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Abstract

In this study, we attempt to quantify the effect of improved
population health on technical efficiency in agricultural production.
Using data for over 260 districts in 15 Indian states, we employ
the random-coefficients technique to estimate a Cobb-Douglas
production function, computing overall and input specific technical
efficiencies for each district. We then model health (the district
infant mortality rate) as a determinant of (in) efficiency in a second
stage, controlling for a range of other socioeconomic variables.
We find that decreases in the infant mortality rate, as well as
increases in the literacy rate and level of irrigation, are associated
with significant increases in overall technical efficiency, and that
a good portion of health’s effect is probably due to improvements
in the efficiency of labor use. While efficiency increases from
improvements in irrigation and literacy are larger, the potential
gains from health are still fairly substantial.

Keywords: Technical efficiency, Random coefficients model, the
frontier production function
JEL classification code: C33; D20
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1. Introduction
The process of economic development in poor countries is multi-

faceted and likely requires the confluence of a number of factors –

investment, technological change, public policy and institutional change,

human capital generation, among many others – to succeed. Recent

research has illustrated the role of health human capital in augmenting

the processes of development and wealth accumulation. In fact, from

the literature on cross-country economic growth, this role may be quite

large (see Bhargava et al., (2001); Gallup and Sachs (2001); Bloom et

al., (2004); Barro and Xala-i-Martin (2004); see Acemoglu and Smith

(2006) for contrary findings). This macro evidence is supported by various

micro-level studies, such as those which seek to quantify wage returns

to improved body mass index, height, and freedom from illness (see,

among others, Deolalikar (1988); Alderman et al., (1996); Strauss and

Thomas (1998); Schultz and Tanzel (1997); and Schultz (2002, 2003)).

Bloom and Canning (2000) and Ruger et al., (2001) suggest

several possible avenues through which health can exert a positive

influence on economic performance. As implied by the results of studies

looking at wage returns, better health human capital can improve (labor)

productivity. Additionally, healthier individuals are more likely to increase

investment in, and derive greater returns from, schooling and education

(see, for example, Alderman et al., (2001), Glewwe et al., (2001), and

Behrmann and Rosenzweig (2004), and Miguel and Kramer (2004), which

all look at the impact of child health status on schooling and other

indicators of present and future economic performance). Increased

savings, and therefore, investment in physical capital, increased foreign

direct investment, and demographic benefits, thanks to decreased fertility

and lower dependency ratios, may all follow with improvements in health

human capital (see Bloom et al., (2003) and Alsan et al., (2004)).
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In the present study, we approach the question of the economic

returns to health from a different perspective; in particular, we seek to

explore and quantify the impact of health on technical efficiency in

production. Technical efficiency is a measure of how well the decision-

making units use their inputs in generating output(s) and represents an

interesting way to think about the role of health (and human capital in

general) in the production process.1 In specifying health as a determinant

of technical efficiency, here we are essentially conceptualizing health and

indeed other aspects of human capital as factors that allow firms to use

their physical inputs (such as labor or capital) in a more efficient manner.

Indeed, our study is fundamentally different from other studies,

which generally specify health as an input in the production function

process. While these approaches allow for direct estimation of production

returns to health, they say little about how exactly health does this.

Also, specifying health as an input to production in the same manner as

one would specify labor or capital, may not necessarily be desirable

since human capital in general is perhaps better viewed as an input

which augments the production process indirectly.2

In essence, our study can be grouped with the literature on the

influence of health on educational outcomes, foreign direct investment,

wages, demographic change, and so forth, as studies seeking to

disaggregate the findings on overall returns to health into the pathways

that generate these returns. To the best of our knowledge, this is the

first study to model health as a determinant of technical efficiency. 3

Using cross-sectional agricultural production data for over 260

Indian districts in the early 1990s, we employ the random coefficients

technique to compute district-wise input specific and overall technical

efficiency values. We then model overall technical efficiency and input-

specific efficiencies as functions of district health status (proxied for by

infant mortality rate) and a set of socioeconomic and ecological controls.

We find that (i) there is a great deal of heterogeneity across Indian

districts with respect to efficiency in agricultural production, (ii) better

health is associated with increased technical efficiency, and (iii) much

of this effect may be due to more effective use of the existing labor

inputs.

The structure of the remainder of the paper is as follows. In

section 2, we develop the econometric framework and the modeling

strategy. In section 3, we describe the data and variables. In section 4,

we present the empirical results of the production frontier function

estimates. In section 5, we present the patterns in technical efficiency

and discuss the determinants of overall and input-specific technical

efficiency. In section 6, we offer some conclusions, prospects for future

work, and policy implications.
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2. Modeling

In this section, we outline the methodology used to quantify

the effect of improved population health on technical efficiency in

agricultural production. We employ a two-step procedure: we first

estimate overall and input specific technical efficiency values for each

district in the sample and subsequently use these estimates as dependent

variables, specifying health and other factors as independent variables.

2.1 Deriving Efficiency Using the Random Coefficients
Model

The technical efficiency (TE) of production for a given decision-

making unit (such as firm or region) can be defined as the ratio of its

actual output to the output that could potentially be produced if all

existing inputs/technologies are used in the best possible fashion. Farrell

(1957) carried out the first empirical study to measure technical

efficiency for a cross-section of firms by using a deterministic/non-

parametric frontier approach. Consequently, frontier efficiency

comparisons have become synonymous with the term ‘Farrell efficiency

measurement’. Later, Aigner et al., (1977) and Meeusen and Broeck

(1977) independently developed a stochastic frontier approach, which

was originally applied to cross-sectional data, to measure technical

efficiency. Here, the error term was modeled as a composite variable,

consisting of a random noise component and a one-sided residual

component (which follows a half normal distribution). This approach

has been extended in many ways, both in terms of the specification of

the error term (through the use of truncated normal, exponential and

gamma distributions), as well as in the consideration of panel data

(see Bauer (1990); Battese (1992); and Greene (1993) for

comprehensive reviews of this literature).4

The stochastic frontier methodology essentially introduces

technical efficiency as a multiplicative (neutral) shift variable within a

production function framework. This means that the input coefficients

of the conventional production function remain constant; only the

intercept term is modified. However, there is no economic logic that

substantiates this strong assumption. Since different uses of the same

set of inputs can yield drastically different results, it stands to reason

that the (output) returns from a given input may vary from firm to firm.

In this case, the stochastic function approach, which assumes that the

input elasticities are identical from firm to firm, is at best too rigid and

at worst devoid of any real economic meaning.

The idea of varying coefficients was first appreciated by Nerlove

(1965), who proposed treating the output elasticity of each input as a

stochastic variable, thus being allowed to differ from firm to firm.  Swamy

(1970, 1971) later popularized this random coefficients approach. Kalirajan

and Obwona (1994) and Kalirajan and Shand (1994a,b) discuss the use

of this approach to model a frontier production function with (cross-

sectional) heterogeneity in slopes and intercepts. 5 The model expounded

upon in the latter two studies facilitates the estimation of firm- and input-

specific technical efficiency values in a cross-sectional sample.

To be sure, the random coefficients approach has many

advantages over alternate methodologies.  Kalirajan and Shand (1994)

list these advantages as follows.  First, this approach may be viewed

as a stochastic counterpart of the deterministic (data envelopment)

approach: it does not require a priori assumptions on the distribution

of firm specific TE. Second, as alluded to early, the modeling of

production technology in this approach is in conformity with production

theory.  Third, the approach facilitates the calculation of overall and

input-specific technical efficiency values, without involving any significant
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additional calculations. Finally, heteroscedasticity does not pose a

problem with this technique.  However, a major criticism leveled against

this approach is that it imposes the constant returns to scale assumption.

Following Kalirajan and Obwona (1994), we posit that the

(production function) parameters describing the production technology

are random. Using this, the random coefficients model can be written as:

Ln Qi =  Σj βij ln xij + ui  ;   i = 1,2,….,n and j = 1, 2,…., k   (1)

where Qi represents the output of the ith firm (or region); xj’s  are

inputs (and the intercept), βij’s are parameters to be estimated, and ui,

is the residual term.

Each firm’s coefficient vector βij is allowed to vary from the

mean response vector β j by some vij; that is, ( β  k + vik = βik). Hence,

there is a particular response coefficient for each variable and each

sample observation. The model assumes that: E (βij) = β j ; V (βij) =

σj
2 > 0; Cov (βij, βkj) = 0 for i ≠ k (this implies that βij are i.i.d with fixed

mean β  j ; Cov (βij, u i) = 0; E ( ijv ) = 0 for all i  and j, E ( '
jivv ) = αk

for i  = j and E ( '
jivv ) = 0 for ji ≠ ). Letting Σj vij ln xij + ui = wi and

q = Ln Q, we can rewrite the equation (1) as:6

qi =  Σj β  j 
 ln xij + wi  ;    i = 1,2,….,n and j = 1, 2,…., k  (2)

where X is a N x K matrix of the independent variables and q, β  and

w are vectors of order N, K and N respectively. This above is a linear

model with constant (or, mean response) coefficients, but

heteroskedastic disturbances.7 OLS estimation of (2) will yield unbiased

- but inefficient - estimates of β  j.

Using the iterative procedure suggested in Swamy (1970) one
can obtain the feasible GLS estimate of β .  Following the presentation
in Croppenstedt and Demeke (1997), an unbiased estimate of α can
be gleaned from:

α̂  = (G’G)-1 G’ r* (3)
where G=M* X*; M = I –X (X’ X)-1 ; r = q - β  ’ X . The * denotes the
matrix (vector) which is derived by squaring each element.  Then, the

estimate of the mean response vector is:

 β̂  = (X’ Ω-1X)-1X-1X’ Ω-1 q (4)

where Ω is the covariance matrix of the w’s:

x1
’α x1 + σ2I 0    ….  0

0             x2
’α x2 + σ2I     ….  0

Ω =    . .              ....  0  (5)
0 0    ….  xN

’α xN + σ2I

If we substitute the estimates of α and σ2, equation (4) will

serve as the feasible GLS estimator. Since we are interested in calculating

firm-specific response coefficients, the best linear estimates of these

are given by:8

β̂ i =  β̂  + φx’
i [xi φxi

’]-1(qi - xi β̂ )  (6)

where φ = diag (α̂  1, α̂  2, ….. α̂  k).

To reiterate, these are the actual response coefficients for some
specific input for each firm in the sample. The highest magnitude
response parameter (across all firms) for each input and the intercept
term form the production coefficients of the potential frontier production
function. That is, we can identify the response coefficients representing
the (potential) frontier production function from the above firm- and
input-specific response coefficients as follows:

βj
* = maxi { βij} ;  i = 1, 2,….n and j = 1, 2, ….., k   (7)
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It is noted that these parameters need not necessarily coincide

with the response coefficients for any single firm. Indeed, they may

represent the best combination of response from different firms.  From

the estimates of the frontier production function, we can calculate the

firm specific potential output (q*
i) as: 9

qi
* = ln Q*

i = Σj  β
*
j ln xij (8)

From this, we can easily compute the overall technical efficiency of a

given firm as the ratio of the actual output to the potential output,

which is given by:

TEi = exp (qi) / exp (q*
i). (9)

We can also obtain the estimates of input specific efficiency

measures for individual firms by calculating the ratio of actual response

coefficients to the frontier response coefficients. In percentage terms,

the efficiency of using jth input by the ith firm (ITi) is given by:

ITij = (βij / β
*
j) x 100;  i = 1, 2, ….., n and j = 1, 2, …..,k (10)

In this study, we consider Indian districts to be the firms or

decision making units for which we would like to compute input-specific

and overall technical efficiencies. We begin by specifying the following

Cobb-Douglas production function:

ln (Yi) = β0 + β1i ln (Ai) + β2i ln (Li) + β3i ln (Fi) + β4i ln (Ti) + ui (11)

where Y is the value of agricultural output in district i in India, A is the

gross cropped area, L is the total labor force devoted to agriculture,

F is fertilizer input, T is the number of tractors (a proxy for machinery),

and the β’s are input specific response coefficients for each ith district.10

We then employ the procedure outlined above, calculating the overall

and input specific technical efficiencies from the estimated β’s.

2.2  Modeling Health as a Determinant of Technical
Efficiency

To consider the determinants of technical efficiency, we then

estimate the following efficiency equation:

TEi = ζ + a IMRi + γZ + δ  STATE + ei                  (12)

where TE represents overall or input specific technical efficiency for

the ith district, IMR is the district’s rural infant mortality rate, and Z is a

vector of variables including rural literacy rate, percentages of villages

electrified, pucca roads (a proxy for both infrastructure as well as access

to rural markets), agro-climatic conditions, level of irrigation and

cropping intensity. STATE is a vector of dummy variables representing

the state in which the district is situated and is used to capture

institutional, economic, and agro-climatic factors that we cannot control

for more explicitly.

As we are primarily interested in the value of á in the TE model,

we need to be concerned with the possible endogeneity of health,

either through omitted variable bias or simultaneity. In order to address

this, we looked to find sources of exogenous variation in order to identify

IMR in the above model (see Section 5c). We should note that literacy

rates and/or other infrastructure variables may also be correlated with

the unobservables as well. Given the paucity of data in general, it is

rather difficult to find plausible instruments for all variables, which we

a priori may deem to be endogenous. This is certainly a limitation of

the study and is more carefully considered in Sections 5c and 6.
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3. Data and Measures

Most of the production inputs and agricultural output data have

been taken from Bhalla and Singh (2001), who provide average figures

for 281 districts spanning 15 Indian states for the triennial years 1960-

3, 1970-3, 1980-3, 1990-3. We have used the data for 1990-3, which is

currently the most recent year for which both detailed district-level

agricultural production and infant mortality data are available. Our output

measure, the value of agricultural output, represents the price-weighted

sum of output for 35 crops, which account for over 97% of the total

value of agricultural production in India. Similarly, gross cropped area

(in ‘000 hectares), our measure of land input, is calculated for the

same 35 crops. Our measure for fertilizer use is the tonnage of fertilizer

(NPK) consumed and our measure for machinery and capital is the

number of tractors per district. For labor, we have used data from the

Census of India, 1991. The total work force in agriculture is computed

by adding the number of agricultural workers and cultivators. We have

weighted males, females and children by 1, 2/3, and 1/3, respectively.

Mean values by state for each of the input and output indicators can be

found in table 1. One can see that there exists a great deal of

heterogeneity across states and districts with respect to agricultural

production.

Table 1: State-wise Mean Values for Input and Output
Variables

Source (Basic Data): Bhalla and Singh (2001) and Census of India (1991).

For the second stage of our analysis, district level rural infant

mortality rates are taken from Irudaya Rajan and Mohanachandran

(1998). Rural literacy rates, the percentage of villages with pucca roads

and electricity for agricultural use, are gleaned by the Census of India

(1991) and Government of India (1997), respectively. The percentage

of gross cropped area irrigated and cropping intensity (gross cropped

area divided by net sown area) are calculated from Bhalla and Singh

(2001). State-wise means for each of the second stage variables can

be found in table 2.

State Gross Cropped 
Area (000 
hectare)

Fertilizer 
(tonnes)

Labor (male 
equiv)

Tractors 
(No.)

Value of 
Output (000 
Rs)

Andhra Pradesh 835816.1 91078.3 1007394 1870.6 6496513
Assam 464199 4712.9 541289 92.4 3747417
Bihar 687740.8 39953.2 1267752 2809.3 3276013
Gujarat 623079.4 42419.9 413818 2670.9 3061675
Haryana 801181.7 84901.1 354971 13471.8 6972447
Karnataka 635578.1 44730.3 491274 1664 3663874
Kerala 407620.9 30641 409908 262.57 5104529
Madhya Pradesh 541618.6 19167.4 374807 920.2 2203879
Maharashtra 905097.7 54385.3 633583 1514.5 3340865
Orissa 872152.7 17928.5 628416 172.6 4337459
Punjab 682657.7 110233.8 297713 21076.1 7788069
Rajasthan 706352.2 14995.6 329802 3252.5 2166225
Tamil Nadu 632106.6 73826.9 1058039 1984.8 6549084
Uttar Pradesh 521149.6 46231.2 566272 4616.1 4117483
West Bengal 529564.5 62048.7 732473 701.5 5570756
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Table 2: State-wise Sample Means for Overall, Land,
and Labor TE Values and Other Indicators

Source (Basic Data): Irudaya Rajan and Mohanachandran (1998), Census of India (1991),
              Government of India (1997), and Bhalla and Singh (2001).
Note: Efficiency values in last 3 columns are computed by authors.

In order to control for agro-climatic conditions, we have used

rainfall data for the year 1991 (generously provided to us by Shenggen

Fan at IFPRI), and the National Bureau of Soil Survey and Land Use

Planning’s (1992) grouping of districts into 20 agro-ecologic zones based

on climate, topography, water resources, and soil type.11

Next, in Section 5c we consider the percentage of the district

population from scheduled castes and scheduled tribes, percentage of

villages having tap water and (any) medical facilities, the percentage

of villages having a primary school, and the lagged level of irrigation,

as instruments for IMR, literacy status, and irrigation. Scheduled caste/

tribe and lagged irrigation percentages have been taken from

Government of India (1994) and Bhalla and Singh (2001), respectively

and the remaining variables from Government of India (1997).12

 State IMR Road Agri. Elec. Lit. Rate Crop. Intensity Irrig Overall TE Land TE Labor TE 
Andhra Pradesh 51.73 55.32 73.97 34.46 120.16 40.28 35.55 69.32 69.4 
Assam 84.88 26.92 1.86 49.88 126.92 6.4 91.18 58.71 90.93 
Bihar 71.28 25.62 25.32 33.9 132.93 36.53 26.39 72.02 63.74 
Gujarat 69.48 61.37 85.19 52.9 106.54 26.54 36.74 70.2 67.72 
Haryana 61.18 97.97 96.01 48.73 158.74 69.53 56.73 65.28 77.2 
Karnataka 65.53 68.52 96.46 49.29 114.65 22.14 45.59 68.36 71.38 
Kerala 35.54 98.63 96.34 89.57 137.58 14.4 79.69 62.23 83.78 
Maharashtra 65.54 42.89 69.74 55.13 117.1 12.84 28.13 72.14 63.99 
Madhya Pradesh 116.65 23.34 57.34 36.26 121.25 19.5 42.7 69.39 69.29 
Orissa 113.47 22.89 21.12 42.53 148.23 28.83 64.22 63.64 80.56 
Punjab 60.76 95.96 96.79 54.6 176.35 90.29 62.17 64.52 78.64 
Rajasthan 90.69 31.11 48.19 28.89 122.92 26.06 43.8 69.91 68.36 
Tamil Nadu 56.12 78.3 84.5 56.74 121.19 43.94 44.55 67.34 73.44 
Uttar Pradesh 94.9 45.04 56.69 36.98 148.44 59.82 44.68 68.02 71.97 
West Bengal 62.17 33.23 19.87 54.89 154.37 46.69 46.96 67.26 73.5 

4. Results: Frontier Production Function Estimates
In column 1 of table 3, we provide OLS (for comparative

purposes) estimates of the Cobb-Douglas production function. Results

indicate that fertilizer, land area, and labor, in descending order of

magnitude, are statistically significant determinants of agricultural

production. Surprisingly, the number of tractors carries a negative

elasticity, though this is not significantly different from zero at any

acceptable level of confidence.

Table 3: Mean Response Coefficients, and Range of

Estimates of the Actual Response Coefficients

The random coefficient estimates (i.e., the mean response

coefficients for the reduced form estimates using the iterative GLS

procedure) are presented in the second column. We first note that we

 (1) (2) (3) (4) 
OLS  
Estimate

Mean 
Response  
Coefficients 

Maximum 
Value of 
Actual 
Response  
Coefficient

Minimum  
Value of 
Actual 
Response  
Coefficient 

2.492
(2.979) 
0.272 0.219
(4.219) (2.219) 
0.364 0.423
(11.071) (7.594) 

Ln L 0.2506   
(4.440) 

0.2485    
(2.236) 

0.347 0.038

Ln T -0.0004  
(0.019) 

0.0066    
(0.206)

--- --- 

R 2  [F] 0.667 [127.9] --- 
Robust absolute t-statistics in parenthesis. 

Ln  F 0.434 0.419

2.586

Ln A 0.321 0.174

Constant 2.5863    
(1.585) 

2.586
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find the model to be valid (statistically significant at the 5% level or

better), as ascertained by the Breusch-Pagan Lagrange multiplier test.

The estimated mean response coefficients are generally in line with

the OLS estimates. What we are really interested in here, however, is

the variation in elasticity coefficients across districts. In the third and

fourth columns of table 3 we find that districts vary greatly in terms of

production returns to inputs use and, consequently, the production

process as a whole. In particular, there is a great deal of variation in

returns to labor, with an order of magnitude difference between the

district with the lowest response coefficient and the district with the

highest. 13 Land elasticity also varies, though the range is smaller than

that for labor.14 For fertilizer use, while we do find statistically significant

heterogeneity between districts, the distribution of response coefficients

is quite tight.

5. Results: Technical Efficiency and Its
Determinants

5a. Patterns in Technical Efficiency
Using the procedures outlined in the section 2, we computed

the input specific efficiency as well as overall technical efficiency for

each district in the sample. In the last three columns of table 2, we

present state-wise mean values for overall efficiency, land efficiency,

and labor efficiency, along with data for various socioeconomic

indicators, which we use to explain the variation in efficiency. What

should be immediately clear is that the efficiency-overall and specific

input use- varies quite widely across the Indian states (and districts).

Overall mean efficiency ranges from a low of 26.39, in Bihar, to a high

of 91.18 in Assam.

If we look at districts by state and level of technical efficiency,

we find that of the 261 districts in our sample, 181 (about 70%) have

overall efficiency scores below 50% (see Appendix I). Of these 181, 99

districts belong to four states: Bihar, Madhya Pradesh, Rajasthan, and

Uttar Pradesh. These states are collectively well known for their

(relatively) low per capita incomes and human development

performance.

Figure 1

However, it is clear that inefficiency is not simply a problem for

poorer states. A large number of districts in Maharashtra, Gujarat, and

Tamil Nadu, all states with relatively high per capita incomes, perform

quite poorly as far as using inputs effectively in agriculture. To present

this point differently, we plot overall technical efficiency by the

percentage of the rural population living below the poverty line (for the

year 1993-4) in figure 1. It is clear from the scatter plot that there is no

discernable relationship, one way or the other, between poverty and

inefficiency.15
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Another point to note from table 2 is that overall efficiency

seems to be determined more by labor efficiency than land (or fertilizer)

efficiency. This can be seen from the GLS results in table 3 as well,

where we pointed out that labor use coefficients vary much more greatly

than those on land and fertilizer. Indeed, we find that labor efficiency

and overall technical efficiency are positively correlated while land

efficiency is negatively correlated to both of these measures. The results

appear to suggest that the two inputs are substitutes in terms of

efficiency of use.16

5b. Determinants of Technical Efficiency
What, then, are the determinants of technical efficiency at the

district level and does health play a role in generating more efficient

use of inputs? In the first three columns of table 4, we present OLS

estimates of the technical efficiency model presented in Section 2.17

For overall efficiency, we find that the infant mortality rate has a negative

and statistically significant effect across all specifications. Our point

estimate here suggests that a decline in IMR by 10 deaths per 1000

increases technical efficiency by 1.1 to 1.3 percentage points. Greater

cropping intensity is negatively associated with technical efficiency, with

the effect being robust across all specifications. The positive association

between literacy and irrigation loses significance with the addition of

rainfall controls and agro-climatic zone fixed effects.18

Table 4

The Determinants of Overall Technical Efficiency

It is possible that the marginal association between any given

independent variable and changes with the magnitude of one of the

other independent variables. We explore the possibility of three such

interaction effects: that between health and irrigation, health and

cropping intensity, and literacy and irrigation. The rationale behind the

first and second is that the impact of health on efficiency may decrease

(increase) as agricultural work becomes less (more) strenuous. The

rationale behind the last is that education may become more important

as the technology of agricultural production becomes more complicated.

Alternatively, it may be that education is more important in marginal

conditions, where firms are the whim of seasonal variations in rainfall.

We present the results for this analysis in the final three columns

of table 4. Of the three postulated effects, only the interaction between

(1) (2) (3) (4) (5) (6)
IMR -0.117 -0.112 -0.138 -0.119 -0.116 -0.143

(2.13) (2.02) (2.15) (2.16) (2.09) (2.26)
% Literate 0.223 0.186 0.119 0.458 0.441 0.332

(2.3) (1.94) (1.18) (2.86) (2.56) (2.29)
% Irrigated 0.145 0.138 0.096 0.42 0.423 0.333

(2.44) (2.21) (1.41) (3.18) (2.96) (2.52)
% Village Pucca Road 0.071 0.087 0.063 0.054 0.067 0.054

(0.87) (1.09) (0.79) (0.69) (0.87) (0.67)
% Village Electrified -0.086 -0.067 -0.084 -0.098 -0.081 -0.095

(1.98) (1.44) (1.33) (2.28) (1.76) (1.51)
Cropping Intensity -0.135 -0.149 -0.147 -0.137 -0.149 -0.148

(3.1) (3.47) (3.09) (3.13) (3.4) (3.02)
%Irrig*%Literate -0.007 -0.007 -0.006

(2.31) (2.18) (2.23)
State FE yes yes yes yes yes yes
District Rainfall no yes yes no yes yes 
Agroclimatic Zone FE no no yes no no yes
Observations 261 258 253 261 258 253
R-squared 0.62 0.61 0.65 0.63 0.62 0.66
Robust absolute t-statistics in parenthesis
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literacy rates and irrigation was found to be statistically significant.

The results indicate that literacy is somewhat less salient as the

percentage of land under irrigation increases. Most important for the

purposes of this study, however, is that the coefficient on IMR remains

significant regardless of the change in specification.

Finally, in table 5, we present OLS results of the equations for

labor efficiency.19 The first thing that should be noted here is how, in

general, the coefficients of the independent variables are qualitatively

similar to those in the overall efficiency equation. It is clear here that a

lower IMR is associated with increased efficiency of labor use and that

this association is robust to the various specifications. This is very much

in line with the extensive micro-literature on wages returns to

investments in health and nutrition. Percent of gross cropped area

irrigated is also associated with increased labor efficiency, perhaps

indicating complementarities between technical factors and human

capital. Finally, literacy appears to have a positive effect on labor

efficiency, though the estimates are not robust to changes in

specification.

Table 5: The Determinants of Labor Use Efficiency

5c. Endogeneity and Other Robustness Checks

Despite the robustness of the results across various
specifications, it is entirely possible that the estimated coefficient on
IMR reflects the presence of unobserved factors that are correlated
with both IMR and technical efficiency. For example, it may be that
there are certain institutional arrangements that affect the efficiency
of both agricultural and health production. Or technical efficiency and
population health may be simultaneously determined.

In either case, econometric estimation using OLS would lead
to biased and inconsistent estimates of the coefficient on IMR. To get
at this potential problem, we looked for a source of exogenous variation
that is correlated with health but (plausibly) uncorrelated with
unobservables in the production efficiency equation. Finding such an
instrumental variable (IV) is difficult: there is no guarantee that the
typical instruments for health employed at the micro-level (commodity

(1) (2) (3) (4) (5) (6)
IMR -0.057 -0.052 -0.063 -0.058 -0.055 -0.066

(2.11) (1.93) (2.15) (2.14) (2.02) (2.26)
% Literate 0.051 0.025 0.005 0.196 0.172 0.099

(1.13) (0.58) (0.12) (2.17) (1.83) (1.51)
% Irrigated 0.073 0.071 0.052 0.244 0.235 0.156

(2.35) (2.2) (1.55) (2.75) (2.51) (2.45)
Road 0.017 0.027 0.027 0.006 0.015 0.023

(0.42) (0.67) (0.68) (0.15) (0.38) (0.57)
% Village Electrified -0.029 -0.018 -0.033 -0.037 -0.026 -0.038

(1.00) (0.56) (1.06) (1.36) (0.88) (1.23)
Cropping Intensity -0.02 -0.029 -0.038 -0.022 -0.03 -0.038

(0.77) (1.20) (1.55) (0.87) (1.23) (1.58)
%Irrig*%Literate -0.004 -0.004 -0.003

(2.28) (2.03) (2.04)
State FE yes yes yes yes yes yes
District Rainfall no yes yes no yes yes
Agroclimatic Zone FE no no yes no no yes
Observations 261 258 253 261 258 253
R-squared 0.47 0.46 0.57 0.48 0.47 0.58
Robust absolute t-statistics in parentheses
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prices, health care institutions, public health infrastructure such as tap
water availability) are indeed exogenous at a more aggregate level.
Even when we looked past this concern and employed the percentage
of villages with tap water and medical facilities, we found that these
variables did not meet another criterion of a good IV: both variables
were only weakly correlated with health status and insignificant in the
reduced form equation for IMR.20

Perhaps, a more attractive set of IVs are the percentage of
scheduled castes and scheduled tribes in the district population. The
idea is that members of scheduled castes and scheduled tribes are
generally in poorer health – due to increased poverty, discrimination,
or some combination of the two, within these groups - but that the link
between the district share of these populations and technical efficiency
in agricultural production is less clear. Also, in the reduced form equations
for IMR, the scheduled caste percentage is positively correlated with
IMR (not shown here).21  Using these instruments, we are able to reject
the endogeneity of IMR in both the overall efficiency and labor efficiency
models using the Hausman (1978) test.22

These findings should be interpreted with some caution. First,
it may be that the scheduled caste/scheduled tribe variables are indeed
somehow correlated with both health and production efficiency. For
example, the same factors that lead to differential caste based
discrimination may be correlated with unobserved institutional
characteristics that influence production efficiency.  Second, other
variables in technical efficiency equation may be endogenous as well.
While we were able to instrument for literacy rates and irrigation levels
using the percentage of villages with primary schools and lagged
percentage of area irrigated (and, again, we were unable to reject the
null hypothesis of exogeneity for either), these instruments may not
be satisfactory for all the reasons presented above. Unfortunately, given
data constraints and the paucity of clearly acceptable instruments, we
are unable to do better in this study.

A final consideration involves our choice of methodology. It is
possible that an alternate set of methods to calculate technical efficiency

will yield different empirical results. To address this possibility, we have
used the stochastic frontier method (see section 2.1) to calculate overall
technical efficiencies and used these estimates as dependent variables
for a second-stage analysis. We present these results in table 6. The
results are qualitatively similar to those presented in table 4 and further

validate our modeling approach.

Table 6: The Determinants of Overall Technical Efficiency

Calculated Using Stochastic Frontier Method

5d. Magnitude of Health-Mediated Gains in Efficiency

In practical terms, what do our findings mean for Indian

districts? That is, just how potent is health in promoting efficiency in

input use? In table 7, we compute the overall efficiency gains from

improvements in IMR, literacy, and irrigation for the 15 least efficient

(1) (2) (3) (4) (5) (6)
IMR -0.263 -0.238 -0.253 -0.267 -0.246 -0.265

(2.76) (2.5) (2.3) (2.81) (2.59) (2.43)
% Literate 0.127 0.018 -0.019 0.692 0.531 0.444

(0.76) (0.11) (0.11) (2.44) (1.71) (1.63)
% Irrigated 0.348 0.348 0.303 1.008 0.921 0.819

(2.75) (2.59) (1.97) (3.87) (3.19) (2.93)
Road 0.23 0.265 0.244 0.189 0.225 0.223

(1.52) (1.76) (1.67) (1.29) (1.55) (1.52)
% Villages Electrified -0.138 -0.095 -0.081 -0.166 -0.123 -0.105

(1.78) (1.12) (0.72) (2.16) (1.45) (0.93)
Cropping Intensity -0.155 -0.189 -0.21 -0.162 -0.19 -0.214

(1.92) (2.32) (2.22) (1.99) (2.3) (2.18)
%Irrig*%Literate -0.016 -0.014 -0.013

(2.95) (2.26) (2.32)
State FE yes yes yes yes yes yes
Rainfall no yes yes no yes yes
Agroclimatic Zone FE no no yes no no yes
Observations 261 258 253 261 258 253
R-squared 0.62 0.6 0.63 0.63 0.62 0.64
Robust t-statistics in parentheses
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districts in the sample, using the coefficients obtained from column (6)

of table 4. The efficiency gains were computed by first calculating the

difference between the given district’s IMR, literacy rate, and percent

irrigated land, and a target value for each of these variables, which

was selected by choosing the lowest and highest values for each of

this indicators, respectively, in the overall sample of districts. We then

multiplied this difference by the coefficients computed in table 4.

Table 7: Efficiency Gains from Improvements in IMR,

Literacy and Irrigation for 15 Most Inefficient Districts

In general, we see that efficiency gains from health are lower

than (combined) gains from improved literacy and irrigation. However,

these gains are certainly not trivial. For example, the most inefficient

district in the sample (Jaisalmer) would more than triple its efficiency

with a decrease in IMR to the pre-specified target value.

District State Overall 
Efficiency

Gains 
from IMR

Gains from 
Literacy 

and 
Irrigation

Total 
Gains

Jaisalmer Rajasthan 4.91 9.30 14.38 23.68
Bikaner Rajasthan 15.21 6.44 15.85 22.29
Bhagalpur Bihar 17.40 6.44 18.54 24.97
Muzaffarpu Bihar 18.76 7.09 17.83 24.92
East Nimar Madhya Pradesh 19.49 13.01 18.11 31.12
Monghyr Bihar 20.51 6.96 18.35 25.31
Bangalore Karnataka 20.80 4.58 19.69 24.27
Ahmednaga Maharashtra 21.08 3.29 21.70 24.99
Nanded Maharashtra 21.44 5.86 18.27 24.14
Gaya Bihar 22.35 6.75 18.21 24.96
Nashik Maharashtra 22.47 5.86 20.94 26.80
Jalgaon Maharashtra 22.70 6.86 22.73 29.59
Sholapur Maharashtra 23.10 4.29 20.99 25.28
Satna Madhya Pradesh 23.19 17.02 18.63 35.64
Pune Maharashtra 23.31 2.86 22.24 25.10

6. Discussion and Conclusions

Over 60% of India’s population relies on agriculture to make a

living. In recent years, the low productivity and lack of efficiency in this

sector has concerned many policymakers, especially in the context of

increasing global competition. Given the large labor force concentrated

in agriculture, and the many forward and backward linkages between

agriculture and other sectors, ensuring the prosperity of this sector is

of paramount importance.

At the same time, a large number of empirical studies at the

micro and macro levels have shown that there are potentially large

economic benefits from improvements in individual and population

health, respectively. In particular, many of the micro studies have focused

on the effect of various health status indicators on agricultural wages

or farm level production.

In this study, we have considered the impact of health on

agricultural production at a more aggregate level. In doing so, we

have diverged from the typical approach of including health status

variables as inputs in the production function. Rather, we have modeled

health (IMR) as a factor which influences the efficiency of the production

process, a strategy we feel better captures the role of health human

capital in the production process.

We have found that Indian districts are quite inefficient on the

whole in producing agricultural goods, and that the range of (in)

efficiency across states and districts is quite wide. We have also found

that the level of rural poverty in a given state has no bearing on the

average efficiency of districts within that state. There is an important

policy point here: inefficiency in agricultural is not just a problem of the

poor.
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Going back to the main objectives of this study, we have found
that better health has a practically and statistically significant impact

on technical efficiency in agricultural production, and that a large portion
of this effect is likely due to the augmentation of labor efficiency. These
results are not only consistent with the growing body of cross-country
and micro-level studies on the economic benefits of good health, but
are also in line with emerging literature in India which illustrates the
role of health in reducing poverty and promoting economic growth

(Mitra et al., (2002), and Gupta and Mitra (2003)). In the context of
this literature, our study adds to the argument that population health
investment is an important component of policy packages seeking to
promote better economic performance (both in growth and efficiency
terms) and reduce poverty.

There are several limitations in our study. First, we consider a production

function, which essentially aggregates across a large, diverse set of crops. To
the extent that the efficiency of production of different crops varies (both
across crops and within districts) our estimates of technical efficiency may be
imprecise. While we try to control for crop mix in the equations for technical
efficiency, we are constrained from disaggregating the production function due
to limitations in the available data.

Second, we are unable to properly address any potential

endogeneity issues due to the paucity of acceptable instruments. While
we are able to reject the endogeneity of IMR using the percentage of
the population belonging to scheduled castes and tribes, it would
perhaps be desirable to find other instruments, which are perhaps more
clearly exogenous, in order to be more certain of this conclusion.

Despite these limitations, our study proposes an interesting

mechanism through which health can exert a positive influence on
economic performance. Future studies should seek to further define

the role of health in influencing efficiency in production.

Appendix I District Specific Efficiency Values

tAppendix I 1Distric Specific Efficiency Values 
District Overall TE Land Eff. Fertilizer Eff. Labor Eff. | District Overall TE Land Eff. Fertilizer Eff. Labor Eff. 

Andra Pradesh | Bijapur 40.39 67.25 97.39 73.43 
Adilabad 28.19 72.42 97.81 63.28 | Chikmag 65.04 65.05 97.19 77.94 
Anantapur 41.82 67.15 97.38 73.72 | Chitradurg 42.91 67.82 97.44 72.39 
Chitoor 48.24 66.57 97.33 75.01 | Dak. Kan. 71.45 63.94 97.10 80.41 
Cuddapah 34.16 70.49 97.68 67.00 | Dharwad 27.65 71.56 97.76 65.21 
East Godar 37.62 68.48 97.50 71.09 | Gulbarga 26.51 72.31 97.80 63.87 
Guntur 34.23 66.61 97.32 74.73 | Hassan 45.58 68.11 97.46 71.85 
Karimnagar 41.97 67.78 97.43 72.51 | Kodagu 100.00 58.55 96.59 90.90 
Khammam 39.01 68.95 97.54 70.14 | Kolar 25.96 73.32 97.92 61.18 
Krishna 37.77 68.51 97.50 71.05 | Mandhya 41.54 69.10 97.55 69.80 
Mahbubnagar 23.99 72.76 97.87 62.66 | Mysore 36.23 69.30 97.57 69.44 
Medak 28.97 71.88 97.79 64.12 | Raichur 26.58 72.34 97.84 63.72 
Nalgonda 31.88 70.40 97.67 67.25 | Shimboga 54.56 66.18 97.29 75.79 
Nizambad 30.94 71.63 97.80 64.56 | Tumkur 46.98 66.77 97.35 74.52 
Srikakulam 38.97 66.82 97.35 74.41 | Uttarkannada 71.18 65.76 97.27 76.89 
Assam | Kerala 
Silchar 100.00 58.59 96.79 91.63 | Alappuzha 74.21 64.48 97.15 79.36 
Darrang 100.00 56.97 96.72 94.50 | Ernakulam 63.19 63.46 97.04 81.00 
Goalpara 77.35 62.08 97.05 84.14 | Kannur 100.00 57.51 96.58 92.95 
Kamrup 83.19 60.87 96.95 86.23 | Kollam 82.29 62.18 96.95 84.00 
N. Lakhimpur 100.00 54.20 96.50 100.00 | Kozhikode 68.45 62.26 96.95 83.46 
Nagaon 81.75 61.95 97.00 84.40 | Thirssur 80.45 63.46 97.06 81.45 
Jorhat 100.00 56.30 96.61 95.61 | Thiruvan. 90.26 62.26 96.97 84.23 
Bihar | Maharastra 
Bhogalpur 17.40 76.60 98.22 53.90 | Ahmadnagar 21.08 74.29 98.01 59.98 
Bhojpur 34.59 68.83 97.53 70.41 | Akola 31.37 70.68 97.68 66.90 
Darbhanga 23.69 72.10 97.80 63.65 | Amravati 30.88 71.04 97.71 66.17 
Dumka 28.69 71.13 97.70 65.54 | Aurang. 25.27 72.05 97.80 64.38 
Gaya 22.35 72.86 97.89 62.14 | Bhandara 29.37 71.93 97.78 64.08 
Hazar. 25.67 72.32 97.79 62.94 | Bid 30.75 71.17 97.71 65.98 
Munger 20.51 72.92 97.89 62.10 | Buldana 26.86 72.58 97.84 63.14 
Muzaffar. 18.76 74.45 98.01 58.83 | Chandrap. 30.65 70.96 97.69 66.21 
P. Champ 32.06 69.64 97.60 68.72 | Dhule 27.69 72.13 97.81 63.93 
Palamu 23.64 74.26 97.94 58.68 | Jalgaon 22.70 73.72 97.98 60.92 
Patna* 24.35 72.85 97.89 62.06 | Kolhapur 40.21 68.70 97.52 70.64 
Purnia 23.73 72.09 97.80 63.81 | Nagpur 26.93 73.20 97.90 61.85 
Ranchi 27.21 72.05 97.77 63.89 | Nanded 21.44 75.59 98.13 57.46 
Saran 35.30 68.80 97.52 70.46 | Nashik 22.47 73.75 97.96 60.76 
Singhbum 38.05 69.46 97.56 69.03 | Osman 28.88 70.92 97.70 66.49 
Gujarat | Parbhani 28.94 71.42 97.73 65.56 
Ahmadabad 29.75 72.62 97.86 63.04 | Pune 23.31 73.43 97.93 61.62 
Amreli 49.75 67.37 97.40 73.26 | Ratnagiri 40.78 68.73 97.51 70.58 
Ban. Kanth 29.72 71.73 97.77 64.96 | Sangli 24.48 74.01 98.00 60.23 
Bharuch 40.79 69.41 97.57 69.25 | Satara 33.26 70.49 97.67 67.15 
Bhavnag. 32.25 71.44 97.75 65.40 | Sholapur 23.10 73.71 97.95 61.12 
Jamn. 35.02 71.19 97.72 65.97 | Thane 28.54 72.54 97.83 62.65 
Junagadh 44.73 67.60 97.42 72.84 | Madhya Pradesh 
Kachchh 50.13 67.34 97.40 73.28 | Balaghat 37.22 70.21 97.63 67.57 
Kheda 36.92 69.22 97.56 69.62 | Bastar 68.71 62.41 97.09 82.99 
Mahesana 38.42 68.74 97.52 70.61 | Betul 29.13 72.90 97.85 62.40 
P. Mahals 26.14 72.67 97.84 62.58 | Bhind 62.84 72.87 97.84 62.36 
Rajkot 30.08 72.14 97.82 64.13 | Bilaspur 37.68 68.00 97.45 72.05 
Sab. Konth 31.00 71.98 97.81 64.16 | Chhatarp. 37.49 70.57 97.65 66.96 
Surat 42.12 68.50 97.50 71.05 | Chhindw 59.40 64.92 97.21 78.11 
Surendr. 41.48 69.33 97.56 69.52 | Damoh 50.32 68.25 97.47 71.56 
Vadodara 33.64 70.59 97.68 66.89 | Datia 58.50 68.32 97.48 71.42 
Valsad 32.66 71.55 97.77 64.77 | Dewas 43.67 68.91 97.53 70.27 
Haryana | Dhar 27.14 73.23 97.91 61.83 
Ambala 60.05 65.76 97.24 76.43 | Durg 32.55 69.29 97.56 69.55 
Gurgaon 46.68 67.17 97.38 73.66 | E. Nimas 19.49 77.10 98.25 54.09 
Hisar 61.73 61.80 96.88 83.49 | Guna 54.38 65.95 97.30 75.97 
Jind 59.59 65.95 97.27 76.02 | Gwalior 52.86 67.81 97.44 72.44 
Karnal 54.22 64.82 97.15 78.08 | Hoshang. 42.03 68.93 97.53 70.25 
Mahendragarh 58.14 66.19 97.30 75.50 | Indore 46.17 68.79 97.52 70.50 
Karnataka | Jabalpur 28.04 72.92 97.85 62.30 
Bangalore 20.80 75.52 98.13 56.72 | Jhabua 39.93 69.62 97.58 68.81 
Belgaum 48.34 65.71 97.25 76.51 | Mandla 41.32 68.81 97.51 70.44 
Bellary 28.25 72.34 97.85 63.58 | Mandsaur 32.32 71.08 97.72 66.09 
Bidar 47.31 67.96 97.45 72.13 | Morena 50.99 66.83 97.35 74.39 
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Foot Notes
1. This measure allows us to compare efficiency across similar

economic units such as firms/ aggregation of firms, for example at
industry level or geographically.  If efficiency varies across units,
then further analysis can reveal the factors that cause such
variations.  Such analysis has important policy implications for the
improvement of efficiency (Kalirajan and Shand, 1994).

2. The cross-country study by Bloom et al., (2004), models health,
experience, and education, as labor augmenting inputs in an
aggregate Mincer production model.

3. Croppenstedt and Muller (2000) consider the production effects of
weight-for-height and morbidity in a firm-level study on Ethopian
agriculture. While they employ the stochastic frontier method to
calculate technical efficiency, they still model health as an input in
the production function. In another part of the study, the effect of
height and weight-for-height on wages, assuming the latter fully
reflects the productivity of labor, is estimated. Croppenstedt and
Demeke (1997) use the random-coefficients approach to estimate
input-specific and overall technical efficiencies for Ethopian farms.
While they do allude to the possibility that health and nutrition can
drive differential labor efficiency, they do not model these explicitly
in their technical efficiency equations. Mitra et al., (2002), study
the effect of various infrastructure on total factor productivity (TFP)
in Indian industry at the state-level. After calculating TFP for
different industrial categories, they study its determinants by
considering the effect of an aggregate infrastructure index (which
includes IMR as one of its components). Decomposing the effect
of each infrastructure variable on industry-specific TFP, they find
IMR to be an important determinant of TFP in several industries.
However, because of multicollinearity they are unable to estimate
the returns to this variable explicitly.

 

District Overall TE Land Eff. Fertilizer Eff. Labor Eff. | District Overall TE Land Eff. Fertilizer Eff. Labor Eff.
Madhya Pradesh Udaipur 51.47 66.53 97.35 75.07

N'Simpur 60.05 66.00 97.29 76.00 | Tamil Nadu
Panna 44.08 69.91 97.60 68.22 | Cheng. MGR 49.87 66.66 97.33 74.87
Raigarh 37.40 69.49 97.57 69.09 | Coimbatore 41.34 67.35 97.39 73.40
Raipur 43.52 66.31 97.31 75.35 | Kanniyakumari 72.91 65.28 97.21 78.05
Raisen 60.03 65.47 97.25 76.90 | Madurai 35.11 68.98 97.54 70.05

Rajgarh 35.24 71.19 97.71 65.84 | N. Arcot Ambed. 41.25 67.66 97.42 72.79
Ratlam 31.24 72.77 97.86 62.71 | Ramanath 39.06 68.48 97.49 71.09
Rewa 23.69 75.06 98.05 58.02 | S. Arcot 53.30 64.79 97.16 78.63

Sagar 37.69 70.30 97.64 67.60 | Salem 49.94 64.80 97.17 78.48
Satna 23.19 75.48 98.07 57.17 | Thanjavur 41.78 66.77 97.34 74.50

Sehore 50.15 66.74 97.35 74.46 | Tiru. Kalla 34.06 70.08 97.64 67.77
Seoni 47.80 67.96 97.45 72.13 | Tiruchch 31.47 69.89 97.63 68.21
Shahdol 37.42 69.86 97.58 68.36 | Uttar Pradesh
Shajapur 55.68 65.76 97.27 76.37 | Agra 46.60 67.72 97.43 72.61
Shivpuri 54.16 66.50 97.34 75.01 | Aligarh 42.27 68.07 97.46 71.92

Sidhi 32.60 71.70 97.71 64.68 | Allahabad 32.14 70.14 97.64 67.73
Surguru 41.62 68.17 97.47 71.72 | Azamgarh 41.12 67.84 97.44 72.37
Tikamgam 38.10 70.67 97.68 66.73 | Bahraich 38.53 68.57 97.50 70.92
Ujjain 45.15 67.95 97.45 72.14 | Ballia 33.11 71.18 97.74 65.55
Orissa | Banda 49.14 66.70 97.35 74.64

Balangir 77.34 61.68 96.99 84.40 | Bar. Ban. 34.04 70.38 97.66 67.20
Baleshwar 39.23 68.43 97.49 71.20 | Bareilly 41.37 68.55 97.50 70.95
Cuttack 55.15 62.84 97.04 81.95 | Basti 32.91 69.52 97.59 69.02
Dhenkanal 84.20 60.59 96.92 86.44 | Bijnor 70.77 63.32 97.02 81.48
Ganjam 47.53 65.88 97.28 76.19 | Budaun 35.90 69.67 97.60 68.73

Kalahandi 60.81 61.73 96.99 83.96 | Bulandsh. 47.72 66.96 97.36 74.12
Kendujhar 68.86 63.89 97.17 80.21 | Dehra Dun 59.46 68.56 97.50 70.91
Mayurb 59.21 64.74 97.22 78.55 | Deoria 36.56 68.89 97.53 70.26
Phulanb. 96.63 60.57 96.97 86.84 | Etah 48.69 66.95 97.36 74.16
Sambalp. 48.82 65.76 97.26 76.38 | Etawah 50.49 66.66 97.34 74.78

Sundargarh 68.67 63.95 97.17 80.04 | Faizab. 35.89 69.81 97.62 68.37
Punjab | Farrukha. 55.80 65.75 97.25 76.66
Amritsar 54.21 65.32 97.20 77.19 | Fatepur 41.41 68.95 97.54 70.14
Bhatinda 65.42 62.43 96.93 82.50 | Ghazipur 38.56 69.63 97.60 68.74
Firozpur 66.32 61.38 96.82 84.33 | Gonda 40.13 67.88 97.44 72.31

Gurdasp 51.79 66.90 97.35 74.21 | Gurakhp. 37.16 68.60 97.50 70.86
Hoshiarpur 54.85 66.79 97.34 74.42 | Hamirpur 60.83 64.90 97.22 78.14
Jalandh. 64.22 64.35 97.11 79.12 | Hardoi 46.49 66.98 97.37 74.12
Kapurthal. 70.61 65.16 97.18 77.60 | Jalaun 58.95 66.04 97.29 75.97
Ludhiana 60.95 64.60 97.12 78.58 | Jaunpur 36.85 69.72 97.61 68.56

Patiala 66.65 63.19 96.99 81.19 | Jhansi 48.31 66.98 97.37 74.04
Ropar 53.66 68.45 97.49 71.16 | Kheri 51.72 65.82 97.25 76.41
Sangrur. 75.23 61.27 96.82 84.75 | Kanpur* 47.86 66.80 97.35 74.47
Rajasthan | Lucknow 30.87 72.96 97.90 61.69
Ajmer 32.03 72.26 97.77 63.69 | Mainpuri 49.22 67.07 97.37 73.94

Alwar 50.88 66.25 97.32 75.44 | Mathura 52.02 66.91 97.36 74.23
Banswara 35.11 71.38 97.73 65.23 | Meerut 51.45 64.96 97.18 77.94
Barmer 33.99 70.64 97.60 67.21 | Mirzapur 32.12 71.04 97.70 65.94
Bharatpur 49.06 66.73 97.35 74.54 | Moradab 45.98 66.72 97.33 74.61

Bhilwara 34.89 70.69 97.67 66.71 | Muzzafarn 66.03 63.76 97.06 80.62

Bikaner 15.21 82.14 98.68 45.95 | Nainital 49.24 67.87 97.44 72.32
Bundi 46.00 69.23 97.56 69.63 | Pilibit 54.86 66.60 97.32 74.87
Chittaurg 39.87 69.06 97.54 69.95 | Pratapg 35.35 70.58 97.68 66.75
Churu 85.80 59.45 97.07 87.59 | Rae Boreli 34.57 70.51 97.67 66.95
Dungarpur 49.28 69.03 97.53 69.92 | Rampur 48.72 67.97 97.45 72.14

Ganganagar 92.45 57.34 96.62 91.57 | Saharanpur 57.79 64.88 97.16 78.27
Jaipur 47.17 66.37 97.33 75.19 | Shahjahanp. 48.22 67.00 97.36 74.06
Jaisalmer 4.91 100.00 100.00 11.07 | Sitapur 42.40 67.92 97.45 72.22
Jalor 34.16 71.44 97.70 65.54 | Sultanpur 37.32 69.64 97.59 68.72
Jhalawar 40.03 69.99 97.61 68.12 | Unnao 34.18 70.67 97.68 66.62

Jhunjhunun 41.21 69.66 97.57 68.85 | Varanasi 32.85 70.66 97.70 66.67
Jodhpur 34.85 70.40 97.62 67.58 | West Bengal
Kota 43.18 68.59 97.50 70.89 | 24 Parag. 36.28 68.02 97.45 72.02
Nagaur 40.20 68.15 97.47 71.75 | Bankura 57.30 64.99 97.18 78.21
Pali 33.26 71.69 97.74 65.03 Birbhum 40.17 68.68 97.51 70.69

S. Madhop 58.38 64.99 97.22 77.92 Burdwan 60.58 63.77 97.07 80.55
Sikar 38.11 70.28 97.61 67.67 Haora 33.31 72.23 97.86 63.06
Sirohi 49.33 69.54 97.57 68.99 Hugli 54.13 65.87 97.25 76.46
Tonk 57.98 65.84 97.30 76.19
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4. All these extensions require the functional form of the frontier and
distribution of the one-sided residual term to be specified.  This

can result in errors of mis-specification if the above specifications
are incorrect.

5. Their approach is a slight modification of the Hildreth and Houck
(1968) model, which is a special case of Swamy’s (1971) panel
data model.

6. E (wi) = 0; V (wi) = σ2 + Σj σii xij
2 and Cov (wi w

’ 
i) = 0 for i ≠ i’.

7. Hildreth and Houck’s (1968) random coefficient model belongs to
this class of heteroscedastic error models.

8. See Griffiths (1972).

9. In special cases of production process in which constant returns to
scale are imposed on the individual response coefficients, ijβ  , the
estimation of s

j
*'β would be complicated and intractable. Even when

the condition of constant returns to scale is imposed on the mean
response coefficients, jβ ’s then due to the relationship

                                     ijj
i

j v̂(max* += ββ )
the possibility that Σ

*
jβ > 1 cannot be ruled out. In either case,

the problem that remains is that the “best practice” production
outcome might not be feasible if all production processes had to
have constant returns to scale by some strict technical rule.

10. We also tried to use the more flexible trans-log specification, but
found that the Cobb-Douglas approach fit the data best.

11. Also, we attempt to control for crop mix by designating districts as
rice, wheat, or “other districts”, based on plurality of land use

towards a particular crop. We have constructed these indicators
from CMIE (2000). We have also tried to control for institutional
climate using per capita credit to agricultural enterprises as a proxy
variable. This measure is taken from CMIE (2000) as well.

12. Because the number of districts and district boundaries has changed
from census year to census year, roughly a quarter of Bhalla and

Singh’s district units are actually amalgams of currently existing
districts. For that reason, we use appropriate population, area,
and village weights to align our second stage data with the district
combinations used by Bhalla and Singh.

13. A wide variation in labor elasticity was also computed in a firm-

level of study of Ethiopian farms conducted by Croppenstedt and
Demeke (1997). The lowest and highest computed values in their
study were 0.04 and 0.37, which is quite similar to our results.
They postulate the wide variation in labor elasticity is due to
differential labor quality (such as health status). They do not,
however, explicitly control for health and nutritional status as a

determinant of labor (or overall) technical efficiency.

14. The distribution of mean response coefficients for land falls below
those typically found in the literature (0.4-0.6, see Kalirajan and
Obwona, 1994). This could perhaps suggest that farmers are not
necessarily constrained by the availability of land.

15. The correlation between the two variables is -0.054, and is not
statistically significant.

16. Neither production theory nor the random coefficients estimation
method imposes any restrictions on the input coefficients, such
that a low elasticity for one variable means a higher elasticity for

another. Hence, it is quite interesting that we are seeing a negative
correlation between input efficiencies in our results.

17. Many of the state-level control variables (not shown here) are
statistically significant, indicating that the dummy variables are
capturing a number of determinants, which we cannot adequately

control for more explicitly. Some of the state-level effects are
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especially large: Assam and Orissa - two of the poorest performing
states in our sample with respect to poverty and human

development - sport fairly gaudy coefficients, relative to the other
states. It is likely that available data does not quite capture the
differential state-wise environmental and institutional factors and,
as a result, we are limited in our attempts to disaggregate the
large unexplained effects that state membership confers on
technical efficiency.

18. As mentioned in Section 2, we also attempted to control for state

level institutional characteristics, as proxied for by per capita credit
to agriculture enterprises, and regional crop mix (rice, wheat, or
“other” plurality in land use). Analysis using these variables was
quite unrevealing: none of these were statistically significant, and
their inclusion did not change the coefficients on any of the other
variables appreciably. Hence, we do not present these estimates

in the ensuing tables.

19. We do not show models for land and fertilizer efficiency, as the

results were quite unrevealing: few of the explanatory variables
were statistically significant.

20. See Bound et al., (1995) for a discussion on the difficulties that
arise from using weak instruments.

21. We see that a 1 percentage point increase in the scheduled caste
percentage is associated with an increase in IMR of nearly 0.8
deaths per 1000.

22. The 2SLS instruments were nearly identical to the OLS estimates

presented in Table 4.
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