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Abstract 

 

This paper examines the optimality of intertemporal price discrimination when network 

externality effects are present in the consumption of a durable good. We conduct our 

study in two settings.  In a model with two household types, utilities are dependent on 

the cumulative proportion of households that have purchased the durable good. Next, in 

a model with a continuum of household types, we extend the analysis to the case where 

households consume both a durable good and a stream of non-durable goods. We show 

that in both settings, the presence of network externalities facilitates a sales strategy 

with intertemporal price discrimination.  
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1. Introduction  

This paper studies optimal monopoly pricing of a newly-introduced durable good when 

network externality effects are present in its consumption.  The rationale for a sales strategy 

that involves intertemporal price discrimination (IPD, for short) is straightforward: charge 

different prices over time – typically a high price when the durable good is first introduced, and 

then progressively lower prices – in order to sort consumers such that those with higher 

valuations would decide to purchase the durable good earlier, while those with lower valuations 

would make purchases later.  When successfully implemented, an IPD sales strategy allows 

firms with monopoly power to generate higher profits compared with a constant-price policy.    

In practice, IPD often goes hand in hand with other sales practices. For instance, it is a 

common marketing strategy to create different versions of a product sequentially or sell limited 

quantities of a product over time. These two sales strategies allow firms to price-discriminate 

over time.  Price discrimination strategies are also often related to quality improvements or cost 

reduction effects (arising from economies of scale, learning-by-doing, etc), as well as changes 

in product specification or customization to suit different demographic segments or customer 

categories.  In general, these sales practices increase the scope for price discrimination. 

Beginning with the analysis by Coase (1972) and Stokey (1979, 1981), a vast literature 

has developed that studied the optimality of IPD sales strategies in different settings.  It is well 

established that the monopoly’s ability to credibly commit to its pricing policy is critical for the 

success of an IPD strategy.  Credible commitment depends on several factors, including the 

monopoly’s reputation, industry practices and whether the monopoly is able to undertake 

actions to make it costly to renege on the commitment and adversely affect its reputation and 

future profitability. For instance, if the monopoly continuously launches new products, the 

credibility of its future sales strategies would be dependent on its reputation.  In the case of the 

publishing industry, it is a common practice to wait for at least six months to a year between the 

hard-cover and the soft-cover edition.  Hence, the commitment to “hard-back’ pricing is easily 
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made credible (see Clerides, 2003).  However, in the film industry, the time gap between initial 

theatrical screenings and video release has shortened considerably due to rampant piracy.  This 

indirectly puts a cap on the price of a movie ticket for theatrical screenings. In the retail sector, 

departmental stores may achieve commitment by promising rebates if prices are lowered within 

a specified period.   

 The basic point here is that if the monopoly’s commitment is not credible, this limits 

its ability to set differential prices over time and reduces the potential profits that it can earn 

from an IPD sales strategy.  More specifically, as the period over which a monopolist is able to 

make its sales commitment diminishes, its ability to exert market power is reduced 

correspondingly.  In the limit, the monopoly’s market power vanishes, and it is not possible for 

the monopolist to price-discriminate.  The competitive market pricing is the only outcome.  

This conjecture was first raised by Coase (1972) and subsequently proven in different settings 

(see, for instance, Stokey (1981) and Bulow (1982)).  When the monopoly can credibly commit 

to its pricing policy, Stokey (1979) established that IPD is feasible for several classes of utility 

functions, when restrictive conditions regarding the consumers’ rate of time preference and 

their reservation prices hold.  

Subsequently, other authors have analyzed different settings under which the optimal 

sales strategy entails an IPD pricing policy. For instance, Conlisk, Gerstner and Sobel (1984) 

and Sobel (1984) have demonstrated that an IPD sales strategy is optimal when there is 

continual entry of new customers.  The monopoly optimally chooses to sell to high-valuation 

consumers first, and then hold periodic sales to clear the market. Landsberger and Meilijson 

(1985) also extended Stokey’s analysis and showed that an IPD sales strategy is optimal for a 

durable good monopolist if it possesses discount rates different from those of consumers.  The 

early literature is surveyed in Varian (1989).  Recent literature on the subject includes Cayseele 

(1991), which provided a rationing perspective to explain the optimality of IPD; Png (1991), 

which considered the use of a most-favored customer strategy to engage in IPD; Van Ackere 
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and Reyniers (1995), which studied the use of trade-ins and introductory offers to create IPD 

opportunities; Ault, Randolph, Laband and Saba (2000), which studied the use of rebates for an 

IPD strategy; as well as Locay and Rodriguez (2002), which considered the optimality of IPD 

when demand is stochastic and consumers are uncertain if the product would be available in the 

future.  They also considered the existence of a “snob effect” that may prompt some consumers 

to buy early when the product is more exclusive. The implications of random price 

discrimination are studied in Colombo (2003).  

In this paper, our focus is on the presence of network externalities and its impact on the 

optimality of an IPD sales strategy.  For a wide range of electronic durable goods (such as 

karaoke sets, personal computers, laptops, DVD players, MP3 players, etc), positive network 

externality effects are present, as the benefits that a household can derive from their 

consumption may increase over time.  This may be due to greater availability of 

complementary goods (such as software and music and movie titles of compatible format) that 

are consumed with the durable good or the existence of a greater community of users.  

We formalize these ideas in a simple model with two household types (High and Low) 

in Section 2.  Our analysis focuses on the case where the monopoly is able to commit to its 

pricing strategy.  The situation where the monopoly is unable to credibly commit to its pricing 

strategy has been studied in Stokey (1981), Karp (1996) and Mason (2000).  In particular, 

Mason (2000) demonstrates that the Coase conjecture fails when network externality benefits 

are present.    

In our analysis, we demonstrate that the presence of network externality effects 

increases the scope for IPD.  Following the standard approach in the literature on network 

externalities, we model the impact of network externality effects on consumption by allowing 

the utility derived by both types of households to depend on the proportion of households that 

have purchased the durable good.  This modeling approach is similar to that used in Cabral, 

Salant and Woroch (1999), which also studied the effects of network externality on monopoly 
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pricing. In their model, the focus was to delineate the circumstances under which introductory 

pricing is an optimal sales strategy.   

Next, in Section 3, we extend the analysis to the case of a continuum of household 

types that consume both a durable good and a stream of non-durable goods, subject to an 

intertemporal budget constraint.  The monopoly sells the durable good at two dates and is able 

to credibly commit to the prices it sets for both dates.  Households differ in the utility they 

derive from the durable good when network externality effects are absent.  However, in the 

presence of network externalities, the flow utility that households enjoy from the consumption 

of the durable good now depends on the cumulative proportion of households that have already 

purchased the durable good.  In this model, households must decide on the optimal date to 

purchase the durable good as it affects how much they can afford to spend on the consumption 

of the non-durable good and the marginal utility they derive from its consumption. Section 4 

concludes the paper.   

 

2. A Model with Two Household Types 

Suppose there are two types of households, H and L, who demands at most one unit of 

a durable good, which if acquired, provides a flow of utility of kX  (k = H and L).  For our 

analysis, let LX  = HXθ , where  (0, 1)θ ∈ . Let r denote the common intertemporal discount 

rate for the monopoly and the households.  The discounted present value of the stream of 

utilities for household of type k is rtkX
e

r
− , if the durable good is acquired at time t.  

Let the measure of households be unity, with µ  being the measure of households of 

type H, and (1 )µ−  being the measure of households of type L.  We assume that if a household 

is indifferent between buying the durable good or doing without it, the durable good would be 

purchased. Consider a new durable good to be supplied by a monopoly who announces that 

sales will take place on two dates only: t = 0 and t = T.  The monopoly must decide on the 

optimal prices to sell at t = 0 and t  = T , as well as the optimal T.   The new durable good is 
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produced at a constant marginal cost, which we shall assume, without loss of generality, to be 

zero.  Thus, the monopoly’s objective is to maximize its revenue and its sales strategy is 

characterized by{ }0 , ,TP P T .  We assume that the monopoly’s commitment to its announced 

pricing policy { }0 , ,TP P T is credible, so that households only need to decide whether to buy the 

durable good at t = 0 or t = T, or never. 

 

2.1 No Network Externality Effects  

When network externality effects are absent, the decision by a household whether to 

purchase the durable good, or not, depends simply on the present value of the flow of utility net 

of purchase price, which is denoted ( )kV t ≡ rtk
t

X P e
r

−⎡ ⎤−⎢ ⎥⎣ ⎦
, and evaluated at t = 0 and t = T.   

Consider an IPD sales strategy for the monopoly, defined as one where type-H households buy 

at t = 0 while type-L households buy at t = T.   The following conditions must hold for the two 

types of households if the sales strategy is successful: 

0 Max 0,  rTH H
T

X XP P e
r r

−⎧ ⎫⎡ ⎤− ≥ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
           (1)

0Max 0,  rTH H
T

X XP P e
r r

θ θ −⎧ ⎫ ⎡ ⎤− < −⎨ ⎬ ⎢ ⎥⎩ ⎭ ⎣ ⎦
           (2) 

The monopoly’s revenue under the IPD sales strategy (denoted strategy D), is 

0( , , )D
TP P TΠ ≡ Π 0 (1 ) rT

TP P eµ µ −= + − . The monopoly can optimally select 

0
1 (1 )D rTHXP e

r
θ −⎡ ⎤= − −⎣ ⎦ ,   D

TP  = HX
r

θ ,  and an optimal T, denoted *T , to ensure the 

conditions in  (1)  and  (2)  are satisfied.  In this case, the monopoly earns a revenue of  

*
( )D rTHX

e
r

µ θ µ −⎡ ⎤Π ≡ + −⎢ ⎥⎣ ⎦
.   

There are two other alternative sales strategies for the monopoly: sell to both types of 

households at t = 0, or just sell to type-H households at t = 0.   If the monopoly sells to both 

types of households, this non-discrimination sales strategy (denoted strategy ND), generates a  
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revenue of 0
ND PΠ = . The optimal price to set in this case is 

0
ND HXP

r
θ

= , so that the 

monopoly earns a revenue of NDΠ   =  HX
r

θ .  Finally, if the monopoly decides to sell only to 

type-H  households (denoted strategy H), the optimal price to set here is 
0
H HXP

r
= , and the 

monopoly earns a revenue of H HX
r

µΠ = . 

Comparing the profitability of the three types of sales strategies, it is straightforward to 

show that an IPD sales strategy is always dominated by one of the other two strategies.  

Specifically, when µ  >θ , we have HΠ  > DΠ , so that the monopoly earns a higher revenue by 

just selling to type-H households.  When µ  < θ ,  we have NDΠ  > DΠ ; again, the monopoly 

can do better by selling to both types of households at a single price at t = 0.    

 This set of results shows that an IPD pricing strategy is never an optimal sales strategy 

for all combinations of the parameters, µ  and θ , even though households differ in their 

utilities derived from the durable good.  In this next sub-section, we show that in the presence 

of network externality effects, an IPD sales strategy can be optimal under certain conditions in 

our model. 

 

2.2 IPD Sales Strategy with Network Externalities 

Suppose the consumption of the durable good creates network externality effects on the 

utility enjoyed by both types of households.  The utility that a type-k household derives from 

the durable good at time t is now given by  

1 (1 )k t
t k tU X e δφ −⎡ ⎤≡ + −⎣ ⎦ ,       k = H, L           (3) 

where tφ  denotes the cumulative proportion of households that have already purchased the 

durable good at time t. In this setting, the flow utility that a type-k household derives from the 

consumption of the durable good increases with tφ .  Since sales take place in two discrete 

periods in our model, this formulation suffices to capture the impact of positive network 
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externality effects on the consumption of the durable good. We further allow the network 

externality effects to grow over time, with the rate of growth proportional toδ .  As δ  tends to 

infinity, network externality effects become almost instantaneous. 

In our model, sales of the durable good takes place at two dates.  If sales take place 

continuously, the actual history of purchase will also matter in determining the magnitude of 

the externality effects, besides the cumulative proportion of households that have purchased the 

durable good.   For instance, a sales path where purchases occurred almost immediately after 

the new durable good is launched will likely generate greater network externality effects 

compared with another sales path with the same cumulative proportion of households 

purchasing the durable good, but where sales take place continuously over the same period.  In 

our two-period model, the cumulative proportion of households purchasing the good in the 

second period coincides with the sales history.  

Since the monopoly sells the durable good at possibly only two dates, t = 0 and t = T,   

the discounted present value of the stream of utilities if a type-k household buys the durable 

good at t = 0 and at t = T, are given by, respectively,  

0 0 0
0

( , ) 1 (1 ) 1 (1 )
T

k t rt t rt
T k k T

T

V X e e dt X e e dtδ δφ φ φ φ
∞

− − − −⎡ ⎤ ⎡ ⎤≡ + − + + −⎣ ⎦ ⎣ ⎦∫ ∫                           
(4)

 

                 
 = ( ) ( )0

0
11 1rT Tk

T
X e r e
r r r

δφ δ
φ φ δ

δ δ
− −⎧ ⎫⎡ ⎤+ + − + −⎨ ⎬⎣ ⎦+ +⎩ ⎭    

     
( ) 1 (1 )k t rt

T T k T
T

V X e e dtδφ φ
∞

− −⎡ ⎤≡ + −⎣ ⎦∫                                                                         
(5)

 

      
= ( )11 1rT Tk

T
X e r e
r r

δφ δ
δ

− −⎧ ⎫⎡ ⎤+ + −⎨ ⎬⎣ ⎦+⎩ ⎭  

If the monopoly successfully employs an IPD sales strategy, we will have 0φ µ=  and Tφ  = 1, 

since type-H households buy the durable good at t = 0 and type-L households buy at t = T.    

Note that in this setting, even though type-H households buy the durable good at t = 0, 

the utility they derive from the durable good at t = T  will also be higher, since more households 

have bought the durable good at  t  = T.   An alternative setting that has also been considered in 
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the literature is the case where the network externality effects on a household’s utility depends 

only on the current network size.  This type of network externality effects is referred to as 

‘excluded’ by Bensaid and Lesne (1996).  An example of ‘excluded’ network externality effects 

is the case of computer software. Early buyers of software do not benefit from the externalities 

they generate for later purchasers (and users), such as the discovery of bugs and problems, 

unless they buy updated versions or are given free upgrades by the software developer. 

In our model, the positive impact on type-H household’s utility is given by the second 

term in (4);  which is ( ) ( )1 1 1
( )

rT T
kX e r e

r r
δµ δ

δ
− −⎡ ⎤− + −⎣ ⎦+

  under a successful IPD sales 

strategy.   In order for type-H households to prefer to buy the durable good at t = 0, rather than 

at t = T, the following optimality condition must hold: 0 0( ,1)HV Pµ −  > (1)H rT
T TV P e−− .  

Similarly, for type-L households to buy at t = T rather than t = 0, the following optimality 

condition must hold: 0 0(1,1)LV P−  < (1)L rT
T TV P e−− .  Together, these two conditions impose the 

following constraints on the monopoly’s pricing policy: 

   0
rT

TP P e−−
 
<  ( ) ( ) ( )1 1 1rT rT rT THX e e re e

r r
δµ δ

δ
− − − −⎧ ⎫⎡ ⎤− + − − −⎨ ⎬⎣ ⎦+⎩ ⎭        

(6)
 

0
rT

TP P e−−
 
>  ( ) ( ) ( )11 1 1rT rT rT THX e e re e

r r
δθ

δ
δ

− − − −⎧ ⎫⎡ ⎤− + − − −⎨ ⎬⎣ ⎦+⎩ ⎭        
(7)

 

From (6) and (7), a feasible range for ( )0
rT

TP P e−−  exists if  

( ) ( ) ( ) ( )1 1 1rT rTre e
r r r

δ δθ µ θ θ µ θ µ θ
δ δ δ

− −⎡ ⎤− + − ≥ − + − + − −⎢ ⎥+ + +⎣ ⎦       
(8)

 

If ( )1 r
r

δµ θ θ +
> − − , the sign of the left-hand side of (8) is positive, so that the constraint in 

(8) simplifies to the condition, 
( )( ) 1

1
(1 )( ) ( )

T
rT

r e
e

r

δµ θ

θ δ δ µ θ

−⎡ ⎤− −
⎢ ⎥≥ +

− + + −⎢ ⎥
⎣ ⎦

.  By choosing a sufficiently 

large T , say T ≥  1 ( )ln 1
(1 )( ) ( )

r
r r

µ θ
θ δ δ µ θ

⎡ ⎤−
+⎢ ⎥− + + −⎣ ⎦

, a feasible range for ( )0
rT

TP P e−−  exists.    
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However, if instead, µ  < ( )1 r
r

δθ θ +
− − , the sign of the term on the left-hand side of  

(8) is negative.   The constraint in (8) simplifies instead to 
( )( ) 1

1
(1 )( ) ( )

T
rT

r e
e

r

δµ θ

θ δ δ µ θ

−⎡ ⎤− −
⎢ ⎥≤ +

− + + −⎢ ⎥⎣ ⎦
.  

It is straightforward to verify that this constraint can only be satisfied with equality if T is set 

equal to zero.    For T > 0, the left-hand of the above inequality grows faster than the right-hand 

side.  Therefore, for the case when µ   <  ( )1 r
r

δθ θ +
− − , an IPD sales strategy is not feasible. 

Combing the above results, if the proportion of type-H households, µ , is greater than  

( )1 r
r

δθ θ +
− − , there exists an optimal IPD sales strategy { }*

0 , ,D D
TP P T that maximizes the 

monopoly’s revenue.  It comprises the following: 

    ( ) ( )
*

* * * *

0

( )1 (1 ) 1 1
rT

D rT rT rT THX r eP e e e e
r r r

δµ θδθ µ θ
δ δ

−
− − − −

⎧ ⎫−⎪ ⎪⎡ ⎤= − − + − + − −⎨ ⎬⎢ ⎥⎣ ⎦+ +⎪ ⎪⎩ ⎭
     (9) 

    D
TP  = ( )*11 1 THX

r e
r r

δθ
δ

δ
−⎧ ⎫⎡ ⎤+ + −⎨ ⎬⎢ ⎥⎣ ⎦+⎩ ⎭

                     (10) 

    ( )* *( )1 1
(1 )( ) ( )

rT Tre e
r

δµ θ
θ δ δ µ θ

−⎡ ⎤−
> + −⎢ ⎥− + + −⎣ ⎦    

 (to satisfy constraint 7)     (11) 

For type-H households, we can easily verify that 0 0( ,1)H DV Pµ − = 0 > 
*

(1)H D rT
T TV P e−− , so that 

they prefer to purchase at t = 0.  Similarly, for type-L households, 0 0(1,1)L DV P−  < 0 = 

*
(1) −−L D rT

T TV P e , so that they buy at t = *T .   The monopoly revenue under an IPD sales 

strategy is given by 
*

0 (1 )D D D rT
TP P eµ µ −Π ≡ + − ,  which is 

          ( )22* * *( )( ) 1D rT rT THX
e e e

r r r
δθ µµ δµ θ µ δ

δ δ
− − −⎧ ⎫− ⎡ ⎤Π = + − + + + −⎨ ⎬⎢ ⎥⎣ ⎦+ +⎩ ⎭

                     (12) 

We are ready to determine the circumstances under which the IPD sales strategy yields 

the highest revenue compared with selling to both types of households or just type-H 

households.  If the monopoly decides to sell to both types of households, it can do so by setting  
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0
1ND HXP

r r
θ δ

δ
⎡ ⎤= +⎢ ⎥+⎣ ⎦

 to sell at t = 0, or setting ( )11 1ND TH
T

XP r e
r r

δθ
δ

δ
−⎧ ⎫⎡ ⎤= + + −⎨ ⎬⎣ ⎦+⎩ ⎭

 to 

sell at  t = T.   In the first case, it earns a revenue of 
0 0
ND NDPΠ = , while in the second case, it 

earns a discounted revenue of ND ND rT
T T

P e−Π = .   However, we can show that  

( ) ( )0 1 1 0
ND ND

T rT T T
H

d
X e r e e

dT r
δ δδθ δ

δ
− − −

Π − Π ⎡ ⎤= + − + − >⎢ ⎥+⎣ ⎦
  for all  T    (13) 

Since
0
ND ND

T
Π = Π  if T is set equal to zero, the above result implies that even if network 

externality effects are present, the monopoly should not delay selling the durable good if the 

sales strategy is to sell to both types of households.   

 Finally, if the monopoly decides to sell only to type-H households, it can set 

0
1H HXP

r r
µδ

δ
⎡ ⎤= +⎢ ⎥+⎣ ⎦

 to sell at t = 0 to earn 
0 0
H HPµΠ = . Alternatively, it can set 

( )1 1H TH
T

XP r e
r r

δµ δ
δ

−⎧ ⎫⎡ ⎤= + + −⎨ ⎬⎣ ⎦+⎩ ⎭
 to sell at t = T and earn H H rT

T T
P eµ −Π = .  Again, we 

note that 
0
H H

T
Π = Π  if T is set equal to zero, and that   

( ) ( )0 1 1 0
H H

T rT T T
H

d
X e r e e

dT r
δ δµδµ µ µδ

δ
− − −

Π − Π ⎡ ⎤= + − + − >⎢ ⎥+⎣ ⎦
  for all  T    (14) 

Hence, as in the case of selling to both types of households, the presence of network externality 

effects will not lead to a delay in the sale of the durable good if the monopoly intends to sell 

only to type-H households.  

 The monopoly’ optimal sales strategy for each configuration of the system parameters 

is determined by a comparison of the revenue generated under the three sales strategies: 

            ( )
22* * *( )( ) 1D rT rT THX

e e r e
r r r

δθ µµ δµ θ µ δ
δ δ

− − −⎧ ⎫− ⎡ ⎤Π = + − + + + −⎨ ⎬⎣ ⎦+ +⎩ ⎭
 

       
0

1ND HX
r r

θ δ
δ

⎡ ⎤Π = +⎢ ⎥+⎣ ⎦
 

0
1H HX

r r
µ µδ

δ
⎡ ⎤Π = +⎢ ⎥+⎣ ⎦

 



 12

Let 
2

* ( ) ( ) 4 ( 2 )
2

r r rδ δ θδ δ
µ

δ
− + + + + +

≡ . It is routine to verify that 
0
NDΠ  > ( < ) 

0
HΠ  if µ  

< ( > ) *µ .  Moreover, the following inequality holds: *µ  > θ  > ( )1 r
r

δθ θ +
− − .   

We noted earlier that if the proportion of type-H households, µ , is less than 

( )1 r
r

δθ θ +
− − , an IPD sales strategy is not feasible.  In this case, setting 

0
1ND HXP

r r
θ δ

δ
⎡ ⎤= +⎢ ⎥+⎣ ⎦

 to sell to both types of households is the optimal sales strategy.  For µ  

> ( )1 r
r

δθ θ +
− − , we need to compare DΠ  against 

0
NDΠ  when µ  ∈ ( ) *1 ,r

r
δθ θ µ+⎡ ⎤− −⎢ ⎥⎣ ⎦

, 

and DΠ  against 
0
HΠ  when µ  ∈ *,  1⎡ ⎤⎣ ⎦µ .  Let   

   
( )

( )

22 2( ) ( ) 4 2( ) 3 ( )
( )

2 1

T T

T

r r r re r re
T

r e

δ δ

δ

δ δ θ δ δ
µ

δ

− −

+

−

⎡ ⎤− + + + + + − + +⎢ ⎥⎣ ⎦≡
⎡ ⎤+ −⎣ ⎦

      (15) 

  
( )( )

( )

2( ) ( ) 4 ( ) 2 ( )
( )

2 ( )
r r T r T

T
T

δ δ θ δ χ δ χ
µ

δ χ
− − + + + + − + −

≡
−

, 1( )
1

T
rT

rT
eT re
e

δ

χ
−

−
−

⎡ ⎤−
≡ ⎢ ⎥−⎣ ⎦

     (16) 

 
It is routine to show that DΠ  > ( < ) 

0
NDΠ  if µ  >  ( < ) ( )Tµ− , and that DΠ  > ( < ) 

0
HΠ  if µ  < 

( > ) ( )Tµ + .   We prove the following lemma (proof provided in Appendix A):   

Lemma 1:  For all T  > 0,  [a] *µ  < ( )Tµ +  < 1,  [b]  θ  < ( )− Tµ  < *µ . 

  

Utilizing Lemma 1, we obtain the following result: 

 

Proposition 1: [a] If µ  ∈ ( )*,  1µ ,  the monopoly can choose the optimal *T (> 0)  satisfying 

the condition in (11), to ensure that µ ∈ ( )*, ( )+ Tµ µ  and engage in an IPD sales strategy that 

yields higher revenue compared with just selling to type-H households at t = 0;  

[b] If µ  ∈ ( )*,  θ µ , the monopoly can choose the optimal *T (> 0) satisfying the condition in 

(11), to ensure that µ ∈ ( )*( ),− Tµ µ  and engage in an IPD sales strategy that yields higher 

revenue compared with selling to both types of households at t = 0.   
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Proposition 1 indicates that provided the monopoly selects a sufficiently long interval 

between the sale of the durable good to type-H households and to type-L households, an IPD 

sales strategy with sales to type-H households at t = 0 and sales to type-L households at t = T 

will be optimal under certain configurations of the system parameters, when it was previously 

not optimal in the absence of network externality effects (as discussed in Section 2.1).    

 

3. A Continuum of Household Types  

We extend our analysis now to consider a setting with a continuum of infinitely-lived 

household types.  In this model, a household demands at most one unit of a durable good, but 

also consumes an infinite stream of a non-durable good continuously, subject to an 

intertemporal budget constraint of Y.  Let the measure of households be unity.  The density 

function and distribution function of household types are given by g(X) and ( )G X , 

respectively.  The durable good is costlessly produced by a monopoly, who announces a pricing 

policy { }0 , ,TP P T  at  t = 0, and is able to commit to selling only at two dates: at a price of 0P  at  

t = 0, and at TP  at t = T.  

As before, households are fully informed about the monopoly’s pricing policy.  Our 

approach to solve for the monopoly’s optimal sales strategy is as follows: first, for a given 

pricing policy, we solve for the optimal consumption strategy of each household, and the 

optimal date to purchase (if at all) of the durable good.  The monopoly’s pricing policy 

therefore induces a purchase schedule by the households: those that purchase at t = 0, those that 

purchase at t = T, and those that do not purchase at all.  This in turn allows us to solve for the 

monopoly’s optimal sales strategy and the associated optimal pricing policy to maximize its 

revenue.  In Koh (2004), we consider the case where sales takes place continuously between t = 

0 and t = T.   
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Let [ ],X m M∈  denote the flow utility that a household derives from the consumption 

of the durable good with no network externality effects. The utility enjoyed by a type-X 

household at time t in the presence of network externality effects is modeled as follows: 

( , ) 1 (1 ) ln−⎡ ⎤= + − +⎣ ⎦
t

t t t t t tU s q s X e qδφ                           (17) 

where ts = 0 if the durable good is not yet purchased at time t,  st = 1 if it has been purchased at t 

or earlier; tq  is the amount of the non-durable good consumed at date t and tqln  is the utility 

function for the consumption of the non-durable good.   As before, tφ  denotes the cumulative 

proportion of households who had purchased the durable good at time t, while δ  is a measure 

of the rate of expansion of the network externality effects over time.   

Let z (= 0, T) denote the date of purchase of the durable good and }{ tq  denote the 

consumption plan of the non-durable good.  The common intertemporal rate of discount for 

both the monopoly and the households is r.  For our analysis, we assume a constant unit price 

for the non-durable good whose supply is perfectly elastic, so that the intertemporal budget 

constraint for each household is given by 

 
0

∞
− −+ ∫rz rt

z tP e e q dt  ≤  Y  ,  z  = 0 or T         (18)   

The present discounted value of the stream of utilities for type-X household if it decides to 

purchase the durable good at z = 0, and at z = T, are given as follows:  

( ) ( ) ( )0
0 0 0

0

1{ }, , , 1 1 ln
∞

− − −⎧ ⎫⎡ ⎤= + + − + − +⎨ ⎬⎣ ⎦+ +⎩ ⎭ ∫rT T rt
t T T t

XW q X e r e e q dt
r r r

δφ δ
φ φ φ φ δ

δ δ
      (19) 

( ) ( )0
0

1{ }, , , 1 1 ln
∞

− − −⎧ ⎫⎡ ⎤= + + − +⎨ ⎬⎣ ⎦+⎩ ⎭ ∫rT T rt
T t T T t

XW q X e r e e q dt
r r

δφ φ φ δ
δ

     (20)  

With the monopoly committing credibly to its pricing policy, each household’s maximization 

problem is given by the following Lagrangian:                  
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    ( ) ( )0 0
0

,{ }, , , , { }, , ,
∞

− −
⎧ ⎫⎪ ⎪= + − −⎨ ⎬
⎪ ⎪⎩ ⎭

∫rz rt
t T z t T z tL z q X W q X Y P e e q dtλ φ φ φ φ λ ,  z  = 0 , T    (21) 

The differentiation of ( )0,{ }, , , ,t TL z q Xλ φ φ  with respect to tq  yields 1/ tq=λ , so that the 

optimal consumption plan of the non-durable good is a constant stream.  Let ( , )q X z  denote the 

optimal stream of consumption of the non-durable good. Utilizing (18), we obtain 

( , ) ln −⎡ ⎤= −⎣ ⎦
rz

zq X z r Y P e .  Under the household’s optimal consumption plan { }, ( , )z q X z , the 

household’s optimized utility, denoted ( )0 , ,z TV Xφ φ , is 

( ) ( ) ( ) [ ]0
0 0 0 0

1 1, , 1 1 ln− −⎧ ⎫⎡ ⎤= + + − + − + + −⎨ ⎬⎣ ⎦+ +⎩ ⎭
rT T

T T
XV X e r e r Y P
r r r r

δφ δ
φ φ φ φ δ

δ δ
    (22) 

( ) ( )0
1 1, , 1 1 ln− − −⎧ ⎫⎡ ⎤ ⎡ ⎤= + + − + −⎨ ⎬ ⎣ ⎦⎣ ⎦+⎩ ⎭

rT T rT
T T T T

XV X e r e r Y P e
r r r

δφ φ φ δ
δ

                         (23)  

For a IPD sales strategy to be feasible, the pricing policy must be such that households with 

higher valuations of the durable good would purchase it earlier compared with households who 

value it less.  If a household decides to purchase the durable good at a later date, it must weigh 

the marginal loss of the utility from its consumption against the marginal gain in utility from 

consuming a larger stream of the non-durable good.     

Let MX  denote the household type that is indifferent between purchasing the durable 

good at t = T or not at all.  Similarly, let IX  denote the household type that is indifferent 

between buying the durable good at t  = 0 or t = T.   The optimal timing of purchase for the 

households is as follows: 

t = 0,     [ ]∈ ,IX X M ,         (24)    

 t = T,    [ )∈ ,M IX X X   

t = ∞  (i.e. no purchase)    [ )∈ , MX m X      

By the definition of MX ,  ( )0 , ,T T MV Xφ φ  = 1 ln rY
r

, and Tφ  = 1 ( )− MG X .  This allows us to 

solve for TP  as a function of MX  and  T.    
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( )1 exp 2 ( ) 1− −⎡ ⎤⎧ ⎫⎡ ⎤= − − − −⎨ ⎬⎢ ⎥⎢ ⎥+⎣ ⎦⎩ ⎭⎣ ⎦
rT rT T

T M M
rP e Y X e G X e

r
δ

δ
 

 
     (25) 

Similarly, by the definition of IX , we have ( ) ( )0 0 0, , , ,=T I T T IV X V Xφ φ φ φ , and 0φ  = 

1 ( )− IG X , so 0P  can be written as a function of IX , MX  and T:  

 
( )

( ) ( )
0

2 ( ) 1

1 exp
1 2 ( ) 1

− −

− − −

⎡ ⎤⎧ ⎫⎡ ⎤− − −⎢ ⎥⎪ ⎪⎢ ⎥+⎣ ⎦⎪ ⎪⎢ ⎥= − ⎨ ⎬⎢ ⎥⎡ ⎤⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥− − + − − −⎨ ⎬⎢ ⎥⎢ ⎥⎪ ⎪+ +⎣ ⎦⎢ ⎥⎩ ⎭⎣ ⎦⎩ ⎭⎣ ⎦

rT T
M M

rT rT T
I I

rX e G X e
r

P Y
rX e G X e e

r r

δ

δ

δ

δ
δ δ

    (26) 

From (25) and (26), it is clear that in selecting the pricing policy { }0 , ,TP P T , the monopoly is 

effectively choosing the two marginal household types, IX  and MX , and the time-gap ( T ) 

between the sales dates.   The monopoly’s sales strategy { , , }I MX X T  determines the prices 0P  

and TP , as well as the magnitude of the network externality effects over time.   

It is easy to verify that 0P  > −rT
TP e , so that the discounted price at  t = T  is lower, 

even though it is possible that TP  > 0P , as network externality effects increase the utilities that 

households derive from the durable good and the price that they are willing to pay for the 

durable good.  Next, the partial derivatives of 0P  and TP  with respect to T are: 

        
[ ] ( ) ( ){ }0

0 2 ( ) 2 ( ) 1− −∂ ⎡ ⎤= − − ⎡ − − − ⎤ − −⎣ ⎦ ⎣ ⎦∂
rT T

M M I I I
P

r Y P e X G X X G X e X
T

δ             (27) 

        
( )2 ( ) 1− −∂ ⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦∂

rT TT
T T M M

P
rP r Y P e X G X e

T
δ

                   
(28) 

In general, the signs of the partial derivatives of 0P  and TP  with respect to T are ambiguous.  

Thus, in the presence of network externality effects, the monopoly may be able to charge a 

higher price at t = T  if the time gap between sales is increased, since the utilities that 

households derive from the durable good will be higher when the purchase is made at a later 

date.  However, we can verify that the discounted price −rT
TP e is still decreasing in T.
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Similarly, it is straightforward to show that the monopoly may be able to charge a 

higher 0P  when the time gap, T, is lengthened.  This is because, by paying a lower discounted 

price for the durable good and having more budget to consume the non-durable good, some 

household types may derive higher discounted utilities if they decide to purchase the durable 

good later at t = T.   Depending on the distribution of household types, ( )G X , the monopoly 

may be able to increase 0P , such that the household-type IX  is indifferent between purchasing 

at t = 0 and at t = T.   In fact, if X is uniformly distributed over [0, 1], so that ( )2 ( )−X G X  = 

2 −( )X X  is increasing in X, then we will have 0∂
∂
P
T

> 0. 

 

3.1 The Optimal Sales Strategy 

In this sub-section, we characterize the monopoly’s optimal sales strategy. The present 

discounted value of the monopoly’s revenue function is given by 

( ) [ ] [ ]0, , 1 ( ) ( ) ( )−Π = − + −rT
I M I T I MX X T P G X P e G X G X                   (29) 

We differentiate ( ), ,Π I MX X T  with respect to IX , MX  and T  in turn to yield a set of first-

order conditions to characterize the monopoly’s optimal sales strategy { }* * *, ,I MX X T .   First, we 

show that the optimal sales strategy entails selling the durable good at two dates.  The partial 

derivative of ( ), ,Π I MX X T  with respect to T yields 

         

( ) [ ] [ ]0, ,
1 ( ) ( ) ( )−∂Π ∂ ∂⎡ ⎤= − + − −⎢ ⎥∂ ∂ ∂⎣ ⎦

I M rT T
I T I M

X X T P P
G X e rP G X G X

T T T      
(30) 

Utilizing (27) and (28), we have  

( ) [ ] [ ]0
0

, ,
1 ( )

=

∂Π
= − −

∂
I M

I I
T

X X T
r Y P X G X

T
 > 0                   (31) 

This implies that the optimal time-gap, *T , is positive, so that sales of the durable good take 

place at two dates, at t = 0 and at t = *T .  The first-order condition for *T  is given below: 
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         ( ) ( ){ }** * * * * * *
0

1 ( ) 2 ( ) 2 ( ) 1 −⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤− − − − − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
T

M MI I I I
Y P G X X G X X G X e Xδ         (32) 

         =   ( )* ** * * * *( ) ( ) 2 ( ) 1− −⎡ ⎤ ⎡ ⎤⎡ ⎤− − − −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
rT T

T I M M M
Y P e G X G X X G X e δ

 

Next, the first-order condition for *
MX , evaluated at { }* * *, ,I MX X T , yields 

** * * * * * *
01 ( ) ( ) ( ) ( )−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

Ω Ω =rT
I I M T M TG X Y P G X G X Y P e g X P             (33) 

where Ω  ≡  ( )* * * *1 2 ( ) ( )−⎡ ⎤− − −⎢ ⎥+⎣ ⎦
T

M M M
r e G X X g X

r
δ

δ
 and *

0P  and *
TP  denote the optimal  

prices under { }* * *, ,I MX X T .  Similarly, the first-order condition for *
IX  is  

 
** * * * *

0 01 ( ) ( ) −⎡ ⎤⎡ ⎤ ⎡ ⎤− − = −⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
Φ rT

I I TG X Y P g X P P e        (34) 

where Φ  ≡  ( )* * ** * *1 2 ( ) ( ) 1− − −⎧ ⎫⎡ ⎤− + − − − −⎨ ⎬⎢ ⎥+ +⎣ ⎦⎩ ⎭
rT rT T

I I I
re G X X g X e e

r r
δδ

δ δ
.    

Finally, we can derive the monopoly’s optimized revenue by substituting the first-order 

condition in (33) into the monopoly’s revenue function given in (29).  In general, *
0P  is not 

equal to *
TP  under the optimal sales strategy { }* * *, ,I MX X T , which is characterized in (32), (33) 

and (34).  We summarize our results in the following Proposition: 

 

Proposition 2:  The optimal sales strategy of the monopoly involves IPD, with sales taking 

place at two dates.  The present discounted revenue of the durable-good monopoly under the 

optimal sales strategy { }* * *, ,I MX X T is given by                     

             ( )* * *, ,Π I MX X T  = *1 ( )⎡ ⎤−⎣ ⎦MG X Y  −              (35) 

       
( )

( )

* * ** * *

** * *

( ) 1 exp 2 ( ) 1

2 ( ) ( ) 1

− −

−

⎡ ⎤⎧ ⎫⎡ ⎤− − − −⎨ ⎬⎢ ⎥⎢ ⎥+⎣ ⎦⎩ ⎭⎣ ⎦
⎡ ⎤− − −⎢ ⎥+⎣ ⎦

rT rT T
M M M

T
M M M

rg X Y X e G X e
r

rG X X g X e
r

e δ

δ

δ

δ

  

        



 19

4. Conclusion 

In this paper, we have presented two models to study the optimal sales strategies for a 

durable-good monopoly in the presence of network externality effects. Our analysis formalized 

the general belief that the presence of positive network externalities increases the scope for 

profitable intertemporal price discrimination by a durable-good monopoly.  Specifically, in the 

first model where there are two household types, we have shown that while intertemporal price 

discrimination is suboptimal in the absence of network externality effects, it is part of an 

optimal sales strategy when network externality effects are present.   In the second model where 

a continuum of household types that consume a durable good and an infinite stream of non-

durable goods, our analysis demonstrated that intertemporal price discrimination is generally 

optimal when network externality effects are present.  Furthermore, a higher price may be 

charged for future sales under the optimal sales strategy.  This is because the presence of 

network externality effects raises the utility of the durable good over time, so that households 

who purchase it later are willing to pay a higher price for it.  At the same time, by delaying the 

purchase, households also benefit by devoting a bigger share of the budget to the consumption 

of the non-durable good. 
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Appendix A 

 
Proof of Lemma 1: 

[a]   We write 
( ) ( )

( )
*

( ) 1 ( ) 1
( )

2 1

T T

T

r r e T r e K
T

r e

δ δ

δ

δ δξ δ
µ µ

δ δ

− −

+

−

⎡ ⎤− + − + − + −⎣ ⎦− =
⎡ ⎤+ −⎣ ⎦

 where   

( )22 2( ) ( ) 4 2( ) 3 ( )T TT r r re r reδ δξ δ θ δ δ− −⎡ ⎤≡ + + + − + +⎢ ⎥⎣ ⎦
 and 2( ) 4 ( 2 )K r rδ θδ δ≡ + + + . 

Let ( ) ( )( ) ( ) 1 ( ) 1T TN T r r e T r e Kδ δδ δξ δ− −⎡ ⎤≡ − + − + − + −⎣ ⎦ .   We first note that (0)N  = 0 

and that ( )N ∞ = 2( ) 1 8 ( ) 4 ( 2 )r r r rδ δ θ δ θδ δ⎡ ⎤+ + + − + + +⎢ ⎥⎣ ⎦
.  Since θ  < 1, it follows 

that ( )2 21 8 ( ) 4 ( 2 )r r rδ θ δ θδ δ⎡ ⎤+ + − + + +⎣ ⎦  = 1 8 (1 2 )θ θ+ − +  > 0.  Therefore, ( )N ∞  > 

0.  These results in turn imply that (0)µ +  = *µ .  In fact, it is routine to show that ( )Tµ+  < 1, 

and that ( )+ ∞µ  = 1. Next, we obtain 

( )N T
T

∂
∂

≡
2

2 ( ) 4 ( 2 ) ( )
2 ( )

2
T r r r

r e Tδ δ δθ δ δ
δ θ λ

δθ
−

⎡ ⎤+ + + − +
⎢ ⎥−
⎢ ⎥⎣ ⎦

 

where 3( ) 2( )
( )

Tr reT
T

δδλ
−+ −

≡
Φ

. It is straightforward to show that  

2
0

( ) 2( ) 1 0
( ) 4 ( 2 )T

N T rr r
T r r

θδ δδ δ
δ θδ δ=

⎡ ⎤∂ + +⎢ ⎥≡ + − >
∂ ⎢ ⎥+ + +⎣ ⎦

 ;   ( )

T

N T
T →∞

∂
∂

 = 0  

It follows from 
0

( )

T

N T
T =

∂
∂

> 0 that (0)ξ  > 
2( ) 4 ( 2 ) ( )

2
r r rδ δθ δ δ

δθ
+ + + − +

. Next, 

since
[ ]

2

3

( ) 2 ( ) (1 )

( )

TT r r e
T T

δλ δ δ θ

ξ

−∂ + −
=

∂
 > 0, it follows that ( )N T

T
∂

∂
 > 0 for T > 0.   Together with  

the results that (0)N  = 0 and ( )N ∞ > 0, this proves that *( )Tµ µ+ −  > 0 for T > 0.   
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[b]  First, we can show that (0)−µ  = θ  (using L’Hopital’s rule) and that ( )− ∞µ  = *µ .   

Differentiating ( )− Tµ  with respect to T  yields  

 
( )( )[ ]

( )

1

2

2 3 2 ( ) ( ) ( ) ( ) ( )( ) ( )
2 ( )

−− ⎧ ⎫− − + − Ψ − + + Ψ⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

r T T T r Td T d T
dT dT T

δθ δ χ δ χ δ δ δµ χ
δ δ χ

 

where ( )( )2( ) ( ) 4 ( ) 2 ( )Ψ ≡ + + − + −T r T r Tδ θ δ χ δ χ , and  

{ }2
( ) 1 1

1

−
− − −

−
⎡ ⎤ ⎡ ⎤= − − + −⎣ ⎦ ⎣ ⎦⎡ ⎤−⎣ ⎦

rT
T T rT

rT

d T re r e e e
dT e

δ δχ δ  

Since 1> +rTe rT , and rT > 1 −− rTe , we have 1
1

−⎡ ⎤− − < −⎣ ⎦ +
T Te

T
δ δ

δ
 and 1

1
− <

+
Te

T
δ

δ
, so that  

( )
2

1( )

1 1

− −

−

⎡ ⎤− −⎣ ⎦<
⎡ ⎤− +⎣ ⎦

rT rT

rT

re e rTd T
dT e T

δχ

δ
 < 0  

It is routine to show that for T > 0, 
( )( )2 3 2 ( ) ( )

( ) ( )
( )

− − + −
− + + Ψ

Ψ
r T T

r T
T

δθ δ χ δ χ
δ δ δ  < 0. 

Hence, it follows that ( )−d T
dT

µ  > 0, so that ( )− Tµ  is strictly increasing.   This completes the 

proof of Lemma 1[b].                                   Q.E.D. 
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