Pattern of Agricultural Diversification in India Brajesh Jha Nitesh Kumar Biswajit Mohanty Institute of Economic Growth University of Delhi Enclave North Campus Delhi – 110 007, India Fax: 91-11-27667410 Gram: GROWTH – Delhi – 110 007 Phones: +91-11-27667101, 27667288, 27667365 WEBSITE: iegindia.org # Pattern of Agricultural Diversification in India # Brajesh Jha, Nitesh Kumar and Biswajit Mohanty #### **Abstract** Agricultural diversification as measured by increase in the percent of non-food crops has grown; whereas diversification as measured by the concentration indices has remained unchanged in the recent decade. There have been significant changes in the pattern of agricultural diversification at the regional level. Within a region, smaller sub-regions or pockets of specialization in certain crops and crop-groups have emerged. Farms do not remain diversified and the usual notion of crop diversification as a risk management practice is also belied in the present study. The study also found certain kind of structural changes in all sub-sectors of agriculture: crop, livestock, and fisheries. Concerns over extreme effects of such changes are however, not valid. #### I. Introduction In relation to agricultural development, "diversification" is probably one of the most frequently used terms in the recent decade. Traditionally, diversification was used more in the context of a subsistence kind of farming, wherein farmers grew many crops on their farm. The household level food security as also risk was an important consideration in diversification. In the recent decade, diversification is increasingly being used to describe increase in area under high value crops¹. In this perspective one would like to know what exactly diversification is? Diversification originated from the word "diverge", which means to move or extend in a different direction from a common point. In this sense diversification is the opposite of concentration, therefore, most of the Associate Professor in the Institute of Economic Growth, coauthors have worked in the institute as Research Analyst. ¹ In agriculture the concept of high value crops emerged with trade liberalization in the 1990s; during the initial years of trade liberalization gap between per unit cost of production and export prices was significantly higher in certain commodities. These commodities have been frequently referred as high value crops. techniques of measuring diversification actually measures concentration in the system. In economics, diversification refers to a situation in which decrease in the dominance of an activity, alternately increase in the share of many activities in a system is depicted. Extending the same notion to agriculture means increase in the share of many commodities in agricultural income may be termed as income diversification in agriculture; whereas increase in the share of withdrawal of a resource by many crops may be termed as resource diversification in agriculture. Diversification is therefore measured with concentration ratios. The concentration indices however do not explain the alternate definition of agricultural diversification that is, increase in the share of high value crops in agriculture. The notion of 'high value' has emerged after liberalization of trade in agriculture. This largely refers to those commodities for which exports were liberalized during the mid-1990s and differences between domestic and international prices were high at least during the initial period of trade liberalization². The high value range of crops is definitely wider than fruits and vegetables. The present study therefore measures diversification with the changes in the percent of non-food crops at the aggregate level. This will also contribute to the recent debate on food versus non-food crops in the country. The present paper while examining the pattern of diversification in Indian agriculture also assesses the potential of the so-called high value commodities in augmenting agricultural diversification in the country. The study takes into account alternate definitions of agricultural diversification; first definition is based on a concentration index, whereas second is based on the percent of gross cropped area under non-food crops. Also it takes note of different bases of measuring diversification more importantly, income-, output-, and resource-based agricultural diversification. While income or output diversification has been studied at the country level as well as state; resource diversification is examined at the level of country, state and district. After studying resource diversification at the country level as also involving states; one of the relatively progressive states, Haryana has been chosen purposively to study diversification at the levels of state involving districts of the state. An average farm is finally, chosen to study diversification at the micro- level. The reference period of the . ² The literature on the high value categorizes basmati rice besides fruits and vegetables as high value commodities (Haque 1995). The present study therefore considers all those commodities as high value crops, exports of which were liberalized in the mid-nineties and difference in the domestic cost of production and export price for which was high study largely deals with the post 1980s but varies across the analysis depending on the availability of data. The present paper proceeds as follows: Sections II and III study diversification in agricultural income and agricultural production at the aggregate level; subsequently, Sections IV, V and VI study resource diversification at the country, state and farm-level; finally, Section VII concludes the discussion of the study. #### **II.** Agriculture Income Diversification The Aggregate Agricultural income (agriculture gross domestic product at factor cost, GDP at factor cost) as per the CSO annual series consists of income from crop outputs (field and plantation crops), livestock, fisheries and forestry. Again at the individual sub-sector level, income or GDP at factor cost is available separately for fisheries and the forestry sector; GDP at factor cost is not available separately for the crop and livestock sector. Agricultural GDP at factor cost is available from the combined outputs of crop and livestock. The contribution of agriculture in total GDP as is known widely is decreasing, and the share of industry and the service sector in the economy is increasing. The decline in the share of agricultural GDP has been rapid during the post-liberalization period; in spite of the fact that growth of agricultural income during the 1990s has been marginally higher than the corresponding rate of growth in the 1980s. Growth in agriculture has stagnated towards the end of the 1990s and decelerated thereafter. In this context, the composition of income from agriculture and allied sector of economy has been studied. The agricultural commodity basket has changed significantly during the reference period. A temporal comparison of the various constituents of agricultural income at 1999-2000 prices is presented in Tables1, 2 and 3. These tables show that after the 1980s livestock has been growing at a rate of around 4 per cent. As a result of high growth, livestock now accounts for around 27 percent of agricultural (crop and plantation) output. The corresponding figure in the initial year of reference was less than 20 percent. GDP from fisheries has been increasing at an exponential rate of around 2 percent after the 1980s; its share in aggregate agriculture GDP has improved from 2.9 to 4.6 per cent during the reference period. The growth rate of fisheries has however decelerated during the 1990s. Forestry, another sub-sector of agriculture presents a different picture. The rate of growth of GDP forestry was abysmally low during the eighties; the corresponding figure however, improved in the subsequent decades. Table1: Value of Selected Aggregates (at 1999-00 constant price) related to Agriculture and Allied Sectors of the Economy | | | | | | - J | | | |---------|-------------|---------------------|--------------------|-----------------|------------------|--------------------------------------|--------------------| | Period | Crop output | Livestock
output | GDP
Agriculture | GDP
Forestry | GDP
Fisheries | GDP from
Aggregate
Agriculture | Overall
Economy | | 1975/76 | 192374.2 | 47543.5 | 194039.9 | 17852.2 | 6317.1 | 218459.8 | 537181 | | 1985/86 | 2542327.6 | 74488 | 256858.2 | 15641.7 | 8824.9 | 281324.7 | 809738.1 | | 1995/96 | 333573.6 | 111294.7 | 344643.1 | 16592 | 16008.1 | 387243 | 1381011 | | 2003/04 | 391537.0 | 146315.3 | 448619.9 | 19321.75 | 22506.25 | 490447.8 | 2389235 | Source: National Accounts Statistics. Table 2: Selected Ratios to depict Structural Changes in Agriculture and Allied Sector | Period | Crop output/
Agriculture | Livestock/
Agriculture | Agriculture/
Aggregate
Agriculture | Forestry/
Aggregate
Agriculture | Fisheries/
Aggregate
Agriculture | Aggregate
Agriculture/
Economy | |---------|-----------------------------|---------------------------|--|---------------------------------------|--|--------------------------------------| | 1975/76 | 80.10 | 19.82 | 88.82 | 8.17 | 2.89 | 40.67 | | 1985/86 | 77.35 | 22.68 | 91.30 | 5.56 | 3.14 | 34.74 | | 1995/96 | 74.98 | 33.36 | 88.99 | 4.28 | 4.13 | 28.04 | | 2003/04 | 72.80 | 27.20 | 91.47 | 3.93 | 4.59 | 20.53 | Note: Computed from figures as available from National Accounts Statistics. Table 3: Annual Compound Growth Rate of Agriculture and Allied Sectors | Period | Crop output | Livestock | Agriculture | Forestry | Fisheries | Aggregate
Agriculture | Overall
Economy | |---------|-------------|-----------|-------------|----------|-----------|--------------------------|--------------------| | 1975/76 | 1.8 |
3.7 | 1.92 | -0.62 | 2.04 | 1.72 | 3.39 | | 1985/86 | 2.21 | 4.8 | 3.04 | -0.26 | 5.51 | 2.93 | 5.04 | | 1995/96 | 2.98 | 3.72 | 5.42 | 0.95 | 5.22 | 3.28 | 5.87 | | 2003/04 | 2.04 | 3.5 | 3.16 | 1.3 | 3.27 | 3.09 | 7.51 | Note: Computed from figures as available from National Accounts Statistics. The CSO income output series presents relatively detailed statistics for crops and the livestock sector. These sectors also account for the bulk of employment in agriculture. The structural changes in the value of agricultural output at the specific disaggregate level during last three decades is presented in Table 4. A perusal of these figures suggests significant changes in the structure of agricultural output since the nineties. The share of cereals and pulses has declined; while the share of fruits, vegetables, condiments and spices has increased significantly. Fibres are essentially aggregates of cotton, jute and mesta, their share is fluctuating during the reference period. Some commodities for which the share in value of output remained almost stagnant are sugar, fibres, drugs and narcotics. Tea, coffee and tobacco together constitute drug and narcotics group. If we collate these trends in commodity aggregates with the agricultural -export -import basket (see Table 1 in appendix), it is evident that the share of exportable commodities like fruits, vegetables, spices and condiments in the value of agricultural output increased. While shares of importable commodities like pulses and oilseeds have decreased after the nineties, the share of commodities in which India has been a traditional exporter, for example, fibres, drugs and narcotics remained stagnant during the reference period. **Table 4: Structural Changes within Crop output** | Items | 1975/76 | 1985/86 | 1995/96 | 2003/04 | |------------------------|---------|---------|---------|---------| | Fine Cereals | 27.25 | 29.17 | 30.52 | 27.74 | | Coarse Cereals | 8.26 | 6.70 | 5.35 | 4.68 | | Pulses | 7.44 | 6.35 | 5.39 | 4.54 | | Oilseeds | 7.23 | 7.37 | 9.08 | 7.89 | | Sugar | 4.64 | 4.38 | 4.92 | 5.83 | | Fibres | 3.91 | 3.62 | 3.97 | 3.64 | | Drags & Narcotis | 2.39 | 2.32 | 2.43 | 2.47 | | Fruits &
Vegetables | 18.02 | 18.69 | 20.49 | 23.87 | | Condiment &
Spices | 2.97 | 3.27 | 3.76 | 4.68 | | Others | 17.89 | 18.12 | 14.08 | 14.65 | Note: The above values are in per cent, the percent values are computed from the figures of National Accounts Statistics. With trade liberalization, the relative prices of exportable commodities have increased and that of importable commodities have decreased. In the short run (3-4 years), a continuous increase in the relative price of a commodity increases its production more often by substituting it for importable commodities without any significant effect on the cropped area. As a result, the shares of exportable commodities have increased in the total value of agricultural output.³ As is evident from Table 5, there is a general decline in the share of cereals in the value of agricultural output in states, barring Haryana, Punjab and Karnataka. In these states, the cropping pattern appears to be oriented towards cereals especially, wheat and rice. The share of pulses in the value of agriculture has increased in the states of Karnataka and Madhya Pradesh. In Karnataka, the area under pigeonpea and moong increased during the reference year. While Madhya Pradesh (MP) is the major pulse producing state of the country, pigeonpea and chickpea are important pulses produced in most states. These pulses account for more than 60 per cent of area under pulses in the country. Increase in the production of soyabean in MP and rapeseed and mustard in Rajasthan is also reflected in the increased share of oilseeds in the value of agriculture in these states. In most of the other states, the share of oilseeds in agricultural output has declined. 5 ³ An increase in the share of horticultural products and spices in agricultural output during recent years are examples in this context. The share of sugar did not change significantly during the reference periods; though a significant reorientation in the structure of production of sugar is evident from states. In Maharashtra, the share of sugar in the recent decade is only one-half the share of the previous decade. Tamilnadu and UP improved their shares in the sugarcane production of the country. The share of fibres in total value of agricultural output has increased considerably in Andhra Pradesh and Gujarat, primarily due to increase in the area under cotton in these states. One of the important commodity groups, which have registered an increase of its share in the agricultural commodity basket in most of the states, is fruits and vegetables. The share of fruits and vegetables has increased considerably in Himachal Pradesh, Bihar, and West Bengal, Tamilnadu, Andhra Pradesh and most of the North Eastern states. Fruits and vegetables are increasingly being considered as engine of agricultural growth in the country. There are also doubts about this potential and this concern is examined here. **Table 5: Structural Changes in the Value of Agriculture for Different States** | | Cereals | | Pulses | | Oilseeds | | Sugars | | Fibers | | Indigo & dyes | | |--------------------------|--------------|-------------|-------------|---------|----------|---------|---------|---------|---------|---------|---------------|---------| | States | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | | Andhra Pradesh | 36.25 | 30.63 | 4.24 | 5.54 | 19.37 | 10.85 | 4.49 | 4.60 | 5.51 | 6.32 | 0.00 | 0.00 | | Arunachal Pradesh | 20.34 | 33.11 | 1.00 | 2.61 | 5.75 | 8.09 | 0.00 | 0.52 | 0.00 | 0.00 | 0.00 | 0.00 | | Assam | 35.22 | 30.05 | 1.15 | 0.99 | 4.92 | 3.48 | 2.02 | 1.38 | 1.73 | 0.94 | 0.00 | 0.00 | | Bihar | 45.07 | 34.10 | 5.92 | 3.96 | 1.48 | 1.11 | 3.53 | 2.80 | 1.17 | 1.21 | 0.00 | 0.00 | | Goa | 30.05 | 18.43 | 2.19 | 2.04 | 22.90 | 12.31 | 1.54 | 0.64 | 0.00 | 0.00 | 0.00 | 0.00 | | Gujarat | 19.13 | 13.22 | 6.04 | 2.77 | 27.13 | 24.67 | 6.68 | 7.46 | 10.32 | 18.52 | 0.00 | 0.00 | | Haryana | 49.63 | 52.09 | 4.46 | 1.09 | 9.94 | 7.83 | 5.09 | 5.36 | 11.07 | 9.32 | 0.00 | 0.01 | | Himachal Pradesh | 44.86 | 27.92 | 1.30 | 0.73 | 1.10 | 0.72 | 0.14 | 0.39 | 0.04 | 0.11 | 0.06 | 0.05 | | Jammu & Kashmir | 36.90 | 26.41 | 1.43 | 0.76 | 2.97 | 2.04 | 0.05 | 0.02 | 0.02 | 0.00 | 0.01 | 0.00 | | Karnataka | 21.13 | 24.37 | 3.31 | 4.19 | 15.91 | 10.63 | 9.83 | 6.87 | 3.77 | 1.63 | 0.00 | 0.00 | | Kerala | 10.74 | 4.28 | 0.16 | 0.04 | 28.49 | 22.69 | 0.58 | 0.37 | 0.22 | 0.03 | 0.00 | 0.00 | | Madhya Pradesh | 36.69 | 26.42 | 15.34 | 16.75 | 18.99 | 26.99 | 0.46 | 0.63 | 1.48 | 2.67 | 0.00 | 0.00 | | Maharashtra | 26.45 | 11.78 | 7.03 | 5.40 | 11.09 | 7.75 | 10.45 | 5.20 | 5.87 | 5.64 | 0.00 | 0.00 | | Manipur | 64.38 | 48.69 | 0.29 | 0.69 | 0.65 | 0.19 | 1.45 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | | Meghalaya | 34.82 | 24.09 | 1.20 | 0.79 | 1.35 | 0.85 | 0.11 | 0.01 | 2.50 | 1.34 | 0.00 | 0.00 | | Mizoram | 47.23 | 46.23 | 5.64 | 2.93 | 5.62 | 3.43 | 0.94 | 0.72 | 0.98 | 0.42 | 0.00 | 0.00 | | Nagaland | 42.40 | 32.26 | 5.61 | 10.03 | 6.63 | 14.45 | 3.65 | 3.43 | 0.05 | 0.36 | 0.00 | 0.00 | | Orissa | 35.11 | 31.49 | 8.07 | 3.44 | 9.22 | 3.03 | 1.72 | 0.68 | 0.75 | 1.02 | 0.00 | 0.00 | | Punjab | 64.95 | 67.80 | 0.75 | 0.27 | 2.21 | 0.66 | 3.13 | 2.39 | 12.31 | 7.50 | 0.00 | 0.00 | | Rajasthan | 30.26 | 29.06 | 9.63 | 8.41 | 24.44 | 30.27 | 0.69 | 0.16 | 4.74 | 2.90 | 0.05 | 0.24 | | Sikkim | 35.89 | 19.89 | 6.61 | 4.01 | 7.32 | 6.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | | Tamil Nadu | 32.52 | 20.56 | 2.50 | 1.75 | 22.70 | 15.84 | 9.80 | 14.00 | 2.19 | 0.79 | 0.00 | 0.00 | | Tripura | 53.06 | 35.49 | 1.34 | 0.59 | 3.00 | 0.89 | 1.20 | 0.63 | 0.81 | 0.31 | 0.00 | 0.00 | | Uttar Pradesh | 43.92 | 40.60 | 7.72 | 5.74 | 4.93 | 2.62 | 18.08 | 19.35 | 0.05 | 0.02 | 0.00 | 0.00 | | West Bengal | 43.59 | 30.72 | 1.21 | 0.88 | 4.22 | 3.06 | 0.36 | 0.42 | 4.06 | 2.94 | 0.00 | 0.00 | | Jharkhand | NA | 29.95 | NA | 5.02 | NA | 1.45 | NA | 0.26 | NA | 0.02 | NA | 0.00 | | Chattisgarh | NA | 53.26 | NA | 7.29 | NA | 2.71 | NA | 0.02 | NA | 0.02 | NA | 0.00 | | Uttaranchal | NA | 30.73 | NA | 1.54 | NA | 1.37 | NA | 18.08 | NA | 0.00 | NA | 0.00 | | All India | 36.53 | 30.31 | 5.73 | 4.60 | 12.56 | 10.05 | 6.50 | 6.02 | 3.90 | 3.92 | 0.00 | 0.01 | | Note: In the above table | abbraviation | n NA ctande | for Not Ave | ilabla | | | | | | | • | | Note: In the above table abbreviation NA stands for Not Available (Contd.) Table 5: Structural Changes in the Value of Agriculture for Different States | | Drugs & Narco | otics | Spices & Con | diments | Fruits & Veg | etables | Kitchen Gard | len | By Product | | Other Crops | | |-------------------|---------------|---------|--------------|---------|--------------|---------|--------------|---------|------------|---------|-------------|---------| | States | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | 1990-93 | 2003-06 | | Andhra Pradesh | 4.39 | 4.19 | 8.18 | 10.38 | 11.03 | 21.14 | 0.30 | 1.29 | 4.04 | 2.86 | 2.72 | 3.06 | | Arunachal Pradesh | 0.00 | 0.57 | 2.62 | 13.70 | 66.03 | 33.62 | 0.03 | 0.46 | 3.99 | 6.33 | 0.51 | 1.30 | | Assam | 17.30 | 19.67 | 8.87 | 11.15 | 27.16 | 28.58 | 0.25 | 1.60 | 1.72 | 2.04 | 0.79 | 1.19 | | Bihar | 0.35 | 1.67 | 0.35 | 0.17 | 31.96 | 47.01 | 0.83 | 1.93 | 7.72 | 5.95 | 1.63 | 1.37 | | Goa | 0.00 | 0.31 | 2.37 | 2.12 | 35.34 | 60.97 | 0.11 | 0.43 | 2.86 | 1.51 | 2.83 | 1.54 | | Gujarat | 2.54 | 1.21 | 5.33 | 3.47 | 12.50 | 15.43 | 0.84 | 1.82 | 5.22 | 4.57 | 4.99 | 8.07 | | Haryana | 0.00 | 0.03 | 0.52 | 0.86 | 4.21 | 9.47 | 0.37 | 0.87 | 9.73 | 6.98 | 5.02 | 6.67 | | Himachal Pradesh | 0.13 | 0.16 | 0.68 | 3.45 | 42.44 | 59.68 | 0.14 | 0.87 | 7.33 | 4.80 | 1.88 | 1.70 | | Jammu & Kashmir | 0.75 | 0.20 | 0.17 |
0.41 | 48.88 | 55.04 | 0.04 | 0.91 | 5.01 | 3.89 | 3.74 | 10.94 | | Karnataka | 5.45 | 6.63 | 7.50 | 7.67 | 26.80 | 29.86 | 0.67 | 2.22 | 3.91 | 4.68 | 2.75 | 2.73 | | Kerala | 3.07 | 6.90 | 11.55 | 11.45 | 32.69 | 27.70 | 0.11 | 0.57 | 2.10 | 0.84 | 10.44 | 25.51 | | Madhya Pradesh | 0.08 | 0.36 | 1.96 | 3.14 | 8.32 | 10.08 | 1.83 | 4.59 | 11.14 | 6.78 | 3.81 | 4.66 | | Maharashtra | 0.25 | 0.08 | 1.80 | 0.72 | 25.10 | 28.37 | 2.22 | 1.82 | 7.20 | 5.20 | 2.76 | 29.27 | | Manipur | 0.00 | 0.00 | 3.54 | 4.77 | 23.44 | 40.81 | 0.18 | 0.87 | 5.94 | 3.85 | 0.28 | 0.29 | | Meghalaya | 0.52 | 1.04 | 17.48 | 10.74 | 33.04 | 54.08 | 0.04 | 1.14 | 5.69 | 2.97 | 4.05 | 3.71 | | Mizoram | 7.04 | 2.13 | 8.29 | 14.16 | 15.55 | 22.71 | 0.05 | 0.63 | 6.18 | 4.40 | 4.51 | 2.66 | | Nagaland | 0.00 | 0.35 | 7.21 | 10.83 | 25.12 | 20.19 | 0.74 | 1.59 | 7.91 | 6.40 | 2.28 | 1.17 | | Orissa | 0.38 | 0.13 | 4.29 | 3.92 | 30.47 | 47.58 | 0.28 | 1.40 | 9.41 | 7.76 | 0.55 | 0.47 | | Punjab | 0.01 | 0.01 | 0.26 | 0.23 | 6.16 | 7.04 | 0.49 | 0.95 | 7.02 | 4.04 | 2.74 | 9.75 | | Rajasthan | 0.90 | 1.35 | 7.81 | 4.46 | 1.86 | 2.17 | 1.20 | 1.57 | 13.88 | 11.79 | 5.41 | 8.67 | | Sikkim | 0.00 | 0.00 | 23.42 | 29.97 | 17.16 | 34.73 | 0.24 | 0.48 | 7.21 | 4.07 | 2.32 | 0.96 | | Tamil Nadu | 2.51 | 2.85 | 2.79 | 3.24 | 20.51 | 32.97 | 0.36 | 1.54 | 3.33 | 5.40 | 1.33 | 2.10 | | Tripura | 1.24 | 1.97 | 4.01 | 5.38 | 30.04 | 48.60 | 0.14 | 0.89 | 5.21 | 2.83 | 0.31 | 3.02 | | Uttar Pradesh | 0.40 | 2.22 | 0.88 | 0.72 | 11.23 | 16.94 | 0.39 | 1.48 | 10.61 | 6.77 | 1.88 | 4.54 | | West Bengal | 3.11 | 7.49 | 2.11 | 2.06 | 31.03 | 45.99 | 0.35 | 1.36 | 9.91 | 5.80 | 0.20 | 0.18 | | Jharkhand | NA | 0.00 | NA | 0.07 | NA | 51.59 | NA | 3.23 | NA | 4.50 | NA | 6.06 | | Chattisgarh | NA | 0.01 | NA | 0.49 | NA | 25.35 | NA | 4.51 | NA | 6.03 | NA | 3.31 | | Uttaranchal | NA | 0.14 | NA | 2.07 | NA | 34.17 | NA | 0.86 | NA | 6.90 | NA | 4.72 | | All India | 1.97 | 2.68 | 3.64 | 3.37 | 18.26 | 24.93 | 0.75 | 1.74 | 7.66 | 5.60 | 2.84 | 7.93 | #### Potential of Horticulture- based Agricultural Diversification There have been studies (Joshi et al. 2007) eulogizing the role of fruits, vegetables and similar exportable crops often termed as 'high value' crops in the ongoing diversification-led growth of Indian agriculture. The potential of fruits and vegetables as the new source of growth can be examined in terms of supply and demand side factors. The demand-side pull for fruits and vegetables was further strengthened with the opening up of the economy and increase in per capita income. The prices of fruits and vegetables have increased consistently. The wholesale prices of fruits and vegetables during 1994-2008 have grown at an annual compound growth rate of 3.8 and 6.7 percent. This growth in price was even sharper during certain sub-periods⁴. Considering the high income elasticity for fruits and vegetables demand for these commodities would remain firm and this will be reflected in the relatively higher prices for fruits and vegetables. The higher price has led to an increase in the area under fruits and vegetables, subsequently, production and value of output from horticulture has also increased. This is evident from Tables 4 and 5. The future potential for increasing the growth of fruits and vegetables in the states would depend on their existing levels in the respective states and therefore a distribution of states on the basis of share of fruits and vegetables is important. The distribution of states on the basis of the share of horticulture (fruits and vegetables) to agricultural output is presented in Table 6. Table 6: Distribution of States on the Basis of Share of Fruits and Vegetables in Agricultural Output | Share of fruits & | States with percent share in parentheses | |-------------------------|--| | veg'les in agri. output | | | High (>21%) | Goa(39), Tripura(37), HP(36), Orissa(35), Meghalaya(35), Jharkhand(34), Delhi(33), | | | J&K(31), West Bengal(29), Sikkim(28), Bihar(27), Manipur(26), Arunachal | | | Pradesh(22), Uttarakhand(22), Karnataka(22), Maharashtra(22). | | Medium (14-21%) | Assam (20), Tamil Nadu(20), Kerela(18), Dadra & Nagar Haveli(16), Puducherry(16), | | | Chattisgarh(15). | | Low (<14%) | Mizoram(13), A & N Islands (13), UP(12), Andhra Pradesh(12), Gujarat(11), | | | Nagaland(11), MP(7), Haryana(6), Punjab(5), Chandigarh(5), Daman & Diu(3), | | | Lakshadweep(2), Rajasthan(1). | As is evident from Table 6, states have different levels of shares in their fruits and vegetables produce in total agricultural output. The share of fruits and vegetables is high in most of the eastern and north-eastern states. Among north-eastern states, Tripura has a ⁴ The prices of vegetables were fluctuating during the reference period (1994-07), increase in these prices being very significant after 2004. Prices of fruits as compared to vegetables have been increasing consistently; increase in prices of fruits has been particularly sharp after 2001. - share of 37 percent followed by Meghalaya with 35 percent. Most of the northern and western states have a very low share in the produce of fruits and vegetables with Rajasthan registering a share as low as 1 percent. In the northern region, Himachal Pradesh is an exception; fruits and vegetables account for as high as 36 percent of agricultural output. In the southern states, the share of fruits and vegetables are around the national average of 17 percent. The corresponding figures for Kerala and Tamilnadu are 18 and 20 percent, respectively. These figures clearly show that in many states of India, the share of fruits and vegetables in total agricultural output has been less than the national average. The area under fruits and vegetables may increase in these states. These states however, present a different kind of resource endowment which is often not suitable for horticulture. Again institutional arrangements that encourage production of horticulture, wherein gain to producers is high are negligible for many commodities in these states. In certain states like Himachal Pradesh (HP), the share of fruits and vegetables in agricultural output is very high which suggests exhaustion of the potential area under fruits and vegetables in HP under the existing circumstances. Land utilization statistics are also used to assess the potential of horticulture-led diversification. The percent of gross cropped area under fruits and vegetables is presented in Table 14 which shows that in most of the states of India barring Haryana, and Punjab the percent of GCA under fruits and vegetables has increased. Though the percent increase has differed across states; at the aggregate level increase in the percent of gross cropped area has been around one only. Such small increase has however raised several questions related to its implications for food security and also the long-term fruits and vegetable-led growth in agriculture. Increase the production potential depends on the sources of growth in the production of fruits and vegetables. The area, production and productivity-related figures for fruits suggest that in fruits most of the increase in production during 1987-2007 is accounted for by the increase in area under fruits since productivity increase during the period has been negative. At the commodity level, positive growth in the productivity of fruits is registered in fruits such as apple, banana, grapes, guava, pineapple, coconut, and litchi. Traditional fruits like mango, citrus have registered a negative growth during the reference period. The land utilization statistics as available from National Horticulture Board shows that production of vegetables at the all-India level during the period, 1987-2007 has increased by around 4.6 per cent; increase in productivity has been very significant at 1.7 percent. Growth in the productivity of vegetables has been positive for cabbage, cauliflower, brinjal, lady finger, tomato; while traditional vegetables like potato, and onion registered a negative growth during the above period. Vegetables also hold a greater promise for agricultural development on account of its labour-intensive nature. The requirement of labour in vegetable cultivation is less skewed; in such cases family labour, specifically female labour is utilized efficiently. The above discussion highlights an increase in the share of fruits and vegetables in the gross cropped area and the values of agriculture in states. Horticulture especially fruits require a new set of investments in infrastructure. Favourable institutions that increase the share of the producer in the consumer's rupee are extremely important for both fruits and vegetables. Vegetables as compared to fruits show greater promise as productivity increase has been very significant. The labour requirement in vegetables also suits small farms dominated by family labour. #### **Potential of Livestock-led Diversification** Livestock output in India, is growing faster than any other agricultural sub-sector. Livestock accounted for less than one-fifth of agricultural output in the early seventies; the corresponding figure has increased to 40 percent in the recent years (after 2000s). This is often considered as a new source of agricultural growth in the country. CSO also presents information related to livestock output separately for milk, meat, egg and wool. The share of each sub group of livestock product is presented in Table 7. This table indicates that the share of eggs, milk, and meat group in total livestock output is increasing while that of wool, hair, dung, and silkworm has decreased during the reference period. **Table 7: Structural Changes within Livestock output** | Items | 1970s | 1980s | 1990s | 2000s | |-------------|-------|-------|-------|-------| | Milk Group | 59.05 | 64.23 | 67.14 | 69.13 | | Meat Group | 18.14 | 17.05 | 17.99 | 17.83 | |
Eggs | 2.21 | 3.01 | 3.44 | 3.68 | | Wool & heir | 0.62 | 0.27 | 0.22 | 0.20 | | Dung | 18.93 | 14.23 | 9.98 | 8.14 | | Silkworm | 1.04 | 1.21 | 1.23 | 1.02 | *Note:* All values are in per cent.; figures are the average of particular decade like 1970s is the average of 1970-71 to 1979-80, while 2000s is average of years 2000-01 to 2007-08. (Source: National Accounts Statistics) There has been supply as well as demand side impetus for growth of dairy in the livestock sector in India. Livestock products have become increasingly significant in the food basket of consumers. Income elasticity of demand for livestock products is more than one suggesting an increase in demand for livestock products (milk and milk products) as per capita income increases⁵. India has also been exporting a considerable amount of milk products to neighbouring and Middle-East Asian countries. Demand for milk and milk products would therefore remain robust. Constraints would probably be on account of supply of milk products. Livestock-based rural livelihoods have emerged as important in India with the increased fragmentation of land and increased number of small and marginal farmers. The expectation from livestock often appears high on the following accounts. In India, mixed farming has been a way of life and in such a system, agriculture and livestock have a complementary relationship. This suggests that livestock alone cannot continue to grow for long. This complementary relationship that thrives with the use of inputs from one sub-system to another is weakening with the onslaught of commercialization. There are evidences from northwest India to show that a complementary relationship is giving way to competitive relations. The competitive relationship is on account of labour on a large farm. Field visits to Kurukshetra district of Haryana show that large farmers frequently depend on attached labour as family labour is not sufficient for animal husbandry-related operations on their farm. Milk production with hired labour is not very profitable in India⁶. Constraints on account of family labour therefore limit the intensity of livestock on the large farms of the region. The competitive relationship is apparent on account of land on a small farm. Though secondary information on the area under fodder is not available, in a state like Haryana where dairy is highly developed, around 10 percent of the cropped area appears to be allocated to fodder crops at the state level. The corresponding figure varies across districts and also across size of farms. The author's own estimate based on farms in the Kurukshetra district shows that around 15 percent of cropped area is under fodder. The ⁵ Income elasticity of demand for milk is 1.15 and 0.99, respectively in rural and urban part of the country, the corresponding estimate for most of the agricultural commodities is substantially lower than one (Radhakrishna and Ravi 1980). ⁶Though India is an efficient producer of milk; productivity of cattle in a large part of the country has been so low that milk production is profitable in these regions only with the efficient utilization of family labour. There are several studies in the library of the National Dairy Research Institute, Karnal that report a negative return from milk production in the above regions once imputed value of family labour is incorporated. corresponding figure is even higher on small farms. The possibility of competition for scarce land has increased with the deterioration of common resources in the country. The pressure on availability of fodder is also on account of deterioration in the quality of crop residue with the increased application of pesticides for crops. Some of the livestock–related development has however, reduced competition between food and fodder. The livestock population has been decreasing in the recent period. There have been structural changes in the bovine population as well. The structural changes are in the form of increased population of buffalo and replacement of *desi* cow with cross-bred cow (Jha 2004). The future growth of a sector also depends on how well spread or broad the base of a sector is? Distribution of states on the basis of share of livestock to agriculture output is presented in Table 8 which shows that the share of livestock has varied across states. The ratio of livestock to agricultural output is more than 30 percent in Rajasthan, Bihar, Chattishgarh, Punjab, and Haryana. The ratio of livestock to agricultural output was low in Karnataka, Kerala, Maharashtra, West Bengal and some northeastern states. Most of the northeastern states, West Bengal, Kerala are humid and not suitable for rearing cattle. The scope of furthering the growth of livestock/dairy based development is therefore limited in the newer states while the older states where climate is suitable for dairy husbandry are showing constraints in further increasing intensity. Table 8: Distribution of States on the Basis of Livestock to Agricultural Output | share of Livestock to | Name of States with percent share in parentheses | |-----------------------|--| | Agricultural Output | | | High (>28%) | Chandigarh(84), Delhi(56), J&K(35), Rajasthan(34), Bihar(33), Chattisgarh(33), | | | Punjab(32), Haryana(31), Nagaland(30), A&N Islands(29), Andhra Pradesh(29). | | Medium (22-28%) | Meghalaya(28), Tamil Nadu(28), Puducherry(28), HP(28), Uttarakhand(27), | | | Mizoram(26), UP(26), Arunachal Pradesh(25), Manipur(25), Dadra & Nagar | | | Haveli(23), Jharkhand(23), MP(23), Gujarat(22). | | Low (<22%) | Karnataka(19), Maharashtra(19), West Bengal(19), Kerela(19), Assam(18), | | | Sikkim(18), Lakshadweep(15), Tripura(13), Orissa(13), Goa(10), Daman & | | | Diu(7). | The above discussion on agriculture and livestock output suggests that the share of horticulture has increased in the crop sector; whereas in the livestock population the share of crossbred-cattle and buffalo has increased in the country. These trends are significantly clear at the aggregate level; India is however too diverse a country to generalize. In fact, trends often in the opposite direction are also evident from the different states of India. The trend in income growth at the country level has therefore been extended to the levels of states. Trend growth also includes the allied sector of the economy. The income here is gross domestic product (GDP) in agriculture (including livestock), fisheries and forestry and also aggregate income as reflected with the Gross State Domestic Product (GSDP) in the states. The prospects of growth of these sectors in the states would depend on the existing levels of these sectors in that particular state. The per cent shares of these sectors in state GDP is therefore presented in Table 9. Table 9: Share of Agriculture, Fisheries and Forestry GDP to State GDP | | Agric | culture in S | GDP | Fish | eries in SC | SDP | For | estry in SG | SDP | |-------------|---------|--------------|---------|---------|-------------|---------|---------|-------------|---------| | States | 1980-83 | 1990-93 | 2000-03 | 1980-83 | 1990-93 | 2000-03 | 1980-83 | 1990-93 | 2000-03 | | A&N Islands | 41.71 | 30.60 | 24.47 | 1.85 | 9.91 | 8.58 | 12.27 | 12.19 | 1.60 | | Andhra | | | | | | | | | | | Pradesh | 39.94 | 31.76 | 23.89 | 1.14 | 1.31 | 3.38 | 1.01 | 0.90 | 1.10 | | Arunacha | | | | | | | | | | | Pradesh | 33.38 | 30.97 | 28.56 | 0.08 | 1.03 | 0.88 | 13.06 | 10.36 | 4.16 | | Assam | 36.02 | 35.08 | 30.75 | 2.00 | 1.70 | 1.82 | 2.03 | 2.30 | 1.50 | | Bihar | 38.90 | 36.54 | 34.84 | 0.87 | 1.40 | 2.00 | 2.06 | 1.44 | 1.90 | | Delhi | 3.96 | 3.90 | 1.15 | 0.07 | 0.08 | 0.02 | 0.00 | 0.00 | 0.00 | | Goa | 12.97 | 12.14 | 6.90 | 2.72 | 1.55 | 2.23 | 1.94 | 0.95 | 0.16 | | Gujarat | 33.83 | 24.86 | 13.68 | 0.79 | 1.46 | 1.14 | 1.89 | 1.19 | 0.28 | | Haryana | 50.24 | 44.20 | 28.13 | 0.07 | 0.15 | 0.13 | 0.46 | 0.25 | 0.21 | | Himachal | | | | | | | | | | | Pradesh | 33.23 | 27.11 | 21.11 | 0.20 | 0.38 | 0.21 | 12.80 | 7.64 | 4.28 | | J&K | 34.24 | 29.37 | NA | 0.44 | 0.54 | NA | 7.56 | 5.30 | NA | | Karnataka | 39.07 | 32.66 | 22.04 | 0.54 | 0.37 | 0.54 | 2.47 | 2.57 | 1.62 | | Kerala | 30.54 | 29.05 | 28.15 | 1.80 | 3.05 | 4.06 | 2.47 | 0.69 | 3.74 | | Maharashtra | 22.76 | 18.78 | 13.17 | 0.52 | 0.53 | 0.37 | 2.38 | 1.79 | 1.15 | | Manipur | 42.46 | 32.77 | 25.16 | 1.28 | 2.54 | 2.89 | 2.30 | 1.51 | 1.88 | | Meghalaya | 32.32 | 22.99 | 21.88 | 0.34 | 0.81 | 0.69 | 1.90 | 1.25 | 0.96 | | Mizoram | 19.89 | 25.78 | 23.07 | 3.98 | 2.88 | 1.18 | 4.15 | 3.33 | 0.92 | | MP | 39.30 | 34.15 | 25.45 | 0.10 | 0.26 | 0.24 | 7.45 | 3.04 | 2.43 | | Nagaland | 24.95 | 23.21 | NA | 0.07 | 0.48 | NA | 6.71 | 4.13 | NA | | Orissa | 44.30 | 30.44 | 26.73 | 1.45 | 1.93 | 2.29 | 4.74 | 4.33 | 2.73 | | Pondicherry | 11.56 | 8.90 | 3.55 | 5.76 | 9.75 | 1.91 | NA | NA | 0.33 | | Punjab | 47.37 | 45.04 | 39.03 | 0.04 | 0.13 | 0.31 | 0.98 | 0.27 | 0.35 | | Rajasthan | 47.97 | 41.77 | 23.91 | 0.24 | 0.08 | 0.07 | 0.71 | 1.65 | 1.40 | | Sikkim | 48.38 | 39.03 | 21.84 | 0.07 | 0.13 | 0.08 | 0.73 | 0.81 | 1.69 | | Tamil Nadu | 22.48 | 18.96 | 13.14 | 0.71 | 0.61 | 1.33 | 0.25 | 0.64 | 0.48 | | Tripura | 41.35 | 35.83 | 23.47 | 2.12 | 3.82 | 3.11 | 8.47 | 3.17 | 1.37 | | UP | 46.07 | 39.69 | 32.92 | 0.19 | 0.35 | 0.41 | 1.80 | 0.34 | 1.00 | | West Bengal | 25.55 | 28.17 | 23.78 | 2.72 | 3.57 | 3.79 | 1.28 | 1.07 | 0.69 | The share of agriculture in aggregate GDP has been decreasing continuously over the decades in almost all states. Mizoram and West Bengal are exceptions. The share of agriculture has not been decreasing continuously in these states; there was a sharp increase in the share of agriculture during the eighties, the same declined in the nineties. The states witnessing of a maximum decline in the share of AGDP include Sikkim, Rajasthan, Haryana and Gujarat. The states registering a minimum decline in the
share of agriculture during the entire period of reference are West Bengal, Kerala, Bihar and Arunachal Pradesh. The reasons for significant variation in the share of agriculture over the reference period appear to be different for different states. In states like West Bengal, the particular trend has implications for performance of agriculture; while, the above trend in states like Gujarat and Rajasthan indicates a relatively better performance of sectors other than the agriculture. Although a declining share of agricultural GDP in overall GDP is a sign of development, a similar structural transformation has not happened in employment and in this context any land-saving activity like dairy and fisheries has become important for rural livelihood. The GDP in fisheries and forestry has been studied to assess the performance of these sectors. Figures reveal that the share of GDP from forestry in the total SGDP has also declined in most of the states over the decades. Changes in forestry-related regulations have important implications in this context. The decline has been particularly sharp in states like Arunachal Pradesh wherein the share declined from 13 to 4 percent and in Himachal Pradesh wherein the share declined from 14 to 4 percent. India is one of major fish producing countries of the world occupying a third position in fisheries and a second in aquaculture. A comparison of fish GDP to GSDP over states shows that the share of fishery in GSDP has increased in most of the states; the increase was however more pronounced in the eighties. Particular trends in agriculture and different sub-sectors of agriculture would be clear, once we collate the percent changes in these sectors with the trend growth in the sector. A comparative account of growth in agriculture, forestry, fisheries and state GDP during the eighties (between 1980-81 and 1989-90), nineties (between 1990-91 and 1999-00) and 2000s (between 2000-01 and 22005-06) is presented in Table 10. As is apparent from the table, growth in agriculture has decelerated in many states. This deceleration was particularly sharp in Maharashtra, Madhya Pradesh (MP), Tamilnadu, Rajasthan, Haryana and Bihar. In some of these states, growth during the eighties was higher and growth at the same rate could not be maintained thereafter. There are also exceptions to the above trend; the growth in agriculture accelerated in Himachal Pradesh (HP), Jammu and Kashmir (J&K), Meghalaya and Nagaland. Interestingly, these are states with a high proportion of fruits and vegetable cultivation; these crops were favoured during the years of trade liberalization; therefore the share of agriculture has also increased in these states. Growth in forestry was considerably high in Uttar Pradesh (UP), Punjab, Kerala, Delhi, Haryana and some northeastern states like Sikkim, Tripura and Manipur. Many of these states have experienced poor growth of forestry in the eighties; in few of the above states the share of forestry in state GDP has been extremely low suggesting lower levels of forestry in these states. In fisheries, Andhra Pradesh, Goa, Karnataka, Jammu and Kashmir (J&K), Rajasthan and Tamil Nadu improved their rate of growth during the reference period. Tamil Nadu, AP and Goa have long coastlines highlighting the importance of marine fisheries in the state GDP; whereas, Rajasthan, J&K have more of inland fisheries. The pattern of fish production in India indicates a surge in inland fish production in the recent past; this can be attributed to increased performance of inland aquaculture in the country⁷ (Jha 2006). The scope of expanding marine fisheries beyond the shallow sea zone remains important for the country. The above discussion highlights the decreasing role of agriculture in the aggregate economy. Though the above structural changes in the economy are common for developing economies; some Indian states like WB, Kerala, and Bihar lag behind other states in the above change. The share of horticulture in crop, cross-bred in bovine, bovine in livestock, inland in total fisheries and fisheries in allied sectors has increased thereby suggesting significant changes in the structure of agriculture and allied economies. The role of trade in the above structural changes in agriculture and allied activities is also evident. # III. Agriculture Output Diversification The previous section discusses agricultural diversification with the help of the CSO Income Series. The findings illustrate the kind of diversification in the country's agricultural economy with income data. Income data has however, several limitations. The present section therefore discusses diversification with agricultural production data. Earlier the extent of agricultural diversification across sub-sectors and again in the crop sector across crops was examined. The present section discusses the extent of diversification of the production basket for an individual crop. Diversification here is across states. Diversification is an analogy for concentration; if production of a commodity is concentrated in a few states, the present study presumes that the production of that commodity is less diversified across states. The percent share of a commodity during the reference period is based on the share of states in the aggregate production of a _ ⁷ The CSO National Accounts Statistics income series at the 1993-94 prices shows that the inland fisheries has registered a growth of around 6 percent while marine fisheries grew by around 2 percent during 1994-2002. commodity. Since there have been fluctuations in production of a commodity, the states share is obtained from production data of two consecutive years; for instance, the year 1982-84 is an average of production in the year 1982-83 and 1983-84. The share of states in the production of selected commodities is presented in Tables11 and 12. Table 11 shows an average share of states in the production of commodities like paddy, wheat, cotton, sugarcane. These commodities are cultivated in a large number of states, therefore changes in the share of states during the reference period is presented in Table 11. There are some other agricultural commodities that are cultivated in selected states only; and production of such commodities is further concentrated in certain states. Examples of such commodities are jowar, bajra, maize, barley, gram, tur, groundnut, rape-mustard, sunflower and soyabean. For these commodities, the five important states which have been growing the respective commodity are presented in Table 12. As is evident from Table 11, the production of paddy is relatively better distributed across states. In the recent year 2002-04, West Bengal accounted for the highest proportion (18.2 percent) of paddy production in the country, the corresponding share was only 11.9 percent in the earlier period of the reference in which span Andhra Pradesh was the highest paddy producer of the country. As regards the implications of the production of paddy on natural resources especially water; the above changes in the share of states in the production basket of paddy appear desirable since paddy is a water intensive crop and West Bengal receives more rainfall than Andhra Pradesh (AP). In this perspective, decline in the share of Orissa in the aggregate production of paddy is important. There could be state-specific constraints for decline in the share of states in paddy⁸. Examples of other paddy-producing states, which account for more than the 5 percent of the area under paddy, are Uttar Pradesh, Punjab, Haryana, and Tamilnadu. In the production of paddy, the percent share of Tamilnadu (TN) has decreased over the years. It may be noted that a large part of TN falls under the semi-arid region of the country and decline of area under paddy is encouraging; in this context increase in the share of states located in the northwest part of the country is baffling. This highlights the effect of policy-distortions on the production of paddy in the semi-arid region of the country. _ ⁸ For example in Orissa, it is reported that a large tract of paddy-cultivating area has became uncultivable (saline) due to rearing of shrimp in the coastal belt of AP. (Source: Das 2009) As compared to paddy, production of wheat is relatively concentrated in Uttar Pradesh, Punjab and Haryana. These states together account for around 70 percent of wheat production in the country. The pattern of wheat production has not changed significantly during the reference period (Table 11). Jowar (sorghum), bajra, maize and barley are major coarse cereals produced in the country. At the aggregate level, the production of jowar and barley has decreased during the reference period whereas the production of bajra and maize has increased during the same period (Table 12). Increase in the production of maize has been very significant. The production structure of maize has also changed significantly for example; Andhra Pradesh, Rajasthan and Karnataka have emerged as important maize producing states in the recent period. The share of these states in the earlier year of reference (1982-84) was very low. Maize is increasingly being used as poultry feed in the country and a high growth of the poultry sector is creating a demand for these commodities. This has given an impetus to the production of other coarse cereals as well since many of the coarse grains are used alongwith maize in the preparation of poultry feeds. On the supply side, popularization of rabi maize has also contributed to an increase in the production of maize in the country. The production structure of coarse cereals other than maize has not changed significantly. In jowar, Maharashtra accounts for more than 50 percent of the aggregate production of the country. In barley, another relatively neglected coarse cereal, Uttar Pradesh and Rajasthan together account for more than 70 percent of production at the all-India level. Production of bajra is relatively
distributed among the leading states; five major bajra-producing states such as Rajasthan, Gujarat, Maharashtra, Uttar Pradesh and Haryana together account for around 90 percent of the production of bajra at the all-India level. Though the production of pulses has increased at the all-India level; production of gram and pigeonpea has stagnated during the reference period suggesting an increase in the production of pulses other than the above (Table 11). Gram and pigeonpea together account for around 60 percent of the total production of pulses in the country. A total gram production of 6.33 lakh tonnes is distributed among the states of Madhya Pradesh, Uttar Pradesh, Rajasthan, Maharashtra, and Andhra Pradesh. A temporal comparison of . ⁹ Eggs exclusively obtained from poultry have increased their share in livestock output from 2.2 percent in the 1970s to 3.8 percent in 2000s. This growth in percent is in addition to the growth of poultry meat, one of the important constituents of meat (a commodity group) in livestock output as provided by the CSO Income series. the state-wise production structure of gram during the reference period shows that Andhra Pradesh has emerged as an important pulse-growing state replacing Haryana. The important pigeonpea producing states are Maharashtra, Uttar Pradesh, Gujarat, Karnataka and MP. Table 11 shows that five major gram and pigeonpea producing states together account for 87.4 and 77.7 percent of total gram and pigeonpea production in the country. The major oilseeds-growing states of the country are MP, Gujarat, Maharashtra, Rajasthan and AP. Four major oilseeds namely, groundnut, rape-mustard, soyabean and sunflower, together account for more than 90 percent of aggregate oilseeds production of the country. Interestingly, Gujarat, Rajasthan and Karnataka account for around 40 per cent of aggregate production of groundnut, rape-mustard and sunflower, respectively whereas Madhya Pradesh accounts for as high as 58 percent of the domestic production of soyabean. Among oilseeds, the production of rape-mustard has increased significantly during the reference period; production of rape-mustard has further concentrated during the reference period. As is evident from Table 5, major edible oil producing states have accounted for around 80 percent of the aggregate production in the year 1982-84; while in the year 2002-04, these states together account for around 87 percent of the aggregate production in the country. This clearly suggests an increase in the concentration of production of oilseeds in the country. Soyabean and sunflower are relatively new crops; the production structure of these commodities is therefore not available for the earlier reference period (1982-84). In India, cotton and sugarcane are important commercial crops. The state of Maharashtra, Gujarat, Andhra Pradesh, Haryana, Punjab, Karnataka, Madhya Pradesh and Rajasthan are important cotton producers. Amongst these states, Maharashtra and Gujarat together account for more than 50 per cent of the domestic production of cotton in the year 2002-04; while during the earlier period of reference (1982-84) the share of these states was 40 per cent. This shows an increase in the concentration of production of cotton in the country. In cotton production, the share of Andhra Pradesh, Madhya Pradesh and Haryana has increased; while the share of Punjab, Karnataka, and Rajasthan has declined during the reference period. In sugarcane, Uttar Pradesh accounts for around 44 percent of the aggregate production in the country. Other important sugarcane producing states are Maharashtra, Tamilnadu, Karnataka, Gujarat, and Andhra Pradesh. The percent share of these states in the aggregate production of sugarcane has changed marginally during the reference period. Sugarcane is water intensive crop. Eastern states like Bihar now accounts for a very small proportion of sugarcane production in the country though historically this has been important producers of sugarcane in the country and world. The regional skewness in the production of sugarcane without any regard for natural resource endowment is rooted in the differential incentives for sugar manufacture in different states of the country. The sugar mills are concentrated in certain states on account of favorable industrial environment. The existence of these mills has affected the allocation of land and production of sugarcane in its surroundings irrespective of the natural resource status of the region. A high concentration of sugar mills in West UP, Maharashtra, Tamilnadu and Gujarat are a few examples of such distorted policies. The above discussion shows that for most of the crops, the percent share of the leading producing states has increased during the reference period (1983, 2003, 2006-07). This suggests an increasing trend towards specialization of agricultural production in the country. This specialization is not necessarily in accordance with the natural resource endowment of the region; favourable institutions and incentive structures have induced the above specialization. Table 10. Annual Compound Growth in Agriculture, Forestry and Fisheries in the Selected States during 1980-2005 STATE 1980-2005 1980-1990 19902000 2000-2005 Agri-Agri-Agri-Agri-**GSDP** culture **Forestry** Fishing **GSDP** culture Forestry **Fishing GSDP** culture **Forestry Fishing** culture Forestry **Fishing GSDP** A&N Islands 12.69 5.73 26.11 16.72 10.78 11.58 32.66 13.66 14.84 6.78 19.75 21.57 28.83 -59.18 4.25 8.88 12.9 21.01 13.35 25.46 -3.44 22.31 7.62 Andhra Pradesh 17.6 15.55 10.64 10.61 17.13 13.8 21.7 16 1.36 Arunacha Pradesh 13.21 7.99 27.49 14.44 16.14 12.35 59.01 15.82 12.27 2.17 11.77 13.4 0.32 3.07 6.12 4.9 12.39 13.02 12.7 12.34 12.42 12.5 14.23 12.05 14.22 11.8 3.6 9.09 8.59 7.75 Assam 11.6 5.76 8.28 8.7 12.5 8.49 12.45 9.84 20.63 13.4 5 8.51 6.54 4.61 6.14 4.08 16.84 7.33 Bihar 10.33 Delhi 8.93 27.72 11.86 17.36 15.34 18.58 23.67 15.56 1.39 44.66 18.5 -0.02 2.51 -28.1 9.2 Goa 16.39 10.95 1.9 11.23 27.55 -7.9 -14 5.54 11.95 3.36 17.41 -0.25 11.89 0.4 20.8 21.9 Gujarat 10.69 4.1 17.05 15.03 7.8 18.71 13.09 13.27 0.9 14.55 17.6 8.9 47.05 16.28 14 11.23 Harvana 12.47 11.4 18.82 15.35 10.53 8.49 28.97 13.74 11.26 14.63 17.52 15.6 1.85 6.65 5.26 9.95 Himachal Pradesh 13.05 9.43 17.29 15.82 9.35 6.02 16.16 12.8 14.45 8.72 12.05 17.9 8.17 13.63 3.83 8.76 J&K 12.22 8.27 16.19 13.44 8.81 12.76 15.26 8.12 17.13 16.1 8.4 11.9 Karnataka 11.98 12.31 16.93 15.39 10.69 16.42 8.74 13.69 13.77 11.49 28.06 16.8 -8.6 2.14 6.33 7.16 Kerala 11.91 17.34 17.61 -20.2 10.63 -3.42 13.75 12.33 13.73 34.73 14.58 -43.2 -1.24-22.85 1.26 6.67 12.39 9.86 14.03 15.33 12.29 9.72 13.71 12.66 13.94 16.1 6.6 9.58 11.3 Maharashtra 10.68 6.46 4.66 Manipur 10.68 14.26 19.42 13.88 11.24 8.49 20.31 14.42 11.43 23.38 13.99 14.45 5.45 4.06 9.43 12.23 Meghalaya 13.8 14.24 22.37 15.95 10.88 11.45 14.04 15.37 15.88 14.7 14.38 15.8 4.33 -1.62 -5.89 7.91 Mizoram 18.04 8.72 9.4 17.39 25.94 19.65 15.13 20.82 14.84 0.64 3.79 16.3 1.23 10.15 20.7 11.4 MP 10.3 6.78 15.15 12.25 11.76 2.36 27.82 13.44 9.94 6.76 9.3 11.1 3.87 6.72 0.14 5.8 Nagaland 28.4 26.34 17 18.25 13.55 18.55 15.633 17.23 51.1 17.88 16.86 14.18 Orissa 10.37 9.43 15.3 12.88 8.72 12.73 14.83 12.42 15.64 8.02 15.15 14.9 8.21 -5.27 11.13 7.03 Puducherry 11.03 9.17 16.51 6.6 19.51 12.77 11.56 1.39 22.6 -3.65 0.97 1.86 8.22 12.53 27.07 13.49 12.69 12.15 25.24 0.34 4.35 Punjab 6.12 4.21 26 13.75 14.68 13.7 10.34 14.75 Rajasthan 11.85 20.6 9.51 15.42 10.89 21.91 -2.97 13.91 12.85 12.03 16.61 17.2 -4.34 8.22 7.98 3.75 Sikkim 10.56 22.22 15.99 15.39 16.29 24.81 9.76 27.96 9.97 16.4 2.52 6.07 13.2 4.44 17.5 26.38 Tamil Nadu 11.73 19.44 20.65 15.07 11.63 32.04 6.49 14.24 14.63 18.55 35.46 17.4 -10.21 8.17 0.68 4.84 Tripura 12.43 5.68 18.18 15.74 10.98 5.3 21.23 13.51 14.04 8.7 19.17 18.6 18.05 11.34 0.91 11.9 11.35 10.11 17.16 13.18 10.49 -5.34 23.11 12.94 11.01 26.3 13.52 13.4 4.75 -2.78 10.98 6.28 West Bengal 13.9 10.81 15.63 14 13.6 9.46 16.76 12.87 16.56 13.45 16.08 16 2.09 -1.25 10.04 8.94 Table 11: The Changes in States' Share in Total Production of Important Commodity and Commodity Groups at All India level | r | | | | 1 | | | ı | | | 1 | | | |---------------------------|---------|---------|---------|---------|---------|---------|---------|---------------|---------|---------|---------|---------| | | | Rice | | | Wheat | | | Total Cereals | | | Pulses | | | States | 2006/07 | 2002/04 | 1982/84 | 2006/07 | 2002/04 | 1982/84 | 2006/07 | 2002/04 | 1982/84 | 2006/07 | 2002/04 | 1982/84 | | Andhra Pradesh | 12.71 | 10.02 | 15.31 | | 0.02 | 0.03 | 7.32 | 6.02 | 8.45 | 9.51 | 8.94 | 4.57 | | Assam | 3.13 | 4.77 | 4.87 | 0.09 | 0.11 | 0.28 | 1.47 | 2.18 | 2.12 | | 0.48 | 0.42 | | Bihar | 5.34 | 6.48 | 7.42 | 5.16 | 5.79 | 5.88 | 5.25 | 5.63 | 6.02 | 3.10 | 4.91 | 5.74 | | Jharkhand | 3.18 | 2.80 | _ | 0.17 | 0.16 | _ | 1.68 | 1.48 | _ | 1.83 | 1.10 | _ | | Gujarat | 1.49 | 1.13 | 1.15 | 3.96 | 2.07 | 3.38 | 2.91 | 2.51 | 3.53 | 4.15 | 3.55 | 4.20 | | Haryana | 3.61 | 3.28 | 2.46 | 13.27 | 13.39 | 10.04 | 7.18 | 7.05 | 5.05 | 0.99 | 0.86 | 2.75 | | Himachal
Pradesh | | 0.13 | 0.17 | 0.66 | 0.73 | 0.79 | 0.61 | 0.69 | 0.77 | | 0.14 | 0.09 | | Jammu &
Kashmir | | 0.58 | 1.09 | 0.65 | 0.43 | 0.51 | 0.49 | 0.70 | 0.92 | | 0.16 | 0.25 | | Karnataka | 3.70 | 2.96 | 4.07 | 0.28 | 0.20 | 0.44 | 4.29 | 3.38 | 4.78 | 6.27 | 5.46 | 4.54 | | Kerala | 0.67 | 0.84 | 2.43 | | 0.00 | 0.00 | 0.31 | 0.37 | 1.22 | | 0.06 | 0.17 | | Madhya | 1.47 | | | 9.67 | | | 5.19 | | | 22.54 | | | | Pradesh | | 1.57 | 7.63 | | 8.31 | 8.97 | | 5.41 | 8.79 | | 21.89 | 21.61 | | Chhatisgarh | 5.40 | 4.82 | 0.00 | | 0.15 | 0.00 | 2.56 | 2.31 | 0.00 | 3.45 | 3.14 | 0.00 | | Maharashtra | 2.75 | 2.88 | 4.12 | 2.15 | 1.37 | 2.20 | 5.09 | 4.93 | 7.00 | 16.20 | 15.97 | 9.03 | | Orissa | 7.31 | 6.08 | 7.40 | | 0.01 | 0.28 | 3.42 | 2.78 | 3.63 | 2.46 | 1.83 | 8.04 | | Punjab | 10.86 | 11.58 | 8.20 | 19.26 | 20.93 |
21.13 | 12.45 | 13.41 | 11.23 | | 0.28 | 1.05 | | Rajasthan | | 0.14 | 0.27 | 9.31 | 7.82 | 8.25 | 6.16 | 6.13 | 5.89 | 10.42 | 9.80 | 13.17 | | Tamilnadu | 7.08 | 5.75 | 7.44 | | 0.00 | 0.00 | 3.92 | 3.12 | 4.11 | 2.04 | 1.90 | 1.89 | | Uttar Pradesh | 11.91 | 12.95 | 11.67 | 33.02 | 35.86 | 32.32 | 19.24 | 21.04 | 19.83 | 13.94 | 17.26 | 20.52 | | Uttaranchal | | 0.65 | 0.00 | 1.06 | 1.09 | 0.00 | 0.56 | 0.90 | 0.00 | | 0.24 | 0.00 | | West Bengal | 15.80 | 18.21 | 11.89 | 1.06 | 1.37 | 1.65 | 7.76 | 8.68 | 5.61 | 1.06 | 1.46 | 1.80 | | All-India | 100 | 100.00 | 100.00 | 100 | 100.00 | 100.00 | 100 | 100.00 | 100.00 | 100 | 100.00 | 100.00 | | All-India | 930.36 | | | | | | | | | 140.20 | | | | Prod'n
(in lakh tones) | | 804.69 | 534.42 | 750.81 | 686.02 | 439.71 | 2030.9 | 1807.80 | 1282.75 | | 130.41 | 122.56 | Contd. | | | Oilseeds | | | Cotton | | | Sugarcane | | |------------------|---------|----------|---------|---------|---------|---------|---------|-----------|---------| | States | 2006/07 | 2002/04 | 1982/84 | 2006/07 | 2002/04 | 1982/84 | 2006/07 | 2002/04 | 1982/84 | | Andhra Pradesh | 1.36 | 7.36 | 13.36 | 9.63 | 13.04 | 11.50 | 6.10 | 5.91 | 6.06 | | Assam | 0.13 | 0.80 | 1.27 | | 0.01 | 0.03 | 0.30 | 0.37 | 1.16 | | Bihar | 0.15 | 0.61 | 1.04 | | 0.00 | 0.01 | 1.68 | 1.71 | 2.27 | | Jharkhand | | 0.09 | _ | | 0.00 | _ | | 0.05 | _ | | Gujarat | 2.57 | 16.79 | 18.58 | 38.84 | 24.18 | 21.24 | 4.40 | 5.17 | 3.95 | | Haryana | 0.83 | 4.31 | 1.23 | 8.00 | 11.02 | 9.94 | 2.69 | 3.39 | 3.13 | | Himachal | | | | | | | | | | | Pradesh | | 0.04 | 0.05 | | 0.00 | 0.01 | | 0.03 | 0.02 | | J & K | | 0.41 | 0.46 | | 0.00 | 0.02 | | 0.00 | 0.01 | | Karnataka | 1.13 | 5.75 | 7.91 | 2.70 | 3.26 | 7.70 | 8.06 | 9.10 | 7.72 | | Kerala | | 0.01 | 0.11 | | 0.05 | 0.13 | | 0.11 | 0.45 | | Madhya | 5.81 | | | 3.67 | | | 0.79 | | | | Pradesh | | 20.99 | 8.89 | | 4.55 | 3.81 | | 0.83 | 0.99 | | Chhatisgarh | | 0.57 | 0.00 | | 0.00 | 0.00 | | 0.01 | 0.00 | | Maharashtra | 3.72 | 13.56 | 10.99 | 20.42 | 26.00 | 19.61 | 22.10 | 12.26 | 15.77 | | Orissa | 0.18 | 0.69 | 5.63 | | 0.59 | 0.04 | 0.36 | 0.31 | 1.64 | | Punjab | 0.08 | 0.51 | 1.11 | 11.84 | 11.54 | 13.45 | 1.69 | 3.04 | 3.14 | | Rajasthan | 5.17 | 13.72 | 6.84 | 3.31 | 4.00 | 8.07 | | 0.14 | 0.80 | | Tamilnadu | 1.08 | 5.37 | 9.08 | 0.97 | 1.53 | 3.92 | 11.57 | 9.53 | 8.11 | | Uttar Pradesh | 1.03 | 4.73 | 11.54 | | 0.05 | 0.34 | 37.68 | 44.41 | 43.78 | | Uttaranchal | | 0.14 | 0.00 | | 0.00 | 0.00 | 1.72 | 2.98 | 0.00 | | West Bengal | 0.65 | 2.87 | 1.61 | | 0.01 | 0.00 | 0.36 | 0.49 | 0.71 | | All-India | 100 | 100.00 | 100.00 | 100 | 100.00 | 100.00 | 100 | 100.00 | 100.00 | | All-India | | | | | | | | | | | Prod'n | 240.29 | 201.74 | 114.05 | 220.63 | 112.91 | 70.58 | 3550.52 | 2594.41 | 1832.63 | | (in lakh tonnes) | | | | | | | | | | **Table 12: Concentration of Production for some Agricultural Commodities** | Crops | Year | All-India
Prodn. (in
lakh tons) | Leading states with % figures in parentheses | | | | | | |-------------|---|--|---|--|--|--|--|--| | Jowar | 2002-04 | 71.17 | Mahar(50.51), Karnataka(14.76), MP(11.01), AP(8.88), Rajasthan(4.42). | | | | | | | | 1982-84 | 113.44 | Mahar(41.23), Karnataka(15.39), MP(14.73), AP(11.60), Gujarat(4.71) | | | | | | | Bajra | 2002-04 | 83.76 | Rajasthan(35.17), Gujarat(16.39), Mahar(16.07), UP(14.31), Haryana(9.11) | | | | | | | | 1982-84 | 63.78 | Rajasthan(36.21), Gujarat(22.02), UP(12.84), Mahar(10.29), Haryana(8.55) | | | | | | | Maize | 2002-04 | 126.27 | AP(15.49), Karnataka(10.98), MP(13.47), Rajasthan(11.14), UP(8.48) | | | | | | | | 1982-84 | 72.36 | UP(13.45), Bihar(13.16), MP(13.14), AP(8.84), Punjab(7.53) | | | | | | | Barley | 2002-04 | 13.56 | UP(38.65), Rajasthan(31.55), MP(8.57), Haryana (6.10), Punjab(5.97) | | | | | | | • | 1982-84 | 18.27 | UP(45.88), Rajasthan(24.63), MP(8.97), Haryana (6.12), Punjab(6.0) | | | | | | | Gram | MP(42.67), UP(16.23), Rajasthan(10.23), AP(8.57), Mahar(9.69) | | | | | | | | | | 1982-84 | 50.22 | MP(30.84),UP(25.57), Rajasthan(23.91), Mahar(3.63), Haryana(5.98) | | | | | | | Pigeonpea | 2002-04 | 22.86 | Mahar(32.26), UP(15.34), Gujarat(9.92), Karnataka(9.65), MP(9.60) | | | | | | | | 1982-84 | 22.14 | UP(28.27), Mahar(20.01), MP(18.14), Gujarat(9.11), Karnataka(7.04) | | | | | | | Groundnut | 2002-04 | 62.73 | Gujarat(39.90), Tamilnadu(16.82), Karnataka(9.18), Mahar(7.79), AP(6.03) | | | | | | | | 1982-84 | 62.83 | Gujarat(25.50),AP(22.37),Tamilnadu(15.44), Mahar(10.94),
Karnataka(10.25) | | | | | | | Rapeseeds & | 2002-04 | 50.40 | Rajasthan(39.11), Haryana(16.76), UP(16.16), WB(7.64), MP(6.96) | | | | | | | Mustard | 1982-84 | 23.87 | UP(35.05), Rajasthan(22.69), Gujarat(9.38), MP(7.31), Assam(5.63) | | | | | | | Sunflower | 2002-04 | 9.30 | Karnataka(42.48), AP(32.76), Mahar(14.11), Bihar(2.16), Tamilnadu(1.08), UP(1.08) | | | | | | | Soyabean | 2002-04 | 62.11 | MP(58.20), Mahar(31.40), Rajasthan(6.99), AP(1.14), Karnataka(0.87) | | | | | | ### IV. Resource Diversification in India Land is one of the most important resources used in agriculture and continuous data for same is also available for a relatively longer period of time. Resource diversification is discussed with the proportion of individual crop in the gross cropped area (GCA) of the districts, state and country. Resource diversification has been computed with Simpson indices and also with modified-entropy indices, explained in the analytical framework (For details, see Appendix II: Analytical Framework). These indices are worked out for states and country for the years 2003-04, 1993-94 and 1983-84. The land utilization statistics for fruits and vegetables are available since 1991-92. The diversification indices in 1993-94 and 2003-04 have therefore been calculated by incorporating fruits and vegetables in the gross cropped area. Diversification indices with and without fruits and vegetables have been significantly different for those states wherein fruits and vegetables account for a large proportion of GCA. These diversification indices therefore, cannot be substituted for each other and both of these indices are presented in Table 13. Table 13 shows that diversification indices at the all-India level are quite high. Figures at the aggregate level have been higher than those in most of the states. Karnataka is an exception; the state has diverse resource endowment that has led to cultivation of variety of crops. In other words diversification indices are higher for the state since considerable acreage in the state is under many crops. Similarly diversification indices are relatively higher for larger states as large state generally consists of diverse agro-climatic regions and there is scope for allocating a larger proportion of land to many crops. Though the modified-Entropy indices are based on logarithmic values; the value of this index is similar to the Simpson index for most of the states barring Haryana, and Punjab. The latter states as compared to the other states of the country have information on a fewer number of crops as crops cultivated in less than 500 hectares of area are not reported in land use statistics available in the Statistical Abstract of Haryana or similar other land utilization statistics of these states. At the all-India level there is no change in either of the diversification indices during the reference period (1983-84 to 2003-04). For many states, changes in diversification indices are only marginal during the reference period. The increase in diversification is significant in the state of Goa, West Bengal, Maharashtra, Andhra Pradesh, and Tamilnadu. These are states that registered a sharp increase in the levels of urbanization during the reference period. Joshi et al. (2007) have found a strong relationship between urbanization and diversification. The states that showed a significant decline in the diversification indices during the reference period are Haryana, Meghalaya and Orissa. Table 13: A Temporal and Spatial Comparison of Diversification Indices in India | | | Div. In | dices without | Div. Indices with Fruits and Vegetables | | | | | | | |-------------------|--------------------------------------|---------|---------------|---|---------|----------|-----------|---------|---------|---------| | | Simpson Index Modified Entropy Index | | ndex | Simpson | n Index | Mod-Entr | opy Index | | | | | States | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 2003-04 | 1993-94 | | Andhra Pradesh | 0.87 | 0.83 | 0.83 | 0.79 | 0.71 | 0.72 | 0.88 | 0.85 | 0.81 | 0.73 | | Assam | 0.42 | 0.42 | 0.45 | 0.43 | 0.42 | 0.47 | 0.5 | 0.48 | 0.49 | 0.48 | | Arunachal Pradesh | 0.1 | 0.08 | 0.07 | 0.17 | 0.14 | 0.14 | 0.44 | 0.38 | 0.4 | 0.35 | | Bihar & Jharkhand | 0.67 | 0.68 | 0.7 | 0.54 | 0.58 | 0.62 | 0.7 | 0.7 | 0.58 | 0.61 | | Goa | 0.46 | 0 | 0 | 0.59 | 0 | | 0.63 | 0.41 | 0.74 | 0.08 | | Haryana | 0.77 | 0.79 | 0.8 | 0.65 | 0.71 | 0.72 | 0.77 | 0.8 | 0.66 | 0.73 | | Jammu & Kashmir | 0.69 | 0.69 | 0.7 | 0.69 | 0.69 | 0.8 | 0.73 | 0.72 | 0.74 | 0.74 | | Himachal Pradesh | 0.64 | 0.65 | 0.67 | 0.62 | 0.62 | 0.69 | 0.7 | 0.7 | 0.68 | 0.68 | | Gujarat | 0.88 | 0.88 | 0.87 | 0.81 | 0.82 | 0.82 | 0.88 | 0.88 | 0.83 | 0.84 | | Karnataka | 0.92 | 0.9 | 0.89 | 0.85 | 0.81 | 0.81 | 0.92 | 0.91 | 0.87 | 0.83 | | Kerala | 0.68 | 0.71 | 0.71 | 0.7 | 0.73 | 0.79 | 0.76 | 0.78 | 0.75 | 0.78 | | Maharashtra | 0.88 | 0.86 | 0.84 | 0.8 | 0.77 | 0.75 | 0.89 | 0.86 | 0.83 | 0.79 | | MP & Ch'sgarh | 0.86 | 0.87 | 0.87 | 0.76 | 0.79 | 0.81 | 0.86 | 0.87 | 0.77 | 0.8 | | Meghalaya | 0.5 | 0.58 | 0.56 | 0.51 | 0.69 | 0.85 | 0.45 | 0.53 | 0.45 | 0.61 | | Orissa | 0.41 | 0.5 | 0.66 | 0.36 | 0.41 | 0.54 | 0.54 | 0.6 | 0.44 | 0.49 |
 Punjab | 0.61 | 0.63 | 0.64 | 0.51 | 0.55 | 0.61 | 0.63 | 0.64 | 0.54 | 0.56 | | Rajasthan | 0.82 | 0.85 | 0.83 | 0.76 | 0.78 | 0.78 | 0.83 | 0.85 | 0.77 | 0.79 | | Sikkim | 0.1 | 0.04 | 0.05 | 0.18 | 0.09 | 0.16 | 0.46 | 0.51 | 0.48 | 0.47 | | Tamil Nadu | 0.85 | 0.81 | 0.81 | 0.76 | 0.7 | 0.71 | 0.87 | 0.83 | 0.79 | 0.73 | | Tripura | 0.1 | 0.08 | 0.08 | 0.16 | 0.08 | 0.15 | 0.45 | 0.42 | 0.38 | 0.33 | | UP & Utt'chal | 0.77 | 0.79 | 0.82 | 0.64 | 0.68 | 0.73 | 0.79 | 0.81 | 0.67 | 0.7 | | West Bengal | 0.5 | 0.44 | 0.45 | 0.45 | 0.41 | 0.45 | 0.6 | 0.53 | 0.53 | 0.48 | | All- India | 0.88 | 0.88 | 0.88 | 0.76 | 0.79 | 0.78 | 0.89 | 0.89 | 0.81 | 0.81 | Table 14: Percentage of Different Crop-groups to Gross Cropped Area | | Fine Cereals | | Coar | rse Cere | als | | Pulses | | Oilseeds | | | | |-------------------|--------------|-------|-------|----------|-------|-------|--------|-------|----------|-------|-------|-------| | | 2003- | 1993- | 1983- | | 1993- | 1983- | 2003- | 1993- | 1983- | 2003- | 1993- | 1983- | | States | 04 | 94 | 84 | 2003-04 | 94 | 84 | 04 | 94 | 84 | 04 | 94 | 84 | | Andhra Pradesh | 23.46 | 28.05 | 31.23 | 12.86 | 13.79 | 26.42 | 17.17 | 12.30 | 11.19 | 19.91 | 25.61 | 16.87 | | Assam | 65.70 | 68.24 | 67.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.58 | 8.12 | 8.64 | | Arunachal Pradesh | 46.04 | 49.11 | 61.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Bihar & Jharkhand | 71.31 | 69.66 | 66.20 | 9.01 | 9.54 | 11.36 | 9.51 | 9.13 | 11.87 | 1.50 | 2.46 | 2.41 | | Haryana | 52.55 | 47.29 | 40.77 | 12.19 | 11.52 | 19.87 | 3.17 | 8.25 | 12.54 | 10.13 | 10.66 | 3.63 | | Jammu & Kashmir | 47.00 | 48.44 | 48.30 | 31.65 | 30.56 | 32.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Himachal Pradesh | 46.16 | 46.39 | 46.33 | 35.56 | 36.92 | 36.77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Gujarat | 13.42 | 10.21 | 12.29 | 16.49 | 18.93 | 27.54 | 7.73 | 8.34 | 7.70 | 27.76 | 28.30 | 25.55 | | Karnataka | 11.83 | 12.93 | 13.19 | 31.36 | 30.97 | 39.28 | 15.94 | 12.23 | 13.71 | 19.37 | 25.18 | 14.60 | | Kerala | 9.69 | 16.77 | 25.87 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Maharashtra | 9.87 | 10.77 | 12.80 | 29.00 | 39.56 | 42.07 | 15.59 | 16.06 | 14.01 | 12.56 | 13.30 | 10.63 | | MP & Ch'sgarh | 38.31 | 37.74 | 38.56 | 11.00 | 14.02 | 21.03 | 22.32 | 19.61 | 21.97 | 21.39 | 21.43 | 10.16 | | Madhya Pradesh | 30.04 | 37.74 | 38.56 | 12.29 | 14.02 | 21.03 | 24.26 | 19.61 | 21.97 | 27.67 | 21.43 | 10.16 | | Orissa | 51.20 | 46.82 | 46.21 | 1.93 | 2.46 | 7.46 | 8.07 | 10.26 | 17.97 | 3.41 | 5.64 | 9.83 | | Punjab | 75.77 | 72.41 | 66.02 | 2.38 | 3.28 | 5.72 | 0.00 | 0.00 | 0.00 | 1.13 | 2.36 | 2.23 | | Pondicherry | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Rajasthan | 10.58 | 11.17 | 12.28 | 37.98 | 31.94 | 38.25 | 18.56 | 17.30 | 19.61 | 15.53 | 18.75 | 7.98 | | Sikkim | 4.32 | 6.30 | 8.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Tamil Nadu | 22.49 | 32.27 | 33.88 | 15.26 | 14.39 | 23.87 | 8.67 | 9.64 | 10.19 | 11.89 | 19.00 | 16.14 | | Tripura | 56.48 | 53.54 | 77.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | UP & Utt'chal | 57.32 | 56.37 | 55.37 | 9.95 | 11.74 | 15.40 | 10.02 | 11.24 | 11.16 | 4.22 | 6.73 | 10.16 | | Uttar Pradesh | 58.49 | 56.37 | 55.37 | 9.26 | 11.74 | 15.40 | 10.50 | 11.24 | 11.16 | 4.42 | 6.73 | 10.16 | | West Bengal | 64.32 | 71.31 | 72.71 | 0.61 | 0.92 | 1.37 | 2.56 | 3.11 | 5.06 | 6.95 | 6.11 | 4.58 | | All- India | 36.30 | 36.31 | 36.55 | 16.19 | 17.61 | 23.12 | 12.32 | 11.94 | 13.05 | 12.46 | 14.43 | 10.36 | Contd..... | | Plantation Crops | | Commercial Crops | | | Potatoes & Onions | | | Fruits &
Vegetables | | | |-------------------|------------------|-------------|------------------|-------------|-------------|-------------------|-------------|-------------|------------------------|-------------|-------------| | States | 2003-
04 | 1993-
94 | 1983-
84 | 2003-
04 | 1993-
94 | 1983-
84 | 2003-
04 | 1993-
94 | 1983-
84 | 2003-
04 | 1993-
94 | | Andhra Pradesh | 1.85 | 1.28 | 0.87 | 9.74 | 8.91 | 6.60 | 0.23 | 0.16 | 0.14 | 6.55 | 4.15 | | Assam | 7.33 | 6.57 | 6.21 | 2.53 | 3.14 | 4.55 | 1.97 | 1.57 | 1.23 | 7.30 | 5.48 | | Arunachal Pradesh | 0.84 | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.42 | 12.79 | | Bihar & Jharkhand | 0.01 | 0.00 | 0.00 | 2.85 | 2.77 | 2.87 | 1.59 | 1.64 | 1.33 | 4.99 | 4.53 | | Haryana | 0.00 | 0.00 | 0.00 | 10.92 | 11.52 | 9.57 | 0.60 | 0.17 | 0.16 | 0.95 | 1.07 | | Jammu & Kashmir | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.69 | 5.56 | | Himachal Pradesh | 0.24 | 0.21 | 0.33 | 0.00 | 0.00 | 0.00 | 1.57 | 2.05 | 1.43 | 10.36 | 7.49 | | Gujarat | 0.00 | 0.00 | 0.00 | 17.59 | 12.74 | 15.45 | 0.75 | 0.37 | 0.24 | 2.81 | 1.87 | | Karnataka | 5.98 | 3.91 | 3.31 | 5.55 | 7.48 | 9.82 | 1.33 | 0.72 | 0.50 | 4.37 | 2.19 | | Kerala | 53.85 | 52.27 | 39.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.29 | 18.87 | | Maharashtra | 0.75 | 0.28 | 0.16 | 14.86 | 13.39 | 14.43 | 0.49 | 0.47 | 0.27 | 4.03 | 2.38 | | MP & Ch'sgarh | 0.00 | 0.00 | 0.00 | 2.60 | 2.17 | 2.60 | 0.29 | 0.24 | 0.19 | 1.20 | 0.87 | | Madhya Pradesh | 0.00 | 0.00 | 0.00 | 3.37 | 2.17 | 2.60 | 0.37 | 0.24 | 0.19 | 0.98 | 0.87 | | Orissa | 1.98 | 1.03 | 0.83 | 0.51 | 0.65 | 1.47 | 0.13 | 0.51 | 0.54 | 10.66 | 10.22 | | Punjab | 0.00 | 0.00 | 0.00 | 7.14 | 8.66 | 10.52 | 0.83 | 0.39 | 0.38 | 1.95 | 1.09 | | Pondicherry | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.56 | 2.22 | | Rajasthan | 0.00 | 0.00 | 0.00 | 1.63 | 2.80 | 2.20 | 0.16 | 0.08 | 0.06 | 0.51 | 0.39 | | Sikkim | 0.23 | 0.13 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.09 | 5.51 | | Tamil Nadu | 9.16 | 6.33 | 3.21 | 4.75 | 6.85 | 4.92 | 0.46 | 0.42 | 0.47 | 8.67 | 5.00 | | Tripura | 1.58 | 1.33 | 1.66 | 0.00 | 0.00 | 0.00 | 1.30 | 0.00 | 0.67 | 22.22 | 18.26 | | UP & Utt'chal | 0.00 | 0.00 | 0.01 | 8.07 | 6.97 | 6.79 | 1.64 | 1.61 | 1.23 | 3.67 | 3.39 | | Uttar Pradesh | 0.00 | 0.00 | 0.01 | 7.95 | 6.97 | 6.79 | 1.72 | 1.61 | 1.23 | 3.68 | 3.39 | | West Bengal | 1.42 | 1.47 | 1.43 | 6.62 | 5.65 | 6.47 | 3.15 | 2.65 | 1.86 | 13.09 | 10.03 | | All- India | 2.18 | 1.83 | 1.45 | 6.84 | 6.44 | 6.83 | 0.92 | 0.76 | 0.59 | 4.62 | 3.59 | Table 15: Categorization of States on the basis of Average Annual Growth Rate in Area for important Crops during the period 1994-2004 | Crops | Significant Increase
(More than 1%) | Marginal Increase
(Between 0.99 to 0.11%) | Stagnant (0.09 to -0.09%) | Marginal Decrease
(-0.11 to -0.99%) | Significant Decrease
(More than -1%) | |---------------------|--|--|---------------------------|--|---| | Paddy | Haryana, Gujarat, Punjab, UP | MP, BR | Assam, MHT, WB | AP, J & K ,HP, Orissa, Tripura | AP, Karnataka, Rajasthan, Kerala, TN | | Wheat | AP, Haryana, Gujarat, Orissa, WB | BR, J & K, Punjab, Rajasthan, UP | | HP, Karnataka, MP | Assam, AP, MHT, Sikkim, Tripura | | Jowar | Rajasthan | | BR & Jharkhand | Orissa | AP, Gujarat, Karnataka, MHT, MP, TN, UP | | Bajra | Haryana, J & K ,MP, Rajasthan | Karnataka, UP & UT, | | AP | Gujarat, MHT, TN | | Maize | AP,BR,Gujarat,Karnataka,MHT,Rajasthan, TN | J& K | MP & CHT | HP, Orissa | Punjab, UP & UT,WB | | Gram | AP, Gujarat, Karnataka, MHT, MP & CHT, WB | | | Rajasthan | BR , Haryana, Orissa, UP | | Pigeonpea | AP, BR, Karnataka | MHT | | | Haryana, Gujarat, MP, Orissa, TN, UP | | Pulses | AP,Karnataka,MP, Rajasthan | BR, MHT | | Gujarat, UP & UT, WB | Haryana, Orissa, TN | | Oilseeds | WB | Haryana | MP & CHT | Assam, Gujarat,,MHT, | AP,BR ,Karnataka, Orissa,Punjab,Rajasthan,TN | | Rapeseed & Mustard | WB | Haryana | | Assam | BR, Gujarat, MP, Punjab, Rajasthan, UP | | Groundnut | | | | Gujarat | AP, Karnataka, MHT, MP, Orissa, Rajasthan TN, U | | Soyabean | AP, Karnataka, MHT, MP ,Rajasthan | | | | UP | | Sunflower | AP | | | | Haryana, Karnataka, MHT,TN,UP | | Sugarcane | AP,Haryana, Gujarat, MHT,Punjab,UP, WB | MP & CHT, Orissa | | | Assam,BR KarnatakaRajasthan,TN | | Cotton | AP, Gujarat, MHT, MP | | | Haryana | Karnataka, Punjab, Rajasthan, TN | | Jute & Mesta | BR, WB | | | | AP, Assam, MHT, Orissa | | Tobacco | BR, Karnataka, UP | | | | AP, Gujarat, MHT, TN | | Coconut | AP,Assam,Goa,MHT,Karnataka,Orissa,TN | Kerala | | | | | Cashew nut | AP, Karnataka, MHT, Orissa, WB | | | TN | Kerala | | Tea | Assam, , AP., BR, HP, Manipur, TN, UP, Sikkim, Nag | Karnataka, Kerala, WB, Tripura, | | | | | Coffee | Karnataka | Kerala, TN | | | AP | | Rubber | Karnataka | Kerala, TN | | | | | Potato | Assam, Haryana, Gujarat, Karnataka, Punjab, UP, WE | MP & CHT, Meghalaya | BR & Jharkhand | | HP, Orissa, TN | | Onion | AP, Gujarat, Karnataka, Mahar, MP, TN, Rajasthan | | | | Orissa, UP & UT, | | Fruits & Vegetables | AP, Assam, AnP, BR, Delhi, Goa, J & K, HP, Gujarat, | Kerala | | Orissa, Haryana | | | | MHT, MP, Meghalaya ,Mizoram,Manipur,
Nagaland,Punjab,Rajasthan,Sikkim, TN, Tripura,
UP, WB | | | | | Note: Abbreviations for states in the above Table are BR-Bihar, MHT-Maharashtra, CHT-Chattisgargh, AP-Andhra Pradesh, UP-Uttar Pradesh, MP-Madhya Pradesh, J&K –Jammu & Kashmir, TN-Tamil nadu, UTS-Uttaranchal, WB-West Bengal, HP-Himachal Pradesh, Table 16: Categorization of States on the basis of Average Annual Growth Rate in Area for Important Crops during the period 1984-1994 | Crops | Significant Increase | Marginal Increase | Stagnant | Marginal Decrease | Significant Decrease | |------------------|--|-----------------------------------|------------------|-------------------
---| | | (More than 1%) | (Between 0.99 to 0.11%) | (0.09 to -0.09%) | (-0.11 to -0.99%) | (More than -1%) | | Paddy | AP, Haryana, Gujarat, Karnataka, Punjab | Assam,MHT, MP, Orissa, WB | J & K, UP | BR, TN | AP, HP, Kerala, Rajasthan Tripura | | Wheat | A.P., Haryana, J & K, Tripura | BR& Jharkhand, HP, MP, Punjab, UP | | Rajasthan, WB | AP, Assam, Gujarat, Karnataka, MHT, Orissa, | | | | | | | Sikkim | | Jowar | | | | Karnataka, MHT | AP, Haryana, Gujarat, MP, Orissa, Rajasthan ,TN, UP | | Bajra | | | | MHT, | AP, Haryana, J & K,Gujarat, Karnataka, MP, Rajasthan, | | Maize | Gujarat, Karnataka, MHT, MP, TN | J & K, HP, Rajasthan | | AP, UP | BR, Punjab, WB | | Gram | AP,Karnataka, MHT, MP | | | | BR, Haryana, Gujarat, Orissa, Rajasthan, UP, WB | | Pigeonpea | AP, Haryana, Gujarat, MHT, Orissa | Karnataka, UP | | BR, | MP, TN | | Pulses | Gujarat, MHT, | AP, UP | | Karnataka, MP, TN | BR, Haryana, Orissa, Rajasthan, WB | | Oilseeds | AP,Haryana,Gujarat,MP, Karnataka, MHT, | | Assam | BR, | Orissa, UP & UT, | | | TN,Punjab, Rajasthan, WB | | | | | | Rapeseed & Musta | ard BR, Haryana, Gujarat, MP, Rajasthan, WB | | | Assam | Punjab, UP & UT, | | Groundnut | AP, Karnataka, Rajasthan, TN | | | Gujarat | MHT,MP,Orissa, UP | | Soyabean | MP & C, Rajasthan | | | | UP & UT, | | Sunflower | AP, Karnataka, MHT, TN, UP | | | | | | Sugarcane | AP, Karnataka, Gujarat, MHT, TN | UP, MP | | BR, Punjab | Assam, Haryana, Orissa, WB | | Cotton | AP, Haryana, Rajasthan, TN | | | MHT | Gujarat, Karnataka, MP, Punjab, TN | | Jute & Mesta | | | | BR, Meghalaya, WB | AP, Assam, MHT, Orissa | | Tobacco | Karnataka, UP | | | Gujarat, MHT | AP, BR & Jharkhand, TN | | Coconut | AP,Assam,Karnataka, Kerala,Orissa,TN,WB | Goa | | | MHT | | Cashew nut | AP, Karnataka, MHT, Orissa | Kerala | | | | | Tea | AP,Manipur,Nagaland, Orissa | TN | Kerala | Tripura | BR, HP, Sikkim, UP | | Coffee | AP, Karnataka, Kerala | Assam, Karnataka, TN, WB | | TN | | | Rubber | Karnataka, Kerala | | | | | | Potato | Assam, ,BR, HP,Haryana, Gujarat, MP, Punja | b Orissa, TN | | Meghalaya | Tripura | | Onion | Gujarat, Karnataka, MP, MHT, Rajasthan, UP & | ζ | | Orissa | Haryana, TN | | Fruits & | AP, Assam, AP, BR, Delhi, Goa, J&K, HP, Pun | j: Kerala | | Haryana, Orissa | | | Vegetables | Karnataka, Meghalaya, Mizoram, Manipur, Na | g | | | | | | MP,Rajasthan, Sikkim, TN, Tripura, UP, WB | | | | | Table 17: Categorization of States on the basis of Average Annual Growth Rate in Area for Important Crops during the period 1984-2004 | Years | Significant Increase | Marginal Increase | Stagnant | Marginal Decrease | Significant Decr | |---------|--|--|-------------------|--------------------------------------|------------------| | | (More than 1%) | (Between 0.99 to 0.11%) | (0.09 to -0.09%) | (-0.11 to -0.99%) | (More than -1% | | 1994-04 | WB | UP, Sikkim, Rajasthan, Punjab, | AP, Gujarat, MP & | HP, Karnataka, Kerala, Orissa, Tripu | Pondicherry, TN | | | | MHT,J & K,Haryana, Bi, AnP, Assam | | | | | 1984-94 | AP, Sikkim, Tripura, WB | Assam, Haryana, J&K, Gujarat, Karnataka, Kerala, | HP | AP, BR, | <u> </u> | | | | Mahar, MP, Orissa, Punjab, Pondiccherry Rajasthan, | | | | | 1984-04 | Assam, A.P., Haryana, Punjab, Rajasthan, Sikkim, Tripura, WB | J & K, Gujarat, Karnataka, Kerala, Mahar, MP, UP | • | AP, BR,HP,Orissa, | Pondicherry, TN | The above indices do not explain changes in the pattern of diversification during the reference period. Such aggregate indices often conceal rather than reveal the detailed pattern of agricultural diversification in the country. The diversification indices are obtained from the percent of gross cropped area under different crops and a discussion on the changes in the percent area during the reference period would explain the pattern of crop diversification in agriculture. There are around 40 crops for which the Ministry of Agriculture (MOA) maintains crop-acreage related information. Percent area under these crops has been worked out; in order to make it presentable several commodities are grouped together as commodity groups and percent changes in these commodities group are presented in Table 14. The table shows changes in the percent of area under crops / crop groups for the year 2003-04, 1993-94 and 1983-84. These crops are grouped together under following commodity groups namely, fine cereals, coarse cereals, pulses, oilseeds, plantations and commercial crops. The percent of gross cropped area under potato and onion has been grouped together. In addition to the percent changes in area, the average annual growth rate in area during the reference period is presented comprehensively in Tables 15, 16 and 17. Table 15 presents the growth in area between 1994 and 2004, whereas Table 16 presents growth in area between 1984 and 1994. The above tables on the basis of the average annual rate of growth in area under important crops categorize states into five groups. The first and second group consists of states that registered significant (more than one percent) and marginal (0.99 to 0.11 percent) increase in area under a crop; the third group constitutes states that show stagnation and registered an average annual growth in acreage between 0.09 to -0.09 percent; whereas the fourth and fifth group consists of states registering marginal (-0.11 to -0.99 percent) and significant (more than one percent) decline in area under the selected crops. Again an increase or decrease in area under certain crops in a state has to be viewed in simultaneity with the increase in the gross cropped area. Therefore on the basis of average annual growth rate in gross cropped area, states are presented into five groups. Table 17 presents the growth rate in area during the above two periods. The growth in acreage has to be seen in the backdrop of the percentage of gross cropped area under a crop and the changes in the above percent during the reference period (Table 14). Though these tables are self-explanatory the particular trend across states for crops / crop groups is discussed with figures from Table 14. Fine cereals include paddy and wheat; the percent area under fine cereals at the all-India level has not changed significantly during the 1994-2004, while the percent area under fine cereals has decreased marginally (0.20%) during the pre-liberalization period (1984-94). This decline is on the account of decrease in area under paddy; in fact the percent area under wheat has increased (Appendix Table 2). The states that registered a decline in the percent area under fine cereals are Andhra Pradesh, Kerala, Tamilnadu, Assam, Arunachal Pradesh, Sikkim, West Bengal, and Madhya Pradesh. The decreasing trend was similar for most of the states during the 1980, though the decrease in percent area was sharper for a few states. The states that registered an increase in area under fine cereals are Bihar inclusive of Jharkhand, Orissa, Haryana and Punjab. Though there have been significant efforts towards the reduction of area under fine cereals in the latter group of states, Gujarat and Tripura show a different trend as the percent area under fine cereals has decreased during the first period and increased during the second period. It is almost a known fact that the area under coarse cereals has been decreasing at the all -India level (Table 11). The rate of decline has however slowed down during the 1990s. In most of the states barring Bihar, HP, Rajasthan, J&K, the percent area under coarse cereals has declined significantly during 1984-2004. There can be many reasons for preferring coarse cereals in these states. The marginal land hypothesis for coarse cereals still prevails. Coarse cereals are good fodder crop and are well suited to the traditional mixed farming system. In difficult areas like J&K, Himachal Pradesh, Bihar people are probably still dependent on coarse cereals as the reach of the Public Distribution System (PDS) in the region is insufficient. For people of some states like Rajasthan, coarse cereals are an integral part of their food consumption basket. It may be noted that coarse cereals as compared to many other cereals provide more nutrients per unit of cereals consumed. Among coarse cereals only maize registered a significant increase in area under some states in the eighties whereas, in the nineties all coarse cereals (jowar, bajra and maize) registered significant increase in the growth of area in many states of the country. The coarse-cereals based dietary pattern of people in a large part of the country was being changed with the subsidized rice and wheat through the PDS. In the nineties coarse cereals gained in importance with their alternate uses like feed in the poultry industry, raw material for industry. There are sufficient reasons for incorporating coarse cereals in the consumption basket as well. At the all-India level the percent area under pulses has increased marginally in the 1990s, though this has declined during the entire period of reference (1984-2004). Increase in area under pulses in the 1990s occurred in Andhra Pradesh, Karnataka, Madhya Pradesh and Rajasthan whereas Gujarat, Maharashtra and Uttar Pradesh have registered a decline in the area during this period. The share of pulses in the gross cropped area (GCA) has declined considerably in the states of Orissa and Haryana. The oilseeds contain information for a group of nine oilseeds. A favourable price policy for a group of nine oilseeds during the 1980s has led to an increase in the proportionate area under oilseeds. But with the moderation of price policy in the 1990s, the area under oilseeds has in fact declined at the all-India level during the reference period (1994-04). In states like Orissa and Uttar Pradesh, the area under oilseeds has decreased continuously since the 1980s. Haryana,
Gujarat, Madhya Pradesh and Maharashtra were able to hold their share during the 1990s as well. In states like West Bengal and Madhya Pradesh, the area under oilseeds has increased during the 1990s. Plantation crops include tea, coffee, coconut and rubber. At the all-India level the area under plantation crops has increased during the reference period (1984-04). Plantation crops are concentrated in selected states of the country. The area under plantation crops has increased in Kerala, Karnataka, AP and Maharashtra. The percent area under plantation crops has either stagnated or declined in West Bengal, Himachal Pradesh, Sikkim and Tripura. One can infer that the area under plantation crops has increased in the coastal states with tropical climate; while the same decreased in the hilly states with a temperate kind of climate. This trend has implications for differential performances of plantation crops in the country since the different kinds of plantation crops are cultivated in the hilly and coastal region of the country. The commercial crops in Table 14 consist of sugarcane and cotton. The percent area under commercial crops has stagnated at the all-India level; however from states there are mixed trends. The percent area under commercial crops has increased in Andhra Pradesh but decreased in Assam, Karnataka, Orissa, Rajasthan and Punjab. In potatoes and onions, increase in the area is observed in the most of the states barring Karnataka, Orissa and Tamilnadu. Since the nineties, the percent area under fruits and vegetables has increased in the country; this increase in the percent of GCA is only one percent at the aggregate level. A substantial increase in the share of area under fruits and vegetables is observed in the northeastern states of Sikkim, Tripura and Arunachal Pradesh; while West Bengal, Tamilnadu and Andhra Pradesh registered more than a three percent increase in the area under fruits and vegetables. The above discussion suggests that there is no significant improvement in diversification indices during the reference period. There are in fact evidences of specialization from certain states. The production basket of a commodity is now less diversified across states; in other words the production of a commodity is getting specialized in states as per the resource endowment and institutional arrangement for that commodity in the individual state. Interestingly, within the commodity groups, the percent area under specific crops has increased while that of other commodities in the same commodity group has decreased. In coarse cereals for instance, the percent area under sorghum and barley has decreased while that of maize and bajra has increased during the reference period. There are also evidences from states of specialization in certain crops. The changes in percent area under crops in the recent decade broadly show that the area under fruits and vegetables has increased significantly, while the area under fine cereals and oilseeds has stagnated. The percent area under coarse cereals and pulses are decreasing since 1970s; decline in the percent of GCA has however ceased in the nineties. Area under commercial crops has not changed significantly in the recent period. The percent change in the GCA for crops clearly shows a periodic shift in the acreage of certain crops in the specific regions of the country following favourable institutions and an incentive structure for these crops in the region. # V. Resource Diversification in Haryana Following the discussion of crop diversification at the aggregate level in this section, crop diversification at meso-level has been studied for Haryana and all its districts. Diversification indices which include Simpson and Modified-Entropy are worked out with percent of individual crop in gross cropped area for all the 19 districts of Haryana. The reference years, as for the previous analysis, are 1983-84, 1993-94, and 2003-04. These indices are presented in Table 18. As is apparent from the table both the indices have declined for Haryana and for most of the districts of the state during the reference period. Though there are a few exceptions. The differences in diversification indices have implications for the estimation techniques. The Entropy index is not sensitive to changes in the number of crops. Off late in many districts of Haryana, acreage under many crops goes unreported.¹⁰ This may also be construed as an indication of increased crop specialization in districts. **Table 18: Temporal and Spatial Diversification Indices in Haryana** | | | Simpson Index | | Mo | Mod. Entropy Index | | | | |--------------|---------|---------------|---------|---------|--------------------|---------|--|--| | Districts | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | | | | Ambala | 0.63 | 0.71 | 0.74 | 0.50 | 0.63 | 0.65 | | | | Panchkula | 0.73 | _ | _ | 0.67 | _ | _ | | | | Yamunanagar | 0.70 | 0.73 | _ | 0.55 | 0.60 | _ | | | | Kurukshetra | 0.60 | 0.57 | 0.60 | 0.47 | 0.41 | 0.46 | | | | Kaithal | 0.55 | 0.58 | _ | 0.37 | 0.43 | _ | | | | Karnal | 0.55 | 0.56 | 0.61 | 0.39 | 0.39 | 0.48 | | | | Panipat | 0.57 | 0.57 | - | 0.41 | 0.42 | _ | | | | Sonipat | 0.65 | 0.66 | 0.70 | 0.56 | 0.59 | 0.64 | | | | Rohtak | 0.77 | 0.77 | 0.78 | 0.74 | 0.68 | 0.69 | | | | Jhajjar | 0.74 | _ | _ | 0.65 | _ | _ | | | | Faridabad | 0.60 | 0.65 | 0.68 | 0.56 | 0.60 | 0.63 | | | | Gurugaon | 0.69 | 0.73 | 0.74 | 0.57 | 0.61 | 0.64 | | | | Rewari | 0.70 | 0.70 | _ | 0.54 | 0.55 | _ | | | | Mahendragarh | 0.69 | 0.71 | 0.72 | 0.58 | 0.62 | 0.67 | | | | Bhiwani | 0.79 | 0.78 | 0.69 | 0.66 | 0.64 | 0.54 | | | | Jind | 0.68 | 0.73 | 0.78 | 0.57 | 0.67 | 0.71 | | | | Hisar | 0.79 | 0.80 | 0.82 | 0.66 | 0.67 | 0.71 | | | | Fatehabad | 0.72 | _ | _ | 0.61 | _ | _ | | | | Sirsa | 0.75 | 0.76 | 0.79 | 0.67 | 0.62 | 0.67 | | | | Haryana | 0.77 | 0.80 | 0.80 | 0.68 | 0.72 | 0.74 | | | Crop diversification is subsequently discussed with percent area under high value crops in Haryana and each district of Haryana. Since delineation of high value crops is difficult, changes in the percent of cross cropped area under important crops or crop group are discussed in Table 19. Some interesting trends can be seen in the percent area under the crop groups at the all-India level. An attempt has been made herewith to compare temporal changes in the percent area under crops in different districts of Haryana and this is presented in Table 19. It is apparent that while the percent area under fine cereals (rice and wheat) has decreased at the country level, the percent area in Haryana has increased. In most districts of Haryana, percent area under fine cereals has increased; however the district of Kurukshetra has been an exception where the percent area under paddy has decreased after 1993-94. In Kurukshetra, a decline of percent area is also reported for wheat (Table 19). A similar decline in the percent of gross cropped area under wheat is also reported from Kaithal, Karnal, Panipat, Sonipat, and - ¹⁰ The prime source of land utilization statistics in Haryana is Statistical Abstract of Haryana. This abstract does not report area under a crop if the cropped area under the said crop is below certain floor limit (for example 500 hectare) in a district. Mahendragarh. As a matter of fact the area under wheat in these districts has realized to its full potential. With the depletion of ground water table, the availability of assured irrigation has been a major problem for many farmers. This has constrained acreage under water -intensive and sensitive crops like wheat (Jha 2000). Consequently, increase of area under less water-intensive crops like rape-mustard, sunflower and fodder has taken place. In coarse cereals maize has emerged as an important crop, information for which is therefore presented in Table 19 along with other coarse cereals. As is evident from table, the percent area under these crops has decreased, though the rate of decrease has decelerated during the 1990s. The trend is similar for the most of the districts other than Mohindergarh, Jind, Rohtak and Hissar. In the 1990s the percent area under maize has increased marginally in Jind and Bhiwani. Interestingly, the percent area under coarse cereals has increased in Haryana during the 1990s, though during the 1980s this had declined significantly. Following the above mode of presentation, the percent area under pulse, oilseeds, commercial crops are presented with the percent area under the most important pulse (gram), oilseed (rape-mustard) and commercial crops (cotton) produced in Haryana (Table 19). The percent area under pulses has been decreasing since 1983-84. The percent area under oilseeds has increased during the reference period; though the area has declined marginally during the 1990s. The sharp increase in the area under oilseeds during 1984-94 is largely due to the Technical Mission on Oilseeds (TMO) initiated during the mid-80s which ushered in the much acclaimed yellow revolution in the country. A bulk of the area under oilseeds in Haryana is under rapeseed and mustard and acreage under these crops did not change significantly during the 1990s, inspite of the fact that the price policy for oilseeds in the nineties was not as favourable as in the late 1980s (Jha 2009). In contrast the percent area under pulses has not increased in the region despite a favourable price policy for pulses in the country. This clearly suggests that there are many factors other than price that affects allocation of land under a crop. Table 19: Temporal Changes in Percent of Different Crops to Gross Cropped Area in Haryana and its Districts | | | Rice | | Wheat | | | | Maize | | С | oarse Cerea | als | Total Cereals | | | |--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|---------|----------------------|---------|---------| | Districts | 2003-04 | 1993-94 | 1983-84
| 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | | Ambala | 35.36 | 25.95 | 23.24 | 40.43 | 38.35 | 35.63 | 1.45 | 7.40 | 7.10 | 1.59 | 8.18 | 8.07 | 77.44 | 72.60 | 67.40 | | Panchkula | 14.68 | I | I | 37.02 | I | _ | 20.43 | _ | _ | 21.49 | _ | ı | 73.19 | I | I | | Yamunanagar | 28.12 | 24.06 | - | 35.30 | 32.54 | _ | 0.84 | 2.64 | _ | 1.24 | 3.55 | _ | 64.65 | 60.25 | _ | | Kurukshetra | 41.48 | 41.99 | 33.57 | 41.48 | 42.53 | 46.46 | 0.11 | 0.46 | 1.49 | 0.11 | 0.54 | 3.99 | 83.07 | 85.06 | 84.38 | | Kaithal | 40.94 | 34.15 | - | 45.33 | 46.84 | _ | 0.03 | 0.11 | _ | 2.87 | 2.68 | _ | 89.14 | 83.76 | _ | | Karnal | 43.39 | 41.10 | 31.26 | 43.32 | 43.99 | 45.25 | 0.10 | 0.44 | 1.81 | 0.36 | 0.94 | 4.28 | 87.10 | 86.11 | 81.14 | | Panipat | 39.08 | 34.43 | - | 43.95 | 45.45 | _ | 0.05 | 0.17 | _ | 0.38 | 0.80 | _ | 83.41 | 80.74 | _ | | Sonipat | 23.71 | 15.21 | 8.64 | 47.73 | 48.61 | 47.50 | 0.18 | 0.23 | 0.96 | 7.52 | 8.07 | 20.77 | 79.17 | 72.20 | 77.76 | | Rohtak | 6.38 | 1.58 | 0.99 | 40.55 | 36.22 | 31.16 | 0.00 | 0.08 | 0.08 | 19.04 | 16.32 | 31.89 | 66.70 | 54.99 | 65.80 | | Jhajjar | 5.09 | ı | I | 40.26 | ı | _ | 0.04 | _ | _ | 22.74 | _ | ı | 68.70 | ı | 1 | | Faridabad | 10.64 | 4.84 | 1.76 | 49.21 | 48.25 | 45.23 | 0.07 | 0.44 | 1.09 | 10.30 | 16.35 | 23.16 | 70.71 | 70.95 | 74.65 | | Gurgaon | 2.46 | 1.52 | 0.17 | 41.76 | 38.07 | 36.72 | 0.00 | 0.00 | 0.03 | 22.82 | 22.79 | 26.96 | 67.91 | 64.20 | 69.28 | | Rewari | 0.30 | 0.06 | ı | 24.46 | 24.30 | _ | 0.00 | 0.00 | _ | 30.94 | 26.15 | _ | 56.34 | 52.40 | | | Mahendragarh | 0.00 | 0.00 | 0.00 | 15.30 | 14.46 | 18.24 | 0.00 | 0.00 | 0.00 | 38.86 | 31.63 | 37.46 | 54.41 | 46.71 | 58.92 | | Bhiwani | 1.30 | 0.04 | 0.06 | 17.14 | 13.42 | 10.19 | 0.01 | 0.00 | 0.02 | 24.74 | 25.42 | 35.66 | 43.83 | 39.41 | 46.33 | | Jind | 19.80 | 13.28 | 8.79 | 44.98 | 40.47 | 34.55 | 0.11 | 0.00 | 0.22 | 10.20 | 9.09 | 22.28 | 75.15 | 63.26 | 66.64 | | Hisar | 4.52 | 4.85 | 3.07 | 32.29 | 29.24 | 25.23 | 0.00 | 0.10 | 0.17 | 11.68 | 8.43 | 13.86 | 49.26 | 43.30 | 42.80 | | Fatehabad | 16.36 | | I | 41.38 | _ | _ | 0.00 | _ | _ | 3.69 | _ | _ | 61.88 | _ | _ | | Sirsa | 6.87 | 4.64 | 4.18 | 35.14 | 32.21 | 25.75 | 0.00 | 0.03 | 0.07 | 1.18 | 1.04 | 2.95 | 43.92 | 39.00 | 33.94 | | Haryana | 15.89 | 12.98 | 9.86 | 36.25 | 34.28 | 31.53 | 0.26 | 0.51 | 0.95 | 11.62 | 10.81 | 18.38 | 64.18 | 58.74 | 61.10 | Continued | | | Gram | | Total Pulses | | | Rapeseed & Mustard | | | | Oilseeds | | Sugarcane | | | |--------------|---------|---------|---------|--------------|---------|---------|--------------------|---------|---------|---------|----------|---------|-----------|---------|---------| | Districts | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | | Ambala | 0.05 | 0.95 | 1.83 | 1.35 | 3.68 | 5.30 | 0.58 | 2.69 | 1.52 | 1.30 | 4.92 | 2.90 | 7.00 | 3.51 | 9.49 | | Panchkula | 1.06 | I | _ | 4.04 | I | I | 3.19 | ı | _ | 5.11 | _ | ı | 1.91 | _ | ı | | Yamunanagar | 0.10 | 0.51 | _ | 1.39 | 2.28 | - | 0.84 | 1.42 | _ | 1.24 | 3.10 | ı | 21.04 | 19.34 | - | | Kurukshetra | 0.04 | 0.11 | 0.39 | 0.33 | 0.65 | 1.06 | 0.11 | 0.34 | 0.74 | 1.15 | 0.38 | 0.79 | 5.52 | 3.26 | 2.41 | | Kaithal | 0.08 | 0.23 | _ | 0.16 | 0.85 | I | 0.34 | 1.64 | _ | 0.37 | 2.06 | ı | 0.89 | 0.59 | I | | Karnal | 0.05 | 0.16 | 0.28 | 0.36 | 0.91 | 1.45 | 0.21 | 0.21 | 0.49 | 0.21 | 0.73 | 0.53 | 2.95 | 1.72 | 3.73 | | Panipat | 0.05 | 0.11 | _ | 0.38 | 1.31 | - | 0.38 | 0.28 | _ | 0.38 | 0.68 | ı | 4.22 | 2.44 | - | | Sonipat | 0.07 | 0.35 | 0.70 | 2.52 | 5.37 | 4.26 | 1.98 | 3.05 | 1.62 | 1.98 | 3.36 | 1.65 | 5.61 | 4.40 | 5.63 | | Rohtak | 0.87 | 3.88 | 10.39 | 4.86 | 7.92 | 11.62 | 8.94 | 19.80 | 3.29 | 9.04 | 19.90 | 3.33 | 8.30 | 3.41 | 4.67 | | Jhajjar | 0.87 | ı | _ | 2.65 | 1 | ı | 18.78 | ı | _ | 18.78 | _ | ı | 1.22 | _ | ı | | Faridabad | 0.00 | 0.28 | 1.37 | 2.88 | 3.33 | 5.63 | 2.06 | 4.76 | 2.38 | 2.25 | 5.04 | 3.05 | 2.70 | 3.65 | 2.15 | | Gurgaon | 0.63 | 2.64 | 8.25 | 1.16 | 3.23 | 10.10 | 17.11 | 23.31 | 7.24 | 17.44 | 23.79 | 7.51 | 0.03 | 0.11 | 0.17 | | Rewari | 0.69 | 3.58 | _ | 0.74 | 3.69 | _ | 32.28 | 35.08 | _ | 32.43 | 35.31 | _ | 0.00 | 0.00 | _ | | Mahendragarh | 6.51 | 10.12 | 18.19 | 6.65 | 10.16 | 18.29 | 30.21 | 31.63 | 10.29 | 30.28 | 31.67 | 10.29 | 0.00 | 0.00 | 0.00 | | Bhiwani | 7.57 | 27.96 | 30.46 | 9.29 | 28.71 | 31.30 | 23.36 | 16.01 | 2.70 | 23.41 | 16.05 | 2.73 | 0.34 | 0.09 | 0.29 | | Jind | 0.13 | 3.28 | 9.46 | 0.30 | 4.53 | 10.50 | 2.13 | 4.84 | 1.90 | 2.22 | 5.07 | 1.98 | 2.02 | 1.35 | 2.65 | | Hisar | 2.65 | 11.87 | 14.36 | 4.88 | 12.32 | 14.92 | 10.48 | 9.51 | 5.29 | 10.57 | 9.58 | 5.43 | 0.95 | 0.28 | 0.55 | | Fatehabad | 0.68 | _ | _ | 0.90 | | _ | 4.25 | _ | _ | 4.35 | _ | _ | 0.50 | _ | _ | | Sirsa | 2.65 | 9.52 | 22.27 | 3.79 | 9.70 | 22.54 | 9.70 | 8.09 | 3.87 | 10.20 | 8.21 | 3.92 | 0.19 | 0.02 | 0.04 | | Haryana | 1.92 | 6.97 | 11.39 | 3.10 | 8.22 | 12.66 | 9.69 | 9.91 | 3.44 | 9.90 | 10.24 | 3.63 | 2.51 | 1.92 | 2.33 | Continued | | Total Cotton | | | Commerc | rial Crops | | Total Fru | its & Vege | tables | Other Crops | | | | |------------------|--------------|---------|---------|---------|------------|---------|-----------|------------|---------|-------------|---------|---------|--| | Districts | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | 2003-04 | 1993-94 | 1983-84 | | | Ambala | 0.00 | 0.17 | 0.85 | 7.00 | 3.68 | 10.33 | 2.17 | 3.02 | 1.86 | 10.73 | 12.11 | 12.20 | | | Panchkula | 0.00 | _ | _ | 1.91 | - | _ | 2.41 | _ | _ | 13.34 | _ | _ | | | Yamunanaga
r | 0.00 | 0.15 | 1 | 21.04 | 19.49 | 1 | 1.99 | 1.80 | 1 | 9.70 | 13.07 | 1 | | | Kurukshetra | 0.00 | 0.04 | 1.20 | 5.52 | 3.30 | 3.61 | 2.73 | 2.31 | 0.90 | 7.19 | 8.30 | 9.26 | | | Kaithal | 0.44 | 2.03 | I | 1.33 | 2.63 | ı | 0.41 | 0.34 | - | 8.60 | 10.36 | 1 | | | Karnal | 0.03 | 0.13 | 0.81 | 2.98 | 1.85 | 4.54 | 1.12 | 0.95 | 1.23 | 8.24 | 9.44 | 11.11 | | | Panipat | 0.11 | 0.17 | I | 4.32 | 2.61 | ı | 1.80 | 1.96 | ı | 9.71 | 12.69 | I | | | Sonipat | 0.72 | 0.54 | 1.47 | 6.33 | 4.94 | 7.10 | 1.45 | 3.59 | 1.79 | 8.55 | 10.55 | 7.44 | | | Rohtak | 5.28 | 3.38 | 1.72 | 13.58 | 6.79 | 6.39 | 0.70 | 0.61 | 0.51 | 5.13 | 9.79 | 12.35 | | | Jhajjar | 1.48 | ı | I | 2.70 | I | ı | 0.39 | _ | - | 6.79 | ı | 1 | | | Faridabad | 0.04 | 0.24 | 0.47 | 2.73 | 3.89 | 2.62 | 1.88 | 1.47 | 0.98 | 19.54 | 15.32 | 13.09 | | | Gurgaon | 0.10 | 0.07 | 0.00 | 0.13 | 0.19 | 0.17 | 1.44 | 1.35 | 0.92 | 11.92 | 7.23 | 12.01 | | | Rewari | 2.13 | 0.06 | I | 2.13 | 0.06 | _ | 0.43 | 0.15 | _ | 7.93 | 8.40 | | | | Mahendraga
rh | 1.92 | 0.39 | 0.02 | 1.92 | 0.39 | 0.02 | 0.28 | 0.31 | 0.26 | 6.45 | 10.78 | 12.21 | | | Bhiwani | 8.14 | 6.89 | 4.29 | 8.49 | 6.99 | 4.58 | 0.24 | 0.35 | 0.29 | 14.74 | 8.49 | 14.77 | | | Jind | 9.39 | 12.84 | 7.11 | 11.41 | 14.19 | 9.76 | 0.60 | 0.63 | 0.37 | 10.31 | 12.33 | 10.75 | | | Hisar | 22.89 | 25.29 | 21.85 | 23.84 | 25.57 | 22.40 | 0.70 | 1.00 | 0.77 | 10.75 | 8.23 | 13.67 | | | Fatehabad | 21.88 | I | I | 22.39 | I | | 0.64 | _ | ı | 9.83 | ı | I | | | Sirsa | 23.50 | 31.44 | 23.28 | 23.69 | 31.46 | 23.31 | 0.63 | 0.55 | 0.33 | 17.77 | 11.07 | 15.95 | | | Haryana | 8.23 | 9.68 | 7.13 | 10.74 | 11.61 | 9.46 | 0.93 | 1.09 | 0.78 | 11.14 | 10.11 | 12.38 | | Note: The horizontal line (dash) (-) shows that the corresponding figures are not available. Source: Statistical Abstract of Haryana. In Haryana, sugarcane and cotton constitute the commercial crops together. Sugarcane accounts for only 2.5 percent of the gross cropped area of the state. Acreage under sugarcane has increased marginally in Haryana; an increase in the percent area has been very significant in certain districts. It may be noted that the profitability of sugarcane in the vicinity of a sugar factory is very high and farmers prefer it over other crops inspite of the fact that it is a highly water-intensive crop. In the 1990s, the area under cotton declined in the most of the districts of Haryana, barring Rohtak, Rewari, Mahendragarh and Bhiwani. In these districts, the ground water table being low and the water quality saline, the farmers therefore have limited options in the cultivation of crops other than cotton in the *kharif* season. The above example argues for a specialization of cotton cultivation in certain districts. Interestingly, the area under cotton in the districts discussed above has increased, though the crop area has declined at the level of state and country. In Haryana, unlike for India, the percent area under fruits and vegetables has declined during the 1990s; though the corresponding area has increased during the 1980s. Districts show a different pattern for example the percent area under fruits and vegetables has increased marginally in Kurukshetra, Karnal, Kaithal, Faridabad, Gurgaon, Rewari, Rohtak, Yamunanagar and Sirsa districts. Many of these districts are relatively better connected with the city / town; and this has played an important role in the diversification of area under fruits and vegetables. Urbanization-led agricultural diversification in favour of fruits and vegetables has been explained by Joshi et al. 2007. Again if we compare temporal changes in the percent area under crops in different districts of Haryana, it would be evident that Kurukshetra and Karnal have been leading other districts of Haryana on the basis of certain parameters of intensive agriculture (Jha 2000). Kurukshetra for example was ahead of other districts in the adoption of intensive agriculture in the 1980s; whereas in the year 2003-04, Kurukshetra again led other districts as far as adjustment to the consequences of intensive agriculture is concerned. One may note that the percent area under paddy and wheat started decreasing in the above
districts in the recent decade on account of the stress on natural resources. An increase of percent area under fruits and vegetables in the district may also be construed as another step towards the adjustment against resource stress. If the percent area under the above crops is discounted from the gross cropped area, in most districts of Haryana around 10 percent of GCA remained unaccounted for during all the reference years. This figure is not too small to be ignored. Field visits to the villages in Haryana suggest that most of the farmers allocate a significant proportion of their area to fodder crops. This is however, not reported in the existing system of land utilization statistics published from states and country. If we consider this residual as fodder then the area under fodder crops has increased in the 1990s. This increase is more in the districts of Faridabad, Gurgaon, Hissar, Bhiwani, Sirsa. The earlier two districts are highly urbanized and the demand for milk is generally high in such districts. This is also on account of increased emphasis on dairy in the state. In summing up, some of the salient points that emerged after comparing crop diversification in the districts of Haryana with the diversification trend at the all-India level are as under: - The percent area under fine cereals decreases at the all-India level; the corresponding figure has however increased in Haryana. In some of the progressive districts of Haryana, the percent of gross cropped area has started declining under resource stress. - The percent area under coarse cereals increases in certain districts of Haryana, though the corresponding figure has declined at the all-India level. - The area under oilseeds increases in many districts of Haryana though the percent area has declined for the commodity-group at the state level. - Despite some encouraging trends in certain districts of Haryana, the percent area under pulses has not increased in any of the districts of Haryana. This highlights the limitations of price-induced incentives for growing certain crops. The above discussion shows that small crop-specific pockets such as for fine cereals, oilseeds, sugarcane, cotton, coarse cereals are being created in Haryana. Though many of the above changes in per cent area under crops are influenced with the state of natural resources in the region, institutions and the incentive structure provide the necessary impetus for the above specialization. #### VI. Farm level Diversification in Kurukshetra district of Haryana The previous section shows that on many accounts, diversification at the state and district levels has been different. As these disparate trends are often not understandable, therefore the pattern of agricultural diversification at the level of farm is studied here. Farm-level diversification has been examined for the Kurukshetra district of Haryana, as this has been one of the most progressive districts as far as the adoption of agricultural practices is concerned. Again most of the districts in Haryana are moving towards the pattern followed by Kurukshetra district (Jha 2008). Agriculture in many other states is also developing in a manner similar to Haryana. In this backdrop, the study of farm-level diversification in Kurukshetra district may guide us in understanding the pattern of agricultural diversification in the country. The sample farmers are selected by adopting a multistage stratified random sampling technique (Jha 2009a). Table 20 presents a profile of small, medium and large farms with an average operational holding of 2.8, 12.3, and 22.5 acres, respectively an equivalent to 1.13, 4.97, 9.12 hectares, respectively in the study area. Table 20 presents crop-enterprise mixes for average farms of small, medium and large categories of sample farmers. Table 20 shows that paddy and wheat account for more than two-thirds of the gross cropped area. On the basis of intensity of enterprises, the difference between medium and large farms is not very significant. On the large farm, the percent area under basmati paddy, sugarcane, pulses, oilseeds, fruits and vegetables are higher than the medium farm whereas the area under wheat, potato and fodders is lower than in the medium farm. Small farmers are distinguished in terms of smaller area allocated for cash crops (sugarcane, basmati paddy), and higher allocation for fodder and vegetables. Table 20: Enterprise Patterns and Earnings on Average Farms in Kurukshetra District | Particulars | Small | Medium | Large | |---|-------|--------|-------| | Cultivated area (in acres) | 2.8 | 12.3 | 22.5 | | Percent area under enterprise | | | | | Paddy | 30.0 | 30.5 | 28.0 | | Paddy (Basmati) | 5.2 | 10.7 | 12.7 | | Wheat | 31.9 | 34.0 | 31.2 | | Pulses | 1.2 | 2.2 | 3.3 | | Oilseeds | 3.0 | 4.9 | 6.1 | | Potato | 3.8 | 3.0 | 2.4 | | Sugarcane | 0.0 | 2.1 | 3.0 | | Fodder | 17.7 | 8.1 | 7.0 | | Fruits and vegetables | 8.0 | 4.2 | 5.5 | | Agro-forestry | 0.1 | 0.3 | 0.8 | | Cropping Intensity | 225 | 219 | 210 | | Livestock | | | | | Cattle per acre | 0.5 | 0.3 | 0.2 | | Buffalo per acre | 0.8 | 0.4 | 0.5 | | Gross return (Rs/acre) | 19522 | 18628 | 18427 | | Working capital (Rs/acre | 12448 | 13220 | 14347 | | Net return (Rs/acre | 7074 | 5408 | 4180 | | Diversification Indices in terms of acreage | | | | | Maximum proportion index | 0.32 | 0.34 | 0.31 | | Simpson index | 0.75 | 0.79 | 0.79 | | Modified Entropy Index | 0.76 | 0.81 | 0.81 | | Diversification Indices in terms of gross | | | | | income | | | | | Maximum proportion index | 0.29 | 0.22 | 0.14 | | Simpson index | 0.82 | 0.86 | 0.87 | | Modified Entropy Index | 0.89 | 0.94 | 0.95 | There can be different reasons for the above crop-wise trend in the region. The oilseed cultivated in the region is rape-mustard, and to lesser extent sunflower. These oilseeds as compared to late-sown wheat (competing crops in the region) are less resource intensive. The percent area under fodder depends on the level of dairy enterprises on farm. Dairy as compared to other enterprises is more labour intensive, while the demand for labour is also less skewed; therefore the intensity of dairy is more on the small farm. This explains the higher share of fodder crops on small farm. Like fodder and livestock enterprises, potato and other vegetables are also labour intensive in nature; the percent area under these crops is therefore less on the large farm. A higher percent area under fruits and vegetables on the large farm is more on account of fruits rather than vegetables. In the sample households, *kinnow* orchard is reported from two large farmers. Though the size of the orchard is of around five acres, the percent area on the average large farm has been significant on account of the small numbers of large farmers in the sample. In the study area *eucalyptus*, *papular* plants are planted around a farm near or on the boundary of the holding; some large farmers have also allocated a small piece of land exclusively for agro-forestry. The extent of diversification involving alternate indices is presented in Table 21. The simplest way to measure diversification at the farm level is by means of the number of enterprises undertaken on a farm. The number of enterprises on a small farm is 11; whereas, it is 12 on medium and large farms. These figures indicate that small farms are less diversified than medium and large farms. The difference in number is on account of cultivation of sugarcane; the small farmers in the sample households did not cultivate sugarcane during the survey year (2000-01). While sugarcane is one of the most profitable crops in the region, its cultivation depends on the proximity of a sugar processing plant in the region. Though the number of enterprises within an individual production unit is one of the simplest ways of measuring diversification, this does not explain the levels of activities in a farm portfolio. In this context, the index of maximum proportion (MPI), another measure of diversification compares the share of individual enterprise in the aggregate farm portfolio, and reports the share of the enterprise that commands the maximum share in farm portfolio. The MPI suggests that if the share of individual enterprise in a farm is high, say more than 50 percent of the total cropped area or farm income then the above farm is specialized in favour of that enterprise. The index of maximum proportion can be worked out on the basis of acreage, resources diversification and farm income, and income diversification. The MPI estimates, based on acreage, show that the large farms are more diversified than medium and small farms. Amongst different crops, the share of wheat has been the maximum in a farm portfolio which is true across farm sizes. Paddy would record the maximum proportion in area, if the areas under basmati and non-basmati paddy are combined. The share of wheat on a medium farm is higher than on the small farm. In terms of gross income (G1), the index of maximum proportion is 29 percent on the small farm; the corresponding figures for medium and large farms are 22 and 14 percent, respectively. The index of maximum proportion indicates that the small farms are less diversified than the other farms of the region. On small farms, buffalo accounts for the maximum proportion in the gross income of farms; whereas, on medium and large farms it is wheat. In terms of gross income, rice would command the maximum proportion if we combine the contribution of basmati and non-basmati rice on an average farm. The above trend is similar to the agricultural economy at the aggregate level. Towards the end of the 1990s, milk has taken over rice as the maximum contributor to the agricultural income in the country. A comparison of livestock statistics with operational holding at the aggregate level shows that the small and marginal farms in the country are more livestock-centric. The index of maximum
proportion does not give due importance to enterprises other than the most dominant one. In order to improve this limitation, Simpson and Modified-Entropy indices are calculated both for acreage and farm income. These indices are based on the share of all individual enterprises on an average farm. The above indices like earlier indices have also been worked out with respect to the area (resources) and farm income. The Simpson index for area and gross income is at the minimum for small farms indicating a lower diversification on small farms. However, differences in indices for crop area are small suggesting less variation in crop diversification across farms. The difference in either of the above indices worked out in terms of income or acreage is less for medium and large farms. This manifests a similar level of area and income diversification on these farms. The differences across farms are more conspicuous with the Entropy Index. The index for small farms is significantly lower than for the medium and large farms which confirms the earlier findings that the small farm is the least diversified in north-west India. The difference in crop diversification between medium and large farms is less; though the enterprise diversification on large farms is slightly more than for the medium farms suggesting a positive relationship between farm size and diversification. The above relationship is perplexing in the light of the fact that risk aversion is negatively associated with the size of holding and diversification is a risk management practice. Diversification with crops is not a risk management practice in the study area since crop incomes are not negatively associated amongst themselves. (Jha *et.al.* 2009) In northwest India, wheat and paddy as compared to other crops involve less risk. In these crops, price-induced risk is low owing to an assured market; and the production-induced risk is also less on account of assured irrigation (Jha, 1995). The above discussion therefore suggests that as the percent area under crops other than paddy and wheat increases, the risk on farm also increases. It is also evident from Table 20 that the proportionate area under basmati paddy increases with the increase of operational holding. An increase of crop diversification with the operational landholding is therefore, not unfounded in the study area. Wheat and paddy being remunerative and less risky in irrigated conditions have substituted other crops and led to specialization in the region. In brief, farm-level diversification has been studied with the sample households from Kurukshetra district of Haryana. The study categorizes farmers into small, medium and large. The study found that the large farms are the most diversified while small farms are the least diversified in northwest India. The positive relationship between farm size and risk management is difficult to accept in the light of the established literature on diversification, risk management and the risk attitude of farmers. Diversification with crops is not a risk management practice in the study area. The study further argues that with commercialization, the subsistence type of crop production has been replaced by specialized farms. There may be several reasons for the increasing trend towards ¹¹ Government largely depends on the northwest India to procure wheat and paddy for the public distribution system; the market for wheat and paddy is therefore, assured in the region. specialization in agriculture for example; agro-climatic conditions, suitability of technology for specific regions, concentration of irrigation facilities, assured market, remunerative prices, supportive institutions, increased communication and transportation facilities among others. #### VII. Conclusions This present study discusses the pattern of agricultural diversification considering different definitions of agricultural diversification. Though the share of agriculture in the overall economy has been decreasing, the share of livestock and fisheries in agriculture has increased. There have been significant structural changes in the livestock and fisheries sectors of the economy. For many commodities, the production basket has concentrated over the years. For most of the crops, the percent share of leading producing states has increased during the reference period (1983, 2003 and 2006-07). This suggests an increasing trend towards specialization in agricultural production. Changes in the percent of gross cropped area also suggest a move towards specialization. There has been a significant increase in the percent of gross cropped area under fruits and vegetables. On this account, a threat to the availability of fine cereals is however a long drawn one since the crop diversification trends from states like Haryana are not necessarily supportive to the diversification trend as available at the aggregate level. The micro-level evidences suggest that the certain crops are more remunerative in the given resource endowments and institutional framework. Farms in the region are getting specialized under these crops and such specialization has not increased risk on the farm. ___ #### References - Das, Saudamini (2009). "Addressing Coastal Vulnerability at the Village Level: The Role of Socio-economic and Physical Factors". *IEG Working Paper Series No.E/295/2009*, Institute of Economic Growth, New Delhi. - Fertiliser Association in India (2008). *Fertilizer Statistics*, Several Issues, Fertiliser Association in India, New Delhi. - Fraser, R.W. (1991). "Production risk, product complementarity and product diversification," Journal of Agricultural Economics, 43(1): 103-107. - Government of India (2008). *Agricultural Statistic at a Glance*, Directorate of Economics and Statistics, Ministry of Agriculture, New Delhi. - Government of India (2008). *National Accounts Statistics*, Central Statistical Organization, Ministry of Statistics and Programme Implementation, New Delhi, India. - Government of India (2008). *National Accounts Statistics: Back Series 1950/51 to 1999/2000*, Central Statistical Organization, Ministry of Statistics and Programme Implementation, New Delhi, India. - Government of India (2008). *State Domestic Products*, Central Statistical Organization, Ministry of Statistics and Programme Implementation, New Delhi, India. - Haque T. (1995) (ed) Small Farm Diversification Problems & Prospect, NCAP, New Delhi. - Jha, Brajesh. (1995) "Growth and Instability in Agriculture Associated with New Technology: District Level Evidences" *Agricultural Situation in India*, 49(7): 517-524 - ----- (1996). "Farm-level Diversification: Some Disconcerting Evidences from the Green belt of India." *Agricultural Economics Research Review*, 9(1): 49-56. - ----- (2000). "Implications of Intensive Agriculture on Soil and Groundwater Resources." *Indian Journal of Agricultural Economics*, 55(2): 182-193. - ----- (2004). "Towards Measuring Sustainability of Indian Greenbelt" *IEG Discussion Paper Series No. 88/2004*, Institute of Economic Growth, New Delhi. - ----- (2006). "Employment Wages and Productivity in Indian Agriculture", *IEG Working Paper Series No.E/266/2006*, Institute of Economic Growth, New Delhi. - ----- (2009). "Evaluating Agricultural Policy in a Farming System Framework: A Case Study from North West India", *IEG Working Paper Series No.E/299/2009*, Institute of Economic Growth, New Delhi. - Jha, B. and D. Jha (1995). "Farmers attitude towards risk in the Greenbelt of India". *Journal of Rural Development*, 14(3): 231-240. - Jha B., A. Tripathy and B. Mohanty (2009). "Drivers of Agricultural Diversification in India", *IEG Working Paper Series No.E/-/2009*, Institute of Economic Growth, New Delhi. - Joshi P. K., A. Gulati and Ralph Cummings Jr. (2007) (ed). *Agricultural Diversification and Smallholders in South Asia*, New Delhi: Academic Foundation. - Shiyani R.L. and H.R. Pandya (1998). Diversification of Agriculture in Gujarat: A Spatiotemporal Analysis" *Indian Journal of Agricultural Economics*, 53, (4): 627-639. - Walker T.S., R. P. Singh and N. S. Jodha (1983). "Dimensions of Farm Level Diversification in the Semi-arid Tropics of Rural South India." Economic Programme Progress Report 51, ICRISAT, Hyderabad. ### **Appendices** Apndx Table 1: Important Exportable and Importable Agricultural Commodities with its respective Share in Agriculture during Selected Years | Commodities | 1990-91 | 1991-92 | 1992-93 | 2001-02 | 2002-03 | 2003-04 | |--------------------------|---------|---------|---------|---------|---------|---------| | Agri-exportables | | | | | | | | Tea, coffee & tobacco | 26.47 | 24.5 | 20.2 | 12.18 | 10.58 | 10.23 | | Spices | 3.82 | 4.74 | 4.35 | 5.04 | 4.77 | 4.14 | | Sugar | 0.62 | 2.01 | 3.91 | 5.41 | 5.11 | 3.25 | | Fruits & vegetables | 4.64 | 5.52 | 4.8 | 5.94 | 5.82 | 6.67 | | Marine products | 15.96 | 18.41 | 19.3 | 19.83 | 19.99 | 16.45 | | Poultry products | 0 | 0 | 0 | 0.49 | 0.52 | 0.67 | | Agri-exp as % of Exports | 18.49 | 17.8 | 16.84 | 14.22 | 13.58 | 12.65 | | Agri-importables | | | | | | | | Pulses | 39.2 | 17.26 | 11.63 | 19.44 | 15.54 | 10.28 | | Oils & oilseed | 28.1 | 17.5 | 6.23 | 39.84 | 50.01 | 53.44 | | Agri-import as % of Imp | 2.79 | 3.09 | 4.54 | 6.63 | 5.92 | 6.19 | *Source*: Agricultural Statistics at a Glance 2004, Directorate of Economics and Statistics, Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India. ## Apndx. Table 2: Correlation coefficient between gross return of different farm activities | Activity | Cross-
bredco
w | Buffalo | Desi
cow | Paddy
kharif | Paddy
basm-
ati | Paddy
summer | Wheat | Rapemus
- tard | Potato | Lentil | Sun-
flower | Jowar | Berseem | |------------------|-----------------------|---------|-------------|-----------------|-----------------------|-----------------|--------|-------------------|--------|--------|----------------|-------|---------| |
Cross-bred cow | 1.00 | | | | | | | | | | | | | | Buffalo | 32 | 1.0 | | | | | | | | | | | | | Desi cow | 0.90*** | 31 | 1.00 | | | | | | | | | | | | Paddy
Kharif | 0.81*** | 68*** | 0.67*** | 1.00 | | | | | | | | | | | Paddy
basmati | 15 | 40 | 14 | 0.36 | 1.00 | | | | | | | | | | Paddy
summer | 0.69*** | 51** | 0.46** | 0.88** | 0.48 | 1.00 | | | | | | | | | Wheat | 0.12 | 28 | 0.37 | 0.38 | 0.61*** | 0.14 | 1.00 | | | | | | | | Toria | 0.31 | 57*** | 0.62*** | 0.27 | 0.05 | 0.05 | 0.42 | 1.00 | | | | | | | Potato | 0.10 | .47 | 0.02 | 0.07 | 05 | 09 | 0.31 | 56** | 1.00 | | | | | | Lentil | 0.38 | 35 | 0.69*** | 0.26 | 0.13 | 0.16 | 0.45** | 0.93** | -50** | 1.00 | | | | | Sun-flower | 0.70*** | 65*** | 0.86*** | 0.70*** | 0.21 | 0.53** | 0.49** | 0.85** | 35 | 0.86 | 1.00 | | | | Jowar | 43 | .68 | 43 | 82*** | 81*** | 78*** | 68*** | 36 | 0.06 | 40 | 68 | 1.0 | | | Ber-seem | 0.88*** | 27 | 0.95*** | 0.75*** | 0.01 | 0.50** | 0.53** | 0.46** | 0.27 | 0.54** | 0.78 | 34 | 1.00 | *Note:* Single(*), double(**) and triple asterisks (***) shows levels of significance at 10, 5 and 1 percent level of significance. # Appendix II. Analytical Framework Towards Measuring Diversification The present study has used various concentration indices: Harfindhal and Entropy to work out agricultural diversification. The Harfindhal index (DHI) is a sum of the square of the proportion of individual activities in a portfolio. With an increase in diversification a sum of the square of the proportion of activities decreases and so also the DHI. This is a measure of concentration, alternately, an inverse measure of diversification since the Harfindhal index decreases with an increase in diversification. The Harfindhal index is bound by zero (complete diversification) to one (complete specialization). Harfindhal index $$(D_h) = \sum P_i^2$$, Where, $P_i = A_i / \sum_l A_i$ is the proportion of the i th activity in acreage / income. The above Harfindhal index is a measure of concentration and the index decreases with diversification, while Entropy indices discussed below is a positive measure of diversification. In order to make the DHI comparable with the Entropy index, the Simpson index that is (1-Harfindhal Index) has been worked out. The Entropy index is a direct measure of diversification having a logarithmic character. This index increases with an increase of diversification. It approaches zero when the farm is specialized and takes a maximum value when there is perfect diversification. The upper limit of the Entropy Index is determined by the base chosen for taking logarithms and the number of crops. The upper value of the index can exceed one, when the number of total crops is higher than the value of logarithm's base, and it is less than one when the number of crops is lower than the base of logarithm. Thus the major limitation of the Entropy Index is that it does not give a standard scale for assessing the degree of diversification. Entropy index (EI) = $$\sum_{i} P_{i} * log (1/P_{i})$$ The modified Entropy index is used to overcome the limitations of the Entropy index by using a variable base of logarithm instead of a fixed base of logarithm. The EI lies between zero (complete specialization) to one (perfect diversification). The Entropy index is bound by zero and one. It can be computed as: $$MEI = -\sum_{i} (P_i * log_N P_i)$$ The MEI is equal to EI/logN, it is worth mentioning that the base of the logarithm is shifted to 'N' number of crops. This index has a lower limit equal to zero when there is complete specialization or concentration and it assumes an upper limit of one in the case of perfect diversification, i.e. it is bounded by zero and one. Maximum M.E.I. (when Pi approaches $$1/N$$) = $\sum 1/N * logNN = \sum 1/N = 1$ (4) Since the modified entropy index imparts uniformity and fixity to the scale used as a norm to examine the extent of diversification; the index is quite useful. The MEI however, measures deviations from equal distribution among existing activities i.e. the number of crops only, and does not incorporate the number of activities in it. This index measures diversification given the number of crops and the index is not sensitive to the change in the number of crops (Shiyani and Pandya 1998). Agricultural diversification at the level of farm is also studied in terms of enterprise income and acreage under crops, and alternately resources at farmer's disposal. Resource diversification based on acreage explains the diversification of crops only, whereas enterprise diversification involves all enterprises both crops and livestock. Diversification was measured by enumerating the number of enterprises on the farm. The expressions for these indices are as follows: Index of maximum proportion $(D_m) = Max P_i$. For increasing diversification D_m should decrease; and the maximum share held by any activity in total income/cropped area decreases and that of other activities increase with an increase in diversification. This index is however silent about the share of other enterprises on total farm income/cropped area. ____ ## RECENT WORKING PAPERS | Title | Author (s) Name | Paper No. | |--|--|------------| | Savings Behaviour in South Asia | Pradeep Agrawal
Pravakar Sahoo
Ranjan Kumar Dash | E/289/2008 | | Ageing, Socio-Economic Disparities
and Health Outcomes: Some
Evidence from Rural India | Moneer Alam | E/290/2008 | | Productivity Increase and Changing
Sectoral Composition: Contribution
to Economic Growth in India | Bishwanath Goldar
Arup Mitra | E/291/2008 | | Childhood Mortality and Health in India | Suresh Sharma | E/292/2008 | | Import Penetration and Capacity
Utilization in Indian Industries | Bishwanath Goldar
V.S. Renganathan | E/293/2008 | | IT & ITES as an Engine of Growth: An Exploration into the Indian Experience | Seema Joshi | E/294/2009 | | Addressing Coastal Vulnerability at
the Village Level: The Role of
Socio-economic and Physical Factors | Saudamini Das | E/295/2009 | | Literacy and School Attendance in India | Suresh Sharma | E/296/2009 | | Impact of Trade on Employment
Generation in Manufacturing in India | Bishwanath Goldar | E/297/2009 | | Impact of Trade on Employment in the Services Sector in India | Arup Mitra | E/298/2009 | | Evaluating Agricultural in a Farming
System Framework: A Case Study
From North West India | Brajesh Jha | E/299/2009 | | The Impact of Economic Reforms on
Indian Manufacturers: Evidence
from a Small Sample Survey | Eckhard Siggel
Pradeep Agrawal | E/300/2009 | | Informal Wage and Formal Sector
Productivity: Theory and
Evidences from India | Dibyendu Maiti
Sugata Marjit | E/301/2009 |