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Abstract

We characterise the interplay between ¯rms' decisions in product development, be it joint

or independent, and their ensuing repeated price behaviour, either collusive or Bertrand-

Nash. Firms face a choice between participating in a joint venture inventing a single

product, and in independent ventures developing their respective products which can be

either horizontally or vertically di®erentiated. We prove that joint product development

and the resulting lack of horizontal product di®erentiation may destabilise collusion, whilst

¯rms' R&D decisions have no bearings on collusive stability in the vertical di®erentiation

setting. We also discover the non-monotone dependence of ¯rms' venture decisions at

the development stage upon their intertemporal preferences, as well as upon consumers'

willingness to pay.

Keywords : R&D, product innovation, collusive stability, time discount factor, optimal

punishment.

JEL classi¯cation : D43, L13, O31.

1



1 Introduction

Whilst public authorities explicitly prohibit collusive market behaviour, there is scarce

evidence that they discourage cooperation in R&D activities. As to the latter, there

indeed exist several examples of policy measures meant to stimulate the formation of

research joint ventures (RJVs henceforth).1 If cooperation in innovation activities may

induce collusion in the product market, then the above mentioned tendency to encourage

cooperative R&D but to discourage market collusion will render itself inconsistent.

There exists a wide literature concerning the e®ects of product di®erentiation on the

stability of implicit collusion either in output levels or in prices (Deneckere, 1983 ; Chang,

1991, 1992 ; Rothschild, 1992 ; Ross, 1992 ; Friedman and Thisse, 1993 ; HÄackner, 1994,

1995, 1996 ; Lambertini, 1997a ; Albk and Lambertini, 1998 ; inter alia). There also have

been studies dealing with R&D in di®erentiated markets. A few of them, including Motta

(1992) and Rosenkranz (1995), consider cooperation in the development phase. On the

other hand, the e®ectiveness of RJVs in eliminating e®ort duplication has been well noted

in a large number of contributions (Katz, 1986 ; d'Aspremont and Jacquemin, 1988, 1990 ;

Kamien et al., 1992 ; Suzumura, 1992 ; inter alia).

So far, however, few serious attempts have been made to consolidate these two streams

of research. Among these few pioneering studies are Martin (1995), and Cabral (1996).

The former analyses the strategic e®ects of an RJV aimed at achieving a process innova-

tion for an existing product, when the product is marketed by ¯rms engaging in Cournot

behaviour. Martin shows that the presence of cooperation in process innovation enhances

cartel stability, which can overbalance the welfare advantage of eliminating e®ort dupli-

cation through the RJV. His ¯nding has potential implications in the case of product

innovation as well. Cabral, on the other hand, proves the existence of those cases where

competitive pricing is needed to sustain more e±cient R&D agreements.

Our e®ort in this paper broadly follows Martin's, except that we take into account

the possible e®ects of product di®erentiation resulting from the presence or the absence

of cooperation in product development, as opposed to Martin's analysis of process de-

velopment. In particular, unlike most of the existing literature on repeated games under

product di®erentiation, we explicitly model the e®ort-saving e®ects of RJVs, which a®ect

¯rms' incentives as well as social welfare. Namely, in an RJV, ¯rms share the costs of

product development by jointly developing a single product. An RJV thereby eliminates

e®ort duplication, whilst it o®ers no product di®erentiation : all participant ¯rms will

1See the National Cooperative Research Act in the US ; EC Commission (1990) ; and, for Japan, Goto

and Wakasugi (1988).
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have to market one identical product. Independent ventures do the opposite : each ¯rm

bears the full costs of innovating its respective product, in return for the possibility of

product di®erentiation.

In brief, we investigate the bearings of product innovation, either through an RJV or

through independent ventures, on ¯rms' ability to build an implicit cartel in the market

phase and maintain it over time. We prove that ¯rms' R&D decisions, insofar as they

a®ect the degree of vertical di®erentiation only, have no bearings on collusion stability.

Horizontally di®erentiated independent ventures can enhance the sustainability of price

collusion in marketing if ¯rms collude by choosing that subgame perfect equilibrium which

maximises the sum of ¯rms' discounted streams of pro¯ts.

Note also that ¯rms' decision between joint and independent ventures at the devel-

opment stage can be non-monotone in their intertemporal preferences as well as in con-

sumers' willingness to pay, due to the fact that the collusive stability in the marketing

stage can be a®ected by product di®erentiation.

The paper is organised as follows. The general structure of the game is laid out in

section 2. The horizontal di®erentiation setting is closely analysed in sections 3. Then,

the vertical di®erentiation model is discussed in section 4. Section 5 discusses brie°y the

di®erence between our ¯ndings and existing results in the literature. Finally, Section 6

provides concluding remarks.

2 The model

We consider a duopoly with two a priori identical ¯rms playing the following three-stage

game. The entire game is embedded in the discrete time structure t = 0; 1; 2; ¢ ¢ ¢. The
¯rst two stages take place at t = 0 , both are for product innovation in its broad sense.

The ¯rst stage is for initial venture decisions, where ¯rms choose between independent

and joint ventures. An RJV is formed if and only if both ¯rms agree to stay in it ;

otherwise if at least one of them disagrees with an RJV, then each of the two ¯rms forms

an independent venture.

The second stage describes product development. Products are located in the relevant

space, which we assume to be unidimensional. Depending upon whether such a space is

horizontal or vertical, we discuss two separate versions of the model in sections 3 and 4,

respectively. In either version :
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² The two ¯rms jointly develop a single product if they decided on a joint venture in
the previous stage. The joint venture serves as a uni¯ed decision maker only in this

second stage. Namely, the RJV chooses a product so as to maximise the sum of the

two ¯rms' discounted streams of pro¯ts. The two ¯rms also bear symmetrically the

cost of product development.

² Each of the two ¯rms independently chooses a product and develops it if the two
¯rms decided on independent ventures in the ¯rst stage. In this case, each ¯rm bears

the full development cost of its own product. Note in particular, the noncoopera-

tiveness of the ¯rms' product decisions does not necessarily preclude the possibility

that their decisions can still be implicitly collusive, rewarding or penalising partic-

ular product pro¯les through their ensuing market behaviour.

Then ¯nally, the third stage is a Bertrand supergame t = 1; 2; ¢ ¢ ¢. Throughout the game,
the discount factor ± 2 [0; 1) is common to both ¯rms. In establishing the critical threshold
of the discount factor stabilising price collusion, we follow the optimal punishment strategy

as de¯ned by Abreu (1986).

Observe that, when ¯rms choose a joint venture, they supply the market with an

undi®erentiated product, thereby to sustain collusion in the resulting perfect Bertrand

market, the discount factor ± needs to be
1

2
or above. In this case, the predictions o®ered

by the conventional folk theorem and by Abreu's optimal punishment coincide (Lambson,

1987). If ± <
1

2
, there is no prospect of colluding at any prices other than one-shot

Bertrand-Nash equilibrium prices.

On the other hand, when ¯rms choose independent ventures, their collusive or non-

collusive pricing behaviour in the Bertrand supergame can be made contingent upon the

product portfolio they have selected. By colluding in marketing if and only if a partic-

ular product portfolio 1¤; 2¤ has been selected (i.e., ¯rm 1 has chosen product 1¤ and

¯rm 2 has chosen 2¤), ¯rms may be able to sustain the particular product pro¯le as part

of a subgame perfect equilibrium. Obviously, depending upon which product portfolio

to sustain, there can be countlessly many subgame perfect equilibria of this structure.

Among them, we focus on pro¯t e±cient ones, i.e., those equilibria yielding the highest

possible discounted pro¯ts (greater details shall be shown in sections 3 and 4). Thereby,

even though their product decisions as well as pricing actions are entirely noncooperative,

the ¯rms can e®ectively collude both in product portfolio and in the ensuing Bertrand

supergame, as an outcome of a purely noncooperative subgame perfect equilibrium.

Hence, a general picture of the decision problem facing the two ¯rms is provided by

¯gure 1, where the discounted stream of net pro¯ts for each ¯rm is listed as (JC) , (JN) ,
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(IC) , and (IN ), with J; I; C and N standing for joint venture, independent ventures, col-

lusion and one-shot Bertrand-Nash behaviour, respectively. In the picture, the sub-trees

for the supergame in the third stage are suppressed and replaced with binary equilibrium

outcomes : either collusion or Bertrand-Nash.2 ki is the development cost of product i .

Note that both collusive pro¯ts and Bertrand-Nash pro¯ts vary depending upon the

product portfolio. In the case of undi®erentiated products, Bertrand-Nash pro¯ts are nil,

and in calculating collusive pro¯ts ¼Ci we assume that the two ¯rms will set an identical

price to split demand evenly, thereby equalising pro¯ts, when colluding in prices. In

independent ventures, ¯rms collude in prices and earn collusive pro¯ts ¼Ci¤ if and only if

collusive portfolio 1¤; 2¤ has been chosen ; otherwise they repeat one-shot Bertrand-Nash

equilibrium, earning ¼Ni which depends upon the portfolio. Let ±¤ denote the critical

discount factor sustaining collusion, which may depend upon the given pair of products.

Figure 1 : the generic decision tree.
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In the following two sections we solve this tree backward to identify pure strategy subgame

perfect equilibrium (simply \equilibrium" hereinafter unless otherwise speci¯ed).

2Note that our purpose in this paper is to analyse ¯rms' R&D and marketing behaviour without mixing

them with entry/exit decisions. To this end, we assume no possibility of exiting even when operative

pro¯ts are literally below zero. This can be justi¯ed, for example, in the presence of substantial exit

costs.
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3 The horizontal di®erentiation setting

We adopt the spatial location model due to d'Aspremont, Gabszewicz and Thisse (1979).

Consumers are uniformly distributed over the unit line segment [0; 1] . In every period,

each consumer buys one unit of the product that maximises his net utility :

U = s¡ di2 ¡ pi;

where s is gross surplus, pi is the price charged by ¯rm i and di is the distance between

the consumer and ¯rm i. We assume that, if a consumer is indi®erent between the two

¯rms' products, then he randomises his purchase with probability one half from each ¯rm.

This implies that, if the two ¯rms locate at the same site and choose the same price, then

they split the demand evenly. We also assume s ¸ 5=4 ,3 and normalise the marginal

production cost to nil.

The development cost of a product is a positive constant k independent of the location.

Therefore, an RJV pays k jointly, each ¯rm bearing k=2 , whereas an independent venture

also pays k in the second stage, at t = 0 .

The game is solved by backward induction in the following subsections 3:1 through 3:3.

3.1 Subgame ensuing independent ventures

When ¯rms undertake independent ventures, each of them bears the full development

cost k . Although the two ¯rms' location choices are mutually independent and non-

cooperative, as aforementioned, they may still be able to enforce a particular pair of loca-

tions using their ensuing marketing behaviour as a rewarding/punishing device. Namely,

in the marketing supergame, ¯rms collude in prices only if they have chosen a prescribed

pair of locations. Especially, when there are more than one pair of locations enforceable

by this means, hereinafter we analyse the most pro¯t-e±cient symmetric one among such

location pairs.

In this horizontal product space setting we assume that, if in the ¯rst stage the two

¯rms choose independent ventures, then in the latter two stages they play that subgame

perfect equilibrium which prescribes the following.

1. The most pro¯table symmetric pro¯le of locations and prices, as long as ± is su±-

ciently high in order to sustain such a pro¯le through Abreu's optimal punishment.

3This ensures that full market coverage obtains at the noncooperative one-shot equilibrium in prices,

if ¯rms locate in 0 and 1, respectively.

6



2. If ± does not su±ce to sustain the above 1., then the most pro¯table among those

symmetric location pairs starting from which the collusion at the joint pro¯t maxi-

mal (i.e., monopoly) price level is sustainable by Abreu's optimal punishment given

± .

3. If the set of all those symmetric location pairs in 2. is empty, i.e., if ± is so low that

collusion at the monopoly price is unsustainable starting from any location pair

at all, then the most pro¯table location pair anticipating one-shot Bertrand-Nash

equilibrium pricing.

Let ±[s] de¯ne the critical threshold between cases 1 and 2, and ±[s] the threshold

between cases 2 and 3, respectively. Then :

Lemma 1 :

1. When ± ¸ ±[s] , ¯rms locate at
1

4
;
3

4
and price at s¡ 1

16
.

2. When ±[s] · ± · ±[s] , ¯rms locate at such location a and 1¡ a that ± = ±¤, where
a decreases in s .

3. When ± < ±[s] , ¯rms locate at endpoints 0 and 1 and play the related one-shot

equilibrium price.

4. 0 · ±[s] < ±[s] <
1

2
for any s ¸ 5

4
, where the equality holds only when s =

5

4
.

Proof : See appendix 7.1. It is algebraically straightforward to verify that, whenever

± ¸ ±[s] , each ¯rm has no strict incentive to deviate in location and endure the one-

shot Nash equilibrium outcome later, as opposed to complying with the prescribed

location and colluding later.

The reason why a 2 (1=4; 1=2] does not occur is because the critical threshold for cartel
stability is increasing in a , while cartel pro¯ts are the same for any a = 1=4 § " , with

" 2 [0; 1=4] . Therefore, it is convenient for ¯rms to relocate farther apart and increase
di®erentiation, rather than the opposite (see also HÄackner, 1995; 1996).

3.2 Subgame ensuing a joint venture

Turn now to the case of a joint venture. Observe that location is no longer a strate-

gic instrument for each ¯rm, since the two ¯rms commit to develop an identical prod-

uct, locating at the same point in the product space. The game thereby reduces into a
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straightforward Bertrand supergame, where the critical threshold of the discount factor is

1/2. As a consequence, the choice between Bertrand-Nash and collusive pricing depends

exclusively on ¯rms' time preferences.

If ± 2 [1=2; 1) , the two ¯rms' joint collusive pro¯ts are maximised when they together
locate at 1=2 , entailing the pro¯t ¼Ci = (s ¡ 1=4)=2 per ¯rm, per period. Otherwise, if
± 2 [0; 1=2), Bertrand-Nash pro¯ts are nil irrespective of the ¯rms' location in the product
space as long as their products are undi®erentiated. Notice that this involves a loss, equal

to half the development cost, for each ¯rm. The option to stay out is assumed away,

namely, the initial investment is thought of as irreversible and ¯rms can avoid loosing it

if and only if (JN) is not the equilibrium outcome.

3.3 Initial venture decisions

>From the above Lemma 1, we have observed that, after independent ventures ¯rms can

collude whenever ± ¸ ±¤, whereas after a joint venture they can collude when and only

when ± ¸ 1=2 . Therefore, item 4 of Lemma 1 immediately proves the following.

Proposition I : The range of time discount factors over which price collusion ensuing

a joint venture is sustainable is a proper subset of that where collusion ensuing

independent ventures is sustainable.

In plain words, a joint venture, when it hinders horizontal product di®erentiation, serves

to destabilise price collusion in the marketing supergame.

The resulting discounted pro¯ts per ¯rm appear as in Figure 2.

Figure 2 : Discounted pro¯ts per ¯rm, horizontal product space.
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where

a¤(±) =

8
>>><
>>>:

1

4
if ± 2

h
±[s] ; 1

´
;

arg
a f± = ±¤ j sg if ± 2

h
±[s] ; ±[s]

´
:

The dependence of ¯rms' innovative venture decisions on the time discount factor ±, the

gross surplus s and the development cost k is identi¯ed by the following proposition, using

a three-regime taxonomy based upon the level of time preferences.

Proposition II :

1. ± 2
h
0 ; ±[s]

´
. In this regime, ¯rms repeat the one-shot Bertrand-Nash equilibrium

under both independent and joint venture cases. Therefore, the joint venture is

chosen over independent ventures if and only if (JN) ¸ (IN) , i.e.

k >
±

1¡ ± : (1)

2. ± 2
h
±[s] ; ±[s]

´
. In this regime, ¯rms collude in prices only under independent

ventures, not if they undertake a joint venture. Hence, the joint venture is preferred

if and only if (JN) > (IC) , i.e.

k >
±

1¡ ±
µ
s¡ 1

4
+ a¤(±) (1¡ a¤(±))

¶
: (2)

3. ± 2
h
±[s] ; 1

´
. In this regime, ¯rms always collude. As a result, the joint venture is

undertaken if and only if (JC) > (IC) , i.e.

k >
±

1¡ ±a
¤(±) (1¡ a¤(±))

which, noting that a¤(±) =
1

4
in this range of ± , can be rewritten into

k >
3±

16(1¡ ±) : (3)

Figure 3 plots the venture cost k against the discount factor ± , given s . Overall, inde-

pendent ventures tend to become increasingly attractive as ± grows. However, in regime

2, the condition for independent venture is loosened (inequality (2)) as compared to the

adjacent areas (inequality conditions (1) and (3)). The driving force is the fact that when

± lies in this regime, ¯rms can sustain collusion if and only if they have chosen inde-

pendent ventures. Observe that the ¯rms' indi®erence threshold in k between joint and

independent ventures is monotone in their time preferences over the interval ± 2 [0; 1=2),
as well as over the interval ± 2 [1=2; 1):
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Figure 3 : Comparative statics on ¯rms' venture decisions

in the parametric plane f±; kg .
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Consider now the relation between s and ± , given k . Figure 4 plots the gross surplus s

against the discount factor ± , given the venture cost k . Once again, independent ventures

become more pro¯table in regime 2 relative to the adjacent areas. When k >
3

16
, the

boundary (3) lies to the right of H. Also, when k <
19

16
, the boundary (2) intersects with

the boundary s =
5

4
at L to the left of H. Thus, as long as

3

16
< k <

19

16
, ¯rms' venture

decisions are non-monotone in ± for any s ¸ 5

4
.

Figure 4 : Comparative statics on ¯rms' venture decisions

in the parametric plane f±; sg .

-
±0

5

4

6
s

± = ±[s]

(1)

(2)

1

2 (3)

1

RJV Independent
ventures

RJV Independent
ventures

RJV

Regime 1 Regime 2 Regime 3

HL

10



Finally, Figure 5 plots the venture cost k against the gross surplus s . Here, ¯rms' indif-

ference boundary between joint and independent ventures shifts up as ± increases from 0

to 1/2. The horizontal portion to the right of the kinks correspond to regime 1, and the

up-sloping portion to the left of the kinks correspond to regimes 2 (the kinked locus is

meant to represent a generic ± 2 (0; 1=2) ). The boundary jumps down when ± reaches

1/2 ; thereafter, parallely shifts up again as ± increases further from 1/2 to 1 (regime 3).

This discontinuity re°ects the fact that as ± exits regime 2 and enters regime s, the extra

bene¯t of collusive stability o®ered by product di®erentiation becomes no longer relevant.

Figure 5 : Firms' indi®erence boundary between joint and independent

ventures, drawn on a cost (k) - bene¯t (s) plane given ± .
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Note that these observations imply the following.

Corollary i : For any given k; s such that

3

16
< k < s¡ 1

16
;

¯rms' decisions between joint and independent ventures become non-monotone in

the discount factor ± .

Corollary ii : For any given k; ± such that

±

1¡ ± < k <
±

1¡ ±
µ
arg
s f±[s] = ±g ¡ 1

4

¶
;

¯rms' venture decisions are non-monotone in the gross surplus s .
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4 The vertical di®erentiation setting

We adopt a model of vertical di®erentiation in the vein of Gabszewicz and Thisse (1979),

Shaked and Sutton (1982), inter alia. A unit mass of consumers are uniformly distributed

over the interval [0;£] , representing their marginal willingness to pay for quality. Each

consumer buys at most one unit of the product that maximises his net utility :

U = µqi ¡ pi ; µ 2 [0;£] ;

where qi and pi identify the quality and the price of product i . The market is supplied by

two single-product ¯rms producing qualities q1; q2 2 (0; q] , where q is the highest quality
level which is technologically feasible. Without loss of generality we assume q1 ¸ q2

throughout this section. Also, if a consumer is indi®erent between the two ¯rms' products,

then he randomises his purchase with probability one half from each ¯rm. This implies

that, if the two ¯rms' qualities and prices are identical, then they split the market evenly.

We assume4

±

8(1¡ ±) £q > k1 ¡ k2 (4)

and also that the marginal production cost is nil.

The development cost of a product is a non-decreasing function of its quality in the

following way. The cost of product innovation is a constant k1 if it is the highest quality

being produced. Otherwise, the development cost is k2 2 (0; k1) . This describes the

economic situation where there is a unilateral externality that the technology adopted by

a high-quality ¯rm can be partially imitated by a lower-quality ¯rm, but not vice versa.5

This naturally implies that, if a joint venture is undertaken, each ¯rm bears k1=2 .

The game can be solved backward, similarly to section 3.

4.1 Subgame ensuing independent ventures

We assume equilibrium selection criteria mostly analogous to those in our horizontal

di®erentiation setting (see section 3.1) except that, by the nature of vertical di®erentiation,

4This assumption, that the total surplus £q is su±ciently high, is somewhat parallel to the assumption

s ¸ 5

4
in the horizontal di®erentiation model (section 3), even though full market coverage is no longer

guaranteed in the vertical di®erentiation model. See appendix 7.2 for computational details.

5This is observationally equivalent to a perhaps more intuitive assumption that a ¯rst entrant must

innovate a product from scratch, paying k1 , whilst a subsequent entrant can innovate a product on

the ground of its predecessor's technological heritage, saving the development cost down to k2 where

0 < k2 < k1 . See Lemma 2-ii in appendix 7.3.

12



¯rms' product portfolio is not \symmetric" unless they produce an identical quality.

Namely, if in the ¯rst stage the two ¯rms choose independent ventures, then in the lat-

ter two stages they play that subgame perfect equilibrium which prescribes the following.

1. The pro¯le of qualities and prices which maximises the two ¯rms' aggregate pro¯ts,

as long as ± is su±ciently high in order to sustain such a pro¯le through Abreu's

optimal punishment.

2. If ± does not su±ce to sustain the above 1., then the most pro¯table among those

quality pairs starting from which the collusion at the joint pro¯t maximal (i.e.,

monopoly) price level is sustainable by Abreu's optimal punishment given ± .

3. If the set of all those symmetric location pairs in 2. is empty, i.e., if ± is so low

that collusion at the monopoly price is unsustainable starting from any quality pair

at all, then the most pro¯table quality pair anticipating one-shot Bertrand-Nash

equilibrium pricing.

Our ¯ndings in this vertical di®erentiation setting is qualitatively quite distinct from

those in the horizontal product space in several ways. In particular, item 2. in the above

taxonomy turns out to be vacuous.

Lemma 2 :

² If ± ¸ 1

2
, both ¯rms develop q in the second stage, and collude in prices in the

ensuing marketing stage.

² If ± < 1

2
, then q1 = q , q2 =

4

7
q followed by Bertrand-Nash competition in the

marketing stage, is the unique (up to the two ¯rms' permutation) pure strategy

equilibrium.

Proof : See appendix 7.2.

4.2 Subgame ensuing a joint venture

In the case of a joint venture, the quality is no longer a strategic variable for each ¯rm.

The two ¯rms commit to develop an identical product, which reduces the subgame into a

simple Bertrand supergame without product di®erentiation, where the critical threshold
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of the discount factor is 1/2 in order to sustain price collusion. The choice between the

one-shot Bertrand-Nash equilibrium and collusive pricing thereby depends solely upon

¯rms' time preferences.

If ± 2 [0; 1=2), the one-shot Bertrand-Nash equilibrium pro¯ts are nil irrespective of

the ¯rms' location in the product space as long as their products are undi®erentiated.

Otherwise, if ± 2 [1=2; 1) , the two ¯rms' joint collusive pro¯ts are maximised as follows.

Lemma 3 : If ¯rms engage in a joint venture anticipating price collusion in the market

supergame, then both ¯rms develop q in the second stage. Collusion is sustainable

i® ± ¸ 1=2 .

Proof : Step 1 of appendix 7.2, except that each ¯rm's initial R&D expense is no

longer k1 but now
k1
2
instead, proves Lemma 3.

4.3 Initial venture decisions

Lemmata 2 and 3 imply :

Proposition III : The critical threshold of the discount factor in sustaining price col-

lusion is always ±¤ = 1=2 irrespective of ¯rms' initial venture decisions.

The relevant per period pro¯ts when ¯rms adopt independent ventures and compete ¶a la

Bertrand-Nash are ¼N1 = 7£q=48 and ¼
N
2 = £q=48 . Obviously, if ¯rms undertake a joint

venture and then play Bertrand-Nash, their stage pro¯ts in the marketing supergame are

nil. Otherwise, if ¯rms collude in prices, their individual per period pro¯t is ¼Ci = £q=8 ,

irrespective of their venture decisions. Hence the discounted pro¯ts are summarised in

Figure 6.

Figure 6 : Discounted pro¯ts per ¯rm, vertical product space.

-
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1
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(di®erentiated)
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(products)
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(undi®erentiated)

Collusion (IC)

±
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8

¡ k1

Bertrand-Nash (IN)

±

1¡ ± ¢ 7£q
48

¡ k1 ;
±

1¡ ± ¢ £q
48

¡ k2

Independent
(undi®erentiated)

Collusion (JC)

1

2

±

1¡ ± ¢ £q
8

¡ k1
2

Bertrand-Nash
(JN)

¡ k1
2
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Clearly, if ± 2 [1=2; 1) , ¯rms are going to collude anyway, so that the venture decisions
have no relevance as to the quality that is going to be marketed. Otherwise, when ± 2
[0; 1=2) , we assume that ¯rms choose independent ventures if and only if they fail to agree

on a joint venture at q , in which case the ¯rm who disagrees switches to a quality strictly

lower than q .

Proposition IV :

1. ± 2 [0; 1=2) . In this regime, ¯rms are unable to collude in prices. Hence, the

relevant comparison involves Bertrand-Nash competition with either a joint venture

or independent ventures. Therefore, independent ventures take place if and only if

(IN) ¸ (JN) for the lower quality ¯rm (due to the above assumption), i.e.

±

1¡ ± ¢ £q
48

¡ k2 ¸ ¡ k1
2
: (5)

2. ± 2 [1=2; 1) . In this regime, ¯rms collude in prices regardless of their venture

decisions. Therefore, as long as the venture cost is strictly positive, a joint venture

always dominates independent ventures.

Figure 7 is a vertical-di®erentiation analogue of Figure 3, plotting the product develop-

ment cost di®erential k2 ¡ k1
2
against the discount factor ± , given the gross surplus £q .

Within the range 0 · ± < 1=2 , independent ventures tend to become more attractive as

± grows from 0 towards 1/2, according to the inequality condition (5). This re°ects the

fact that, as ¯rms become increasingly forward looking, the reduction in initial venture

costs made possible by an RJV decreases its importance. Once ± ¸ 1=2 , on the other

hand, a joint venture is unambiguously more pro¯table than independent ventures.
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Figure 7 : Comparative statics on ¯rms' venture decisions

in the parametric plane f±; k2 ¡ k1
2

g.

6
k2 ¡ k1

2

0
-
±1

2

1

RJV RJV
(5)

Independent
Ventures

£q

48

k2 ¡ k1
2

· ¡ ±

8(1¡ ±) £q
inadmissible under condition (4).

RJV

Turn now to the relation between £q and ± . Figure 8 plots the gross surplus £q against

the discount factor ± , given the innovation cost di®erential k2 ¡ k1
2
. Clearly from the

two diagrams in Figure 8, ¯rms' venture decisions are monotone in the total surplus £q ,

and is dependent upon £q when and only when k2 ¡ k1
2
> 0 and ± <

1

2
.

Figure 8 : Comparative statics on ¯rms' venture decisions

in the parametric plane f±;£qg

given k2 ¡ k1
2
> 0 ;

6
£q
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!
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· 0 .

6
£q

-
0 ±1

(4)

¡8
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k2 ¡ k1

2

!

1

2

Indep.
V. RJV

inadmissible
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Finally, Figure 9 plots the venture cost di®erential k2 ¡ k1
2
against the gross surplus £q .

Here, the ¯rms' indi®erence boundary between joint and independent ventures rotates

counterclockwise as ± increases from 0 towards 1/2, according to the inequality condition

(5). Once ± reaches 1/2, condition (5) becomes irrelevant, thereby the indi®erence bound-

ary disappears. This discontinuity re°ects the fact that, once ± exceeds the threshold 1/2,

an RJV unambiguously dominates independent ventures exactly by the innovation cost

saving k1=2 (see Figure 6).

Figure 9 : Firms' indi®erence boundary between joint and independent

ventures, drawn on a cost (k2 ¡ k1
2
) - bene¯t (£q) plane given ±

when 0 · ± <
1

2
;

-£q0

6
k2 ¡ k1

2

HHHHHHHHHHHHHH (4)

Independent ventures

³³
³³

³³
³³

³³
³³

³³
³³ (5)

Independent ventures

RJV

when
1

2
· ± < 1 .

6
k2 ¡ k1

2

RJV

-£q0@
@
@
@
@
@@ (4)

RJV

These observations imply the following.

Corollary iii : When 0 < k2 ¡ k1
2
<
£q

48
, ¯rms' venture decisions are non-monotone

in the discount factor ± .

5 Discussion relating to literature

5.1 Horizontal product space

Connoisseurs may have noticed that the subgame ensuing independent ventures in the

horizontal product space reminds Friedman and Thisse (1993). Our observation in Lemma

1, which also a®ects Propositions I, II and Corollaries i, ii, is nevertheless dissimilar to

Friedman and Thisse. The reason is as follows. The key di®erence between their analysis

and ours is the timing when collusive behaviour commences.
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Friedman and Thisse stands on the assumption (or, in other words, equilibrium selec-

tion criterion) that, in the marketing supergame, ¯rms collude in prices so as to maximise

their joint pro¯ts given any location pair they have chosen. Based upon this premise,

back in the second stage, each ¯rm locates according to individual incentives. Thereby

any location decision is not subject to punishment through pricing behaviour. In this

sense, collusive behaviour does not commence until the third (marketing) stage.

In our paper, on the contrary, we focus on such equilibria that, if a ¯rm deviates from

the prescribed location in the second stage, then both ¯rms compete in marketing by

playing the one-shot Bertrand-Nash equilibrium every marketing period. This serves as a

punishment against the location deviation. In this sense, collusive behaviour commences

in the second (location) stage onwards. The reason why we consider this class of equilibria

is because this can entail a more pro¯t-e±cient subgame perfect equilibrium outcome.6

If we applied a similar analysis to Friedman and Thisse, then our results would be

altered accordingly. Firstly, Lemma 1 would be replaced with the following.

Lemma 1* :

² When ± ¸ 1

2
, the two ¯rms' equilibrium locations coincide at

1

2
, and in the mar-

keting stage, ¼Ci =
1

2

µ
s¡ 1

4

¶
so as to maximise joint pro¯ts between the two ¯rms.

² Otherwise, when ± < 1

2
, they locate at the endpoints of the unit segment and play

the one-shot Bertrand-Nash equilibrium at each t 2 [1;1) .

It is algebraically straightforward to verify that this result, including the critical discount

factor ±¤ =
1

2
, stands una®ected by the di®erence in penal codes to sustain price collusion

| one-shot Nash reversion in Friedman and Thisse, and Abreu's optimal punishment in

our analysis.7 Also see d'Aspremont, Gabszewicz and Thisse (1979) as for the second half

of Lemma 1*.

Consequently, Propositions I, II and Figures 2, 3 would be replaced with the following.

6One might argue that our punishment scheme against location deviations is not renegotiation proof.

Note in general, however, that any punishment using pricing behaviour as an enforcement device, is

renegotiation disproof, whether it is against location deviation or price deviation. Hence we ¯nd no

reason why location decisions cannot be collusive.

7These two penal schemes o®er the same critical discount factor in a Bertrand supergame when

products are perfect substitutes (i.e., located at the same point). See Lambertini and Sasaki (1998).
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Proposition I* : The range of time discount factors over which the price collusion in

the binary equilibrium is sustainable is ± 2 [1=2; 1] irrespective of ¯rms' venture

decisions in the ¯rst stage.

Figure 2* : discounted pro¯ts per ¯rm, horizontal product space.
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4
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2
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2

Proposition II* :

² ± 2 [0; 1=2) . In this regime, ¯rms are unable to collude. Hence, a joint venture is
preferred if and only if (JN ) > (IN ); i.e., if k >

±

1¡ ± .

² ± 2 [1=2; 1) . In this regime, ¯rms always collude. As a result, since a joint venture
has a cost-saving e®ect vis µa vis independent ventures, while both choices ensure

the same stream of operative (collusive) pro¯ts, a joint venture is always preferred.

Figure 3* : Comparative statics on ¯rms' venture decisions

in the parametric plane f±; kg .
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Note in particular that the dependence of ¯rms' innovative venture decisions on the gross

surplus s would disappear if we assumed against collusion in location as Friedman and

Thisse does. Hence Corollary ii would disappear, and Corollary i would be altered as

follows.

Corollary i* : For any given k 2 (0; 1) , ¯rms decisions between joint and independent
ventures become non-monotone in the discount factor ± .

5.2 Vertical product space

Analogously to the horizontal case, we can either allow or prohibit collusion in location

when the product space is vertical. However, the vertical di®erentiation game does not en-

tail observationally distinct outcomes between these two forms of collusion (see Appendix

7.3).

The intuitive reason why these two forms of collusion yield observationally distinct

outcomes in the horizontal di®erentiation game is because it is pro¯table to cover the

whole market, thereby it is joint pro¯t e±cient for independent ventures to locate far apart

from each other so as to cover separate parts of the horizontal segment. In the vertical

di®erentiation game, it is no longer pro¯table to cover the low end of the consumers'

distribution, so that independent ventures cannot enhance their joint collusive pro¯ts

analogously by di®erentiating away from each other.

6 Concluding remarks

We have analysed the unfolding of R&D and market behaviour of ¯rms in a possibly

di®erentiated duopoly either horizontally or vertically, alternatively. We have mapped

the e®ects of intertemporal preferences, the technology of product development and con-

sumers' willingness to pay on ¯rms' venture decisions as well as on price behaviour over

the entire parameter space.

In particular, we have learnt that the interlink between ¯rms' R&D decisions and their

prospective ability to collude in marketing hinges crutially upon the form of collusion |

more concretely, whether they are to collude in locations and prices, or in prices only.

Insofar as ¯rms are to collude whenever possible, given any product portfolio they have

chosen, the set of those discount factors under which collusion is strategically sustainable
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(± ¸ 1

2
in our model ; see section 5) stands entirely una®ected by the ¯rms' initial choice

between joint and independent ventures. This result holds in both horizontal and vertical

di®erentiation settings.

On the other hand, if the ¯rms are to collude more e±ciently, then their decisions

in product innovation may in°uence their collusive prospects, through the e®ect that

horizontal di®erentiation can enhance collusive stability. Namely, by choosing that sub-

game perfect equlibrium which prescribes price collusion only in the particular subgame

commencing from that location pair which maximises the discounted sum of the ¯rms'

total pro¯ts, the ¯rms can e®ectively enforce such a pro¯t-e±cient location pair as part

of collusive equilibrium path. This enforcement of horizontal di®erentiation enhances not

only the ¯rms' collusive pro¯ts, but also the stability of collusion by lowering the critical

discount factor. This e®ect is present only with horizontal di®erentiation ; in the vertical

di®erentiation game, there is no hope in the direction of lowering the critical discount

factor by this means.

In brief, the qualitative di®erence between horizontal and vertical product spaces, in

relation to the presence or absence of the interactive relations between ¯rms' decisions

in product innovation and their ability to sustain price collusion in the ensuing market-

ing supergame, can be attributed not entirely to the intrinsic di®erence in construction

of these two product spaces, but also largely to the way ¯rms collude in the Bertrand

supergame. It is only when ¯rms collude e±ciently that they can better stabilise price

collusion by developing horizontally, but not vertically, di®erentiated products by invest-

ing in independent ventures ; hence, the ultimate choice between joint and independent

ventures critically depends upon the trade-o® between the cost-saving e®ect of an RJV

and the pro-collusive e®ect of independent ventures. In all other cases | i.e., when ¯rms

do not punish location deviations, or when the product space is vertical, or both | the

choice between joint and independent product innovation does not involve any prospect

to stabilise price collusion in the ensuing marketing stage.

Finally, contrary to some of the earlier beliefs, we have established that the relationship

between product di®erentiation and the discount factor can indeed be non-monotone. This

seemingly counterintuitive result stems from the balance between cost consideration in

product development and ¯rms' ability to sustain future collusion, be there any interactive

forces between these two e®ects or not.
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7 Appendix

7.1 Proof of Lemma 1

Firms 1 and 2 locate at a and 1¡ b . Without loss of generality we assume a · 1¡ b .

It is straightforward to verify that, insofar as s ¸ 5=4 , it is always pro¯table for ¯rms,

whether pricing collusively or competitively, to cover the entire market, i.e., all consumers

in [0; 1] should prefer buying to not buying.

The generic location x of the consumer who is indi®erent between the two products is

de¯ned by

s¡ (x¡ a)2 ¡ p1 = s¡ (1¡ b¡ x)2 ¡ p2 :

Whenever there is a unique x satisfying this condition, which occurs only if a < 1 ¡ b ,
the following demand system obtains :

y1 =
1¡ b+ a

2
+

p2 ¡ p1
2(1¡ b¡ a) ; y2 = 1¡ y1 :

Otherwise, if there is no such x 2 [0; 1] , one of the ¯rms will take over the whole market.
Hence the complete demand system is

y1 = max

(
0 ; min

(
1¡ b+ a

2
+

p2 ¡ p1
2(1¡ b¡ a) ; 1

))
; (6)

y1 = max

(
0 ; min

(
1¡ a+ b

2
+

p1 ¡ p2
2(1¡ a¡ b) ; 1

))
: (7)

The two ¯rms are to choose that subgame perfect equilibrium which yields the highest

joint discounted pro¯ts. The most pro¯table outcome consists of a location pair aC ; 1¡bC

and the price pair pC1 ; p
C
2 . The subgame perfect equilibrium sustaining this outcome, when

± is su±ciently high, is as follows.

² The two ¯rms collude at pC1 ; pC2 in the marketing supergame if and only if a =

aC; b = bC has been selected in the second stage. Otherwise, if either a 6= aC or

b 6= bC has been detected, then they simply repeat the one-shot Bertrand-Nash

equilibrium resulting from the location pair a; 1¡ b .

² Once the equilibrium location decisions a = aC ; b = bC have been ovserved, then

the ¯rms play pC1 ; p
C
2 until any deviation is detected. Once a deviation is detected,

then Abreu's optimal punishment comes in e®ect.
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The next step is to examine the stability of such collusion. From the symmetric structure

of the game, it is apparent that the most pro¯table subgame perfect equilibrium must be a

symmetric pro¯le. When Abreu's optimal punishment is considered, ¯nding the optimal

punishment price pp as well as the critical threshold of the discount factor ±¤ involves

solving the following system of simultaneous equations :

¼di (p
C)¡ ¼Ci = ±¤(¼Ci ¡ ¼i(pp)) ; (8)

¼di (p
p)¡ ¼i(pp) = ±¤(¼Ci ¡ ¼i(pp)) ; (9)

where ¼C is the collusive pro¯t per ¯rm, per period, pC is the collusive price, and ¼di (p¡i)

is the pro¯t resulting from the one-shot best response against p¡i . As in Chang (1991,

1992), Ross (1992) and HÄackner (1995, 1996), we de¯ne the collusive pro¯le in terms of a

generic pair of symmetric locations aC and 1¡aC and solve the system (8)-(9) by plugging
a = b = aC into (6)-(7), to obtain pp and ±¤.

First consider item 1 of Lemma 1. The most pro¯table outcome (whether it is an

equilibrium outcome or not) in marketing is

a = b =
1

4
; p1 = p2 = s¡ 1

16
(10)

as Bonanno (1987) proves. In section 3.1 we de¯ne the sustainability condition for this

price collusion as ± ¸ ±[s] . It can be veri¯ed from (8)-(9) that ±[s] increases in the total

surplus s . In particular, ±[s] " 1
2
as s " 1. On the other hand, when aC 2

·
0;
1

4

¸
and

5

4
· s · 25

16
, the quantity sold by the deviator from the collusive price is not bound by

the upperlimit (= unity), hence the solution to (8)-(9) is

pp = ¡ (4s+ 8aC ¡ 5)2
64(1¡ 2aC) ; ±¤ =

(4s+ 8aC ¡ 5)2
(4s¡ 8aC + 3)2 (11)

with the deviation output

ydi (p
p) =

4((aC)2 + aC ¡ s)¡ 3
16(2aC ¡ 1) : (12)

Letting aC =
1

4
in (11) we obtain ±[s] =

µ
4s ¡ 3
4s+ 1

¶2
. Especially, ±

·
5

4

¸
=
1

9
.

Now proceed to item 2 of in Lemma 1. From (6)-(7) and (8)-(9), ±¤ strictly increases

in aC 2
·
0;
1

4

¸
given s . Hence ±[s] is the critical discount factor when aC = 0 . This

directly implies that, when ±[s] · ± < ±[s] , ¯rms locate aC and 1¡ aC such that

aC =
arg
a [±¤ = ± j s] ; (13)

which increases in ± . In particular, ¯rms choose aC = 0 when ± = ±[s] . Plugging aC = 0

into (11), it can be veri¯ed that ±[s] =
µ
4s¡ 5
4s+ 3

¶2
. The deviation output ydi (p

p) < 1 for
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all s <
13

4
, with ±

·
5

4

¸
= 0 . For all s ¸ 13

4
; the deviation output is the entire market,

ydi (p
p) = 1 .

When ± < ±[s] , price collusion at maximum di®erentiation is unsustainable by means

of Abreu's optimal punishment. Hence item 3 of Lemma 1 comes in e®ect. When ¯rms

are unable to collude, they play the well known two-stage subgame perfect equilibrium

yielding maximum di®erentiation (d'Aspremont, Gabszewicz and Thisse, 1979).

Figure 10 : Endogenous horizontal di®erentiation

(independent ventures).

-
Locations10

6
±

1

4

3

4

1

±[s]

±[s]

1

2

aC 1¡ aC

Lemma 1, item 3.

Lemma 1, item 2.

Lemma 1, item 1.

Hence, ¯rms choose to collude whenever ± ¸ ±[s] . In summary, the foregoing discussion

establishes that price collusion ensuing independent ventures becomes easier to sustain

when (i) product di®erentiation is large, and (ii) gross individual surplus s is low.

7.2 Proof of Lemma 2

In each period of the market supergame, the demand functions obtain as follows. When

q1 > q2 (which can occur only when the two ¯rms develop their products independently),

we identify the marginal willingness to pay of the consumer who is indi®erent between

buying the high-quality good and buying the low-quality good, denoted by h , and that

between buying the low-quality good and not buying at all, denoted by l , as :

h =
p1 ¡ p2
q1 ¡ q2

; l =
p2
q2
: (14)

Hence, the demand functions are unravelled as follows:

y1 =
£¡minfh;£g

£
; y2 =

minfh;£g ¡minfl;£g
£

: (15)
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On the other hand, if the two ¯rms produce an identical quality q1 = q2 , if p1 6= p2

then whichever ¯rm charging the higher price sells nil ; otherwise if p1 = p2 they split the

market evenly, attracting

y1 = y2 =
1

2£

Ã
£¡min

(
p1
q1
;£

)!
(16)

customers each.

Under the assumption that unit variable cost of production is nil, the per period pro¯t

of ¯rm i is ¼i = piyi .

The ¯rst half of Lemma 2 can be proven through the following three steps.

Step 1 : When q1 = q2 , each ¯rm pays the innovation cost k1 . The joint pro¯t between

the two ¯rms per marketing period is

¼1 + ¼2 =
minfp1 ; p2g

£

Ã
£¡ minfp1 ; p2g

q1

!
(17)

as long as

minfp1 ; p2g
q1

· £

(see (16)). The ¯rst-order derivative

@(¼1 + ¼2)

@minfp1 ; p2g
= 0

is satis¯ed at minfp1 ; p2g =
£q1
2
, with which the joint pro¯t (17) increases in q1 , attaining

its maximum when q1 = q . It is straightforward to verify that the resulting joint pro¯t

¼1 + ¼2 =
minfp1 ; p2g

£

Ã
£¡ minfp1 ; p2g

q

!

is no less than the supremum of the sum of (19) over the range (18). Hence q1 = q2 = q ,

minfp1 ; p2g =
£q

2
is joint pro¯t maximal.8 We assume that colluding ¯rms split the

demand evenly by setting p1 = p2 =
£q

2
.

Step 2 : We now need to prove that there is no equilibrium with q1 > q2 . By (14),

when q1 > q2 each ¯rm attracts a strictly positive demand i®

p2
q2
<
p1 ¡ p2
q1 ¡ q2

< £ : (18)

8An analogous result has been derived by Rosenkranz (1995, p. 13) in a model of vertical di®erentiation

under the assumption of full market coverage.
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Insofar as these conditions are satis¯ed, by demand functions (15), per period pro¯t

functions are

¼1 =
p1
£

Ã
£¡ p1 ¡ p2

q1 ¡ q2

!

;

¼2 =
p2
£

Ã
p1 ¡ p2
q1 ¡ q2

¡ p2
q2

!

:

(19)

Within the range (18), the system of ¯rst-order conditions

@

@p1
(¼1 + ¼2) =

@

@p2
(¼1 + ¼2) = 0

has no interior solution. The only solution is the limiting solution on the boundary of the

range (18) :

p1 ! £q1
2
; p2 ! £q2

2

which implies that the lower quality attracts zero demand.

Step 3 : Finally, we need to ascertain that a ¯rm does not have a strict incentive to

deviate from q to a lower quality without expecting any positive demand. When both

¯rms produce q , each of them earns the discounted net pro¯t

¡k1 +
±

8(1¡ ±) £q : (20)

If a ¯rm deviates to a lower quality q¡ " , the ¯rm's net discounted pro¯t becomes simply
¡k2 , which is strictly lower than (20) under the assumption (4). Hence, the deviation is
unpro¯table.

Note also that, whenever q1 = q2 (whether they are at q or not) collusion is sustainable

if and only if ± ¸ 1

2
. This, in conjunction with above step 2, implies that item 2 in the

trichotomy preceding Lemma 2 (see section 4.1) is vacuous. This completes the proof of

the ¯rst half of Lemma 2.

On the other hand, the second half of the lemma can be proven using in part the

following Lemma 2-i.

Lemma 2-i : If ¯rms undertake independent ventures and anticipate Bertrand-Nash

competition in marketing, then any pure-strategy equilibrium must have q2 =
4

7
q1

in the second stage.

Proof : The pro¯t functions at the ¯rst stage are (cf. Choi and Shin, 1992):

¼1 =
4£q21(q1 ¡ q2)
(4q1 ¡ q2)2

; ¼2 =
£q1q2(q1 ¡ q2)
(4q1 ¡ q2)2

:
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It can be immediately veri¯ed that, as @¼2=@q2 = 0 if q2 = 4q1=7; the solution to

the leader's problem de¯ned as

max
q1

¼1

µ
q1

¯̄
¯̄q2 =

4

7
q1

¶

is q1 = q , i.e., it coincides with the Nash best reply identi¯ed by Choi and Shin.

The remainder of the proof of the second half of Lemma 2 is to ascertain that, given

q2 =
4

7
q, ¯rm 1 does not have a strict incentive to deviate from q1 = q to q1 =

16

49
q , in

the latter case ¯rms indeed switch labels since we always refer to the higher quality ¯rm

as \¯rm 1".

If q1 = q ; q2 =
4

7
q ; then ¼1 =

7

48
£q :

If q1 =
4

7
q ; q2 =

16

49
q ; then ¼2 =

1

84
£q :

Hence the condition for no deviation is

±

1¡ ± ¢ 7
48
£q ¡ k1 ¸ ±

1¡ ± ¢ 1
84
£q ¡ k2 ;

which simpli¯es into

15±

112(1¡ ±) £q ¸ k1 ¡ k2 :

Obviously, this is always satis¯ed under assumption (4). This completes the proof of the

second half of Lemma 2.

7.3 Supplementary note on unilateral spillover externality

Consider the following alternative game as a thought experiment.

De¯nition : Game ¡B is a three-stage game which is identical to the vertical di®eren-

tiation game in section 4 except that, in the second stage, independent ventures are

to locate their products sequentially, ¯rm 1 ¯rst and then ¯rm 2 second, and that

the costs of product innovation for these two ¯rms are k1 and k2 respectively.

Lemma 2-ii : In Game ¡B , if ¯rms choose independent ventures and anticipateBertrand-

Nash competition in the marketing stage, then in equilibrium q1 = q and q2 = 4q=7 .

Proof is identical to the proof of Lemma 2 except that the condition (4) is no longer

relevant.
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Comparing Lemma 2-ii with Lemma 2 in section 4, the following can be veri¯ed.

Corollary iv: Whenever condition (4) is satis¯ed, the game ¡B and the vertical di®er-

entiation game described in section 4 are observationally equivalent.
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