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Abstract

We analyse sequential entry in a quantity-setting oligopoly model. Firms

have the option to adopt either a productive capacity which is optimal at the

time of entry or a smaller one. This capacity may be suitable either for the

steady state or just some time after entry. In the latter case …rms never carry

idle capacity, while in the former they keep spare capacity in the steady state.

In the Cournot-Nash setting, a subgame perfect equilibrium may result in

…rms investing in capacity that will turn out to be idle later, depending on

the size of the market and the rental price of capital. Older …rms have larger

spare capacity than later entrants and we can tell the age of a …rm from its

unused capacity. If market size is large enough, excess capacity turns out to

be socially optimal.

JEL Classi…cation: L13.
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1 Introduction

Casual observation points to industries made up of …rms of di¤erent size.

The existing literature explains this stylized fact either through R&D races or

through the description of the dynamic evolution of an industry. The former

view relies upon either cost or quality di¤erentials across …rms, generated

by R&D activities in process or product innovation (see Reinganum, 1989;

Shaked and Sutton, 1983: Lehmann-Grube, 1997, inter alia). The latter

view integrates demand and supply factors, with and without uncertainty

(see Lucas, 1978; Jovanovic, 1982; Ericson and Pakes, 1995; Fishman and

Rob, 1995, 1999). Our contribution nests into this strand of literature, by

relating the evolution of the industry to the issue of whether …rms have the

incentive to hold excess capacity in the long-run equilibrium. This question

has received a considerable amount of attention in modelling entry barriers

in static multi-stage models. However, to our knowledge, it hasn’t yet been

investigated in a model where entry takes place over an arbitrarily long time

span.

In this vein, strategic investment in productive capacity remains quite an

open question with reference to a framework of sequential entry in oligopoly.

The two main issues at stake are a) the social e¢ciency of the entry process,

and b) the incentive for …rms to hold excess capacity. When there are set-up

costs the ine¢ciency of entry is mainly due to accomodation by incumbents

refraining from price competition. As a result the reduction of the output

level of incumbent …rms (the “business stealing e¤ect”) makes entry more

desirable to new entrants than to society (von Weizsäcker, 1980; Perry, 1984;

Mankiw and Whinston, 1986; Nachbar, Petersen and Hwang, 1998). A sec-

ond strand of literature is devoted to the use of idle capacity as a strategic

device by incumbent …rms. The early contribution on this topic (Spence,

1977) claims that incumbents may install excess capacity to prevent entry.

1



Subsequently, Dixit (1979, 1980) shows that this procedure is not consistent,

since investing in idle capacity cannot be a credible threat, i.e., Spence’s equi-

librium is not subgame perfect. A later development in this direction rescues

Spence’s contribution by relating the incentive to hold excess physical cap-

ital to the slope of the best reply functions of …rms in the market subgame

(Bulow, Geanakoplos and Klemperer, 1985). When reaction functions are

positively sloped, i.e. there is strategic complementarity among products,

we observe redundant capital commitment in a subgame perfect equilibrium.

Dixit’s conclusion holds for strategic substitutability.

A more recent strand of literature has dealt with entry deterrence in

an uncertain environment. Kulatilaka and Perotti (1992) …nd that higher

volatility in an uncertain market leads …rms to invest earlier and to commit to

higher capacity. Hopenhayn (1992) develops a stochastic model of entry and

exit, where uncertainty is technological and …rm-speci…c and …rms’ turnover

takes place also in the steady state. Gabszewicz and Poddar (1997) again

point to excessive capacity when demand is not certain. A similar conclusion

can be found in Maskin (1999) who …nds that excessive capacity occurs as an

entry deterrence strategy under either technological or market uncertainty

in a Cournot setting. On the contrary, Somma (1999) shows that a lower

commitment is preferred when there is a high probability that a more e¢cient

technology may appear in the second period.

Our purpose is to investigate a dynamic entry process. We assess the

incentive for …rms, selling a homogeneous good, to invest in excess capacity

in a model where entry takes place over time. In this respect we depart

from a large literature where entry is analysed in timeless models without

discounting (Prescott and Visscher, 1977; Boyer and Moreaux, 1986; Eaton

and Ware, 1987; Vives, 1988; Anderson and Engers, 1994).

We consider sequential entry, with a single …rm entering the market at

each period, in continuous time. When the role of real time is properly taken
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into account, …rms have the option to install a capacity which ranges between

the capacity that is optimal at the time of entry and the capacity they foresee

will be optimal in the steady state. If they adopt a capacity that is strictly

larger than the one of the steady state they will be capacity constrained from

the time of entry to the time at which their capacity will be optimal. From

then on they operate with unused capital.

We evaluate the capacity decisions under the solution concept of the

standard Cournot-Nash equilibrium. Each period incumbents and entrants

set quantities simultaneously in a market characterised by strategic substi-

tutability. We establish that …rms adopt a capacity which depends upon the

cost of capital, the size of the market and the past history of entry. No …rm

enters with a capacity which is redundant at the time of entry. Idle capacity

surfaces later as they come closer to the steady state. Unlike what happens

in Spence (1977), the emergence of idle capacity in the long run equilibrium

is due to the incentive to exploit the temporary rent which dissipates as we

approach the steady state. Therefore, if in the long run equilibrium …rms

adopt excess capacity, then the size of a …rm’s installed capital is inversely

related to the date of entry, revealing thus the …rm’s age.

Consumers’ welfare maximization is not always against excess capacity.

Especially, when market size is relatively large excess capacity is equivalent

to accelerating the path to the steady state where pro…ts will be zero and

consumers shall get the most out of the entry process.

The remainder of the paper is organised as follows. In section 2 we provide

the basic setup for sequential entry models. In section 3 we analyse Cournot-

Nash behaviour. In section 4 we go through second best welfare analysis. The

results are summarised in section 5.
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2 The set up

Consider a quantity-setting oligopoly, over continuous time t 2 [0;1): Entry

takes place sequentially over continuous time t 2 [0; ¿ ]; where ¿ is the time at

which the market reaches the steady state where the last entrant just breaks

even. That is, the steady state is reached at time ¿ when the …rm ¿ + 1’s

discounted ‡ow of operative pro…ts just covers the cost of capital acquired at

time ¿ ; de…ned as k¿ : In each period t a single …rm t+ 1 2 [1; ¿ + 1] enters

the market with a capacity kt+h which is at least as large as the steady

state capacity, k¿ ; and weakly lower than the optimal capacity at the time

of entry, k¤t , for all t < ¿ : Without loss of generality, we assume that capital

does not depreciate over time. Our framework is one of perfect information

and certainty.

We assume that …rms produce a homogeneous good at a constant unit cost

c; as long as individual production does not exceed capacity. Otherwise, we

suppose, for the sake of simplicity, that the marginal cost becomes in…nitely

large. At any time t the inverse market demand is:

pt = max f0; a¡Qng (1)

where n = t + 1 is the number of …rms in the market at time t: Each …rm

has the option to choose its capital endowment kt+h 2 [k¿ ; k¤t ] : For any …rm

entering at t 2 [0; ¿ ); we have that k¿ < k¤t : From t to t + h; …rm i = t + 1

that adopts kt+h is capacity constrained. Over t 2 [t+ h;1); the …rm plays

her best reply against the overall quantity produced by rivals:

qiz =

8
<
:
kt+h 8 z 2 [t; t+ h]
q¤iz (Q¡i;z) 8 z 2 [t+ h;1)

(2)

Notice that, at time t+ h; q¤iz (Q¡i;z) = kt+h: Moreover, from ¿ onwards,

q¤iz (Q¡i;z) = q
¤
iz (¿q

¤
¿) = q

¤
¿ : For the last …rm entering the market at time ¿;

the optimal choice is obviously to set up the steady state capacity k¿ :
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De…ne:

² The instantaneous operative pro…t over z 2 [t; t+ h] accruing to …rm i

entering at time t 2 [0; ¿ ] as

¼iz ´ (pz ¡ c)qiz = (a¡ kt+h ¡Q¡i;z ¡ c)kt+h: The population of earlier

entrants in general is composed partly by capacity constrained …rms

and partly by other …rms which can play their best replies, i.e.:

Q¡i;z =
mX

j=1

qj +
zX

l=m+1

kl ; j 6= i : (3)

For later reference, de…ne Kl ´ Pz
l=m+1 kl :

² The instantaneous operative pro…t over v 2 (t+ h; ¿ ] accruing to …rm

i entered at time t 2 [0; ¿ ] as

¼iv ´ (pv ¡ c)qiv = (a ¡ qiv ¡ Q¡i;v ¡ c)qiv: The population of later

entrants in general is composed partly by capacity constrained …rms

and partly by other …rms which can play their best replies, i.e.:

Q¡i;v =
uX

j=1

qj +
vX

w=u+1

kw ; j 6= i : (4)

For later reference, de…ne Kw ´ Pv
w=u+1 kw :

² N = ¿+1 as the number of …rms in the steady state, hence i; n 2 [1;N ]:

² ¼ss = (a ¡ Nk¿ ¡ c)k¿ as the steady state operative pro…t of a single

…rm, over t 2 (¿ ;1):

² ½ as the discount rate, equal across …rms and constant over time. The

same discounting belongs to the social planner. The rental price of

capital is also equal to ½:

² s ´ a¡ c as the net size of the market (de…ned by Dixit (1979) as net

absolute advantage when referred to a single …rm).
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² The number of …rms entered up to ¿ is ¿ + 1: Therefore, steady state

capacity is k¿ = s=(¿ + 2):

3 Firms’ behaviour

The discounted ‡ow of pro…ts accruing to …rm i = t+1; entering at t 2 [0; ¿ ];
over the period [t;1) is given by:

¦t+1;t(k) =
Z t+h

t
¼iz ¢e¡½zdz+

Z ¿

t+h
¼iv ¢e¡½vdv+

Z 1

¿
¼ss ¢e¡½rdr¡½kt+h ; (5)

where kt+h 2 [k¿ ; kt(Kl)] :

Notice that, over t 2 (¿;1) ; all …rms play k¿ : Therefore, the choice of

kt+h is una¤ected by the discounted ‡ow of pro…ts from steady state onwards,
R1
¿ ¼ss ¢ e¡½rdr; which we disregard in the remainder. As a result, the …rm’s

choice of capital installment is de…ned as follows:

k¤t+h = argmax
kt+h

b¦t+1;t(k) =
Z t+h

t
¼iz ¢ e¡½zdz +

Z ¿

t+h
¼iv ¢ e¡½vdv ¡ ½kt+h (6)

where b¦t+1;t(k) = ¦t+1;t(k)¡
R1
¿ ¼ss ¢ e¡½tdt: We prove the following:

Lemma 1 Firm i’s pro…ts are:
Z t+h

t
¼iz ¢ e¡½zdz =

µ
s¡Kl

m+ 1

¶
kt+h

Z t+h

t
e¡½zdz ; (7)

over z 2 [t; t+ h] ; and
Z ¿

t+h
¼iv ¢ e¡½vdv =

µ
s¡Kw

u+ 1

¶2 Z ¿

t+h
e¡½vdv ; (8)

over v 2 (t+ h; ¿ ] :

Proof. Consider the …rst part of the Lemma. A …rm which, at any z 2
[t; t+ h] ; is not capacity constrained, produces the output qjz given by the

solution of the following …rst order condition (FOC):

@¼jz
@qjz

= s¡ 2qjz ¡
m¡1X

j=1

qjz ¡K = 0 ; (9)
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i.e., q¤jz(K) = (s¡K)=(m+1); where K = Kl+kt+h is the overall capacity of

the subpopulation of …rms which are capacity constrained at time z: Plugging

q¤jz(K) into
R t+h
t ¼iz ¢e¡½zdz and simplifying, proves the …rst statement in the

Lemma.

Now consider the second statement. Over v 2 (t+ h; ¿ ] ; …rm i (entered

at t) is no longer constrained, and, at any v, maximises instantaneous pro…ts

¼iv =

"
2 (s¡Kw)

u+ 1
¡ qiv

#
qiv (10)

by playing the best reply q¤iz(Kw) = (s ¡ Kw)=(u + 1): This yields optimal

instantaneous pro…ts ¼¤iv [q
¤
iz(Kw)] = (s¡Kw)

2 = (u+ 1)2 : This completes

the proof.

On the basis of Lemma 1, we can write b¦t+1;t(k) as follows:

b¦t+1;t(k) =
(s¡Kl ¡ kt+h)

³
e½(t+h) ¡ e½t

´
kt+h

½ (m+ 1) e½(2t+h)
+

+

³
e½¿ ¡ e½(t+h)

´
(s¡Kw)

2

½ (u+ 1)2 e½(t+h+¿)
¡ ½kt+h

(11)

which can be di¤erentiated w.r.t. kt+h to obtain the following FOC:

@ b¦t+1;t(k)
@kt+h

=
(s¡Kl ¡ 2kt+h)

³
e½(t+h) ¡ e½t

´

½ (m+ 1) e½(2t+h)
¡ ½ = 0 (12)

whose solution is:1

k¤t+h =
(s¡Kl)

2
¡ ½2e½(t+h)(m+ 1)

2 (e½h ¡ 1) : (13)

1The second order condition for a maximum:

@2b¦t+1;t(k)

@k2
t+h

= ¡ 2
¡
e½(t+h) ¡ e½t

¢

½ (m + 1) e½(2t+h)

is always met.
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From (13), it appears that for the …rst …rm, entering at t = 0; capacity is de-

termined exclusively by the size of the market and intertemporal discounting.

This produces a viability condition for the entry process to start:

Lemma 2 The necessary condition for the entry process to start with …rm

1 choosing k¤h is s > s0 =
½2e½h

e½h ¡ 1 :

Proof. For the …rst …rm, Kl is necessarily nil. Moreover, t = 0: Plugging

these values in (13), we obtain the expression for the capacity of …rm 1, k¤h: It

is then immediate to verify that this capital level is positive if s >
½2e½h

e½h ¡ 1 :

Before proceeding to establish optimum conditions for the choice of ca-

pacity, observe that:

Lemma 3 Choosing k¿ at the time of entry is admissible for all s > 0:

Proof. To prove this claim, it su¢ces to check that

k¿ =
s

¿ + 2
· s for all ¿ + 1 ¸ 0 (14)

which is always true.

Su¢cient conditions for the optimal choice of capacity by the generic …rm

t+ 1 are stated in the following:

Proposition 1 For any ½ > 0; there exists a threshold value of the market

size es > s0 > 0; such that:

² for all s > es; maximum pro…ts obtain at k¤t+h > k¿ ;

² for all s 2 [0; es] ; maximum pro…ts obtain at k¿ :

For all positive values of ½ and s; k¤t+h < kt (Kl) ; where kt (Kl) is the

capacity that …rm t+ 1 would choose as a best reply against Kl :
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Proof. Compare (13) with k¿ = s=(¿ + 2): This yields:

k¤t+h

>

=

<

k¿ for all s

>

=

<

h
Kl

³
e½h ¡ 1

´
+ ½2e½(t+h)(m+ 1)

i
(¿ + 2)

¿ (e½h ¡ 1) ´ es : (15)

The inequality es > s0 can be checked by plugging Kl = 0 and m = 0 into es
and comparing it against s0 as from Lemma 2. This proves the …rst part of

the Proposition.

To prove the second statement we compare k¤t+h with

kt (Kl) =
s¡Kl

2
=
s¡ Pz

l=m+1 kl
2

(16)

to obtain:

kt (Kl)¡ k¤t+h =
½2e½(t+h)(m+ 1)

2 (e½h ¡ 1) > 0 : (17)

Notice that, when s 2 [0; es] ; …rms choose k¿ irrespective of whether s is

larger or smaller than s0: For all s 2 [0; s0) ; …rms never choose k¤t+h as it is

both suboptimal and too large w.r.t. the size of the market; for all s 2 [s0; es] ;
k¤t+h is admissible but suboptimal.

Proposition 1 produces a few relevant corollaries. The …rst is the follow-

ing:

Corollary 1 Optimal capacity k¤t+h only depends upon the past history of the

entry process.

To prove it, just observe expression (13), which depends on Kl but not

on Kw; i.e., the generic …rm’s capital commitment at date t is determined by

the overall capacity accumulated by earlier entrants.

Now we assess the behaviour of k¤t+h as t increases towards ¿; in order

to characterise the time pattern of excess capacity as the market approaches

the steady state. This is summarised in the following:
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Proposition 2 For all s > es; optimal capacity k¤t+h is everywhere decreasing

and concave in t:

Proof. To prove the above statement, just calculate …rst and second deriv-

atives of k¤t+h w.r.t. t :

@k¤t+h
@t

= ¡½
3(m+ 1)e½(t+h)

2 (e½h ¡ 1) < 0 ; (18)

@2k¤t+h
@t2

= ¡½
4(m+ 1)e½(t+h)

2 (e½h ¡ 1) < 0 : (19)

The intuition attached to Proposition 2 is that a casual observer looking

at the market in steady state is able to tell older …rms from younger …rms

simply by looking at their respective installed capacities.

4 Second best welfare analysis

Here we assess the behaviour of a planner w.r.t. capital commitment kt+h;

given …rms’ output decisions at the market stage, as given by (2). To this

aim, we calculate the social welfare levels over the periods [t; t + h] and

(t+ h; ¿ ] :

SW (t; t+ h) =
(Kl + kt+h) (2s¡Kl ¡ kt+h) +ms2(m+ 2)

2(m+ 1)2
; (20)

SW (t+ h; ¿ ) =
Kw (2s¡Kw) + us2(u+ 2)

2(u+ 1)2
: (21)

The planner would choose kt+h so as to maximise social welfare over the

whole time horizon up to the steady state, i.e., SW (t; ¿) = SW (t; t + h) +

SW (t+ h; ¿ ): The FOC is:

@SW (t; ¿)

@kt+h
=
(s¡Kl ¡ kt+h)

³
e½h ¡ 1

´

½(m+ 1)2e½(t+h)
¡ ½ = 0 ; (22)
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yielding2

ksbt+h =
(s¡Kl)

³
e½h ¡ 1

´
¡ ½2(m+ 1)2e½(t+h)

e½h ¡ 1 : (23)

It is easily veri…ed that

@ksbt+h
@t

< 0 and
@2ksbt+h
@t2

< 0 (24)

so that ksbt+h is everywhere decreasing and concave in t:

It remains to assess whether the per-…rm capital endowment (23) in the

second best equilibrium is larger than the privately optimal capital (13). This

is done in the following:

Proposition 3 For any ½ > 0; there exists a threshold value of the market

size bs > 0; such that:

² for all s > bs; we have ksbt+h > k
¤
t+h ;

² for all s 2 (0; bs) ; we have ksbt+h < k
¤
t+h :

Proof. Compare (23) with (13). This yields:

ksbt+h ¡ k¤t+h =
(s¡Kl)

³
e½h ¡ 1

´
¡ ½2(2m+ 1)(m+ 1)e½(t+h)
2 (e½h ¡ 1) (25)

which is positive if

s >
Kl

³
e½h ¡ 1

´
+ ½2(2m+ 1)(m+ 1)e½(t+h)

(e½h ¡ 1) ´ bs ; (26)

and conversely if s 2 (0; bs) : This concludes the proof.

2The SOC
@2SW (t; ¿)

@k2
t+h

= ¡ e½h ¡ 1

½(m + 1)2e½(t+h)
· 0

is always met.
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Observe that the above result can be reformulated in terms of residual

market demand, by noting that

ksbt+h > k
¤
t+h i¤ s¡Kl >

½2(2m+ 1)(m+ 1)e½(t+h)

(e½h ¡ 1) ; (27)

where s ¡ Kl is the size of the residual market at time t; when capacity-

constrained …rms have installed an overall capacity Kl:

Moreover, we wish to investigate the parameter regions where second best

social welfare is maximised alternatively at ksbt+h or k¿ . This establishes the

following

Proposition 4 For any ½ > 0; there exists a threshold value of the market

size, s > 0; such that:

² for all s > s; max
n
SW sb

o
obtains at ksbt+h ;

² for all s 2 (0; s) ; max
n
SW sb

o
obtains at k¿ :

Proof. To prove the above statement compare (23) with k¿ to obtain the

following

ksbt+h

>

=

<

k¿ for all s

>

=

<

h
Kl

³
e½h ¡ 1

´
+ ½2e½(t+h)(m+ 1)2

i
(¿ + 2)

(¿ + 1) (e½h ¡ 1) ´ s : (28)

We now wish to establish a ranking over fs; es; bsg :

Proposition 5 For all Kl > K 0
l ; we have s > es > bs; for all Kl 2 (0; K 0

l) ;

we have s < es < bs:
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Proof. Simply observe that the critical level of Kl; at which s = es = bs ; is:

K 0
l =

½2e½(t+h)(m+ 1)(m¿ ¡ 1)
e½h ¡ 1 : (29)

We are now in a position to give a comparative picture of the planner’s

preferences over the entry process, vis à vis the …rms’ behaviour.

Theorem 1 Suppose Kl > K 0
l : Then we have

A] s > s, ksbt+h > k
¤
t+h > k¿ : The planner chooses ksbt+h; …rms choose k¤t+h:

B] s 2 (es; s); the planner chooses k¿ while …rms adopt k¤t+h:

C] s 2 (0; es); both the planner and …rms choose k¿ :

Suppose Kl 2 (0; K 0
l) : Then we have

D] s > bs, ksbt+h > k¤t+h > k¿ : The planner chooses ksbt+h; …rms choose k¤t+h:

E] s 2 (es; bs); k¤t+h > ksbt+h > k¿ : The planner chooses ksbt+h; …rms choose k¤t+h:

F] s 2 (s; es); the planner chooses ksbt+h; …rms choose k¿ :

G] s 2 (0; s); both the planner and …rms choose k¿ :

Proof. The Theorem is a direct consequence of Propositions 1, 3 and 4. As

an illustration, we con…ne our attention to points [A, B, C]. Consider the

case Kl > K 0
l : Suppose s > s: If so, Propositions 1, 3 and 4 establish that

both the planner and the …rms choose excess capacity, with social incentives

towards excess capacity being larger than private incentives. This proves [A].

Now take s 2 (es; s): In this range, Proposition 4 tells that the planner

would like …rms to adopt steady state capacity. However, Proposition 1 leads

…rms to choose k¤t+h > k¿ : This proves [B].
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Finally, consider s 2 (0; es): In this range, Propositions 1 and 4 entail that

it is both socially and privately optimal to choose k¿ : This proves [C].

Theorem 1 can be interpreted as a description of the tradeo¤ between the

cost of capacity on one side and the e¤ect of larger capacity on market price,

outputs and surplus on the other side. As an illustration, consider points [A,

B, C]. If the market is very small, then both private and social incentives

point to the adoption of the steady state capacity. Since surplus is quadratic

in market size, in such a range it is more desirable to save on installment

costs. The opposite holds if the market is su¢ciently large. If so, then excess

capacity is appealing also to the planner, as the temporary gain in welfare

more than o¤sets the cost of idle capital in the ensuing story of the industry.

Finally, notice that, when the incentive to adopt excess capacity exists for

the planner, then it is higher than for …rms, due to the fact that the planner

takes into account the sum of industry pro…ts and consumer surplus.

5 Concluding remarks

In a static quantity-setting framework, the only reasonable solution concept

is the Nash equilibrium, in that there is no reason to expect that any …rm

may have an unchallenged ability to move …rst. This is the major result

proved by d’Aspremont and Gérard-Varet (1980) and Hamilton and Slutsky

(1990). Therefore, when an entry process is described in a single period

model, it is not rational for …rms to operate with excess capacity. This is the

basic objection to Spence’s (1977) conclusion raised by Dixit (1980).

In the light of the foregoing analysis, this conclusion may change when

entry takes place sequentially in continuous time.

Firms install a capacity which ranges between the one that is optimal at

the time of entry and the one that is best suited for the steady state when
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a zero pro…t condition dictates operative scale of production. The choice

of capacity depends upon the cost of capital, the net size of the market

(reservation price minus marginal cost) and the past history of entry in the

market.

We are able to …nd threshold values of the market size beyond which

…rms enter with a productive capacity that will be partly idle after a while

and in the steady state. For a constant cost of capital and a given net size

of market, we are able to tell the age of …rms from their capacity, since older

…rms are more likely to carry excess capacity in the steady state, due to their

incentive to extract as much surplus as possible in their very …rst stay in the

market. Younger …rms enter with a capacity that will be much closer to the

one they will use in the steady state where they will carry less idle capacity.

Second best welfare analysis provides a thorough assessment of the entry

process. In particular, if market size is large enough, then both private and

social incentives point to the adoption of excess capacity. Moreover, the

socially preferred result is for …rms to enter with larger capacity than it

would be privately optimal.
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