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Abstract

We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregres-

sive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006),

the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR es-

timator is also robust against outliers and requires weaker moment conditions. More importantly,

it allows us to characterize the heterogeneous impact of variables on different points (quantiles) of a

response distribution. We derive the limiting distribution of the new estimator. Simulation results

show that the new estimator performs well in finite samples at various quantile points. In the spe-

cial case of median restriction, it outperforms the conventional QML estimator without taking into

account of heteroscedasticity in the errors; it also outperforms the GMM estimators with or without

considering the heteroscedasticity.
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1 Introduction

Spatial dependence among the cross-sectional units has become in recent years a standard notion

of economic research activities in relation to social interactions, spill-overs, copy-cat policies, exter-

nalities, etc., and has received an increasing attention by theoretical econometricians and applied

researchers. Among the various models involving spatial dependence, the spatial autoregressive or

SAR model is perhaps the most popular one. The SAR model has the following form:

Yn = λ0WnYn +Xnβ0 + un, (1.1)

where λ0 is the spatial lag parameter, Wn is a known n × n spatial weight matrix, WnYn is the

spatial lagged variable, n is the total number of spatial units, Xn is an n × p matrix with its rows
(xn,i, i = 1, · · · , n) being the values of p regressors, β0 is a p-vector of unknown regression parameters,
and un ≡ (un,1, · · · , un,n) denotes the n-vector of random disturbance terms. In the standard SAR

setting, un,i is typically assumed to have a zero mean, i.e., the model is under the mean restriction.

Since WnYn is present on the right hand side of (1.1), the ordinary least squares (OLS) estimator

is usually inconsistent. Traditionally, there are two types of estimators that have been studied and

commonly used in the literature. One is the maximum likelihood (ML) or quasi maximum likelihood

(QML) estimator; see, among the others, Ord (1975), Anselin (1988), Smirnov and Anselin (2001),

and Lee (2002b, 2004). The other is the generalized method of moment (GMM) estimator; see,

among the others, Kelejian and Prucha (1998, 1999), Lee (2003, 2007), and Liu, Lee and Bollinger

(2007). Both estimators are under the assumption that the disturbances {un,i} are independent and
identically distributed (iid).

While the spatial models with iid innovations have been extensively studied and applied, re-

searchers have started to realize that an important issue in modelling the spatial data, the het-

eroscedasticity, has not been adequately addressed. Lin and Lee (2006) argued that social inter-

actions may cause the variance of the aggregated level data be inflated, and Kelejian and Prucha

(2006) indicated that spatial units are often heterogeneous in important characteristics such as size.

As a result, the QML estimator under iid assumption is inconsistent, and the asymptotic distribu-

tion for GMM estimation under iid assumption is not appropriate. Lin and Lee (2006) extended the

GMM method to allow for heteroscedasticity for the SAR model, while Kelejian and Prucha (2006)

considered the GMM estimation with heteroscedasticity to a more general model, called SARAR,

where the disturbance also follows a SAR process. Clearly, these spatial models can be considered

as “spatial” extensions of the usual mean regressions with or without heteroscedasticity, where the

model estimation is based primarily on the restriction that the means of the error terms are zero.

Koenker and Bassett (1978) made an important extension of the standard mean regression to the

quantiles of the responses, giving what is now called the quantile regression (QR) model, which
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allows a separate modelling at different points of a response distribution so that the heterogeneous

impacts of explanatory variables can be characterized and differentiated at different points of a

response distribution. The standard linear QR model has the form

Yn = Xnβ0τ + un, (1.2)

where the τth quantile of un,i is zero, and β0τ is the so-called regression quantile that may change

with the value of τ . The method of estimating the linear QR model is to minimize the average

of asymmetric absolute deviations, which in the special case of τ = 0.5 gives the well-known least

absolute deviations (LAD) estimator. Subsequently, the QR model has been studied, extended and

applied by many authors. See Koenker (2005) for an excellent exposition of the quantile regression.

While both Model (1.1) and Model (1.2) can be considered as stepping-stone models in their own

fields (i.e., spatial econometrics and quantile regression), a combination of the two may open up a

new and exciting research direction. In this paper we consider the estimation of the SAR model under

quantile restrictions, i.e., assuming that the τth quantile of un,i in (1.1) is zero (see Section 2 for

details). Quantile regression is an important method for modeling heterogenous effects of variables

on a response and at the same time taking into account of unobserved heterogeneity. It also permits

heteroscedasticity among the disturbances. Moreover, like many other robust estimators, quantile

estimators are robust and much less sensitive to outliers. Since heterogeneity, heteroscedasticity and

extreme values are frequently present in spatial data, it is important to study the estimation of SAR

models under quantile restrictions.

Since the spatial lagged variable is present on the right hand side of (1.1), the conventional quan-

tile regression of Koenker and Bassett (1978) generally produces inconsistent estimates. We need to

consider quantile regression with endogenous regressors by treating (1.1) as a structural equation. In

this paper, we propose an instrumental quantile regression (IVQR) estimator of the SAR model by

extending the method of Chernozhukov and Hansen (2006). We establish the asymptotic distribution

of our IVQR estimator. Monte Carlo simulation reveals that the new estimator generally performs

well in finite samples at various quantile points. In the special case of median restriction, it out-

performs the conventional QML estimators without taking into account of heteroscedasticity in the

errors; it also outperforms the GMM estimators with or without considering the heteroscedasticity.

To the best of our knowledge, Amemiya (1982) was the first to study the asymptotic properties

of a class of two-stage median regression estimators for the structural equation model. This method

was extended by Powell (1983) and Chen and Portony (1996). Recently, Abadie, Angrist and Imbens

(2002) consider quantile regression methods for estimating endogenous treatment effects where the

endogenous variables are dummy variables. Sakata (2006) develops an instrumental variable method

to estimate structural equations based on conditional median restriction. Chernozhukov and Hansen

(2005) consider modeling and identification of quantile treatment effect in the presence of endogene-
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ity. Chernozhukov and Hansen (2006) introduce a class of instrumental variable quantile regression

(IVQR) methods for structural and treatment effect models. Ma and Koenker (2006) study the

quantile regression methods for recursive structural equation models. A common feature of these

methods is that they are all developed to estimate a structural equation with iid data. In case of

spatial data, it remains unclear whether we can develop relevant theory under quantile restrictions.

This paper is organized as follows. Section 2 introduces the model and the IVQR estimator.

Section 3 studies the asymptotic properties of the IVQR estimator. Section 4 presents Monte Carlo

results for the finite sample properties of the IVQR estimator, and for the comparisons with the

conventional GMM and QML estimators at the special case where τ = 0.5. Section 5 contains

concluding remarks. All proofs are relegated to the appendix.

To proceed, we introduce some notation. Let In be the n × n identity matrix. For a matrix
An, we denote its norm as An = [tr(AnAn)]

1/2, and the (i, j)th element of it as an,ij . Similarly,

for a vector an, an,i denotes its ith element. We say An is uniformly bounded in absolute value

if sup1≤i≤n,1≤j≤n |an,ij | < ∞. We say An is uniformly bounded in row sums (or column sums) if
sup1≤i≤n

n
j=1 |an,ij | ≤ ca (or sup1≤j≤n

n
i=1 |an,ij | ≤ ca) for some constant ca < ∞. Let em,i

denote the m× 1 unit vector with 1 in the ith place, i ≤ m.

2 The Model and the Method of Estimation

2.1 The SAR Model Under Quantile Restrictions

A natural extension of the ordinary SAR model given in (1.1) is to assume the τth quantile of un,i

to be zero, and a natural extension of the ordinary QR model given in (1.2) is to allow a spatial lag

in the model. Both extensions lead to a model of the form

Yn = λ0τWnYn +Xnβ0τ + un, (2.1)

where the τth quantile of un,i is zero for i = 1, · · · , n, λ0τ is a scalar spatial lag parameter that
is τ -dependent, and β0τ is a p-vector regression parameters that is also τ -dependent. The other

quantities are defined similarly as those in Model (1.1).

This generalization can be very interesting as it allows a different degree of spatial dependence at

a different point of the response distribution, i.e., it allows the spatial parameter λτ to be dependent

on τ . At the same time, it also allows, as in the ordinary quantile regression, the impacts (βτ ) of

the covariates Xn on the response Yn to be different at the different quantile (τ) points. Taking, for

example, the housing prices, while it is certainly reasonable to think that the way the price relates

to the covariates at a high quantile point (τ = 0.9, say) is different from that at a low quantile point

(τ = 0.1, say). i.e., β0.9 = β0.1; at the same time, it should also be very reasonable to think that the
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way the price of a house spatially relates to the prices of its neighbors around the city center (high

τ) should be different from that around a suburb (low τ), e.g., λ0.9 = λ0.1.

Denote Sn(λ) = In − λWn for any value of λ. It follows that (2.1) has the reduced form

Yn = S
−1
n (λ0τ )(Xnβ0τ + un), (2.2)

provided that Sn(λ0τ ) is nonsingular. This reduced form will be frequently used in the derivation of

the asymptotic properties of the estimator proposed below.

As reviewed in the introduction, there are many approaches to the estimation of the parameters

in (1.1), among which the method of (quasi-) maximum likelihood and the (generalized) method

of moments are the two most popular ones. However, no estimator has been proposed to estimate

the parameters in (2.1). When τ = 0.5 and the distribution of un,i is symmetric, Model (2.1)

becomes essentially Model (1.1). The distinction is that for the QML and GMM methods to work

the disturbance term in (1.1) is usually assumed to possess finite (4 + η)th moments, whereas for

the IVQR method to work the disturbance in (2.1) is only assumed to have a finite first moment. A

much greater distinction between Model (1.1) and Model (2.1) is that the former is subject to the

mean restriction, whereas the latter is subject to the quantile restriction in the sense that the model

can be estimated separately at different quantile points, and doing so the heterogeneous impacts of

the explanatory variables on different points of the distribution of a response Y can be characterized.

Below we introduce the estimator based on quantile regression with endogenous regressors.

2.2 The IVQR Estimator of the SAR Model

Since the seminal work of Koenker and Bassett (1978), much attention has been paid to the use of

quantile estimation for robust inference. Like many other robust estimators, quantile estimators are

robust and much less sensitive to outliers. Also, it permits certain form of heteroscedasticity in the

error terms. These properties make the Model (2.1) very interesting. The question now is how we

are going to estimate Model (2.1) as it is not a standard quantile regression model.

Let ȳn,i be the ith element of ȳn ≡ WnYn. Following Koenker and Bassett (1978), we may

formulate the conventional quantile regression estimator of (λ0τ , β0τ ) as finding the best predictor of

yn,i given ȳn,i and xn,i under the asymmetric least absolute deviation loss ρτ (u) ≡ (τ − 1(u ≤ 0))u,
where 1(·) is the usual indicator function. In other words, we may consider estimating (λ0τ , β0τ ) by:

(
−→
λ τ ,
−→
β τ ) = argmin

(λ,β)

1

n

n

i=1

ρτ (yn,i − λȳn,i − β xn,i). (2.3)

However, due to the endogeneity of ȳn,i, the above estimator is usually inconsistent.

An important development in the literature of quantile regression made by Chernozhukov and

Hansen (2005, 2006) is to allow for endogeneity in the model. Our estimator is proposed based on
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the ideas of Chernozhukov and Hansen. To motivate our estimator, we for the moment pretend

that {yn,i, ȳn,i, xn,i} is an iid sequence, and allow the dependence between ȳn,i and un,i but not

that between xn,i and un,i. This will greatly facilitate our discussions at the population level. If

the τth conditional quantile of un,i given ȳn,i and xn,i is nonzero (which is true when there exists

endogeneity), then the estimator in (2.3) may fail to be consistent because λ0τ ȳn,i+β0τxn,i is not the

τth conditional quantile of yn,i given ȳn,i and xn,i. However, if there exists a vector of instruments

ςn,i (for ȳn,i) that it is correlated with ȳn,i in an appropriate way but independent of un,i, we have

under mild conditions (Chernozhukov and Hansen (2006)),

Pr(yn,i ≤ λ0τ ȳn,i + β0τxn,i|xn,i, ςn,i) = τ a.s. (2.4)

Eq. (2.4) simply says that 0 is a the τth quantile of yn,i−λ0τ ȳn,i−β0τxn,i conditional on (xn,i, ςn,i),
almost surely for each τ . Note that the conditional probability Pr(yn,i ≤ λ0τ ȳn,i + β0τxn,i|xn,i, ςn,i)
is a measurable function of (xn,i, ςn,i). Thus, following Chernozhukov and Hansen (2006), to solve

Eq. (2.4) is to find (λ0τ ,β0τ ) such that 0 is a solution to the τth quantile regression of yn,i−λ0τ ȳn,i−
β0τxn,i on (xn,i, ςn,i) :

0 ∈ argmin
g∈F

E [ρτ (yn,i − λ0τ ȳn,i − β0τxn,i − g(xn,i, ςn,i))] , (2.5)

where F is a class of measurable functions of (xn,i, ςn,i) that will be suitably restricted in the finite

sample applications.1

The arguments leading to (2.5) gives the theoretical foundation for the development of the new

estimation method. In real applications, the class F of the measurable g functions can be restricted

to be linear. Let zn,i be a q-vector of instrumental variables. Now, we consider a finite-sample

analog of the population instrumental variable quantile regression and define the weighted quantile

regression (QR) objective function as

Qnτ (λ,β, γ) ≡ 1

n

n

i=1

ρτ (yn,i − λȳn,i − β xn,i − γ zn,i)vn,i, (2.6)

where vn,i > 0 is a scalar weight. The IV zn,i can be formed from xn,i and ςn,i. The weights

vn,i are important for nonparametric or semiparametric quantile regressions and for asymptotic

efficiency considerations. Since we only focus on the parametric quantile regressions, they are not

essential for our discussions below, hence vn,i can always be set to 1 in practice. A natural choice of

the instrument matrix Zn = (zn,1, · · · , zn,n) may be the matrix consisting of linearly independent
columns of Xn ≡WnXn.

1This idea parallels the interpretation of the ordinary quantile regression estimator at the population level: the τth

conditional quantile of yn,i given xn,i in Model (2.1) can be understood as the solution to the problem: QY |X(τ) ∈
argming∈F E [ρτ (yn,i − g(xn,i))], where F is the class of measurable functions of xn,i, restricted to the form β0τxn,i

in finite sample applications.
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Following the arguments leading to (2.5) at the population level, if the finite sample objective

function Qnτ (λ, β, γ) meets certain identification conditions we expect that the estimate of γ is close

to zero when (λ,β) is close to the true population values (λ0τ ,β0τ ). Now, let ξn,i = (xn,i, zn,i) . We

define the instrumental variable quantile regression (IVQR) estimator for the SAR model as follows:

(i) for a given value of λ, run an ordinary QR of yn,i − λȳn,i on ξn,i to obtain

(β̂(λ, τ) , γ̂(λ, τ) ) ≡ argmin
(β,γ)

Qnτ (λ,β, γ); (2.7)

(ii) minimize a norm of γ̂(λ, τ) over λ to obtain the IVQR estimator of λ0τ , i.e.,

λ̂(τ) = argmin
γ

γ̂(λ, τ) A (2.8)

where γ A =
√
γ Aγ, and A = A+ op(1) for some positive definite matrix A; and finally

(iii) run an ordinary QR of yn,i − λ̂(τ)ȳn,i on ξn,i to obtain the IVQR estimator of β0τ . That is,

β̂(τ) ≡ β̂(λ̂(τ), τ)). (2.9)

Intuitively, to find λ̂(τ) in Step (ii), we look for a value of λ that makes the coefficient γ̂(λ, τ)

of the instrumental variable as close to 0 as possible. The weight matrix A is used for asymptotic

efficiency purpose. A convenient choice is to set A equal to the inverse of the asymptotic covariance

matrix of
√
n(γ̂(λ, τ)− γ0(λ, τ)) where γ0(λ, τ) denotes the probability limit of γ̂(λ, τ).

Remark 1. It is simple to implement the above IVQR procedure in practice: (i) for a given

probability index τ of interest (e.g., τ = 0.5 for IV median regression), define a grid of values

{λj , j = 1, · · · , J} that lie in a compact subset of (−1, 1) (say when Wn is row normalized), and

run an ordinary τ -quantile regression of yn,i − λȳn,i on (xn,i, zn,i) with weight vn,i ≡ 1 to obtain
coefficients (β̂(λj , τ), γ̂(λj , τ)); and (ii) choose λ̂(τ) as the value among {λj , j = 1, · · · , J} that makes
γ̂(λ, τ) A closest to zero. The estimate of β0τ is then given by β̂(λ̂(τ), τ).

Remark 2. There are other approaches to obtain estimates of (λ0τ ,β0τ ) in (2.1). For example,

one can follow Honoré and Hu (2004) and propose a method of moments approach that attempts to

minimize G0nτ (λ, β) A over (λ,β), where

G0nτ (λ,β) =
1

n

n

i=1

ψτ (yn,i − λȳn,i − β xn,i)ξn,ivn,i, (2.10)

and ψτ (u) ≡ ∂ρτ (u)/∂u = τ − 1(u ≤ 0). See also Abadie (1995) in a different context. Another
example is to generalize the median estimator of Sakata (2006) to our spatial context. In contrast to

the IVQR approach proposed in this paper, these alternative approaches involve highly non-convex,
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multi-modal, and non-smooth objective functions over many parameters, which make them difficult

to be implemented in practice, and thus are not considered in this paper. However, the functions

G0nτ (·, ·) and ψτ (·) remain very important to the theoretical developments in this paper.

3 Asymptotic Properties of the IVQR Estimator

In this section, we derive the asymptotic distribution of the IVQR estimator defined above. Through-

out, we denote Sn ≡ Sn(λ0τ ) and Hn ≡ WnS
−1
n . Also, we use Λ and B to denote the parameter

spaces for λ and β, respectively, and “E” to denote the expectation operator corresponding to the

true parameter values. We first provide a set of assumptions.

3.1 Assumptions

First we make some assumptions on the random disturbance terms and the spatial weight matrix.

Assumption 1. (i) The random disturbance terms un,1, · · · , un,n are independent of each other.
(ii) The τth quantile of un,i is zero for each i = 1, · · · , n. (iii) The density fn,i(u) of un,i is uniformly
bounded with bounded continuous first derivatives. (iv) supnmax1≤i≤nE|un,i| ≤ μ <∞.

Assumption 2. (i) As a normalization, the diagonal elements wn,ii ofWn are 0 for all i. (ii) The

matrix Sn is nonsingular. (iii) The sequences of matrices {Wn} and {S−1n } are uniformly bounded
in both row and column sums. (iv) {S−1n (λ)} are uniformly bounded in either row or column sums,
uniformly in λ ∈ Λ, where Λ is convex compact with λ0τ in its interior. (v) The diagonal elements
hn,ii of Hn satisfy limn→∞min1≤i≤n infλ∈Λ bni(λ) = ch > 0 with bni(λ) ≡ 1− (λ− λ0τ )hn,ii.

Like Lee (2004), Assumptions 2(i)-(iv) provide the essential features of the weight matrix for the

model. Assumption 2(ii) guarantees that the disturbance terms are well defined. Kelejian and Prucha

(1998, 1999, 2001) and Lee (2004) also assume Assumption 2(iii) which limits the spatial correlation

to some degree but facilitates the study of the asymptotic properties of the spatial parameter estima-

tors. By Horn and Johnson (1985, p. 301), limsupn λ0τWn < 1 is sufficient to guarantee that S−1n
is uniformly bounded in both row and column sums. By Lee (2002b, Lemma A.3), Assumption 2(iii)

implies {S−1n (λ)} are uniformly bounded in both row and column sums uniformly in a neighborhood
of λ0τ . Assumption 2(iv) requires this to be true uniformly in λ ∈ Λ. Assumption 2(v) restricts both
Wn and the parameter space for λ. It is not as restrictive as it appears. For example, if we further

assume that the elements wn,ij of Wn are uniformly at most of order l
−1
n such that ln → ∞ and

ln/n → 0 (see Assumption 5∗ below), then by Lemma A.1 in the appendix, hn,ii = O(1/ln) = o(1)

so that Assumption 2(v) is automatically satisfied. One can consider relaxing Assumption 2(v) but

at the cost of lengthier proofs.
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For the regressors xn,i, instruments zn,i, weights υn,i and A, we make the following assumption.

Assumption 3. (i) The regressors xn,i are nonstochastic and uniformly bounded in absolute

value, and Xn has full column rank and contains a column of ones. (ii) The instruments zn,i

are nonstochastic and uniformly bounded in absolute value, and the instrument matrix Zn has full

column rank q ≥ 1. (iii) The weights υn,i are nonnegative and uniformly bounded. (iv) A = A+op(1),
where A is a symmetric positive definite matrix.

Assumptions 3(i)-(ii) are standard; see Kelejian and Prucha (1998, 1999). In most applications,

Zn is composed of linearly independent columns of (WnXn,W
2
nXn, · · · ), where the subset contains at

least the linearly independent columns ofWnXn. The Zn matrix chosen this way satisfy Assumption

3(ii) due to Assumptions 2(iii) and 3(i).

For identification purpose, define the population objective function as

Qτ (λ,β, γ) ≡ lim
n→∞E[Qnτ (λ, β, γ)]. (3.1)

Let α0λτ ≡ α0(λ, τ) ≡ (β0(λ, τ) , γ0(λ, τ) ) ≡ argmin(β,γ)Qτ (λ, β, γ). Let Gnτ (λ, β, γ) be the

negative partial derivative of Qnτ (λ,β, γ) with respect to (β , γ ) , i.e.,

Gnτ (λ,β, γ) =
1

n

n

i=1

[ψτ (yn,i − λȳn,i − β xn,i − γ zn,i)]ξn,ivn,i. (3.2)

Recall the function G0nτ (λ,β) introduced in (2.10) and note that G
0
nτ (λ,β) = Gnτ (λ,β, 0). Define

G0τ (λ,β) = lim
n→∞E[G

0
nτ (λ,β)] and Gτ (λ,β, γ) = lim

n→∞E[Gnτ (λ,β, γ)]. (3.3)

We impose the following high-level assumption.

Assumption 4. Let τ be given. (i) (λ0τ ,β0τ ) is in the interior of a convex compact set

Λ × B ⊂ R1+p. (ii) ∂Gτ (λ,β, γ)/∂(β , γ ) is continuous and has full rank at (β0(λ, τ), γ0(λ, τ))

uniformly in λ ∈ Λ. (iii) ∂G0τ (λ,β)/∂(λ,β ) is continuous and has full column rank at (λ0τ ,β0τ ).
(iv) If G0τ (λ

∗, β∗) = 0, then λ∗ = λ0τ and β
∗ = β0τ . (v) α0(λ, τ) is continuous in λ ∈ Λ.

Assumption 4(i) imposes compactness on the parameter space. Note that the objective function in

the first step estimation is convex in (β, γ) for each λ. Assumption 4(ii) imposes a local identification

condition for the conventional quantile regression (of yn,i−λȳn,i on ξn,i). This condition can further
be seen as follows. Let α0τ ≡ (β0τ , 0 ) be the value of α0(λ, τ) at λ = λ0τ . Under Assumptions 1(iii)

and 2(v), we have
∂Gτ (λ,β, γ)

∂(β , γ ) β=β0(λ,τ)

γ=γ0(λ,τ)

= − lim
n→∞Jnα(λ, τ), (3.4)

where

Jnα(λ, τ) =
1

n

n

i=1

E fn,i
ani(λ)

bni(λ)

ξn,iξn,ivn,i

bni(λ)
, (3.5)
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ani(λ) ≡ (λ− λ0τ )
n

l=i

hn,ilun,l + (λ− λ0τ )en,iHnXnβ0τ + (α0(λ, τ)− α0τ ) ξn,i (3.6)

and bni(λ) is defined in Assumption 2(v). Note that for sufficiently large n, Jnα(λ, τ) is the same as

−∂E[Gnτ (λ, β, γ)]/∂(β , γ ). Thus, the local identification condition of Assumption 4(ii) boils down
to requiring the matrix Jnα(λ, τ) to be positive definite for large enough n.

Assumption A4(iii) requires implicitly the relevance between the instruments ξn,i and the en-

dogenous variable ȳn,i. This is because under Assumptions 1(iii) and 2(v),

∂G0τ (λ, β)

∂(λ,β ) λ=λ0τ
β=β0τ

= − lim
n→∞ Jn(τ), (3.7)

where

Jn(τ) =
1

n

n

i=1

fn,i(0)ξn,ixn,ivn,i, (3.8)

with xn,i = ( n
l=i hn,ilEun,l + en,iHnXnβ0τ , xn,i). Thus, requiring ∂G0τ (λ,β)/∂(λ,β ) to have

full column rank at (λ0τ ,β0τ ) is equivalent to requiring Jn(τ) to have full column rank for large

enough n, which in turn requires that ξn,i be closely enough related to xn,i and hence to ȳn,i as the

term en,iHnXnβ0τ appears in the reduced-form expression for ȳn,i. Note that Jn(τ) is related to

−∂EG0nτ (λ, β)/∂(λ,β ) evaluated at (λ0τ ,β0τ ).
Noting that G0τ (λ0τ ,β0τ ) = 0 by Assumption 1(ii), Assumption A4(iv) requires that θ0τ =

(λ0τ ,β0τ ) be the unique solution to G
0
τ (λ, β) = 0. This assumption is needed for the consistency of

our estimator. It is weaker than the condition that if E[G0nτ (λ
∗,β∗)] = 0, then λ∗ = λ0τ and β

∗ = β0τ .

The latter condition is usually satisfied in the extreme estimation for iid data or stationary time

series data. See Hong and Tamer (2003) for detailed discussions on conditions under which quantile

regression models with endogeneity are identified. In the study of spatial discrete-choice models,

Pinkse and Slade (1998) made a similar assumption, and Pinkse, Slade and Shen (2006) assumed a

slightly weaker condition.

Let α(λ, τ) ≡ (β (λ, τ), γ (λ, τ)) be an arbitrary value of the parameter vector (β , γ ) for a given
λ and τ . Let ∆ ≡ ∆(λ, τ) = √n(α(λ, τ)−α0(λ, τ)) such that ∆ ≤M <∞ where the dependence

of ∆ on n is suppressed. Let un,i(λ) = yn,i − λȳn,i − α0(λ, τ) ξn,i, and u
∗
n,i(λ,∆) = un,i(λ) +

n−1/2∆(λ, τ) ξn,i = yn,i − λȳn,i − α(λ, τ) ξn,i. Let ηn,i(λ) ≡ −(ψτ (u∗n,i(λ,∆)) − ψτ (un,i(λ)))cni,

where {cni, i = 1, · · · , n} is an arbitrary bounded nonstochastic sequence and ψτ (u) = τ − 1(u ≤ 0)
defined at (2.10). Define

Sn(λ) = 1√
n

n

i=1

ηn,i(λ).

Next, we state a high level assumption.

Assumption 5. Var(Sn(λ)) = o(1) for each λ ∈ Λ.
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Assumption 5 restricts the degree of dependence in the data. In the special case where λ = λ0τ ,

Cov(ηn,i(λ), ηn,j(λ)) = 0 for all i = j by Assumption 1(i) so that it is easy to verify Var(Sn(λ0τ )) =
O(n−1) = o(1). When λ deviates from λ0τ , we can verify that this assumption can be satisfied under

different primitive conditions given below.

Assumption 5∗. (i) The elements wn,ij of Wn are uniformly at most of order l
−1
n , denoted

by O(1/ln), such that ln → ∞ and ln/n → 0 as n goes to infinity. (ii) Eu2n,i = σ2n,i with

supnmax1≤i≤nσ2n,i ≤ σ2 <∞.

Assumption 5∗(i) requires that the elements wn,ij of Wn tend to zero uniformly as n→∞. This
assumption is reasonable when each spatial unit is affected by an infinite number of neighbors such

that the effect from any individual unit is negligible but the aggregate effect is not. Assumption

5∗(ii) requires the existence of the second moments of un,i which together with Assumption 5∗(i)

ensure that
n
l=i hn,il(un,l − Eun,l) = op(1) for each i = 1, · · · , n. We show in Appendix B that

Assumption 5∗ together with Assumptions 1-3 are sufficient for Assumption 5.

Nevertheless, Assumption 5∗ rules out the case where ln does not converge to infinity, which is very

important in many applications when a spatial unit is only affected by a finite number of neighbors.

Following Pinkse, Shen and Slade (2007), we can control the variance of Sn(λ) by borrowing the
notion of “mixing” from the time series analysis. To proceed, we divide the observations into non-

overlapping groups Gn1, · · · ,GnJ , 1 ≤ J < ∞. For each j = 1, · · · , J , there are mnj mutually

exclusive subgroups, Gnj1, · · · ,Gnjmnj
. Group membership of each observation can vary with the

sample size n and so can the number of subgroups mnj in each group j. Let njt denote the number

of observations in subgroup Gnjt. The following assumption is adapted from Pinkse, Shen and Slade

(2007).

Assumption 5∗∗. (i) For any j = 1, · · · , J , let G∗n, G∗n ⊂ Gnj be any sets for which ∀t =
1, · · · ,mnj , if Gnjt ∩ G∗n = ∅ then Gnjt ∩ G∗∗n = ∅. Let S∗n(λ) = 1√

n s∈G∗n ηn,s(λ) and S∗∗n (λ) =
1√
n s∈G∗∗n ηn,s(λ). Then for each λ ∈ Λ,

Cov (S∗n(λ), S∗∗n (λ)) ≤ Var (S∗n(λ))Var (S∗∗n (λ))αmnj ,

for some “mixing” numbers αmnj
such that limn→∞

J
j=1m

2
njαmnj

= cα ∈ [0,∞). (ii) For each
j = 1, · · · , J , limn→∞maxt≤mnj njt/n = 0.

Assumption 5∗∗(i) requires a bound on the correlation of two quantities, each corresponding to

different sets of subgroups of the same group. It is weaker than Assumption A in Pinkse, Shen

and Slade (2007). For a discussion on the need of dividing observations into finite J groups, see

Pinkse, Shen and Slade (2007). Assumption 5∗∗(ii) requires that the number of observations in each

subgroup is relatively small. This is needed for controlling the variance of the partial sums over each

subgroup. We show in Appendix B that Assumption 5∗∗ suffices to ensure Assumption 5.
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Now, define

υn(λ) = −√n [Gnτ (λ,α0(λ, τ))− EGnτ (λ,α0(λ, τ))]

=
1√
n

n

i=1

[1(yn,i − λȳn,i ≤ α0λτ ξn,i)− E(1(yn,i − λȳn,i ≤ α0λτ ξn,i))] ξn,ivn,i.

We make the following assumption.

Assumption 6. (i) EGnτ (λ,α0(λ, τ))−Gτ (λ,α0(λ, τ)) = O(n−1/2) uniformly in λ. (ii) supλ∈Λ
υn(λ) = Op(1) and supλ∈Λ sup|λ−λ∗|<δn υn(λ) − υn(λ

∗) = op(1) for every sequence {δn} con-
verging to zero.

Assumption 6(i) specifies the rate at which EGnτ (λ,α0(λ, τ)) converges to its limit. If the con-

vergence holds pointwise, we can show that it must hold uniformly in λ by using the properties

of the indicator function. Assumption 6(i) is automatically satisfied for iid data and stationary

time series data in which case EGnτ (λ,α0(λ, τ)) = Gτ (λ,α0(λ, τ)). Assumption 6(ii) is a stochastic

equicontinuity condition. Let ξ = (x , z ) . Consider the class of functions

M = {g(y, ȳ, ξ, v;λ) = 1(y − λȳ − α0λτξ ≤ 0)ξv : λ ∈ Λ} .

If (yn,i, ȳn,i, ξn,i, vn,i) are iid with probability law Pn, it is easy to verify that {g(·;λ) : λ ∈ Λ} is a
Euclidean class with envelope g such that g(y, ȳ, ξ, v) ≡ ξv and g(y, ȳ, ξ, v)dPn = E ξv < ∞.
Then by Lemma 2.17 of Pakes and Pollard (1989), Assumption 6 holds for iid data. It also holds for

time series data under weak data dependence conditions (e.g., Andrews (1994) and Hansen (1996)).

For spatial data, we can show that Assumption 6 holds provided limn→∞ln/
√
n = c ∈ (0,∞]. This

latter condition with c = ∞ has been assumed in Lee (2002a) for the consistency of least squares

estimation of spatial autoregressive models and in Robinson (2007) for the adaptive estimation of

spatial autoregressive models. Nevertheless, it is not necessary here because there may exist other

cases where Assumption 6 holds.

3.2 Asymptotic Distribution

We study the asymptotic property of the IVQR estimators defined in (2.7)-(2.9) above. Under

Assumptions 1-6, we first show that the IVQR estimator α̂(λ, τ) has a Bahadur representation

uniformly in λ. To do so, recall un,i(λ) = yn,i − λȳn,i − α0λτξn,i. Define

Sn(λ, τ) =
1√
n

n

t=1

ψτ (un,i(λ))ξn,ivn,i.

The following theorem establishes the Bahadur representation for α̂(λ, τ).
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Theorem 3.1 Suppose Assumptions 1-6 hold. Then

√
n[α̂(λ, τ)− α0(λ, τ)] = J−1nα (λ, τ)Sn(λ, τ) + op(1) uniformly in λ ∈ Λ.

Note that supλ |Sn(λ, τ)| = Op(1) by Lemma A.4 and supλ|Jnα(λ, τ)| = O(1) by Assumptions 1-3
and Lemma A.1. An immediate consequence of Theorem 3.1 is that α̂(λ, τ)−α0(λ, τ) = Op(n

−1/2)

uniformly in λ ∈ Λ.

Let θ0(τ) ≡ (λ0(τ),β0(τ)) and let θ̂(τ) ≡ (λ̂(τ), β̂ (τ)) be its IVQR estimator. To establish the
asymptotic normality of θ̂(τ), define

Jλ = lim
n→∞

1

n

n

i=1

fn,i(0)vn,iξn,i

⎡⎣ n

l=i

hn,ilEun,l + en,iHnXnβ0τ

⎤⎦ , and
Jα = lim

n→∞
1

n

n

i=1

fn,i(0)vn,iξn,iξn,i,

which are, respectively, (p+q)×1 and (p+q)×(p+q). Note that Jλ is the first column of limn→∞ Jn(τ).
Partition conformably J−1α = [Jβ , Jγ ] , where Jβ and Jγ are p × (p + q) and q × (p + q) matrices,
respectively. Then we can establish the following theorem.

Theorem 3.2 Suppose that Jα is of full rank and Assumptions 1-6 hold. Then

√
n[θ̂(τ)− θ0(τ)] d−→ N(0,Ω(A)),

where Ω(A) = Q(A)S0Q(A) , S0 = τ(1− τ) limn→∞ 1
n

n
i=1 v

2
n,iξn,iξn,i, and

Q(A) = JγAJγJλ(JλJγAJγJλ)
−1, (Ip+q − Jλ(JλJγAJγJλ)−1JλJγAJγ) Jβ .

The formula for the asymptotic covariance matrix of
√
n[θ̂(τ) − θ0(τ)] looks complicated and it

depends on the choice of the weight matrix A. In the case of just identification (q = 1), we show in the

following corollary that the choice of A does not affect the asymptotic variance of
√
n[θ̂(τ)− θ0(τ)].

Corollary 3.3 Suppose that q = 1 and the conditions of Theorem 3.2 hold. Then

√
n[θ̂(τ)− θ0(τ)] d−→ N(0,Ω0),

where Ω0 = J
−1
0 S0(J

−1
0 ) and J0 = limn→∞ Jn(τ) with Jn(τ) being defined in (3.8).

Remark 3. In the case of over-identification (q > 1), the choice of the weight matrix A in the

objective function γ̂(λ, τ) A generally matters. It is natural to choose A to be a consistent estimate

of the inverse of the asymptotic covariance matrix of
√
nγ̂(λ, τ). In this case, A is also λ-dependent

and needs to be estimated at each grid point of λ in the process of optimization.
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Remark 4. Consider the method of moments estimator θ(τ) = argminθ Gnτ (θ) A defined in

(2.10). In a separate study we have established the asymptotic normality of θ(τ) under conditions

similar to those imposed in Assumptions 1-6. In particular, when we choose the optimal weight

A = n(
n
i=1 v

2
n,iξn,iξn,i)

−1, the asymptotic covariance of θ(τ) is equal to Ω0. This is true regardless

of the dimension of the instruments zn,i. In other words, with the optimal choice of A in the definition

of θ(τ), it is asymptotically equivalent to θ̂(τ) in case of just identification (q = 1).

3.3 Estimation of VC Matrix

For statistical inferences based on our model, we need to provide a method of estimating the as-

ymptotic variance-covariance (VC) matrix Ω(A) which depends on S0, Jλ and Jα. Since Sn ≡
τ(1−τ) 1n n

i=1 v
2
n,iξn,iξn,i consistently estimates S0, we focus on the consistent estimation of Jλ and

Jα. Note that Jλ and Jα depend on the unknown densities fn,i(0). To estimate these quantities, we

could either make some distributional assumption or use some nonparametric estimation technique

as in Powell (1986) and Koenker (1994). Nevertheless, either approach will complicate the matter

to a great deal. As pointed out by Pakes and Pollard (1989) and used by Honoré and Hu (2004),

the derivation of the asymptotic normality implies that Jλ and Jα can be estimated by “numerical

derivatives ”. Recall that Jλ is the first column of limn→∞ Jn(τ) = −∂G0τ (λ,β)/∂(λ,β ) evaluated
at λ = λ0τ and β = β0τ (see Eq. (3.7)), we can estimate Jλ by

Jnλ =
G0nτ θ̂(τ) + a

(0)
n ep+1,1 −G0nτ θ̂(τ)− a(0)n ep+1,1

−2a(0)n
where {a(0)n } is a sequence of “bandwidths”. Similarly, note that Jα is the limit of the derivative of
−E[Gnτ (λ;α)] with respect to α = (β , γ ) evaluated at (λ0τ ;α0τ ), hence we can estimate the jth
column of Jα by

J(j)nα =
Gnτ λ̂(τ); α̂(τ) + a

(j)
n ep+q,j −Gnτ λ̂(τ); α̂(τ)− a(j)n ep+q,j

−2a(j)n
where {a(j)n } is a sequence of “bandwidths”. These estimates are consistent provided a(j)n = op(1) and

(
√
na

(j)
n )−1 = op(1). For example, we can take a

(j)
n = n−α for some 0 < α < 0.5, j = 0, 1, · · · , p+ q.

Finally, to apply the results of Corollary 3.3 for inferences, one needs to estimate J0. The first

column of it is estimated by Jnλ given above. The other columns can be estimated in a similar way

by replacing ep+1,1 by ep+1,i, i = 2, · · · , p+ 1, in the definition of Jnτ .
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4 Monte Carlo Simulations

In this section we report some results from a set of Monte Carlo experiments for the finite sample

performance of our IVQR estimator of the SAR model. Also, in the special case of median regression

with symmetric errors, we compare our estimator with the QMLE without taking into account of

heteroscedasticity (Lee, 2004), the 2SLS and GMM estimators of Lee (2007) with iid assumption,

and the robust GMM estimator of Lin and Lee (2006). The GMM estimator of Lee (2007) denoted

by GMM0 and the robust GMM estimator of Lin and Lee (2006) denoted by GMMR require initial

estimates of λ and β and a weighting matrix. We follow Lin and Lee (2006) and choose 2SLS

estimates as initial estimates and the optimal weighting matrix for GMM under iid setting as the

weighting matrix for both GMM0 and GMMR. Note that the estimator proposed by Kelejian and

Prucha (2006) is essentially the 2SLS estimator when their SARAR model is reduced to SAR model.

The data generating process (DGP) we employed in the Monte Carlo experiments is given below

Yn = λ0τWnYn +Xnβ0τ + un,

where Xn contains two columns: the first column Xn0 is just the column of ones, and each value

in the second column Xn1 is the sum of 48 independent Uniform(-0.25, 0.25) random numbers.

The heteroscedasticity in un is determined by the absolute function |Xn1|, i.e., un = |Xn1|en, where
en is a vector of iid random variates subtracted by their τth quantiles. Three distributions for en

are considered in the experiment: (i) standard normal, (ii) a student t distribution with two degrees

of freedom, and (iii) a chi-squared distribution with two degrees of freedom. The true parameter

values are taken to be β0 = β1 = 1, and λ = 0.5. The sample sizes used are 100, 200, 500, and 1000.

Each set of simulation results is based 1,000 Monte Carlo samples.

The weight matrix W is generated under the two scenarios: (i) Rook contiguity, and (ii) large

group interaction. The former corresponds to the case where ln is bounded, whereas the latter

corresponds to the case where ln goes to infinity as n does but in a slower rate. To be exact, in case

(i), first randomly generate n integers from 1 to n without repetition and arrange them in five rows,

then form the neighborhood matrix according to the Rook contiguity and row-normalize; in case (ii)

we choose the number of groups R = n0.6, and then generate the group sizes (mr, r = 1, · · · , R)
uniformly from the interval (m/2, 3m/2) where m(≈ n/R) is the average group size.2
Note that when comparing our method with the existing QML and GMM methods, we need to

restrict ourselves to the case of median with error distribution being symmetric. This is because the

QML and GMM methods are applicable to the standard SAR model which is subject to zero mean

(in errors) restriction. Also note that, in finding the IVQR estimate, we used the grid search method

2We need to make a final adjustment to make sure that R
r=1mr = n. See Lin and Lee (2206) for discussions on

group interactions.
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(as indicated in the Remark 1 of Section 2.2) combined with an auto search. This is because a fine

grid search alone may be too time consuming, and an auto search alone may lead to local minima.3

Table 1(a, b) summarizes the Monte Carlo bias and the root mean squared errors (RMSE) for

the case of τ = 0.5, where Table 1a corresponds to Rook spatial contiguity and Table 1b corresponds

to large group interaction. From the results we see that the IVQR estimator (IVQRE) outperforms

all other estimators, especially in the cases of nonnormal errors. Both bias and RMSE go down

as the sample size goes up. In the case of normal errors (DGP1), GMM0 and GMMR estimators

are comparable with IVQR estimator, but clearly not under nonnormal symmetric errors (DGP2).

From Table 1a we see that QMLE behaves reasonably well in the cases of normal or t errors. This

shows that as far as finite sample performance is concerned, the QMLE is not affected very much by

heteroscedasticity if the spatial dependence is limited to a few neighbors. However, the results from

Table 1b show that when a spatial unit depends on many others, the QMLE without taking into

account of heteroscedasticity can behave quite badly in the sense of giving a large bias. The 2SLS

estimator often behaves quite badly except in the case of normal errors. The effect of having more

spatial neighbors is an increased variability of the estimators for λ and β0. This seems to be true for

all estimators.

It should be noted that the results given in Table 1 under DGP3 are not comparable for the

estimators of the intercept parameter β0 as the errors are generated with a zero median which is

required by IVQRE, whereas the other estimators require a zero mean for the errors. Nevertheless,

these results show the robustness of IVQR estimator against both excess skewness and kurtosis.

Moreover, as expected, even if the errors possess zero median instead of zero mean, the GMM0 and

GMMR still give very good estimates for the spatial parameter λ and the slope parameter β1 but

not the intercept parameter β0.

Table 2 presents some further Monte Carlo results for the cases of τ = 0.25 and τ = 0.75. As

there is no direct comparison between our IVQR estimator with the others in these cases, we only

report the results corresponding to the IVQR estimator. The results indicate that the new IVQR

estimator for the SAR model behaves quite well in general, and are consistent with the theoretical

predictions. First, it is generally robust against nonnormality and heteroscedasticity. The IVQR

estimator of the intercept has non-negligible bias for DGPs 2-3 when the sample size n is as small

as 100, but the bias diminishes fast as the sample size doubles. Second, as the sample size increases,

both bias and RMSE decline and the magnitude of decrease in the RMSE and standard error (not

reported in the table) is generally consistent with the
√
n-asymptotics.

3We first find the interval where the global minimum lies in by the grid search method, and then do an auto search

within this smaller interval. In our simulation, we have used 200 points within [−0.99, 0.99].
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Table 1a. Monte Carlo Bias and RMSE: τ = 0.5, Rook Contiguity

n = 100 n = 200 n = 500 n = 1000

DGP Est Par Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 QML λ -0.0298 0.0893 -0.0160 0.0627 -0.0034 0.0387 -0.0029 0.0283

β0 0.0680 0.2116 0.0332 0.1396 0.0093 0.0907 0.0075 0.0666

β1 0.0133 0.1823 0.0066 0.1225 0.0044 0.0800 0.0013 0.0557

2SLS λ -0.0104 0.1398 -0.0024 0.1062 -0.0022 0.0731 0.0001 0.0535

β0 0.0223 0.3033 0.0058 0.2151 0.0067 0.1579 0.0013 0.1147

β1 0.0032 0.1831 -0.0001 0.1273 0.0029 0.0800 0.0001 0.0569

GMM0 λ -0.0272 0.0886 -0.0134 0.0622 -0.0017 0.0392 -0.0022 0.0279

β0 0.0626 0.2098 0.0279 0.1384 0.0057 0.0914 0.0060 0.0658

β1 0.0086 0.1813 0.0025 0.1221 0.0031 0.0800 0.0005 0.0556

GMMR λ -0.0256 0.0879 -0.0145 0.0625 -0.0021 0.0392 -0.0021 0.0279

β0 0.0590 0.2082 0.0300 0.1390 0.0066 0.0914 0.0058 0.0658

β1 0.0082 0.1813 0.0028 0.1222 0.0031 0.0800 0.0005 0.0556

IVQR λ -0.0019 0.0677 -0.0001 0.0554 -0.0009 0.0343 -0.0005 0.0191

β0 0.0048 0.1398 0.0007 0.1063 0.0023 0.0721 0.0018 0.0428

β1 -0.0024 0.1632 0.0038 0.1120 0.0033 0.0720 0.0006 0.0503

2 QML λ -0.0366 0.0980 -0.0168 0.0707 -0.0085 0.0430 -0.0056 0.0315

β0 0.0748 0.3769 0.0327 0.2715 0.0220 0.2188 0.0131 0.1261

β1 -0.0327 0.5918 0.0140 0.3848 0.0100 0.3983 0.0079 0.1746

2SLS λ -0.0463 0.3999 -0.0481 0.3462 -0.0150 0.2537 -0.0151 0.1821

β0 -0.1387 4.6768 0.0423 1.4037 -0.0028 1.3501 0.0323 0.6679

β1 -0.0489 0.6536 -0.0112 0.3984 -0.0038 0.3796 -0.0034 0.1869

GMM0 λ -0.0139 0.2728 -0.0086 0.1934 -0.0022 0.0934 -0.0015 0.0668

β0 0.0250 0.6474 0.0149 0.4912 0.0126 0.2732 0.0033 0.1846

β1 -0.0418 0.5696 0.0090 0.3868 0.0062 0.4152 0.0061 0.1758

GMMR λ -0.0132 0.2712 -0.0090 0.1915 -0.0013 0.1102 -0.0012 0.0661

β0 0.0235 0.6415 0.0151 0.4930 0.0108 0.2971 0.0028 0.1837

β1 -0.0421 0.5694 0.0092 0.3856 0.0062 0.4143 0.0060 0.1761

IVQR λ -0.0186 0.1652 -0.0050 0.1015 -0.0025 0.0513 -0.0011 0.0267

β0 0.0346 0.3467 0.0073 0.1836 0.0044 0.1098 0.0028 0.0587

β1 -0.0078 0.2056 0.0001 0.1345 0.0017 0.0800 -0.0014 0.0553

3 QML λ -0.0358 0.0951 -0.0052 0.0676 -0.0066 0.0446 -0.0041 0.0317

β0 0.5189 0.6140 0.4910 0.5474 0.4925 0.5197 0.5026 0.5159

β1 0.1291 0.3953 -0.0043 0.2408 0.0301 0.1591 -0.0203 0.1120

2SLS λ 0.0483 0.3075 -0.0001 0.2443 -0.0031 0.1560 -0.0138 0.1124

β0 0.1082 1.8853 0.5046 1.2536 0.4828 0.6872 0.5325 0.6358

β1 0.0665 0.4169 -0.0251 0.2590 0.0223 0.1604 -0.0227 0.1154

GMM0 λ -0.0058 0.2176 0.0020 0.1504 -0.0053 0.0451 -0.0027 0.0322

β0 0.4193 0.7929 0.4701 0.6841 0.4887 0.5164 0.4985 0.5123

β1 0.1131 0.3995 -0.0127 0.2472 0.0285 0.1586 -0.0214 0.1122

GMMR λ -0.0036 0.2186 0.0001 0.1398 -0.0059 0.0450 -0.0025 0.0323

β0 0.4115 0.7915 0.4766 0.6622 0.4904 0.5179 0.4980 0.5118

β1 0.1122 0.3991 -0.0120 0.2456 0.0286 0.1586 -0.0214 0.1122

IVQR λ -0.0136 0.1566 -0.0021 0.1044 -0.0052 0.0652 -0.0013 0.0391

β0 0.0617 0.4925 0.0216 0.2935 0.0244 0.1952 0.0079 0.1195

β1 0.0023 0.2634 -0.0071 0.1838 -0.0072 0.1125 -0.0031 0.0817
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Table 1b. Monte Carlo Bias and RMSE: τ = 0.5, Large Group Interaction

n = 100 n = 200 n = 500 n = 1000

DGP Est Par Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 QML λ -0.4602 0.4603 -0.4781 0.4782 -0.5060 0.5060 -0.5074 0.5075

β0 -1.2215 1.2221 -1.2027 1.2031 -1.1622 1.1623 -1.1133 1.1135

β1 -0.2978 0.3233 -0.1596 0.1846 -0.1034 0.1234 -0.0904 0.1040

2SLS λ 0.0260 0.1217 0.0235 0.1189 0.0140 0.1057 0.0114 0.0787

β0 0.0761 0.3856 0.0628 0.3357 0.0359 0.2694 0.0231 0.1747

β1 0.0043 0.1735 0.0038 0.1116 0.0025 0.0768 -0.0027 0.0567

GMM0 λ 0.0134 0.0637 0.0165 0.0564 0.0069 0.0465 0.0081 0.0381

β0 0.0345 0.2001 0.0422 0.1704 0.0163 0.1155 0.0160 0.0902

β1 -0.0038 0.1652 0.0024 0.1077 0.0015 0.0740 -0.0030 0.0564

GMMR λ 0.0132 0.0638 0.0112 0.0540 0.0038 0.0459 0.0058 0.0371

β0 0.0345 0.2006 0.0289 0.1649 0.0094 0.1141 0.0108 0.0882

β1 -0.0036 0.1653 0.0010 0.1078 0.0009 0.0739 -0.0034 0.0564

IVQR λ 0.0102 0.0745 0.0083 0.0592 0.0055 0.0511 0.0030 0.0278

β0 0.0257 0.2026 0.0211 0.1659 0.0127 0.1169 0.0059 0.0602

β1 -0.0050 0.1525 0.0008 0.1101 0.0026 0.0710 -0.0012 0.0518

2 QML λ -0.4814 0.4815 -0.4933 0.4933 -0.5068 0.5068 -0.5128 0.5131

β0 -1.2791 1.3043 -1.2419 1.2441 -1.1634 1.1638 -1.1261 1.1269

β1 -0.3152 0.6002 -0.1831 0.3644 -0.0992 0.2440 -0.0855 0.2129

2SLS λ -0.0229 0.3687 -0.0419 0.3812 -0.0033 0.3329 0.0350 0.2940

β0 4.6283 165.508 0.1462 8.5274 -0.2085 18.7344 0.2805 2.0753

β1 0.1852 8.7988 -0.0110 0.6028 -0.0053 0.9323 0.0133 0.2323

GMM0 λ -0.0340 0.2350 -0.0373 0.2025 -0.0150 0.1639 -0.0090 0.1306

β0 -0.0947 0.7551 -0.0967 0.5643 -0.0322 0.3996 -0.0150 0.3219

β1 -0.0154 0.6763 -0.0232 0.3662 0.0072 0.2448 0.0020 0.2174

GMMR λ -0.0374 0.2371 -0.0495 0.1977 -0.0235 0.1559 -0.0149 0.1236

β0 -0.0952 0.7886 -0.1281 0.5496 -0.0526 0.3820 -0.0277 0.2986

β1 -0.0183 0.7095 -0.0268 0.3616 0.0050 0.2450 0.0009 0.2166

IVQR λ 0.0083 0.1588 0.0124 0.1177 0.0106 0.0990 0.0090 0.0617

β0 0.0176 0.4139 0.0399 0.3076 0.0245 0.2269 0.0187 0.1343

β1 0.0029 0.1987 -0.0030 0.1282 -0.0007 0.0816 0.0007 0.0570

3 QML λ -0.4779 0.4780 -0.4923 0.4924 -0.5064 0.5064 -0.5115 0.5118

β0 -1.4550 1.4580 -1.3757 1.3765 -1.2647 1.2649 -1.2036 1.2048

β1 -0.3129 0.4074 -0.1718 0.2556 -0.1378 0.1918 -0.0986 0.1402

2SLS λ 0.0236 0.2372 0.0333 0.3897 0.0079 0.2250 0.0569 0.1869

β0 7.3422 161.158 0.4267 22.0482 0.7478 4.8682 0.8059 1.4444

β1 0.1986 4.0036 -0.0097 0.8859 -0.0289 0.2003 -0.0079 0.1122

GMM0 λ 0.0044 0.1562 0.0031 0.1866 0.0044 0.0872 0.0117 0.0459

β0 0.5732 0.9257 0.5328 0.9227 0.5175 0.6070 0.5368 0.5614

β1 0.0053 0.3426 -0.0241 0.2239 -0.0331 0.1497 -0.0142 0.1085

GMMR λ -0.0034 0.1562 -0.0088 0.1862 -0.0008 0.0837 0.0080 0.0424

β0 0.5392 0.8997 0.4870 0.8925 0.4996 0.5855 0.5243 0.5463

β1 -0.0006 0.3401 -0.0282 0.2236 -0.0342 0.1500 -0.0148 0.1086

IVQR λ 0.0094 0.1821 -0.0016 0.2021 0.0136 0.1143 0.0171 0.0788

β0 0.0747 0.7230 0.0161 0.7419 0.0526 0.3727 0.0604 0.2617

β1 0.0164 0.2551 -0.0049 0.1813 -0.0042 0.1163 0.0024 0.0780
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Table 2. More Monte Carlo Results for IVQR Estimator

n = 100 n = 200 n = 500 n = 1000

DGP Par Bias RMSE Bias RMSE Bias RMSE Bias RMSE

τ = 0.25, Rook Contiguity

1 λ -0.0002 0.1684 -0.0086 0.0499 -0.0018 0.0427 0.0012 0.0215

β0 -0.0183 0.4887 0.0183 0.1521 -0.0015 0.1221 -0.0066 0.0664

β1 -0.0058 0.1804 -0.0038 0.1177 -0.0009 0.0724 0.0015 0.0554

2 λ -0.0191 0.3064 -0.0142 0.1295 -0.0032 0.0922 0.0007 0.0364

β0 -0.0227 0.9293 -0.0038 0.3713 -0.0129 0.2886 -0.0136 0.1200

β1 -0.0078 0.2573 -0.0104 0.1751 -0.0078 0.1082 -0.0054 0.0738

3 λ -0.0393 0.2937 -0.0104 0.0767 -0.0013 0.0565 0.0019 0.0202

β0 0.1368 1.1144 0.0374 0.3160 0.0027 0.2254 -0.0092 0.0833

β1 -0.0185 0.1589 -0.0038 0.0980 -0.0042 0.0637 -0.0017 0.0469

τ = 0.75, Rook Contiguity

1 λ -0.0101 0.1543 0.0009 0.0695 0.0038 0.0371 0.0001 0.0207

β0 0.0235 0.1784 0.0097 0.0848 -0.0003 0.0431 0.0032 0.0237

β1 -0.0043 0.1701 0.0012 0.1272 -0.0021 0.0803 0.0001 0.0567

2 λ -0.0554 0.2919 -0.0007 0.1503 0.0037 0.0620 -0.0037 0.0357

β0 0.1380 0.4204 0.0525 0.2121 0.0157 0.0646 0.0136 0.0403

β1 0.0020 0.2600 -0.0129 0.1885 0.0041 0.1098 -0.0025 0.0772

3 λ -0.0753 0.3787 -0.0260 0.2605 0.0025 0.1172 -0.0059 0.0606

β0 0.1862 0.5380 0.1211 0.3783 0.0336 0.1397 0.0245 0.0779

β1 -0.0135 0.4292 -0.0132 0.3212 0.0083 0.1959 0.0017 0.1392

τ = 0.25, Large Group Interaction

1 λ 0.0099 0.0947 0.0081 0.0777 0.0059 0.0518 0.0030 0.0265

β0 0.0196 0.3550 0.0210 0.2896 0.0152 0.1782 0.0070 0.0922

β1 0.0053 0.1706 -0.0004 0.1225 0.0021 0.0787 0.0017 0.0546

2 λ -0.0219 0.2375 0.0062 0.1625 0.0110 0.1398 0.0105 0.0635

β0 -0.1950 1.1515 -0.0269 0.7181 0.0066 0.5370 0.0248 0.2218

β1 -0.0152 0.2653 -0.0041 0.1753 -0.0069 0.1076 0.0108 0.0761

3 λ -0.0233 0.1997 -0.0027 0.1265 -0.0008 0.1161 0.0019 0.0291

β0 -0.1421 1.1568 -0.0216 0.7082 -0.0069 0.5827 0.0078 0.1378

β1 -0.0199 0.1752 -0.0016 0.1113 0.0016 0.0680 0.0001 0.0459

τ = 0.75, Large Group Interaction

1 λ 0.0238 0.0987 0.0062 0.0607 0.0028 0.0317 0.0019 0.0267

β0 0.0547 0.1941 0.0207 0.1220 0.0082 0.0471 0.0043 0.0351

β1 0.0087 0.1815 -0.0071 0.1284 -0.0065 0.0767 0.0020 0.0548

2 λ 0.0180 0.1785 0.0012 0.1571 0.0046 0.1219 0.0088 0.0652

β0 0.1041 0.2934 0.0655 0.2509 0.0344 0.1337 0.0227 0.0821

β1 0.0086 0.2593 -0.0070 0.1925 -0.0050 0.1176 -0.0040 0.0750

3 λ 0.0214 0.2128 0.0228 0.1600 0.0175 0.1228 0.0188 0.0978

β0 0.1330 0.3700 0.1079 0.3225 0.0511 0.1722 0.0398 0.1348

β1 0.0146 0.4484 0.0082 0.3355 -0.0059 0.1923 -0.0129 0.1409
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5 Concluding Remarks

We proposed a spatial autoregressive (SAR) model under quantile restrictions, and an instrumental

variable quantile regression (IVQR) method for the model estimation. Large sample properties of the

IVQR estimator for the SAR model under quantile restrictions are examined. Monte Carlo evidence

is provided for the good finite sample performance of the IVQR estimator. In the special case

of median restriction with symmetric error distributions, the IVQR estimator compares favorably

against the existing GMM estimators with or without taking into account of the heteroscedasticity.

Furthermore, the IVQR method is less demanding on the moments of the error and is quite robust

against nonnormality and heteroscedasticity of the errors.

The new model and estimation method give important extensions to both the standard spatial

regression models and the standard quantile regression models. These extensions should be very

useful for the applied researchers.
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Appendix

A Proof of the Main Results

Let C signify a generic constant whose exact value may vary from case to case. Let B1n and B2n

be two n × n matrices that are uniformly bounded in both row and column sums. Let B3n be a
conformable matrix whose elements are uniformly O(an) for a certain sequence an. Frequently we

will use the following two evident facts (see, e.g., Kelejian and Prucha, 1999; Lee, 2002a, 2002b):

Fact 1: B1nB2n is also uniformly bounded in both row and column sums.

Fact 2: The elements of B1nB3n and B3nB1n are uniformly O(an).

Noting that both W and S−1n are uniformly bounded in both row and column sums under our

assumption. It is easy to apply the above facts to prove the following lemma.

Lemma A.1 1) Hn ≡WnS
−1
n is uniformly bounded in both row and column sums. 2) The elements

hn,ij of Hn are uniformly O(1/ln), where the notation ln is defined in Assumption 5
∗.

Proof. 1) follows straightforwardly from Fact 1 and Assumption 2(iii) which states that Wn and

S−1n are uniformly bounded in both row and column sums. 2) follows from Fact 2 and Assumptions

2(iii) and 5∗.

A.1 Proof of Theorem 3.1

Recall α0τ = (β0τ , 0 ) introduced after Assumption 4, α0(λ, τ) = (β0(λ, τ) , γ0(λ, τ) ) defined below

(3.1), α(λ, τ) = (β(λ, τ) , γ(λ, τ) ) introduced before Assumption 5, and α̂(λ, τ) = (β̂(λ, τ) , γ̂(λ, τ) )

defined by (2.7). We frequently write α0(λ, τ) as α0λτ . Recall ∆ ≡ ∆(λ, τ) = √n(α(λ, τ)−α0(λ, τ)),
and let

∆(λ, τ) =
√
n(α̂(λ, τ)− α0(λ, τ)).

Recall further un,i(λ) = yn,i − λȳn,i − α0λτ ξn,i and u
∗
n,i(λ,∆(λ, τ)) = un,i(λ)− n−1/2∆(λ, τ) ξn,i =

yn,i − λȳn,i − α(λ, τ) ξn,i, both defined right above Assumption 5. It follows from Step (iii) leading

to (2.9) that

∆(λ, τ) = arg min
∆∈Rp+q

1

n

n

i=1

ρτ (u
∗
n,i(λ,∆))vn,i. (A.1)

Set

Vn(τ,λ;∆) =
1√
n

n

i=1

ψτ (u
∗
n,i(λ,∆))ξn,ivn,i,

which is
√
nGnτ (λ,β, γ), written in terms of ∆. Noting that −∆ Vn(τ,λ;κ∆) is an increasing

function of κ ≥ 1, the result of Theorem 3.1 then follows from the following three lemmas, according

to Lemma A.4 of Koenker and Zhao (1996).
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Lemma A.2 Suppose Assumptions 1-6 hold. Then, with M <∞,

sup
λ∈Λ

sup
∆ ≤M

Vn(τ,λ;∆)− Vn(τ,λ; 0)− E [Vn(τ,λ;∆)− Vn(τ,λ; 0)] = op(1).

Proof. We first establish a pointwise convergence result. Let

Sn(τ,λ;∆) = −{Vn(τ,λ;∆)− Vn(τ,λ; 0)− E[Vn(τ,λ;∆)− Vn(τ,λ; 0)]}

=
1

n

n

i=1

sni(τ,λ;∆), (A.2)

where sni(τ,λ;∆) = [1(yn,i − λȳn,i ≤ (α0λτ + n−1/2∆) ξn,i)− 1(yn,i − λȳn,i ≤ α0λτ ξn,i)]ξn,ivn,i, and

sni(τ,λ;∆) = sni(τ,λ;∆)−E[sni(τ,λ;∆)]. We need to show

Sn(τ,λ;∆) = op(1), for each fixed λ and ∆, (A.3)

which holds if

Snk(τ,λ;∆) = op(1), for each fixed λ, ∆, and k = 1, · · · , p+ q, (A.4)

where Snk is the kth component of the (p+q)×1 vector Sn(τ,λ;∆). By construction, ESnk(τ,λ;∆) =
0. By Assumption 5, Var(Snk(τ,λ;∆)) = o(1). Thus (A.4) holds by Chebyshev inequality. Define

ani(λ,∆) = (λ− λ0τ )
n

l=i

hn,ilun,l + (λ− λ0τ )en,iHnXnβ0τ + (α0λτ + n−1/2∆− α0τ ) ξn,i, (A.5)

Clearly, ∆ = 0 leads to ani(λ, 0) = ani(λ) defined in (3.6). When we plug ∆ =
√
n(α(λ, τ) − α0λτ )

into (A.5), ani(λ,∆) becomes ani(λ,α(λ, τ)), where

ani(λ,α) = (λ− λ0τ )
n

l=i

hn,ilun,l + (λ− λ0τ )en,iHnXnβ0τ + (α− α0τ ) ξn,i (A.6)

Recall bni(λ) = 1− ((λ− λ0τ )hn,ii. Then

yn,i − λȳn,i − (α0λτ + n−1/2∆) ξn,i
= un,i − (λ− λ0τ )ȳn,i − (α0λτ + n−1/2∆− α0τ ) ξn,i

= (1− ((λ− λ0τ )hn,ii)un,i − (λ− λ0τ )
n

l=i

hn,ilun,l

− (λ− λ0τ )en,iHnXnβ0τ + (α0λτ + n−1/2∆− α0τ ) ξn,i
= bni(λ)un,i − ani(λ,∆),

so that

1{yn,i − λȳn,i ≤ (α0λτ + n−1/2∆) ξn,i} = 1{bni(λ)un,i ≤ ani(λ,∆)}. (A.7)

22



We next show that (A.3) holds uniformly over (λ,∆) ∈ Λ× Γ, where Γ ≡ {∆ : ∆ ≤ M }, and
M ∈ (0,∞). This will hold by the triangle inequality provided

sup
λ∈Λ

sup
∆ ≤M

S+nk(τ,λ;∆) = op(1), and sup
λ∈Λ

sup
∆ ≤M

S−nk(τ,λ;∆) = op(1), (A.8)

where S+nk and S
−
nk are defined analogously to Snk but with the kth element ξn,ik of ξn,i in the

term ξn,ivn,i replaced by ξ
+
n,ik ≡ max(ξn,ik, 0) and ξ−n,ik ≡ max(−ξn,ik, 0), respectively. We will only

show the first part of (A.8) since the other case is similar. Define for every κ ∈ R, ani(λ,∆,κ) =
ani(λ,∆) + κ n−1/2ξn,i , and

S+nk(τ,λ;∆,κ) =
1√
n

n

i=1

{1 (bni(λ)un,i ≤ ani(λ,∆,κ))− E [1 (bni(λ)un,i ≤ ani(λ,∆,κ))]

−1 (bni(λ)un,i ≤ ani(λ, 0)) + E [1 (bni(λ)un,i ≤ ani(λ, 0))]} ξ+n,ikvn,i.

Note that S+nk(τ,λ;∆, 0) = S+nk(τ,λ;∆). We follow Koul (1991) and Bai (1994) to show that the

first part of (A.8) is a consequence of the following result

sup
λ∈Λ

S+nk(τ,λ;∆,κ) = op(1) for every given ∆ and κ. (A.9)

Since Γ is compact, we can partition it into a finite number N(σ) of subsets {Γ1, · · · ,ΓN(σ)} such
that the diameter of each subset is not greater than σ. Fix s ∈ {1, · · · , N(σ)} and ∆s ∈ Γs. Noting
that ∆ ξn,i ≤ ∆sξn,i + σ ξn,i for any ∆ ∈ Γs, it follows from the monotonicity of the indicator

function and the nonnegativity of ξ+n,ikvn,i that for any ∆ ∈ Γs,

S+nk(τ,λ;∆)− S+nk(τ,λ;∆s,σ)

=
1√
n

n

i=1

{E [1 (bni(λ)un,i ≤ ani(λ,∆s,σ))]− E [1 (bni(λ)un,i ≤ ani(λ,∆))]} ξ+n,ikvn,i

+
1√
n

n

i=1

{1 (bni(λ)un,i ≤ ani(λ,∆))− 1 (bni(λ)un,i ≤ ani(λ,∆s,σ))} ξ+n,ikvn,i

≤ 1√
n

n

i=1

{E [1 (bni(λ)un,i ≤ ani(λ,∆s,σ))]− E [1 (bni(λ)un,i ≤ ani(λ,∆))]} ξ+n,ikvn,i.

A reverse inequality holds with σ replaced by −σ for all ∆ ∈ Γs. By the triangle inequality and
Taylor expansions, we have for sufficiently large n,

sup
∆∈Γs

1√
n

n

i=1

{E [1 (bni(λ)un,i ≤ ani(λ,∆s,σ))]− E [1 (bni(λ)un,i ≤ ani(λ,∆))]} ξ+n,ikvn,i

≤ sup
∆∈Γs

1√
n

n

i=1

E Fn,i
ani(λ,∆s,σ)

bni(λ)
− Fn,i ani(λ,∆)

bni(λ)
ξ+n,ikvn,i

≤ 1√
n

n

i=1

E Fn,i
ani(λ,∆s,σ)

bni(λ)
− Fn,i ani(λ,∆s)

bni(λ)
ξ+n,ikvn,i
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+ sup
∆∈Γs

1√
n

n

i=1

E Fn,i
ani(λ,∆s)

bni(λ)
− Fn,i ani(λ,∆)

bni(λ)
ξ+n,ikvn,i

≤ 1

n

n

i=1

Efn,i
ani(λ,∆s, c

∗
i σ)

bni(λ)

σ ξn,i
|bni(λ)| ξ

+
n,ikvn,i

+ sup
∆s∈Γs

1

n

n

i=1

Efn,i
ani(λ,∆

∗
s)

bni(λ)

σ ξn,i
|bni(λ)| ξ

+
n,ikvn,i

≤ Cσ

n

n

i=1

ξn,i ξ+n,ikvn,i

|bni(λ)| = σO(1),

where c∗i lies between 0 and 1 and ∆
∗
s lies between ∆s and ∆. Consequently,

sup
λ∈Λ

sup
∆ ≤M

S+n (τ,λ;∆) ≤ sup
s≤N(σ)

sup
λ∈Λ

S+n (τ,λ;∆s,σ) + sup
s≤N(σ)

sup
λ∈Λ

S+n (τ,λ;∆s,−σ) + σOp(1).

By the compactness of Γ, the term σ can be made arbitrarily small and N(σ) is finite. So we can

prove (A.8) by proving (A.9).

To show (A.9), we also use a chaining argument. Let∆ and κ be fixed. Without loss of generality,

assume the support of λ can be written as Λ = [c1, c2]. Partition the interval Λ intoN(δ
∗) subintervals

at the points c1 = λ0 < λ1 < · · · < λN1 = c2, where δ
∗ denotes the length of each interval. Let

dni(λ,∆) ≡ [ani(λ,∆)− ani(λ, 0)]/bni(λ). Then, dni(λ,∆) = n−1/2∆ ξn,i/bni(λ) and for λ,λ
∗ ∈ Λ,

sup
|λ−λ∗|≤δ∗

|dni(λ,∆)−dni(λ∗,∆)| = sup
|λ−λ∗|≤δ∗

(λ− λ∗)n−1/2∆ ξn,i
[1− (λ− λ0τ )hn,ii] [1− (λ∗ − λ0τ )hn,ii] ≤ n

−1/2Cδ∗,

for some large enough C and sufficiently large n. Define

S
+

nk(τ,λ;∆,κ, ς)

=
1√
n

n

i=1

1 un,i ≤ ani(λ,∆,κ)
bni(λ)

+ςn−1/2Cδ∗ − EFn,i ani(λ,∆,κ)

bni(λ)
+ςn−1/2Cδ∗

−1 un,i ≤ ani(λ, 0)
bni(λ)

+ EFn,i
ani(λ, 0)

bni(λ)
ξ+n,ikvn,i.

Then S
+

nk(τ,λ;∆,κ, 0) = S
+
nk(τ,λ;∆,κ) for sufficiently large n. By the monotonicity of the indicator

function and cdf and the nonnegativity of ξ+n,ikvn,i, we have that for all λ with |λ− λs| ≤ δ∗ and

sufficiently large n,

S+nk(τ,λ;∆,κ)− S
+

nk(τ,λs;∆,κ, 1)

≤ 1√
n

n

i=1

EFn,i
ani(λs,∆,κ)

bni(λs)
+ Cn−1/2δ∗ − EFn,ii ani(λs,∆,κ)

bni(λs)
ξ+n,ikvn,i

+
1√
n

n

i=1

1 un,i ≤ ani(λs, 0)
bni(λs)

− EFn,i ani(λs, 0)

bni(λs)

−1 un,i ≤ ani(λ, 0)
bni(λ)

+ EFn,i
ani(λ, 0)

bni(λ)
ξ+n,ikvn,i,
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and a reverse inequality holds with C replaced by −C. By the monotonicity of cdf, for sufficiently
large n, we have

sup
λ∈Λ

S+nk(τ,λ;∆,κ)

≤ max
s

S
+

nk(τ,λs;∆,κ, 1) + max
s

S
+

nk(τ,λs;∆,κ,−1)

+max
s

1√
n

n

i=1

EFn,i
ani(λs,∆,κ)

bni(λs)
+
Cδ√
n

∗
− EFn,i ani(λs,∆,κ)

bni(λs)
− Cδ√

n

∗
ξ+n,ikvn,i

+ sup
λl,λm∈Λ,
|λl−λm|≤δ∗

1√
n

n

i=1

1 un,i ≤ ani(λl, 0)
bni(λl)

− EFn,i ani(λl, 0)

bni(λl)

− 1 un,i ≤ ani(λm, 0)
bni(λm)

− EFn,i ani(λm, 0)

bni(λm)
ξ+n,ikvn,i . (A.10)

The first two terms on the right hand side of (A.10) are op(1) because S
+

nk(τ,λ;∆,κ, ς) = op(1)

for every given ς due to an argument similar to the proof of (A.4). They are in fact the maximum of

finite number of op(1) terms. The third term is op(1) as it is no greater than Ccfδ
∗ 1
n

n
i=1 ξ

+
n,ikvn,i =

O(δ∗) with cf ≡ supnmax1≤i≤n supx fn,i (x), which can be made arbitrarily small by choosing small
enough δ∗ and large enough n. The last term in (A.10) is ensured to be small due to the stochastic

equicontinuity property by Assumption 6.

Lemma A.3 Suppose Assumptions 1-6 hold. Then

sup
λ∈Λ

sup
∆ ≤M

E[Vn(τ,λ;∆)− Vn(τ,λ; 0)] + Jnα(λ, τ)∆ = op(1).

Proof. Let ani(λ,∆) and bni(λ) be defined in (A.5) and Assumption A2(v), respectively. By Taylor

expansions and the dominated convergence theorem, we have for sufficiently large n:

sup
λ∈Λ

sup
∆ ≤M

E[Vn(τ,λ;∆)− Vn(τ,λ; 0)] + Jnα(λ, τ)∆

= sup
λ∈Λ

sup
∆ ≤M

1√
n

n

i=1

E 1 un,i ≤ ani(λ,∆)
bni(λ)

− 1 un,i ≤ ani(λ, 0)
bni(λ)

ξn,ivn,i − Jnα(λ, τ)∆

= sup
λ∈Λ

sup
∆ ≤M

1√
n

n

i=1

E Fn,i
ani(λ,∆)

bni(λ)
− Fn,i ani(λ, 0)

bni(λ)
ξn,ivn,i − Jnα(λ, τ)∆

= sup
λ∈Λ

sup
∆ ≤M

1

n

n

i=1

1

0

E fn,i
ani(λ, 0) + sn

−1/2∆ ξn,i
bni(λ)

− fn,i ani(λ, 0)

bni(λ)
ds
ξn,iξn,i∆

bni(λ)

= op(1).

Lemma A.4 Suppose Assumptions 1-6 hold. Then

sup
λ∈Λ

Vn(τ,λ;∆τ ) = O(n−1/2), and sup
λ∈Λ

Vn(τ,λ; 0) = Op(1).
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Proof. By Theorem 3.3 of Koenker and Bassett (1978) or the proof of Lemma A2 in Ruppert and

Carroll (1980),

sup
λ∈Λ

Vn(τ,λ;∆λτ ) = sup
λ∈Λ

1√
n

n

i=1

ψτ (yn,i − λȳn,i − α̂λτ ξn,i)ξn,ivn,i

≤ sup
λ∈Λ

1√
n

n

i=1

1(yn,i − λȳn,i − α̂λτξn,i = 0) ξn,ivn,i

≤ 2(p+ q)n−1/2 max
1≤i≤n

ξn,ivn,i = O(n−1/2).

By the definition of α0(λ, τ), Gτ (λ,α0(λ, τ)) = 0. It follows that

sup
λ∈Λ

Vn(τ,λ; 0) = sup
λ∈Λ

√
nGnτ (λ;α0(λ, τ))

≤ sup
λ∈Λ

√
n{Gnτ (λ;α0(λ, τ))− E[Gnτ (λ,α0(λ, τ))]}

+sup
λ∈Λ

√
n{E[Gnτ (λ,α0(λ, τ))]−Gτ (λ,α0(λ, τ))}

= Op(1) +Op(1) = Op(1) by Assumption 6.

A.2 Proof of Theorem 3.2

For convenience we collect some important notation. Let α ≡ (β , γ ) . Recall α0(τ) = (β0(τ) , 0 ) ,
α(λ, τ) ≡ (β(λ, τ) , γ(λ, τ) ) , ρτ (u) = (τ − 1(u ≤ 0))u,

Qnτ (λ,β, γ) =
1

n

n

i=1

ρτ (yn,i − λȳn,i − α ξn,i)vn,i,

Qτ (λ,β, γ) ≡ lim
n→∞E[Qnτ (λ,β, γ)],

(β̂(λ, τ), γ̂(λ, τ)) ≡ argmin
(β,γ)

Qnτ (λ,β, γ), and (β0(λ, τ), γ0(λ, τ)) ≡ argmin
(β,γ)

Qτ (λ, β, γ). Define

λ̂(τ) ≡ argmin
λ

γ̂(λ, τ) A , λ∗(τ) ≡ argmin
λ

γ0(λ, τ) A ,

β̂(τ) ≡ β̂(λ̂(τ), τ), β∗(τ) ≡ β0(λ
∗(τ), τ),

γ̂(τ) ≡ γ̂(λ̂(τ), τ), γ∗(τ) ≡ γ0(λ
∗(τ), τ).

Let τ be fixed. Following Chernozhukov and Hansen (2006), we prove the theorem in three

steps: (i) Show that θ0τ = (λ0τ ,β0τ ) uniquely solves the limit problem, i.e., λ
∗(τ) = λ0(τ) and

β∗(τ) = β0(τ); (ii) λ̂(τ)
p→ λ0(τ) and α̂(τ)

p→ α0(τ); (iii)
√
n(θ̂(τ)− θ0(τ)) d→ N(0,Ω(A)).

Step (i): By Assumptions 1(ii) and 4(iv), θ0τ = (λ0τ ,β0τ ) is the unique solution to G
0
τ (θ) = 0,

which implies that it uniquely solves the equation

lim
n→∞

1

n

n

i=1

E[ψτ (yn,i − λȳn,i − β xn,i − 0 zn,i)]ξn,ivn,i = 0. (A.11)
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By the global convexity of Qτ (λ,α) in α for each λ, and the fact that α0(λ, τ) = (β0(λ, τ) , γ0(λ, τ) )

is in the interior of B × G, α0(λ, τ) uniquely solves the first order condition of minimizing Qτ (λ,α)
over α:

lim
n→∞

1

n

n

i=1

E[ψτ (yn,i − λȳn,i − α0(λ, τ) ξn,i)]ξn,ivn,i = 0. (A.12)

We now show that λ∗(τ) = λ0(τ) uniquely minimizes γ0(λ, τ) A over λ subject to the constraint

in (A.12). Clearly, γ0(λ0(τ), τ) = 0 by (A.11) and λ0(τ) satisfies (A.12). That is, λ0(τ) ∈
argminλ γ0(λ, τ) A subject to the constraint in (A.12). It is also the unique solution by (A.11).

Now β(λ∗(τ), τ) = β(λ0(τ), τ) = β0(τ) by (A.12).

Step (ii): Recall α̂(λ, τ) ≡ (β̂(λ, τ) , γ̂(λ, τ) ) , α0(λ, τ) ≡ (β0(λ, τ) , γ0(λ, τ) ) and α0(τ) ≡
(β0τ , γ0τ ) . Let o

∗
p(1) denote op(1) uniformly in λ ∈ Λ. By the remark after Theorem 3.1,

α̂(λ, τ)− α0(λ, τ) = o∗p(1), and γ̂(λ, τ)− γ0(λ, τ) = o∗p(1) in particular. (A.13)

By Assumption 3(iv), A = A+op(1). It follows that γ̂(λ, τ) A− γ0(λ, τ) A = o
∗
p(1). By Assumption

4(v), γ0(λ, τ) A is continuous in λ; it is uniquely minimized at λ
∗(τ) = λ0(τ) by Step (i). It follows

that λ̂(τ)
p→ λ0(τ). Now let λn(τ)

p→ λ0(τ). By (A.13) and the continuity of α0(λ, τ) in λ,

α̂(λn(τ), τ)
p→ α0(λ0(τ), τ) = α0(τ).

In particular, α̂(τ) = α̂(λ̂(τ), τ)
p→ α0(τ) as desired.

Step (iii): Consider a small ball B n(λ0τ ) of radius n centered at λ0τ ≡ λ0(τ). Let λn ≡ λn(τ) ∈
B

n
(λ0τ ) where n → 0 slowly enough. Let gn,i(λ,α) = ψτ (yn,i − λȳn,i − α ξn,i)ξn,ivn,i, Egn,i(λn,

α̂λnτ ) ≡ E[gn,i(λ,α)](λ,α)=(λn,α̂λnτ ), andGn0 = 1√
n

n
i=1[gn,i(λ0τ ,α0(λ0τ , τ))−Egn,i(λ0τ ,α0(λ0τ , τ))].

By Lemma A.4 and the stochastic equicontinuity condition in Assumption 6(ii),

O(n−1/2) =
1√
n

n

i=1

ψτ (yn,i − λnȳn,i − α̂λnτξn,i)ξn,ivn,i

=
1√
n

n

i=1

[gn,i(λn, α̂λnτ )− Egn,i(λn, α̂λnτ )] +
1√
n

n

i=1

Egn,i(λn, α̂λnτ )

= Gn0 +
1√
n

n

i=1

Egn,i(λn, α̂λnτ ) + op(1). (A.14)

By mean value theorem and dominated convergence arguments, we have

1√
n

n

i=1

Egn,i(λn, α̂λnτ )

=
1√
n

n

i=1

Eψτ (yn,i − λnyn,i − α̂λnτ ξn,i)ξn,ivn,i

=
1√
n

n

i=1

E [Fn,i(0)− Fn,i (cn,i(λn, α̂λnτ ))] ξn,ivn,i
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= − 1
n

n

i=1

E fn,i (s
∗
i cn,i(λn, α̂λnτ )) vn,iξn,i

n
l=i hn,ilun,l

bni(λn)
+
en,iHnξnα̂λnτ

bni(λn)

√
n(λn − λ0τ )

− 1
n

n

i=1

E {fn,i(s∗i cn,i(λn, α̂λnτ ))}
vn,iξn,iξn,i
bni(λn)

√
n(α̂λnτ − α0τ )

= −(Jλ + op(1))
√
n(λn − λ0τ )− (Jα + op(1))

√
n(α̂λnτ − α0τ ), (A.15)

where cn,i(λ,α) = ani(λ,α)/bni(λ) with ani(·, ·) and bni(·) being defined, respectively, in (A.6) and
Assumption 2, and s∗i lies between 0 and 1. The last line follows from the definitions of Jλ and Jα

and the fact that ani(λn, α̂λnτ ) → 0 and bni(λn) → 1 as n → 0. This is because hn,ii = O(1/ln),
n
l=i hn,ilEun,l ≤ μ

n
l=1 |hn,il| = O(1), en,iHnξn = O(1), ξn,i = O(1) and (λn, α̂λnτ ) → (λ0τ ,α0τ )

as n → 0. Putting (A.14) and (A.15) together, we have

O(n−1/2) = Gn0 − (Jλ + op(1))
√
n(λn − λ0τ )− (Jα + op(1))

√
n(α̂λnτ − α0τ ), (A.16)

which implies that

√
n(α̂λnτ − α0τ ) = J−1α Gn0 − J−1α Jλ(1 + op(1))

√
n(λn − λ0τ ) + op(1). (A.17)

Partition conformably J−1α = [Jβ , Jγ ] , where Jβ and Jγ are p × (p + q) and q × (p + q) matrices,
respectively. Then

√
n(β̂(λn, τ)− β0(τ)) = JβGn0 − JβJλ(1 + op(1))

√
n(λn − λ0τ ) + op(1), (A.18)

and
√
n(γ̂(λn, τ)− 0) = JγGn0 − JγJλ(1 + op(1))

√
n(λn − λ0τ ) + op(1). (A.19)

By Step (ii), with probability approaching one,

λ̂(τ) = argmin
λn∈B n (λ0τ )

γ̂(λn, τ) A . (A.20)

By Liapounov central limit theorem, Gn0
d→ N(0, S0). Hence

√
n γ̂(λn, τ) A = Op(1)− JγJλ(1 + op(1))

√
n(λn(τ)− λ0τ ) A+op(1)

(A.21)

It follows from (A.20) and (A.21) that
√
n(λ̂(τ)− λ0τ ) = Op(1) by the full rank properties of JγJλ

and A. Consequently,

√
n(λ̂(τ)− λ0τ ) = argmin

s∈R
JγGn0 − JγJλs A

+ op(1)

= (JλJγAJγJλ)
−1JλJγAJγGn0 + op(1). (A.22)

Simple algebra shows that

√
n α̂(λ̂(τ), τ)− α0τ = J−1α Ip+q − Jλ(JλJγAJγJλ)−1JλJγAJγ Gn0 + op(1), (A.23)
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and

√
n(λ̂(τ)− λ0τ )√
n(β̂(τ)− β0τ ) =

(JλJγAJγJλ)
−1JλJγAJγ

Jβ Ip+q − Jλ(JλJγAJγJλ)−1JλJγAJγ
Gn0 + op(1). (A.24)

The conclusion then follows from the fact that Gn0
d→ N(0, S0).

A.3 Proof of Corollary 3.3

When q = 1, JγJλ is a nonzero scalar. By (A.23) and the fact that Gn0 = Op(1), we have

√
n(γ̂(λ̂(τ), τ)− 0) = Jγ [Ip+1 − Jλ(JγJλ)−1Jγ ]Gn0 + op(1) = op(1). (A.25)

By (A.16) and (A.25) and the fact that λ̂(τ)
p→ λ0τ , we have

[Jλ Jα,1:p]

√
n(λ̂(τ)− λ0τ )√

n(β̂(λ̂(τ), τ)− β0τ ) = Gn0 + op(1), (A.26)

where Jα,1:p is the first p columns of Jα. The result then follows from the fact that J0 = [Jλ Jα,1:p]

and Gn0
d→ N(0, S0).

B Proof of Some Ancillary Results

In this section we first prove that together with Assumptions 1-3, Assumption 5∗ implies Assumption

5, and then prove that Assumption 5∗∗ implies Assumption 5.

B.1 Assumptions 1, 2, 3, 5∗ ⇒ Assumption 5

For notational simplicity, we will suppress the dependence of ηn,i(λ) on λ and write it as ηn,i. Write

Var[Sn(λ)] ≡ 1

n

n

i=1

c2niVar(ηn,i) +
2

n

n−1

i=1

n

j=i+1

cnicnjCov(ηn,i, ηnj) ≡ Sn1 + Sn2.

It suffices to show that Var(ηn,i) = o(1) and Cov(ηn,i, ηn,j) = o(n
−1) under Assumptions 1-3 and 5∗.

Define a∆nij(λ) = (λ−λ0τ ) n
l=i,j hn,ilun,l+(λ−λ0τ )en,iHnXnβ0τ +(α0λτ +n−1/2∆−α0τ ) ξn,i.

Note that a∆nij(λ) differs from ani(λ,∆) in (A.5) only in the term (λ−λ0τ )hn,ijun,j . So we can write

yn,i − λȳn,i − α0λτ + n
−1/2∆ ξn,i = bni(λ)un,i − ani(λ,∆)

= bni(λ)un,i − (λ− λ0τ )hn,ijun,j − a∆nij(λ).

a0nij(λ) is defined as a
∆
nij(λ) with 0 in place of ∆. Since hn,ii = O(1/ln) = o(1) by Lemma A.1 and

Assumption A5∗, we have bni(λ) > 0 for any λ ∈ Λ for sufficiently large n and bni(λ)→ 1 as n→∞.

29



Noting that |ηn,i| ≤ 1, we have

Var(ηn,i) ≤ E 1(yn,i − λȳn,i ≤ (α0λτ + n−1/2∆) ξn,i)− 1(yn,i − λȳn,i ≤ α0λτ ξn,i)

= E 1 bni(λ)un,i − ani(λ, 0) ≤ n−1/2∆ ξn,i − 1 {bni (λ)un,i − ani(λ,∆) ≤ 0}

≤ E1 |bni(λ)un,i − ani(λ, 0)| ≤ n−1/2 |∆ ξn,i|
≤ Cn−1/2 |∆ ξn,i| = O(n−1/2), (B.1)

where the second inequality is due to the fact that |1(u ≤ s)− 1(u ≤ 0)| ≤ 1(|u| ≤ |s|) and the last
equality follows from Assumption 1.

Let F−ij be the σ-field formed by un excluding un,i and un,j . By Assumption 1(i), for all

i = j, the joint density of un,i and un,j conditional on F−ij is given by fn,i(ui)fn,j(uj). Let

ςn,1 ≡ bni(λ)un,i− (λ−λ0τ )hn,ijun,j and ςn,2 = bnj(λ)un,j − (λ−λ0τ )hn,jiun,i. It is easy to see that
the joint density of ςn,1 and ςn,2 conditional on F−ij is given by

1

|πni(λ)|fn,i
bnj(λ)ς1 + (λ− λ0τ )hn,ijς2

πnij(λ)
fn,j

(λ− λ0τ )hn,jiς1 + bni(λ)ς2
πnij(λ)

provided πnij(λ) ≡ bni(λ)bnj(λ) − (λ − λ0τ )
2hn,ijhn,ji = 0. The last condition is satisfied for

sufficiently large n because in this case, (λ− λ0τ )2hn,ijhn,ji = O(1/l2n) = o(1) and bni(λ)bnj(λ)→ 1

as n→∞. In addition, it is easy to verify that the marginal density of ςn,1 is given by
1

|bni(λ)| fn,i
ς1 + (λ− λ0τ )hn,ijς2

bni(λ)
fn,j (ς2) dς2.

Let sni ≡ sign(∆ ξn,i), which takes value 1 if ∆ ξn,i ≥ 0 and −1 otherwise. Then

E[ηn,iηn,j ] = E[E(ηn,iηn,j |F−ij)]
= E{[1(ςn,1 ≤ a∆nij(λ))− 1(ςn,1 ≤ a0nij(λ))] · [1(ςn,2 ≤ a∆nji(λ))− 1(ςn,2 ≤ a0nji(λ))]|F−ij}

= snisnjE
1

|πnij (λ)|
a∆
nij(λ)

a0nij(λ)

a∆
nji(λ)

a0nji(λ)

fn,i
bnj(λ)ς1 + (λ− λ0τ )hn,ijς2

πnij(λ)

×fn,j (λ− λ0τ )hn,jiς1 + bni(λ)ς2
πnij (λ)

dς2dς1

≤ 1

n |πnij(λ)|c
2
f |∆ ξn,i| |∆ ξn,j | = O(n−1), (B.2)

where cf ≡ supnmax1≤i≤n supu fn,i(u). Similarly,

E [ηn,i] = E [E(ηn,i|F−ij)]
= E 1 ςn,1 ≤ a∆nij(λ) − 1 ςn,1 ≤ a0nij(λ) |F−ij

= sniE
a∆
nij(λ)

a0nij(λ)

1

|bni(λ)| fn,i
ς1 + (λ− λ0τ )hn,ijς2

bni(λ)
fn,j (ς2) dς2dς1

≤ 1√
n |bni(λ)|cf |∆ ξn,i| = O n−1/2 . (B.3)
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When ln → ∞, hn,ij = O(1/ln) = o(1) and
n
l=1 |hn,il| = O (1) by Lemma A.1. Let Snij ≡

n
l=i,j hn,il [un,l − Eun,l]. Then ESnij = 0 and Var(Snij) = n

l=i,j h
2
n,ilσ

2
n,l ≤ max1≤i,j≤n |hn,ij |σ2

n
l=1 |hn,il| = O(1/ln) = o(1). Hence Snij

p→ 0 by the Chebyshev inequality. It follows from the

uniform boundedness of fn,i (
.) and the dominated convergence theorem that

E fn,i
(λ− λ0τ )Snij + tnij

bni(λ)
− fn,i tnij

bni(λ)
→ 0.

Now we can apply Taylor expansions to obtain

E[ηn,i]

= sniE
a∆
nij(λ)

a0nij(λ)

1

bni(λ)
fn,i

ς1
bni(λ)

fn,j (ς2) dς2dς1

+sniE
a∆
nij(λ)

a0nij(λ)

1

bni(λ)
f
(1)
n,i

ς1 + s
∗
ijς2

bni(λ)

(λ− λ0τ )hn,ijς2
bni(λ)

fn,j (ς2) dς2dς1

= sniE Fn,i
a∆nij(λ)

bni(λ)
− Fn,i

a0nij(λ)

bni(λ)
+O n−1/2l−1n

=
sni∆ ξn,i√
nbni(λ)

E fn,i
a0nij(λ)

bni(λ)
+ o(n−1/2)

=
sni∆ ξn,i√
nbni(λ)

fn,i
tnij
bni(λ)

+ E fn,i
(λ− λ0τ )Snij + tnij

bni(λ)
− fn,i tnij

bni(λ)
+ o(n−1/2)

=
sni∆ ξn,i√
nbni(λ)

fn,i
tnij
bni(λ)

+ o(1) + o(n−1/2)

=
sni∆ ξn,i√
nbni(λ)

fn,i (tnij) + o(n
−1/2),

where s∗ij lies between 0 and (λ−λ0τ )hn,ij , tnij = (λ−λ0τ ) n
l=i,j hn,ilEun,l+(λ−λ0τ )en,iHnXnβ0τ

+(α0λτ − α0τ ) ξn,i, and f (1)n,i (·) is the first derivative of fn,i(·). Similarly,

E [ηn,iηnj ]

= snisnjE
1

|πni (λ)|
a∆
nij(λ)

a0nij(λ)

a∆
nji(λ)

a0nji(λ)

fn,i
ς1

bni(λ)
+O (hn,ij)

× fn,j
ς2

bnj(λ)
+O (hn,ji) dς2dς1

= snisnjE
1

|πni (λ)|
a∆
nij(λ)

a0nij(λ)

a∆
nji(λ)

a0nji(λ)

fn,i
ς1

bni(λ)
fn,j

ς2
bnj(λ)

+ o(1) dς2dς1

= snisnjE Fn,i
a∆nij(λ)

bni(λ)
− Fn,i

a0nij(λ)

bni(λ)
Fn,j

a∆nji(λ)

bnj(λ)
− Fn,j

a0nji(λ)

bnj(λ)
+ o(n−1)

=
snisnj∆ ξn,iξn,j∆

nbni(λ)bnj(λ)
E fn,i

a0nij(λ)

bni(λ)
fn,j

a0nji(λ)

bnj(λ)
+ o(n−1)

=
snisnj∆ ξn,iξn,j∆

nbni(λ)bnj(λ)
fn,i (tnij) fn,j (tnji) + o(n

−1).
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Consequently,

Cov (ηn,i, ηnj) = E [ηn,iηnj ]− E [ηn,i]E [ηnj ] = o(n−1).

B.2 Assumption 5∗∗ ⇒ Assumption 5

Let Snj(λ) and Snjt (λ) denote the partial sums of n−1/2ηn,i(λ) over observations in group j and
subgroup t of group j, respectively, i.e.,

Sn,j(λ) =
mnj

t=1

Snjt(λ), where Snjt (λ) =
s∈Gnjt

n−1/2ηn,s (λ) .

Then Sn(λ) = J
j=1 Snj(λ) = J

j=1
mnj

t=1 Snjt(λ). Because J is finite, by Cauchy-Schwartz inequal-
ity it suffices to show that Var(Snj(λ)) = o(1) for each j = 1, · · · , J and λ ∈ Λ.
Fix j ∈ {1, · · · , J} and λ ∈ Λ. Write

Var(Snj(λ)) =
mnj

t=1

Var(Snjt(λ)) + 2
mnj−1

l=1

mnj

t=l+1

Cov(Snjl(λ),Snjt(λ)) ≡ In1 + In2

By arguments analogous to those used in the last subsection ((B.1)-(B.3) in particular), one can

show that Var(ηn,s(λ)) ≤ C1n−1/2 and Cov(ηn,i(λ), ηn,s(λ)) ≤ C2n−1 for i = s and finite constants
C1, C2. Hence,

Var(Snjt(λ)) =
1

n
s∈Gnjt

Var(ηn,s(λ)) +
1

n
i∈Gnjt s∈Gnjt,s=i

Cov(ηn,i(λ), ηn,s(λ))

≤ C1n
−3/2njt + C2n−2n2jt,

which implies that In1 ≤ C1n
−3/2 mnj

t=1 njt + C2n
−2 mnj

t=1 n
2
jt ≤ C1n

−1 + C2njt/n = o(1) by

Assumption 5∗∗(ii). Now by Assumption 5∗∗(i),

In2 ≤ 2

mnj−1

l=1

mnj

t=l+1

Var(Snjl(λ))Var(Snjt(λ))αmnj

= o(1)

mnj−1

l=1

mnj

t=l+1

αmnj = o(m
2
njαmnj ) = o(1).

Consequently, Var(Snj(λ)) = o(1). This completes the proof.
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