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Abstract

We consider a dynamic oligopoly where firms invest to increase
product differentiation and an externality effect operates in the R&D
activity. We compare the steady state solutions under alternative
decision rules, namely, the open-loop and the closed-loop Nash equi-
librium. Significant differences emerge, concerning the effect of the
number of firms upon the optimal degree of product differentiation.
We also compare the private optima with the social optimum, and de-
rive implications concerning the social desirability of different decision
rules.
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1 Introduction

We adopt a differential game approach to study the optimal effort of oligopolis-
tic firms concerning the R&D investment aimed at product innovation. In
particular, we consider a dynamic model where firms produce symmetrically
differentiated goods, and where the degree of differentiation is the outcome
of R&D investments by firms over time. Since the differentiation between
goods is symmetric, it can be interpreted as a public good; thus, the activity
of R&D aimed at product differentiation can be interpreted as the private
provision of a public good.

The basics of the present model are the same as in Cellini and Lambertini
(2002), but in the present paper we do not confine to the open-loop solution
concept. On the contrary, we adopt the closed-loop Nash equilibrium con-
cept. It is well-known that these two solution concepts may be interpreted as
two different choice rules, corresponding to different information sets. Under
the open-loop rule, firms precommit their decisions on the control variables
to a path over time, and the resulting equilibrium is only (usually) weakly
time-consistent.! By contrast, under the closed-loop rule, firms do not pre-
commit on any path and their strategies at any instant may depend on all
the preceding history, even if -in such a situation- the information set used
by firms in setting their strategies at any given time is often simplified to
be only the current value of the state variables. The relevant equilibrium
concept is the so-called “memoryless closed-loop” Nash equilibrium, and it is
strongly time-consistent or Markov-perfect (see Bagar and Olsder, 1982, and
Dockner et al., 2000).

The comparison between the steady states under these different equilib-
rium concepts provides us with a view of some interesting properties of the
optimal behaviour of oligopolistic firms under alternative decision rules. In
particular, under the open-loop solution concept an Arrowian conclusion is
reached, according to which the amount of resources invested by the indus-
try in product differentiation is increasing in the number of firms, i.e., in
the intensity of market competition (Arrow, 1962). By contrast, under the
closed-loop time consistent solution concept, the Schumpeterian conclusion

IThere exist classes of games where the open-loop is strongly time consistent. For an
exhaustive overview, see Dockner et al. (2000, ch 7).



may be reached, according to which the amount of resources invested by the
industry in product differentiation is decreasing in the intensity of market
competition, as captured by the number of firms (Schumpeter, 1942) .

Moreover, the privately optimal allocations under the aforementioned
equilibrium concepts are compared with the social optimum. In particu-
lar, we show that the steady state equilibirum under the open-loop decision
rules is closer to the steady state social optimum, than the closed-loop steady
state equilibrium is.

The outline of the paper is as follows. Section 2 illustrates the basics of
the model. Section 3 develops the private optimum under the closed-loop
decision rule. Section 4 compares the results with the open-loop decision
rules and derives comparison about profits and social welfare. Section 5 de-
rives the social optimum allocation and proposes some considerations about
the social desirability of market regulation under alternative private decision
rules. Section 6 briefly concludes.

2 The setup

We consider a market where n > 1 single-product firms sell differentiated
products over the time period (0,00). Market competition takes place a la
Cournot. The demand structure is borrowed from Spence (1976). In each
period t € (0, 00), the inverse demand function for variety i is:

pilt) = A= Bq,(t) = D(t) Y _ ¢;(1) (1)

J#

where D(t) € [0, B] is the symmetric degree of substitutability between any
pair of varieties. If D(t) = B, products are completely homogeneous. If,
on the contrary, D(t) = 0, products are completely independent and each
firm is an independent monopolist.2 At any time ¢, the output level ¢;(t) is
produced at constant returns to scale, for a given D(t), so that we define
individual total operative cost per period as C;(t) = cq;(t), where ¢ € (0, A).

We assume that, at the initial instant ¢ = 0, D(0) = B, so that firms
may produce the same homogeneous good through a technology which is

2The idea that D depends upon the behaviour of firms has been investigated in static
models by Harrington (1995); Lambertini and Rossini (1998); Lambertini, Poddar and
Sasaki (1998).



public domain. Product differentiation may increase, i.e., parameter D may
decrease, through firms’ R&D investment according to the following law,
borrowed from Cellini and Lambertini (2002):

ab(t) _ K() Dty = ki(t) + 32,4 k(1) D) k() >0v4.

dt 1+ K(t) L | Ka(t) + 32, ks (1)

(2)
The above dynamics of product differentiation can be interpreted as follows.
The industry overall R&D expenditure is K(t), while k;(¢) is individual in-
vestment. Given the symmetric nature of product differentiation in this
model, there exists a complete spillover effect in the R&D process. No-
tice that the externality effect we consider here entails that the outcome
of R&D activity is public domain via the demand function. On the con-
trary, the externality effects usually considered in the literature are associ-
ated with information leakage or transmission (see, inter alia, d’Aspremont
and Jacquemin, 1988). The dynamic equation (2) can be interpreted as a

production function whose output is — (6D(t)) /D(t), obtained through an

R&D input represented by capital. This technology can be shown to exhibit
decreasing returns to scale w.r.t. K(t). As a result, D(t) is non-increasing
over time, and approaches zero as K (t) tends to infinity.

The instantaneous profit is m;(t) = [pi(t) — c] ¢:(t) — ki(t). Each firm aims
at maximizing the discounted value of its flow of profits:

IL; = /000 e Ptm(t) dt (3)

under the dynamic constraint (2) concerning the state variable D(t). The
control variables are ¢;(t) and k;(t).

3 The private optimum

Suppose firms choose non-cooperatively both R&D efforts and output levels.
The solution concept we adopt is the closed-loop memoryless Nash equilib-
rium. The objective function of firm ¢ is:

Hi:/oooe_pt {qi(t)- A — ¢ — Bg(t) Zq] ] Ei( }dt (4)

J#i




to be maximised w.r.t. ¢;(¢) and k;(t), under (2). The corresponding Hamil-
tonian function is:

H(t)=e " {[A — dai(t) = B(ai(t)* — D(t)ai(t) Y q;(t) — kilt)  (5)
j#i

R(t) + 3,20 ks (2)
Nt .D®)] Y,
+(H1+[w+z#@@] m}

where \;(t) = pu;(t)e”, p,;(t) being the co-state variable associated to D(t).
The necessary and sufficient conditions for a path to be optimal are:

OH(?)

aan A 2Bl Z% )=0= (6)
L D;;;Z# w0
2%8 = —1— D(t)\(t) (1 Y >+1Z#Z- ( ))2 =0 (7)
:4—§)a DN (1)
Buopmus coums so.
diﬁi Lt ;% (t) - [; D(t)g;(t) 2 qg‘—g)

(1) /X () D(2) '

+ 5|+ i) aE

%5[ k() + 5,k m]] Q+WW+ZM%@}p>
lim p1,(t) - D(t) = )

t—oo

We introduce the following:



Assumption ¢;(t) = q;(t) = q(t), and k;(t) = k;(t) = k(?).

This is a usual symmetry assumption involving no loss of generality as long
as one adopts the Nash equilibrium as the solution concept. In particular, it

implies 3, (t) — (n — 1)g(t) and X, ks(t) = (n — D().
Then, from (6) we derive the equilibrium per firm output:
A—c
t p—
1O = B DD

(10)

which coincides with the standard outcome of Cournot models with product
differentiation (see Singh and Vives, 1984; Majerus, 1988; Lambertini, 1997;
Cellini and Lambertini, 1998, inter alia). Hence, given the implied symmetry
condition \;(t) = A(t) Vi, (7) rewrites as

1+ nk(t))

N0 =5 (11)

By symmetry, and using (11), (8) simplifies as follows:

dA(t) D(t)(n — 1) [q(t)]" [2B — D(t)(n — 1)]

at 2BD(t) * (12)
B(1 + nk) [2nk +n — 1+ 2p (1 + nk)]
a 2BD(t) ‘

From (11) we obtain k(t), which can be differentiated w.r.t. ¢ :

dk(t) 1 CdA(®)
dt  on/=XOHD() | dt

Then, plugging (12) and (11)into 0k(t)/0t and rearranging, one obtains:

D(t) - A(t)%f” (13)

dk(t) x B[l+4+nk(t)][20(1+nk(t))+n—1]+ (14)

dt
—D(t)(n — 1)[a(t)]* 2B — D(t)(n — 1)] ,

since
1

2n\/—NO)D(?)

>0 (15)
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always. The expression in (14) is valid for all D(t) € (0, B]. If D(t) = 0,
optimal per-period investment is k(t) = 0. Likewise, one can also exclude the
monopoly case (n = 1), where strategic interaction between goods is absent
by definition. Therefore, in the remainder we focus on n > 2.

We are now in a position to assess the overall dynamic properties of the
model, fully characterised by (13) and dD(t)/dt = —nk(t)D(t)/(1 + nk(t)).
The latter equation establishes that dD(t)/dt < 0 for all k(t) € (0,00) and
for all D(t) € (0, B]; while dD(t)/dt = 0 if k(t) = 0 or D(¢t) = 0. In the latter
circumstances, it is immediate to verify that 0k(t)/0t is also nil.

Moreover, from (14), using the equilibrium value of the output level from
(10), we obtain that

dk(t)

g~ 0 iff

2Bpn?[a(t)]? [k(t)]* + Bnla(t))? (4p 4+ n — 1) k(t)+
+Bla®)]?* (2p+n—1)— (n—1)(A—c)*D(t)[2B — (n — 1)D(t)] =0, (16)
where
a(t)=2B+ (n—1)D(t). (17)
The roots of (16) are:
L o
8(A — ¢)’D(t)a(t)p — B*(n — 1) [2B — D(t)]* +
+Bn{4B[B + (n - 2)D(t)] + [D@®))* (n* = 3n +3)} .

The smaller root corresponds to a locus where k has always negative values,
and can therefore obviously be disregarded, being economically meaningless.
Then, considering the larger root, we are interested in investigating the dy-
namics of the system in the positive quadrant of the space {D, k} , which is
described in figure 1. The locus dD(t)/dt = 0 corresponds to the axes. The
locus dk(t)/dt = 0 draws a curve over the admissible range of parameter D,
which may or may not cross the horizontal axis within the same range, i.e.,
D € (0, B]. If it does, the resulting candidate degree of substitutability in
steady state is either

Q

B|(A=c) —2B(2p+n—1)—(A-c)\/(A- o)’ ~8B(2p+n—1)

Dy = (n—1)[(A—c)2+B(2p+n-1)]
(19)



or

B|(A= o) ~2B(2p+n—1)+(A-c)/(A—c)* ~8B(2p+n 1)

Doz = D[P T B0 1)

(20)
with D1, € Riff Be (0, B), B= (A - ¢)*/[8(2p+mn —1)] . Subscript ¢
stands for closed-loop.

Moreover, it can be quickly checked that

Dz > Den >0 (21)

in the whole admissible parameter range. Now there remains to check the
conditions ensuring that Dy 2 < B.

It is easily established that D.; < B for all n > 2. As to the larger root,
we have:?

(A— 6)2 (n—3)(1—n)
(n+1)22p+n—-1) ~’

Dys < Bforall B> B = (22)

with

> §>Oiffn:2;

> B=0iffn=3; (23)
> 0> Bforalln>4.

ol &l &

On the basis of the above discussion, we can formulate the following:

Lemma 1 Ifn =2 and B € (O, é) , there exists only one steady state at

Dgi.Ifn=2and B € (E , E) , there exist two steady state levels of product

substitutabili_ty, D1 and Dy, with B > Doy > Dy > 0. For alln > 3 and
all B € (O, B) , there exist two steady state levels of product substitutability,
Dy and Do , with B > D.o > D1 > 0.

3The equation D} = B has another root:

B (A—c)?
2p+n—1

which can be disregarded as it is always negative.
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The alternative situations identified by Lemma 1 are illustrated in figures
1-2.

Figure 1 : Dynamics in the space (D, k) for n = 2
and B ¢ (0, E)

dk(t) _

J dt

/ Den B
_1




Figure 2 : Dynamics in the space (D, k) for either
(i)n=2and B € (E,E),or
(i) n >3 and all B € (0, B)

Considering the stability of the system, the system of dynamic equations
(2) and (13) can be linearised around steady state points (D , 0) (whenever
Dy € (0, B)) and (D2, 0) to prove that the sign of the determinant of the
Jacobian matrix is the sign of

3D(n—1)—2B (24)
which
e in (D, 0) is negative for all B € (0, E) :
e in (D, 0) is positive for all B € (0, E) )

Since in (Dgs2, 0) the trace of the Jacobian matrix is positive over the
whole admissible range of parameters, we can state the following:*

“The detailed calculations involved in the assessment of the stability properties are
omitted for the sake of brevity. They are available from the authors upon request.
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Proposition 1 The steady state (Dgy, 0) is always a saddle point. The
steady state (Dysz , 0), whenever it exists, is an unstable focus.

It remains to be stressed that the saddle point (D, 0) can obviously be
approached only along the north-east arm of the saddle path.

3.1 Comparative evaluation of open-loop and closed-
loop equilibria

Comparative statics exercises can be carried out on D, to describe the
effects of market size (A — ¢)?/B, the discount rate p, and the number of
firms n on the optimal amount of product substitutability at the closed-loop
equilibrium. In particular, the derivative 0Dy;/0n is a quartic expression
in n, and can be evaluated only numerically, but a few examples suffice
to characterise the behaviour of optimal substitutability as n changes. For
instance, consider the case A — ¢ = 10 and p = 1/10. then, set B = 1/2 to
verify numerically that

D,

68 L < Oforallne[2,4.3616); (25)
mn

ODer > 0foralln > 4.3616.

on

In view of the integer constraint, this means that D, is decreasing in n
for n € [2, 4) and then increasing in n for all n > 5. By increasing B, it
can be seen that the interval wherein 0D, /0n < 0 shrinks. If B = 2.2425,
the closed-loop equilibrium degree of substitutability is the same at n = 2
and n = 3. D, takes a minimum at n = 2.431, where Dy, = 0.1297.
However, due to the integer constraint, the behaviour of Dy over n € [2, 3)
is irrelevant, and therefore if B € (2.2425 , E) , product differentiation is
decreasing for all n > 2 at the closed-loop equilibrium. Of course this exercise
can be repeated ad libitum for infinitely many admissible values of parameters
{A, ¢, p}.In general, there exists a threshold B such that D is everywhere

increasing in n for all B € (E , F) )

That is, there exists a relevant parameter region where, whenever a real
solution does exist, optimal product differentiation is decreasing in the num-
ber of firms at the closed-loop memoryless equilibrium. The intuition behind
this result appears to be that, as the number of firms increases and the market

11



becomes more competitive, the feedback effects characterising the closed-loop
solution induce the generic firm to invest less in product differentiation in
that, in the present model, differentiation is a public good whose benefits are
becoming all the more difficult to internalise as n grows larger.

In the light of the large debate on the relationship between market struc-
ture and the incentive to invest (either in process or in product innovation),
that can be traced back to Schumpeter (1942) and Arrow (1962),° these
findings can be summarised by the following claim.

Proposition 2 Under the closed-loop information structure, an increase in
market power generated by a decrease in the number of firms may lead to an
increase in product differentiation at equilibrium.

That is, the closed-loop solution has a strong Schumpeterian flavour. This
sharply contrasts with the conclusions drawn from the open-loop formulation
of the same model.

From Cellini and Lambertini (2002), we know that the opposite holds
at the open-loop equilibrium, where the optimal amount of product substi-
tutability is:

(A—¢)®—4Bp— (A—c)\/(A—c)2—8Bp _

2(n—1)p ’

(A-¢)*(n—1)
p(n+1)?

with subscript ol standing for open-loop. Given that B > B for all n > 2,
both D,; and D, belong to (0, B) for all B € (O, F) . Clearly, 0D, /0n < 0
always, i.e., the open-loop degree of product differentiation is increasing in
the intensity of market competition. Increasing the number of firms reduces
equilibrium profits, and this effect can be offset by enhancing R&D efforts
so as to decrease the degree of substitutability among products.
Then, comparing (20) and (26), it is straightforward to verify that

(A—c)? (n—1)(A - c)?

7 . By=-— . By =0
2p+n—1" "7 (p+n—12 72
(27)

Dy = (26)

D, € (0, B) forall B< B =

Y

Dcll—Dol:OatBlz—

with Dcll — Dol > 0 for all B > Bg .
Consequently, the following holds:

SFor an exhaustive overview of this literature, see Reinganum (1989).
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Proposition 3 Ceteris pam’b&s, the difference D1 — Dy is positive and in-
creasing i n for all B € (0, B) )

This leads us to the comparative appraisal profits and of social welfare
levels in the two settings. Concerning profits, observing that (i) optimal
output (10) is the same under both open- and closed-loop information struc-
ture; and (ii) equilibrium investments in steady state are zero in both cases,
suffices to prove that the following Corollary to Proposition 3 holds:

Corollary 1 Ceteris paribus, the individual firm’s profits as well as industry
profits, are lower in the closed-loop equilibrium than in the open-loop equilib-
TIUm.

This is a result that we are well accustomed with from the existing lit-
erature on dynamic investment in oligopoly, be such investment related to
R&D, productive capacity or other long run variables affecting firms’ size
(see, inter alia, Reynolds, 1987; and the related discussion in Fudenberg and
Tirole, 1991, ch. 13).

As to the welfare assessment, we proceed as follows. The utility function
of the representative consumer is:

N

U =AY )~ 5 [BY @) + DY S a g @] (@8)

i i=1 i i

whose maximization under the budget constraint Y (¢) > > p; (¢) ¢;(t), where
Y'(t) is nominal income, yields demand functions (1). Accordingly, consumer
surplus is measured by CS(t) = U(t) — >, pi (t) ¢:(t) and social welfare is
SW(t) = >, mi(t)+CS(t). Under the symmetry assumption, and given that
k = 0 in steady state, consumer surplus writes as

052"7"2[B+D(n—1)] (29)

while welfare simplifies as follows:
ng?
SW:n(A—c)q—T[B—i-D(n—l)] (30)

Now it suffices to plug the equilibrium output (10) into (29) and (30) and
differentiate w.r.t. D to verify that both 0C'S/0D and 0SW /0D are every-
where negative, which implies a second relevant Corollary to Proposition 3:

13



Corollary 2 Ceteris paribus, social welfare is higher in the open-loop equi-
librium than in the closed-loop equilibrium, due to both higher industry profits
and higher consumer surplus.

If compared to most of the existing contributions in oligopoly theory, this
result sounds quite peculiar. Usually, if firms’ profits increase, consumer sur-
plus decreases and the overall welfare effect is a priori ambiguous. In the
present setting, however, given that first order conditions on output levels
are the same under both solution concepts, an increase in product differ-
entiation benefits both the firms and the consumers alike. I.e., what firms
and consumers have in common, here, is a taste for differentiation® which
generates the above result.

4 The social optimum

The objective of a benevolent social planner consists in maximising the dis-
counted value of social welfare under the dynamic constraint (2). Under the
symmetry assumption, which in this setting can be imposed on outputs and
R&D efforts from the outset, the instantaneous social welfare simplifies as
follows:

n[B+ D(n —1)] [g(t)]’
2

The Hamiltonian function corresponding to the maximisation of the present
value of the social welfare is:

SW(t)=n(A—c)q(t) — — nk(t) (31)

Ho(t) = . {n (A - o)qfp) - LBH DO DIGOP

At)D(t)nk(t
1+ nk(t)
where the subscript sp stands for social planning. The first order conditions
and adjoint equations are:
OHsp(2)

el =" (A—c¢)—nq(t)[B+ D(t)(n—1)] = 0; (33)

6Tt is worth stressing that consumers exhibit an additional taste for variety, that is,
consumer surplus is increasing in the number of firms, n. This of course cannot hold for
firms, as individual profits are decreasing in n.

14



o) {1 N % } _0: (34)

Ok(t) 1+ nk(t)
OHyp(t) _ du(t) _ dA() _ nlg(t))” nk(t) .
D@ ar a2 _%A@><1—Fnk@)+¢o’ (35)
Jim - p(t) - D(t) = 0, (36)

with u(t) being the costate variable associated with D(t), and A(t) = u(t)e.
From (33) and (34), one obtains, respectively:

A—-c

1= 5 Dmm -1 (37)
) = LERROF E;l(lz)(t)] (38)

The optimal quantity (37) reveals that, as one would clearly expect from the
outset, the planner sets the price equal to marginal cost.
Again from (34), the evolution of k(t) over time has the following features:
dk(t) dA(t) dD(t)

X

— —2D(t) = A=~ (39)

Using (35), (37) and (38), one can rewrite the r.h.s. of the above expression
as follows:

dk(t) » D(t)n(n—1)(A—c)?
— 2p[1 + nk(t)]” — B DOm_ 1P (40)
The roots of the r.h.s. of (40) w.r.t. k(t) are:
K(t) 1 n (A—c)y/2n(n — 1)pD(t) (41)

n 2pn [B + D(t)(n —1)]

Again, the smaller root can be disregarded as it is always negative. The
larger root is zero at

n(A—c)?—4Bp— (A —c)\/n[n(A—c)? —8By] ‘

Dy = e > (42)
D :n(A—c)2—4Bp+(A—c)\/n[n(A—c)z—SBp]
sp2 Ln—1)p ;

15



with

A— 2
Dyp» €R for all B € (0, ”(8—0)} . (43)
P
Moreover, simple calculations are needed to check that
Dy, > 0 always; (44)
—1)(A —c¢)?
Doy < Bforal B> DA
2np
Dy, > B always.
Notice that p ) DA )
nA=c = DA=9 [ nsa. (45)
8p 2np

We have thus proved the following:

Lemma 2 The social planner reaches a steady state at Dy, € (0, B) for all
Be (n—l)(A—c)Q, n(A—c)? ‘
2np 8p

This situation is illustrated in figure 3.

Figure 3 : Dynamics in the space (D, k)

under social planning

16



The dynamic properties of the system, as described by figure 3, together
with Lemma 2, suffice to prove the following:

(n—1)(A—c)* n(A-c)?

2np ’ 8p
optimal steady state (Dgp , 0) is a saddle point, with each firm pricing at
marginal cost.

Proposition 4 For all B € ( ) , the socially

Now evaluating D;,; against D, reveals that D, < D, for all B such
that Dy,1, Dy € (0, B). The same holds if one compares D, against Dy;.
Hence we have our final result:

Corollary 3 Dy, < D, < Dgy for all B € (0, B). Hence, at the private
optima product differentiation is too low as compared to social planning.

By increasing product differentiation as compared to the private optima,
the planner gets two eggs in one basket, because welfare (which coincides
here with consumer surplus) increases due to both an increase in consumer
utility U, which is everywhere decreasing in D for any given output level,
and an increase in output levels (37).

In sharp contrast with the acquired wisdom (see, e.g., Tirole, 1988, ch. 7;
and Eaton and Lipsey, 1989), in this model the private (i.e., firms’) incentive
to provide product differentiation is lower than the social incentive.” This
is due to the fact that, here product differentiation is a public good and
therefore its benefits spill over completely to all the rivals, unlike what we
see in the so-called address models where firms choose locations (as in the
literature stemming from Hotelling, 1929) or qualities (as in Shaked and
Sutton, 1982; 1983), where the internalised benefit exceeds the external effect.

5 Concluding remarks

We have taken a dynamic game approach to analyse firms’ R&D efforts
to differentiate products. Under our hypotheses, differentiation is, at least

"We have shown this result by contrasting the fully private equilibria with the first best
where the planner controls both output and investment levels. It could be shown that the
same conclusion obtains in the case where firms control output levels while a public agency
interested in welfare maximisation controls investment levels.
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partly, a public good. We have compared the open-loop Nash equilibrium
strategy with the closed- loop (time-consistent) decision rule. We have shown
that, under the closed-loop decision rule, multiple steady states may exist,
but only one is a saddle.We have focused on this saddle point, and we have
compared its properties with the properties of the saddle-point emerging from
the open-loop Nash equilibrium.

Some results are worth stressing. First, the link between market compe-
tition, as captured by the number of firms in the market, and optimal efforts
for product differentiation is different under the alternative decision rules.
Indeed, under the open-loop equilibrium concept, a larger number of firms
leads to a higher degree of differentiation, which in turn requires a higher
aggregate effort. This conclusion has an anti-Schumpeterian flavour, lending
support to the Arrowian idea that the harsher the competition, the higher
the equilibrium level of R&D. On the opposite, under the closed-loop equilib-
rium concept, when the number of firms is sufficiently large, a larger number
of firms leads to a smaller degree of differentiation, requiring a smaller R&D
aggregate effort. This conclusion has a clear Schumpeterian flavour.

Second, the “period by period” reaction implied by the closed-loop deci-
sion rule leads to the result that the steady state individual firm’s profits, as
well as the steady state industry profits, are lower under the closed-loop that
under the open-loop decision rule.

Moreover, the steady state degree of differentiation among goods under
the open-loop is closer to the socially optimum level than the steady state
degree of differentiation reached under the closed-loop rule. In both cases,
the privately optimal product differentiation is too low as compared to social
planning.

Finally, the social welfare in the steady state equilibrium under the closed-
loop decision rule is smaller that its counterpart under the open-loop rule,
due to both higher industry profiuts and higher consumer surplus.

All the results are consistent with the fact that the differentiation is -in
the present model- a public good. This assumption has led to the conclusion
that the private incentive to produce differentiation is lower than the social
incentive.

18



References

1]

Arrow, K.J. (1962), “Economic Welfare and the Allocation of Resources
for Invention”, in R. Nelson (ed.), The Rate and Direction of Industrial
Activity, Princeton, NJ, Princeton University Press.

Basar, T. and G.J. Olsder (1982), Dynamic Noncooperative Game The-
ory, San Diego, Academic Press.

Cellini, R. and L. Lambertini (1998), “A Dynamic Model of Differenti-
ated Oligopoly with Capital Accumulation”, Journal of Economic The-
ory, 83, 145-55.

Cellini, R. and L. Lambertini (2002), “A Differential Game approach to
Investment in Product Differentiation”, Journal of Economic Dynamics
and Control, forthcoming.

Dockner, E.J, S. Jorgensen, N. Van Long and G. Sorger (2000), Dif-
ferential Games in Economics and Management Science, Cambridge,
Cambridge University Press.

Eaton, B.C. and R.G. Lipsey (1989), “Product Differentiation”, in R.
Schmalensee and R.D. Willig (eds.), Handbook of Industrial Organiza-
tion, Vol. 1, Amsterdam, North-Holland.

Fudenberg, D. and J. Tirole (1991), Game Theory, Cambridge, Mass.,
MIT Press.

Harrington, J.E. (1995), “Experimentation and Learning in a
Differentiated-Products Duopoly”, Journal of Economic Theory, 66,
275-88.

Hotelling, H. (1929), “Stability in Competition”, Economic Journal, 39,
41-57.

Lambertini, L. (1997), “Prisoners’ Dilemma in Duopoly (Super)Games”,
Journal of Economic Theory, 77, 181-91.

Lambertini, L. and G. Rossini (1998), “Product Homogeneity as a Pris-
oner’s Dilemma in a Duopoly with R&D”, Economics Letters, 58, 297-
301.

19



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Lambertini, L., S. Poddar and D. Sasaki (1998), “Standardization and
the Stability of Collusion”, Economics Letters, 58, 303-10.

Majerus, D. (1988), “Price vs Quantity Competition in Oligopoly Su-
pergames”, Economics Letters, 27, 293-7.

Reinganum, J. (1989), “The Timing of Innovation: Research, Develop-
ment and Diffusion”, in R. Schmalensee and R. Willig (eds.), Handbook
of Industrial Organization, vol. 1, Amsterdam, North-Holland.

Reynolds, S.S. (1987), “Capacity Investment, Preemption and Commit-
ment in an Infinite Horizon Model”, International Economic Review,
28, 69-88.

Schumpeter, J.A. (1942, 2nd), Capitalism, Socialism and Democracy,
New York, Harper.

Shaked, A. and J. Sutton (1982), “Relaxing Price Competition through
Product Differentiation”, Review of Economic Studies, 69, 3-13.

Shaked, A. and J. Sutton (1983), “Natural Oligopolies”, Econometrica,
51, 1469-83.

Singh, N. and X. Vives (1984), “Price and Quantity Competition in a
Differentiated Duopoly”, RAND Journal of Economics, 15, 546-54.

Spence, A.M. (1976), “Product Differentiation and Welfare”, American
Economic Review, 66, 407-14.

Tirole, J. (1988), The Theory of Industrial Organization, Cambridge,
MA, MIT Press.

20



