    | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24                                                                                                               | Pr>ChiSq<br><.0001<br><.0001<br>-<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615                                                                                              | Standard<br>Error           0.0542           0.0724           0.0290           0.0334           0.0234                                                                                       | ariable: BAI<br>Wald Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56                                                                                                                 | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112                                                                            | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193                                                                                                                         | nse Variable:<br>Wald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09                                                                                                         | TAP<br>Pr>ChiSq<br><.0001<br><.0001<br>-<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN                                                                                                                      | Coefficient<br>2.2371<br>- 2.7185<br>-<br>-<br>- 0.9443                                                                                                                                                                                                                                                                                                                                                                                | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234                                                                                                                              | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46                                                                                                                        | Pr>ChiSq<br><.0001<br><.0001<br>-<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698                                                                                  | Standard<br>Error           0.0542           0.0724           0.0290           0.0334           0.0234           0.0384                                                                      | ariable: BAI<br>Wald Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22                                                                                                        | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776                                                                  | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229                                                                                                               | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01                                                                                                | TAP<br>Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize                                                                                                            | Coefficient<br>2.2371<br>- 2.7185<br>-<br>-<br>0.9443<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-                                                                                                                                                                                                                                                                                                                                         | Standard<br>Error<br>0.0401<br>-<br>0.0234<br>0.0170<br>0.0291<br>-                                                                                                               | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-                                                                                                | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092                                                          | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0384<br>0.0048                                                                                                      | ariable: BAI<br>Wald Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68                                                                                              | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-                                                             | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-                                                                                                          | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-                                                                                           | TAP<br>Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD                                                                                                   | Coefficient<br>2.2371<br>- 2.7185<br>-<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-<br>-<br>- 0.3798                                                                                                                                                                                                                                                                                                                                       | Standard<br>Error<br>0.0401<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166                                                                                                     | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52                                                                                      | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-                                                                 | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0234<br>0.0384<br>0.0048                                                                                            | ariable: BAI<br>Wald Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-                                                                                         | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776                                                                  | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229                                                                                                               | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01                                                                                                | TAP<br>Pr>ChiSq<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE                                                                                           | Coefficient<br>2.2371<br>- 2.7185<br>-<br>-<br>0.9443<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-                                                                                                                                                                                                                                                                                                                                         | Standard<br>Error<br>0.0401<br>-<br>0.0234<br>0.0170<br>0.0291<br>-                                                                                                               | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52                                                                                      | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-<br>0.1354                                                       | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0384<br>0.0048<br>-<br>0.0291                                                                                       | ariable: BA<br>Wald Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64                                                                                 | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-                                         | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-                                                                                                | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>-                                                                            | TAP<br>Pr>ChiSq<br><.0001<br>-<br><.0001<br>-<br>.0001<br><.0001<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE                                                                             | Coefficient<br>2.2371<br>- 2.7185<br>-<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-<br>-<br>- 0.3798                                                                                                                                                                                                                                                                                                                                       | Standard<br>Error<br>0.0401<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166                                                                                                     | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52                                                                                      | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-<br>0.1354<br>0.5384                                             | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0384<br>0.0048<br>-<br>0.0291<br>0.0291<br>0.0196                                                                   | ariable: BA<br>Veld Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39                                                                       | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-                                                             | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-                                                                                                          | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-                                                                                           | TAP<br>Pr>ChiSq<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD                                                               | Coefficient<br>2.2371<br>- 2.7185<br>-<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-<br>- 0.3798<br>- 1.3049<br>-<br>-                                                                                                                                                                                                                                                                                                                      | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>-                                                                  | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-                                                                 | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-<br>0.1354<br>0.5384<br>1.0105                                   | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0384<br>0.0048<br>-<br>0.0291<br>0.0196<br>0.0727                                                                   | ariable: BAI<br>Veld Chi-<br>square<br>32,40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39<br>193.30                                                            | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coefficient - 0.3430 0.5573 - 0.9971 - 0.2112 0.1776                                                                                    | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                       | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>-<br>-<br>-                                                                  | TAP<br>Pr>ChiSq<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>- |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area                                                       | Coefficient<br>2.2371<br>- 2.7185<br>-<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-<br>- 0.3798<br>- 1.3049<br>-<br>-<br>- 0.0310                                                                                                                                                                                                                                                                                                          | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>-<br>0.0016                                                        | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98                                                       | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-<br>-<br><.0001<br>-<br>-<br>-<br>-<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-<br>0.1354<br>0.5384                                             | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0384<br>0.0048<br>-<br>0.0291<br>0.0291<br>0.0196                                                                   | ariable: BA<br>Veld Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39                                                                       | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.0014                          | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>-<br>-<br>133.01                                                             | TAP<br>Pr>ChiSq<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>- |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area<br>BADHCOND                                           | Coefficient<br>2.2371<br>- 2.7185<br>-<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-<br>- 0.3798<br>- 1.3049<br>-<br>-<br>- 0.0310<br>0.6070                                                                                                                                                                                                                                                                                                | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>0.0016<br>0.0016<br>0.00192                                        | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98<br>996.69                                             | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-<br>-<br>-<br>-<br><.0001<br>-<br>-<br>-<br>.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coefficient 0.3085 - 2.8168 - 0.5835 - 0.6590 - 0.3615 - 0.2698 - 0.1092 - 0.1354 0.5384 1.0105 - 0.1148 -                                                         | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0384<br>0.0048<br>-<br>0.0291<br>0.0196<br>0.0727<br>0.0036<br>-                                                    | ariable: BAI<br>Vaid Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39<br>193.30<br>1000.66<br>-                                            | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coefficient - 0.3430 0.5573 - 0.9971 - 0.2112 0.1776                                                                                    | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                       | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>-<br>-<br>-                                                                  | TAP<br>Pr>ChiSq<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>- |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area<br>BADHCOND<br>TAP                                    | Coefficient<br>2.2371<br>- 2.7185<br>-<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-<br>- 0.3798<br>- 1.3049<br>-<br>-<br>- 0.0310<br>0.6070<br>- 0.1218                                                                                                                                                                                                                                                                                    | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>-<br>0.0016<br>0.0016<br>0.0192<br>0.0167                          | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98<br>996.69<br>53.31                                    | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-<br>-<br>-<br><.0001<br>-<br>0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-<br>-<br>0.1354<br>0.5384<br>1.0105<br>- 0.1148<br>-<br>- 0.4086 | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0048<br>-<br>0.0291<br>0.0196<br>0.0727<br>0.0036<br>-<br>0.0224                                                    | ariable: BAI<br>Vaid Chi-<br>square<br>32,40<br>1512,77<br>405,21<br>388,38<br>238,56<br>49,22<br>521,68<br>-<br>21,64<br>757,39<br>193,30<br>1000,66<br>-<br>333,56                                  | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | nse Variable:<br>Vaid Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>-<br>133.01<br>472.29<br>-                                                   | TAP<br>Pr>ChiSq<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>- |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area<br>BADHCOND<br>TAP<br>RU                              | Coefficient<br>2.2371<br>- 2.7185<br>-<br>0.9443<br>- 0.1165<br>-<br>0.3798<br>- 1.3049<br>-<br>-<br>-<br>0.3798<br>-<br>1.3049<br>-<br>-<br>-<br>0.3798<br>-<br>0.3798<br>-<br>0.3798<br>-<br>0.3798<br>-<br>0.3798<br>-<br>-<br>0.3798<br>-<br>-<br>0.3798<br>-<br>-<br>-<br>0.3718<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.3798<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>0.0016<br>0.00192<br>0.0167<br>0.0219                              | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98<br>996.69<br>53.31<br>475.13                          | Pr>ChiSq<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br>-<br>-<br><.0001<br>-<br>-<br>-<br><.0001<br><.0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coefficient 0.3085 - 2.8168 - 0.5835 - 0.6590 - 0.3615 - 0.2698 - 0.1092 0.1354 0.5384 1.0105 - 0.1148 0.4086 0.1087                                               | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0234<br>0.0384<br>-<br>0.0291<br>0.0196<br>0.0727<br>0.0036<br>-<br>0.0224<br>0.0221                                | ariable: BAI<br>Vaid Chi-<br>square<br>32.40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39<br>193.30<br>1000.66<br>-<br>333.56<br>16.08                         | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | nse Variable:<br>Vaid Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>133.01<br>472.29<br>-<br>5298.16                                             | TAP<br>Pr>ChiSq<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area<br>BADHCOND<br>TAP<br>RU<br>HINDU                     | Coefficient<br>2.2371<br>- 2.7185<br>-<br>- 0.9443<br>- 0.1165<br>- 0.5718<br>-<br>- 0.3798<br>- 1.3049<br>-<br>-<br>- 0.0310<br>0.6070<br>- 0.1218                                                                                                                                                                                                                                                                                    | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>-<br>0.0016<br>0.0016<br>0.0192<br>0.0167                          | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98<br>996.69<br>53.31                                    | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-<br>-<br>-<br><.0001<br>-<br>0001<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-<br>-<br>0.1354<br>0.5384<br>1.0105<br>- 0.1148<br>-<br>- 0.4086 | Standard<br>Error<br>0.0542<br>0.0724<br>0.0290<br>0.0334<br>0.0234<br>0.0048<br>-<br>0.0291<br>0.0196<br>0.0727<br>0.0036<br>-<br>0.0224                                                    | ariable: BAI<br>Vaid Chi-<br>square<br>32,40<br>1512,77<br>405,21<br>388,38<br>238,56<br>49,22<br>521,68<br>-<br>21,64<br>757,39<br>193,30<br>1000,66<br>-<br>333,56                                  | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.0014<br>0.0218<br>-<br>0.0204<br>0.0510 | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>133.01<br>472.29<br>-<br>5298.16<br>113.45                                   | TAP<br>Pr>ChiSq<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>- |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area<br>BADHCOND<br>TAP<br>RU<br>HINDU<br>MUSLIM           | Coefficient<br>2.2371<br>- 2.7185<br>-<br>0.9443<br>- 0.1165<br>- 0.5718<br>-<br>-<br>- 0.3798<br>-<br>-<br>-<br>- 0.0310<br>0.6070<br>- 0.1218<br>0.4764<br>- 0.2779<br>-<br>-                                                                                                                                                                                                                                                        | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>0.0016<br>0.0192<br>0.0167<br>0.0219<br>0.0223<br>-                | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98<br>996.69<br>53.31<br>475.13<br>155.93<br>-           | Pr>ChiSq<br><.0001<br>-<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.00 | Coefficient 0.3085 - 2.8168 - 0.5835 - 0.6590 - 0.3615 - 0.2698 - 0.1092                                                                                           | Standard<br>Error<br>0.0542<br>0.0290<br>0.0334<br>0.0234<br>0.0234<br>0.0234<br>0.0234<br>0.0291<br>0.0291<br>0.0196<br>0.0727<br>0.0036<br>-<br>0.0224<br>0.0271<br>0.0226<br>-            | ariable: BA/<br>Velid Chi-<br>square<br>32,40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39<br>193.30<br>1000.66<br>-<br>333.56<br>16.08<br>32.39<br>-          | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br>-<br><.0001<br>-<br>-<br><.0001<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.0014<br>0.0218<br>-<br>0.0204<br>0.0510<br>0.0550      | nse Variable:<br>Valid Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>-<br>133.01<br>472.29<br>-<br>5298.16<br>113.45<br>15.65                    | TAP<br>Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area<br>BADHCOND<br>TAP<br>RU<br>HINDU<br>MUSLIM<br>CHRIST | Coefficient<br>2.2371<br>- 2.7185<br>-<br>0.9443<br>- 0.1165<br>- 0.5718<br>-<br>-<br>- 0.3798<br>-<br>-<br>- 0.3798<br>-<br>-<br>-<br>-<br>- 0.0310<br>0.6070<br>- 0.1218<br>0.4764<br>- 0.2779<br>-<br>-<br>-<br>- 1.1249                                                                                                                                                                                                            | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>0.0016<br>0.0192<br>0.0167<br>0.0219<br>0.0223<br>-<br>0.0223<br>- | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98<br>996.69<br>53.31<br>475.13<br>155.93<br>-<br>793.56 | Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br>-<br><.0001<br>-<br>-<br>-<br>-<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coefficient<br>0.3085<br>- 2.8168<br>- 0.5835<br>- 0.6590<br>- 0.3615<br>- 0.2698<br>- 0.1092<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-     | Standard<br>Error<br>0.0542<br>0.0290<br>0.0334<br>0.0234<br>0.0234<br>0.0234<br>0.0234<br>0.0291<br>0.0291<br>0.0196<br>0.0727<br>0.0036<br>-<br>0.0224<br>0.0271<br>0.0276<br>-<br>0.02712 | ariable: BA/<br>Velid Chi-<br>square<br>32,40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39<br>193.30<br>1000.66<br>-<br>333.56<br>16.08<br>32.39<br>-<br>35.46 | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br> | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.0014<br>0.0218<br>-<br>0.0204<br>0.0510 | nse Variable:<br>Vald Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>133.01<br>472.29<br>-<br>5298.16<br>113.45                                   | TAP<br>Pr>ChiSq<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>- |                  |
| R-Sqr<br>Intercept<br>pcexpthou<br>LAND<br>COME<br>SELFEMPL<br>REGEARN<br>hhsize<br>CHILD<br>MALE<br>ILLITERATE<br>INSUFFFOOD<br>area<br>BADHCOND<br>TAP<br>RU<br>HINDU<br>MUSLIM           | Coefficient<br>2.2371<br>- 2.7185<br>-<br>0.9443<br>- 0.1165<br>- 0.5718<br>-<br>-<br>- 0.3798<br>-<br>-<br>-<br>- 0.0310<br>0.6070<br>- 0.1218<br>0.4764<br>- 0.2779<br>-<br>-                                                                                                                                                                                                                                                        | Standard<br>Error<br>0.0401<br>0.0456<br>-<br>0.0234<br>0.0170<br>0.0291<br>-<br>0.0166<br>0.0243<br>-<br>-<br>0.0016<br>0.0192<br>0.0167<br>0.0219<br>0.0223<br>-                | Wald Chi-<br>square<br>3116.64<br>3553.59<br>-<br>1625.46<br>47.24<br>385.34<br>-<br>523.52<br>2893.99<br>-<br>-<br>364.98<br>996.69<br>53.31<br>475.13<br>155.93<br>-           | Pr>ChiSq<br><.0001<br>-<br><.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>-<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.00 | Coefficient 0.3085 - 2.8168 - 0.5835 - 0.6590 - 0.3615 - 0.2698 - 0.1092                                                                                           | Standard<br>Error<br>0.0542<br>0.0290<br>0.0334<br>0.0234<br>0.0234<br>0.0234<br>0.0234<br>0.0291<br>0.0291<br>0.0196<br>0.0727<br>0.0036<br>-<br>0.0224<br>0.0271<br>0.0226<br>-            | ariable: BA/<br>Velid Chi-<br>square<br>32,40<br>1512.77<br>405.21<br>388.38<br>238.56<br>49.22<br>521.68<br>-<br>21.64<br>757.39<br>193.30<br>1000.66<br>-<br>333.56<br>16.08<br>32.39<br>-          | DHCOND<br>Pr>ChiSq<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br><.0001<br>-<br>-<br><.0001<br>-<br>-<br><.0001<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coefficient<br>- 0.3430<br>0.5573<br>-<br>0.9971<br>- 0.2112<br>0.1776<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Standard<br>Error<br>0.0544<br>0.0243<br>-<br>0.0192<br>0.0193<br>0.0229<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.0014<br>0.0218<br>-<br>0.0204<br>0.0510<br>0.0550      | nse Variable:<br>Valid Chi-<br>square<br>39.77<br>524.22<br>-<br>2707.31<br>120.09<br>60.01<br>-<br>-<br>-<br>-<br>-<br>133.01<br>472.29<br>-<br>5298.16<br>113.45<br>15.65<br>89.60<br>- | TAP<br>Pr>ChiSq<br><.0001<br>-<br><.0001<br><.0001<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |

Table 10 Results of the analysis using the religion dummies

|                        |             | lel 1 Depe        |                     | -            |                       | exp) Model 2 Response Variable: LA |                     |                     |             | LAND Model 3 Response Variable: |                     |                     |          |
|------------------------|-------------|-------------------|---------------------|--------------|-----------------------|------------------------------------|---------------------|---------------------|-------------|---------------------------------|---------------------|---------------------|----------|
| -                      | 11100       |                   |                     | labic. log(p | Exponential           |                                    |                     |                     |             | Model                           |                     |                     |          |
|                        | Coefficient | Standard<br>Error | t value             | Pr> t        | values for<br>dummies | Coefficient                        | Standard<br>Error   | Wald Chi-<br>square | Pr>ChiSq    | Coefficient                     | Standard<br>Error   | Wald Chi-<br>square | Pr>ChiSq |
| Intercept              | 6.1488      | 0.0068            | 900.60              | <.0001       | -                     | - 3.6491                           | 0.0551              | 4384.75             | <.0001      | - 2.3648                        | 0.0481              | 2420.80             | <.0001   |
| pcexpthou              | -           | -                 | -                   | -            | -                     | 0.3248                             | 0.0247              | 172.58              | <.0001      | 1.6746                          | 0.0328              | 2609.73             | <.0001   |
| LAND                   | 0.1352      | 0.0039            | 34.47               | <.0001       | 0.1448                | -                                  | -                   | -                   | -           | - 0.7592                        | 0.0335              | 514.69              | <.0001   |
| COME                   | 0.3345      | 0.0040            | 83.34               | <.0001       | 0.3973                | - 0.8186                           | 0.0330              | 613.46              | <.0001      | -                               | -                   | -                   | -        |
| SELFEMPL               | 0.0962      | 0.0039            | 24.81               | <.0001       | 0.1010                | 1.9400                             | 0.0217              | 8008.55             | <.0001      | - 0.363                         | 0.0349              | 107.93              | <.0001   |
| REGEARN                | 0.1278      | 0.0044            | 28.95               | <.0001       | 0.1363                | - 0.9965                           | 0.0568              | 307.35              | <.0001      | 0.6697                          | 0.0221              | 915.44              | <.0001   |
| hhsize                 | -           | -                 | -                   | -            | -                     | 0.2267                             | 0.0044              | 2691.14             | <.0001      | 0.0475                          | 0.0045              | 111.49              | <.0001   |
| log(hhsize)            | - 0.3608    | 0.0033            | - 110.29            | <.0001       | -                     | -                                  | -                   | -                   | -           | -                               | -                   | -                   | -        |
| CHILD                  | - 0.1257    | 0.0038            | - 33.13             | <.0001       | - 0.1181              | - 0.3021                           | 0.0237              | 162.69              | <.0001      | 0.1132                          | 0.0228              | 24.68               | <.0001   |
| MALE                   | 0.0356      | 0.0047            | 7.56                | <.0001       | 0.0363                | 0.5918                             | 0.0356              | 276.06              | <.0001      | 0.2502                          | 0.0299              | 69.85               | <.0001   |
| ILLITERATE             | - 0.2267    | 0.0031            | - 72.68             | <.0001       | - 0.2028              | -                                  | -                   | -                   | -           | -                               | -                   | -                   | -        |
| INSUFFFOOD             | - 0.2707    | 0.0153            | - 17.69             | <.0001       | - 0.2372              | - 1.3724                           | 0.1734              | 62.62               | <.0001      | -                               | -                   | -                   | -        |
| area                   | -           | -                 | -                   | -            | -                     | 0.0424                             | 0.0017              | 593.59              | <.0001      | 0.0171                          | 0.0016              | 111.46              | <.0001   |
| log(area)              | 0.1343      | 0.0017            | 81.53               | <.0001       | -                     | -                                  | -                   | -                   | -           | -                               | -                   | -                   | -        |
| BADHCOND               | - 0.1601    | 0.0041            | - 39.45             | <.0001       | - 0.1480              | - 0.7628                           | 0.0289              | 699.00              | <.0001      | - 0.9905                        | 0.0327              | 919.71              | <.0001   |
| TAP                    | 0.0863      | 0.0034            | 25.73               | <.0001       | 0.0901                | -                                  | -                   | -                   | -           | 1.0622                          | 0.0200              | 2832.45             | <.0001   |
| RU                     | - 0.1517    | 0.0044            | - 34.81             | <.0001       | - 0.1407              | 0.6779                             | 0.0344              | 388.85              | <.0001      | - 1.9118                        | 0.0268              | 5087.79             | <.0001   |
| HDST                   | 0.1003      | 0.0039            | 25.94               | <.0001       | 0.1055                | - 0.3968                           | 0.0310              | 163.85              | <.0001      | 0.2939                          | 0.0325              | 81.87               | <.0001   |
| MUSST                  | -           | -                 | -                   | -            | -                     | - 1.1964                           | 0.0307              | 1520.84             | <.0001      | 0.6332                          | 0.0320              | 392.35              | <.0001   |
| CHST                   | 0.2799      | 0.0062            | 45.29               | <.0001       | 0.3230                | - 0.3802                           | 0.0429              | 78.48               | <.0001      | -                               | -                   | -                   | -        |
| SIKST                  | 0.3821      | 0.0068            | 55.98               | <.0001       | 0.4654                | -                                  | -                   | -                   | -           | 1.434                           | 0.0471              | 928.22              | <.0001   |
| OTHST                  | 0.0932      | 0.0034            | 27.52               | <.0001       | 0.0977                | - 0.5541                           | 0.0292              | 359.78              | <.0001      | 0.4334                          | 0.0293              | 219.02              | <.0001   |
| Adj R-Sqr              |             |                   | 0.4711              |              |                       |                                    | -                   |                     |             |                                 | -                   |                     |          |
| Max-rescaled<br>R- Sqr | -           |                   |                     |              |                       |                                    | 0.4                 | 52                  |             | 0.5559                          |                     |                     |          |
|                        |             |                   |                     |              | Model 5               | Response Variable: BADHCOND        |                     |                     | Mo          | del 6 Respor                    |                     |                     |          |
|                        | Coefficient | Standard<br>Error | Wald Chi-<br>square | Pr>ChiSq     | Coefficient           | Standard<br>Error                  | Wald Chi-<br>square | Pr>ChiSq            | Coefficient | Standard<br>Error               | Wald Chi-<br>square | Pr>ChiSq            |          |
| Intercept              | 2.1922      | 0.0372            | 3476.64             | <.0001       | 0.1987                | 0.0505                             | 15.48               | <.0001              | - 0.1838    | 0.0283                          | 42.08               | <.0001              |          |
| pcexpthou              | - 2.7132    | 0.0459            | 3495.34             | <.0001       | - 2.8123              | 0.0731                             | 1480.76             | <.0001              | 0.4052      | 0.0237                          | 291.28              | <.0001              |          |
| LAND                   | -           | -                 | -                   | -            | - 0.6023              | 0.0290                             | 431.66              | <.0001              | -           | -                               | -                   | -                   |          |
| COME                   | - 1.0068    | 0.0237            | 1805.24             | <.0001       | - 0.6633              | 0.0336                             | 389.50              | <.0001              | 1.1282      | 0.0200                          | 3178.46             | <.0001              |          |
| SELFEMPL               | - 0.1276    | 0.0170            | 56.06               | <.0001       | - 0.3646              | 0.0235                             | 241.10              | <.0001              | - 0.1139    | 0.0197                          | 33.42               | <.0001              |          |
| REGEARN                | - 0.5999    | 0.0291            | 425.00              | <.0001       | - 0.2811              | 0.0384                             | 53.61               | <.0001              | 0.2154      | 0.0237                          | 82.42               | <.0001              |          |
| hhsize                 | -           | -                 | -                   | -            | - 0.1074              | 0.0048                             | 506.53              | <.0001              | -           | -                               | -                   | -                   |          |
| CHILD                  | - 0.377     | 0.0166            | 515.31              | <.0001       | -                     | -                                  | -                   | -                   | -           | -                               | -                   | -                   |          |
| MALE                   | - 1.3297    | 0.0243            | 3002.21             | <.0001       | 0.1277                | 0.0291                             | 19.21               | <.0001              | -           | -                               | -                   | -                   |          |
| ILLITERATE             | -           | -                 | -                   | -            | 0.5344                | 0.0196                             | 741.83              | <.0001              | -           | -                               | -                   | -                   |          |
| INSUFFFOOD             | -           | -                 | -                   | -            | 1.043                 | 0.0731                             | 203.59              | <.0001              | -           | -                               | -                   | -                   |          |
| area                   | - 0.0358    | 0.0017            | 467.52              | <.0001       | - 0.1149              | 0.0037                             | 988.76              | <.0001              | - 0.0076    | 0.0012                          | 37.57               | <.0001              |          |
| BADHCOND               | 0.6034      | 0.0192            | 983.14              | <.0001       | -                     | -                                  | -                   | -                   | - 0.4399    | 0.0223                          | 388.75              | <.0001              |          |
| TAP                    | - 0.0106    | 0.0172            | 0.38                | 0.5371       | - 0.4119              | 0.0230                             | 321.98              | <.0001              | -           | -                               | -                   | -                   |          |
| RU                     | 0.4852      | 0.0218            |                     |              |                       |                                    | 9.24                | 0.0024              |             | 0.0211                          | 5547.19             | <.0001              |          |
| HDST                   | - 0.1721    | 0.0195            | 77.77               | <.0001       | 0.0665                | 0.0250                             | 7.10                | 0.0077              | 0.844       | 0.0268                          | 990.83              | <.0001              |          |
| MUSST                  | -           | -                 | _                   | -            | -                     | -                                  | -                   | _                   | - 0.7148    | 0.0270                          | 702.56              | <.0001              |          |
| CHST                   | - 0.7985    | 0.0345            | 535.06              | <.0001       | - 0.2075              | 0.0478                             | 18.81               | <.0001              | 0.778       | 0.0362                          | 462.26              | <.0001              |          |
| SIKST                  | 0.5971      | 0.0373            |                     |              | - 0.0887              | 0.0554                             | 2.56                | 0.1096              | -           | -                               | -                   | -                   |          |
|                        |             |                   |                     |              |                       |                                    |                     |                     |             |                                 | 40.47.05            |                     |          |
| OTHST                  | - 0.4276    | 0.0175            | 598.86              | <.0001       | - 0.065               | 0.0222                             | 8.54                | 0.0035              | 0.8033      | 0.0248                          | 1047.85             | <.0001              |          |

Table 11 Results of the analysis using the state dummies

\_\_\_\_\_

# References

Census of India, 1991. "Table 24: Three Main Religions in Every State, 1991." Census of India, New Delhi. <u>http://www.censusindia.net/cendat/datatable24.html/</u>.

CIA, 2003. *The World Fact Book 2003*. Central Intelligence Agency, USA. http://www.odci.gov/cia/publications/factbook/index.html

International Institute for Population Sciences, Mumbai, India, 2000. *National Family Health Survey* (*NFHS-2*) 1998-99. ORC Macro, Calverton, Maryland, USA.

Iyer, Sriya, 2002a. Demography and Religion in India. Oxford University Press, New Delhi.

Iyer, Sriya, 2002b. "Understanding Religion and the Economics of Fertility in India." *Centre of South Asia Studies Occasional Paper* 2, Center of South Asia Studies, Cambridge.

Iyer, Sriya, and Vani Borooah, 2002c. "Religion and the Decision to Use Contraception in India." *Journal for the Scientific Study of Religion* 41(4), 711-722.

Iyer, Sriya, 2002d. "Vidya, Veda, and Varna: The Influence of Religion and caste On Education in Rural India." *International Centre for Economic Research (ICER) Working Paper* 32.

Kaur, Jit, 2003. "Role and Status of Women in Sikhism." *Gateway to Sikhism*: <u>http://allaboutsikhs.com/</u>.

Mistry, Malika, 1999. "Role of Religion in Fertility and Familiy Planning Among Muslims in India." Indian Journal of Secularism 3(2), 1-33. SNDT, Churchgate, India.

NSSO, 1997a. "Consumption of Some Important Commodities in India." National Sample Survey Organization New Delhi: Department of Statistics, Ministry of Planning and Programme Implementation, Government of India, New Delhi.

NSSO, 1997b. "Difference in Level of Consumption Among Social-economic Groups." National Sample Survey Organization New Delhi: Department of Statistics, Ministry of Planning and Programme Implementation, Government of India, New Delhi.

NSSO, 1997c. National Sample Survey Organization New Delhi: Department of Statistics, Ministry of Planning and Programme Implementation, Government of India, New Delhi, *Sarvekshana* XX(4), 365-398.

NSSO, 1997d. Unit Level Data From the 50th Round of Household Schedule 1.0 Consumer Expenditure. National Sample Survey Organization New Delhi: Department of Statistics, Ministry of Planning and Programme Implementation, Government of India, New Delhi.

Pachauri, Shonali, and Daniel Spreng, 2002. "Direct and Indirect Energy Requirements of Households in India." *Energy Policy* 30 (6), 511-523.

SAS-Institute, 2001. SAS--service and support. <u>http://www.sas.com/</u>.

# **CEPE Reports**

Aebischer, B., Veränderung der Elektrizitätskennzahlen im Dienstleistungssektor in der Stadt Zürich und im Kanton Genf. CEPE Report Nr. 1, Zürich, November 1999.

Filippini, M., Wild, J., Luchsinger, C., Regulierung der Verteilnetzpreise zu Beginn der Marktöffnung; Erfahrungen in Norwegen und Schweden; Studie im Auftrag des Bundesamtes für Energie. CEPE Report Nr. 2, Zürich, 23. Juli 2001.

Aebischer, B., Huser, A., Energiedeklaration von Elektrogeräten; Studie im Auftrag des Bundesamtes für Energie. CEPE Report Nr. 3, Zürich, Januar 2002.

# **CEPE Working Papers**

Scheller, A., Researchers' Use of Indicators. Interim Report of The Indicator Project. CEPE Working Paper Nr. 1, ETHZ, Zurich, September 1999.

Pachauri, Sh., A First Step to Constructing Energy Consumption Indicators for India. Interim Report of The Indicator Project. CEPE Working Paper Nr. 2, Zurich, September 1999.

Goldblatt, D., Northern Consumption: A Critical Review of Issues, Driving Forces, Disciplinary Approaches and Critiques. CEPE Working Paper Nr. 3, Zurich, September 1999.

Aebischer, B., Huser, A., Monatlicher Verbrauch von Heizöl extra-leicht im Dienstleistungssektor. CEPE Working Paper Nr. 4, Zürich, September 2000.

Filippini, M., Wild, J., Regional differences in electricity distribution costs and their consequences for yardstick regulation of access prices. CEPE Working Paper Nr. 5, Zurich, May 2000.

Christen, K., Jakob, M., Jochem, E., Grenzkosten bei forcierten Energiesparmassnahmen in Bereich Wohngebäude - Konzept vom 7.12.00. CEPE Working Paper Nr. 6, Zürich, Dezember 2000.

Luchsinger, C., Wild, J., Lalive, R., Do Wages Rise with Job Seniority? – The Swiss Case. CEPE Working Paper Nr. 7, Zurich, March 2001.

Filippini, M., Wild, J., Kuenzle, M., Scale and cost efficiency in the Swiss electricity distribution industry: evidence from a frontier cost approach. CEPE Working Paper Nr. 8, Zurich, June 2001.

Jakob, M., Primas A., Jochem E., Erneuerungsverhalten im Bereich Wohngebäude – Auswertung des Umfrage-Pretest. CEPE Working Paper Nr. 9, Zürich, Oktober 2001. Kumbaroglu, G., Madlener, R., A Description of the Hybrid Bottom-Up CGE Model SCREEN with an Application to Swiss Climate Policy Analysis. CEPE Working Paper No. 10, Zurich, November 2001.

Spreng, D. und Semadeni, M., Energie, Umwelt und die 2000 Watt Gesellschaft. Grundlage zu einem Beitrag an den Schlussbericht Schwerpunktsprogramm Umwelt (SPPU) des Schweizerischen National Fonds (SNF). CEPE Working Paper No. 11, Zürich, Dezember 2001.

Filippini M., Banfi, S., Impact of the new Swiss electricity law on the competitiveness of hydropower, CEPE Working Paper No. 12, Zurich, January 2002

Filippini M., Banfi, S., Luchsinger, C., Deregulation of the Swiss Electricity Industry: Implication for the Hydropower Sector, CEPE Working Paper No. 13, Zurich, April 2002

Filippini, M., Hrovatin, N., Zoric, J., Efficiency and Regulation of the Slovenian Electricity Distribution Companies, CEPE Working Paper No. 14, Zürich, April 2002

Spreng D., Scheller A., Schmieder B., Taormina N., Das Energiefenster, das kein Fenster ist, CEPE Working Paper No. 15, Zürich, Juni 2002

Fillippini M., Pachauri Sh., Elasticities of Electricity Demand in Urban Indian Households, CEPE Working Paper No. 16, Zurich, March 2002

Semadeni, M., Long-Term Energy Scenarios: Information on Aspects of Sustainable Energy Supply as a Prelude to Participatory Sessions, CEPE Working Paper No. 17, Zurich, July 2002

Müller, A., Finding Groups in Large Data Sets, CEPE Working Paper No. 18, Zurich, October 2002

Farsi, M. and Filippini, M., Regulation and Measuring Cost Efficiency with Panel Data Models: Application to Electricity Distribution Utilities, CEPE Working Paper No. 19, Zurich, January 2003.

Banfi,S., Filippini, M. and Müller, A., Rent of Hydropower Generation in Switzerland in a Liberalized Market, CEPE Working Paper No. 20, Zurich, January 2003

Müller, A. and Luchsinger, C., Incentive Compatible Extraction of Natural Resource Rent, CEPE Working Paper No. 21, Zurich, January 2003.

Jakob, M. and Madlener, R., Exploring Experience Curves for the Building Envelope: An Investigation for Switzerland for 1970-2020, CEPE Working Paper No. 22, Zurich, March 2003.

Banfi,S., Filippini, M. and Hunt, L. C., Fuel tourism in border regions, CEPE Working Paper No. 23, Zurich, March 2003

*CEPE Reports* und *CEPE Working Papers* sind teilweise auf der CEPE-Homepage (www.cepe.ethz.ch) erhältlich oder können bestellt werden bei: CEPE, Sekretariat, ETH Zentrum, WEC, CH-8092 Zürich. Semadeni M., Energy storage as an essential part of sustainable energy systems: A review on applied energy storage technologies, CEPE Working Paper No. 24, Zurich, May 2003

Pachauri, S. and Spreng, D., Energy use and energy access in relation to poverty, CEPE Working Paper No. 25, Zurich, June 2003

Aruga, K., Differences in Characteristics of Religious Groups in India: As seen from Household Survey Data, CEPE Working Paper No. 26, Zurich, August 2003