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Abstract

I investigate a spatial duopoly model with linear transportation costs as a

di¤erential game where product di¤erentiation is the result of …rms’ R&D

investments. Two related results obtain, i.e., (i) the steady state R&D invest-

ment (product di¤erentiation) is negatively (positively) related to the cost

of capital and time discounting; and (ii) if time discounting and the cost of

capital are su¢ciently high, the amount of di¤erentiation observed in steady

state is su¢ciently large to ensure the existence of a unique pure-strategy

price equilibrium with prices above marginal cost.

J.E.L. Classi…cation: L13, O31

Keywords: horizontal di¤erentiation, di¤erential games, steady state,

R&D



1 Introduction

Ever since Hotelling’s (1929) seminal contribution, the role of product dif-

ferentiation as a remedy to the fragility of market equilibrium under price

competition has represented a core issue in the …eld of industrial organiza-

tion.

However, under horizontal product di¤erentiation, an established result

is that a pure-strategy equilibrium in prices may not always exist (see, inter

alia, d’Aspremont et al., 1979; Gabszewicz and Thisse, 1986; Economides,

1986; Anderson, 1988). More precisely, a subgame perfect equilibrium with

prices greater than marginal cost may fail to exist, because …rms’ location

choices drive prices to marginal cost when transportation costs are linear (or

not su¢ciently convex) in the distance between the generic consumer and

the …rm he decides to patronise. This non-existence problem has generated

a stream of literature proposing several remedies, either by adopting non-

linear transportation cost functions (d’Aspremont et al., 1979; Stahl, 1982;

Economides, 1986) or by adopting the Stackelberg equilibrium as the solution

concept (Anderson, 1987), or by choosing appropriate distribution functions

for the population of consumers (de Palma et al., 1985; Neven, 1986), or a

mix thereof (Tabuchi and Thisse, 1995; Lambertini, 1997, 2000).1

In this paper, I illustrate an alternative route, which consists in nesting

Hotelling’s linear transportation cost problem into a di¤erential game with

R&D for product innovation. This entails that location is no longer a control

variable, since product design is the outcome of …rms’ intertemporal R&D

1For exhaustive accounts of the debate, see Caplin and Nalebu¤ (1991); Anderson et

al. (1992); Anderson et al. (1997).
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e¤orts, i.e., investment is the control variable while location (and therefore

product di¤erentiation) becomes a state variable which varies over time. I

show that there are conditions on time preferences (and the cost of capital)

such that …rms choose long run equilibrium locations where there exists no

undercutting incentive, and therefore a price equilibrium does exist with

prices above marginal production costs in correspondence to a steady state

degree of di¤erentiation which is not minimum. This result is derived under

both open and closed loop solutions. There emerges that the range of time

discounting (or the rental price of capital) wherein the game produces a price

equilibrium in pure strategies is wider under the closed loop solution than

under the open loop solution.

The reminder of the paper is structured as follows. The basic model and

the non-existence problem are introduced in section 2. Section 3 describes

the di¤erential game. Section 4 contains concluding remarks.

2 The basic setup

Examine …rst the static problem, as originally formulated by Hotelling (1929).

I consider a market for horizontally di¤erentiated products where consumers

are uniformly distributed with unit density along the unit interval [0; 1], the

linear city. Two single-product pro…t-maximising …rms, labelled as 1 and 2,

sell a di¤erentiated good along the segment. Product locations are x1 and

x2: On the basis of the symmetry of the model, I assume that x1 · 1=2 and

x2 ¸ 1=2 :2 The generic consumer located at a 2 [0; 1] buys one unit of the

2This assumption that …rm 1 (respectively, 2) is located to the left (right) of 1/2 is

meant to exclude the possibility of leapfrogging by either …rm. As in Tabuchi and Thisse
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good to maximise his utility:

U = s¡ pi ¡ c jxi ¡ aj ¸ 0; i = 1; 2; (1)

where xi and pi are …rm’s i location and mill price, respectively, and c > 0

is the transportation cost rate. In the remainder of the paper, I suppose

that the reservation price s is never binding, so that full market coverage

always obtains. One can easily derive from (1) the location ba 2 (x1; x2)3 of

the consumer who is indi¤erent between the two goods at generic price and

location pairs,

s¡ p1 ¡ c(ba¡ x1) = s¡ p2 ¡ c(x2 ¡ ba); (2)

as well as the demand functions:

y1 =
p2 ¡ p1 + c(x1 + x2)

2c
; y2 =

p1 ¡ p2 + c(2¡ x1 ¡ x2)
2c

: (3)

Unit production cost is assumed to be constant and equal across varieties.

Without further loss of generality, I normalise it to zero. Therefore, …rm i’s

pro…t function is ¼i = piyi:

Firms play noncooperatively a two-stage game where they move simul-

taneously at both stages. In the …rst, …rms choose locations, in the second

they choose prices. The solution concept is the subgame perfect equilibrium

by backward induction.

(1995) and Lambertini (1997), …rms are allowed to locate also outside the city boundaries.

This assumption is discussed in section 3.
3If this condition is not met, e.g., if the indi¤erence condition is written under the

assumption that a 2 (x2; 1]; then it can be immediately veri…ed that the location of the

indi¤erent consumer is unde…ned.
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First order conditions (FOCs) at the market stage yield the following

candidate equilibrium prices:

p¤1 =
c (2 + x1 + x2)

3
; p¤2 =

c (4¡ x1 ¡ x2)
3

: (4)

The above prices are strictly positive for all x1 2 [0; 1=2] and x2 2 [1=2; 1] :
However, as proved by d’Aspremont et al. (1979), if …rms locate in [1=4; 3=4];

there exists an incentive for each of them to undercut the rival’s price by

setting:

pui = pj ¡ c jxi ¡ xjj ; for all pj > 0: (5)

That is, demand functions are discontinuous at pui ; since at that price, given

any pj ; …rm i becomes a monopolist and …rm j is driven out of business.

Therefore, the price pair (4) cannot be an equilibrium outcome for all loca-

tions. Moreover, at the …rst stage we have:

@¼1
@x1

> 0 ;
@¼2
@x2

< 0 (6)

for all admissible fx1; x2g ; which entails that …rms are lead towards the mid-

point by pro…t incentives at the …rst stage of the game. That is, the choice

of location drives …rms precisely into the segment where the pure-strategy

equilibrium with prices above marginal production cost (i.e., in this setting,

with positive prices) fails to exist.4 By altering the transportation cost func-

tion from linear to quadratic, d’Aspremont et al. (1979) obtain a tractable

model where a unique pure-strategy price equilibrium exists for all location

pairs. In particular, the adoption of quadratic disutility of transportation

4The price equilibrium always exists in mixed strategies (see Dasgupta and Maskin,

1986; Osborne and Pitchik, 1987).
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eliminates the incentive to undercut, and equilibrium prices are zero if and

only if di¤erentiation is nil.

3 The di¤erential game

The non-existence problem described above stems from the fact that, with

linear transportation costs, the incentive to di¤erentiate products is weaker

than the incentive to move towards the middle of the market so as to increase

the demand basin for a product. That is, …rms are attracted by the median

(and average) consumer. This creates a price war through undercutting,

that drives equilibrium prices and pro…ts to zero. A possible remedy to

this problem consists in making it costly for …rms to design their respective

products according to the preferences of the median consumer. This is what

I propose here.

The instantaneous pro…t is ¼i(t) = pi(t)yi(t) ¡ ½ki(t); where ki(t) is the

amount of resources invested in R&D by …rm i at time t; and ½ is the rental

price of capital, which in the remainder of the paper is assumed to be equal

to the discount rate common to both …rms. By symmetry, I focus upon the

behaviour of …rm 2. She can modify the location of her product through

R&D investment according to:

@x2(t)

@t
= ¡ k2(t)

1 + k2(t)
¢ x2(t) ; k2(t) ¸ 0 ; x2(0) ¸ 1 : (7)

Notice that the condition x2(0) ¸ 1 potentially allows for any degree of

di¤erentiation to emerge at the long-run equilibrium. The R&D technology

de…ned by (7) exhibits decreasing returns to scale.5 The rationale behind (7)

5See Cellini and Lambertini (1999) for further discussion of (7).
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is that the R&D technology is shaped so as to reproduce the tendency for

…rms to locate towards the middle of the linear city, which characterises the

static model described in section 2.6

Firm 2 aims at maximizing the discounted value of her ‡ow of pro…ts

J2 =
R1
0
e¡½t¼2(t) dt under the dynamic constraint (7) concerning the state

variable x2(t). The control variables are pi(t) and ki(t). It is worth stress-

ing that the undercutting incentive still exists within the second and third

quartiles of the linear city. Yet, the fact that location xi(t) is no longer a

control variable in the dynamic formulation of the duopoly game opens the

possibility for the …rms not to be a¤ected by the undercutting problem in

steady state.

The Hamiltonian function is:

H2(t) = e
¡½t ¢

½
p2 [p1 ¡ p2 + c(2¡ x1 ¡ x2)]

2c
¡ ½k2(t)¡ ¸2(t)

k2(t)x2(t)

1 + k2(t)

¾
;

(8)

where ¸2(t) = ¹2(t)e
½t; ¹2(t) being the co-state variable associated to x2(t):

6The relevant di¤erence is that, in the present setting, relocation towards 1/2 is costly.

Alternatively, one could examine a technology such that

@x1(t)

@t
< 0 and

@x2(t)

@t
> 0 ;

pulling …rms outwards as time goes by. This, however, would appear as a rather ad hoc

assumption to the aim of preventing …rms from entering the product range where the

undercutting incentive destroys the pure-strategy price equilibrium.
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3.1 The open loop solution

In the open loop formulation of the game, the necessary and su¢cient con-

ditions for a path to be optimal are:7

@H2(t)

@p2(t)
=
p1(t)¡ 2p2(t) + c [2¡ x1(t)¡ x2(t)]

2c
= 0 ; (9)

@H2(t)

@k2(t)
= ¡½ [1 + k2(t)]

2 + ¸2(t)x2(t)

[1 + k2(t)]
2 = 0 ; (10)

¡@H2(t)

@x2(t)
=
@¹2(t)

@t
) @¸2(t)

@t
= ¸2(t)

µ
k2(t)

1 + k2(t)
+ ½

¶
+
p2(t)

2
; (11)

lim
t!1

¹2(t) ¢ x2(t) = 0 : (12)

From the FOCs w.r.t. prices I obtain:

p¤1(t) =
c [2 + x1(t) + x2(t)]

3
; p¤2(t) =

c [4¡ x1(t)¡ x2(t)]
3

; (13)

which coincide with the optimal prices (4) characterising the static game.

From (10) I obtain:

¸2(t) = ¡½ [1 + k2(t)]
2

x2(t)
(14)

as well as

k2(t) =

s
¡¸2(t)x2(t)

½
¡ 1 ; (15)

which allows me to establish:

@k2(t)

@t
_ ¡@¸2(t)

@t
x2(t)¡

@x2(t)

@t
¸2(t) : (16)

7The FOC w.r.t. price for …rm 1 is:

@H1(t)

@p1(t)
=

p2(t) ¡ 2p1(t) + c [x1(t) + x2(t)]

2c
= 0
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Substituting (13) and (14) into (16), and using the symmetry condition

x1(t) = 1¡ x2(t); I can rewrite (16) as follows:

@k2(t)

@t
_ ½2 [1 + k2(t)]

2 ¡ c

2
x2(t) : (17)

The expression on the r.h.s. of (17) is equal to zero at:8

k¤2(t) = ¡1 + 1
½

r
c

2
x2(t) ; (18)

with

k¤2(t) > 0 for all ½ <

r
c

2
x2(t) (19)

@k2(t)

@t
> 0 for all k2(t) > k

¤
2(t) (20)

@k2(t)

@t
< 0 for all k2(t) 2 (0 ; k¤2(t)) : (21)

Obviously,
@x2(t)

@t
> 0 always. Expression (18) immediately yields the fol-

lowing intuitive result:

Lemma 1 The open loop steady state R&D investment is decreasing in the

cost of capital and in intertemporal discounting.

Now observe that

k¤2(t) = 0 i¤ x2(t) = x¤2 =
2

c
½2 (22)

where
2

c
½2 2

µ
3

4
; 1

¸
for all ½ 2

Ãr
3c

8
;

r
c

2

#
: (23)

8The smaller root can be disregarded as it is always negative.
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The phase diagram is illustrated in …gure 1, where I describe a situation in

which x2(0) > 3=4 and ½ 2
Ãr

3c

8
;

r
c

2

!
:9

Figure 1 : Dynamics in the space (x2; k2)

6

- x20
3/4

k2

x2(0)x¤2

@k2(t)
@t

= 0

¾ 6

¾
?

Considering the stability of the system, it remains to be stressed that,

whenever x¤2 > 3=4 ; it is a saddle.10 The above discussion can be summarised

in the following:

Proposition 1 For all ½ >

r
3c

8
; the open loop game reaches a steady state

9Whether x2(0) (respectively, x1(0)) is larger or smaller than 1 (resp., 0) is irrelevant

as to the graphical representation of the problem, as long as x2(0) (resp., x1(0)) is larger

(lower) than 3/4 (1/4).
10The complete proof is omitted, since this property immediately results from the dy-

namics of x2(t) and k2(t) as described by horizontal and vertical arrows in …gure 1.
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at

k¤2 = 0 ; x
¤
2 =

2

c
½2 >

3

4

which is a saddle, where there exists no undercutting incentive.

The above Proposition produces the following Corollaries:

Corollary 1 The steady state degree of product di¤erentiation is positively

related with the cost of capital and time discounting.

Corollary 2 Given x2(0) ¸ 1 ; maximum di¤erentiation obtains in steady

state if ½ =
r
c

2
.

The above property highlights that the dynamic model, where intertem-

poral investment is the relevant control variable, is intrinsically di¤erent from

its static counterpart, where the …rst order conditions w.r.t. locations gener-

ate the well known minimum di¤erentiation principle. When product design

becomes costly, then the presence of linear disutility of transportation does

not necessarily induce …rms to seek for the product preferred by the median

(and average) consumer, which in turn triggers the undercutting process.

This, obviously, happens when the parameter measuring the rental prices of

capital as well as time discounting is su¢ciently low to drive …rms within the

second and third quartiles of the linear city. Then, as a …nal result, we have

the following:

Corollary 3 For all ½ >

r
3c

8
; the open loop solution of the game produces

a unique price equilibrium in pure strategies, with strictly positive prices.
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As a complement to Corollary 3, it is worth observing that the under-

cutting incentive still operates when x¤1 2 [1=4 ; 1=2] and x¤2 2 [1=2 ; 3=4] ;

which happens for all ½ <

r
3c

8
: That is, when the cost of capital and time

discounting are su¢ciently low, …rms are driven into the region where the

price equilibrium in pure strategies does not exist.

3.2 The closed loop solution

The characterisation of the Markov (subgame) perfect equilibrium (MPE)

under the closed loop solution usually requires solving the relevant Bellman

equation.11 Given that the Hamiltonian problem de…ned in (8) is not written

in a linear-quadratic form, the Bellman - Hamilton - Jacobi su¢cient condi-

tions for a MPE cannot be solved. However, I am going to show that, in the

present case, the necessary conditions of the closed loop formulation su¢ce

to characterise the MPE.

First order conditions are (9), (10), (12) and

¡@H2(t)

@x2(t)
¡ @H2(t)

@p1(t)
¢ @p

¤
1(t)

@x1(t)
=
@¹2(t)

@t
; (24)

where the term
@H2(t)

@p1(t)
¢ @p

br
1 (t)

@x1(t)
=
p2(t)

4
describes the feedback e¤ect which

does not appear in the open loop formulation.12 The derivative
@pbr1 (t)

@x1(t)
is

11See Başar and Olsder (1982, 19952), Mehlmann (1988), Fudenberg and Tirole (1991,

pp. 520-36), Vives (1999, pp. 336-47), inter alia.
12Notice that

¡@H2(t)

@k1(t)
¢ @k1(t)

@x1(t)

does not appear in (24), in that
@H2(t)

@k1(t)
= 0:
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calculated on the basis of …rm 1’s best reply function in the price space,

pbr1 (t) =
p2(t) + c (x1 + x2)

2
; (25)

which is the solution to:

@H1(t)

@p1(t)
=

@

@p1(t)
(p1y1) =

p2(t)¡ 2p1(t) + c (x1 + x2)
2c

= 0 : (26)

Condition (24) yields:

@¸2(t)

@t
= ¸2(t)

µ
k2(t)

1 + k2(t)
+ ½

¶
+
p2(t)

3
: (27)

The dynamics of k2(t) is de…ned as in (16), which now simpli…es as follows:

@k2(t)

@t
_ ½2 [1 + k2(t)]

2 ¡ c

4
x2(t) : (28)

The only acceptable root of the r.h.s. of (28) is:

k¤2(t) = ¡1 + 1

2½

p
cx2(t) ; (29)

k¤2(t) > 0 for all ½ <
1

2

p
cx2(t) ; (30)

with qualitatively the same properties as outlined in (20-21) as well as in

…gure 1. Obviously, the result stated in Lemma 1 applies in the closed loop

formulation as well. Now observe that

k¤2(t) = 0 i¤ x2(t) = x¤2 =
4

c
½2 (31)

where
3

c
½2 2

µ
3

4
; 1

¸
for all ½ 2

Ãp
3c

4
;

r
c

2

#
: (32)

By comparing (31) with (22), the following Lemma obtains:
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Lemma 2 The steady state degree of product di¤erentiation is larger under

the closed loop solution than under the open loop solution.

The above Lemma implies the …nal result:

Proposition 2 The critical threshold of the discount rate (or the cost of

capital) above which there exists a price equilibrium in pure strategies is lower

under the closed loop solution than under the open loop solution.

As a …nal remark, notice that, obviously, from (13) and given x¤1+x
¤
2 = 1;

equilibrium prices (and consequently equilibrium outputs) are the same under

both the open loop and the closed loop solution, i.e., p¤1 = p2 = c (and

y¤1 = y
¤
2 = 1=2).

4 Concluding remarks

I have reformulated the spatial duopoly model with linear transportation

costs as a di¤erential game where location is costly and therefore product

di¤erentiation is the result of …rms’ R&D decisions over time. I have charac-

terised both the open loop and the closed loop solution. This has generated

two related results. The …rst is that the steady state R&D investment (prod-

uct di¤erentiation) is negatively (positively) related to the cost of capital

and time discounting. The second is that, if time discounting and the cost of

capital are su¢ciently high, the amount of di¤erentiation observed in steady

state is su¢ciently large to ensure the existence of a unique pure-strategy

price equilibrium with prices above marginal cost. Product di¤erentiation

in steady state is larger under the closed loop solution than under the open

13



loop solution. Consequently, the range of discount rates such that a pure

strategy equilibrium exists is larger under the closed loop solution.
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