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Abstract

It is well known that, in a multinomial probit, only the covariance matrix of

the location and scale normalized utilities are identified. In this study, we explore

the relation between these identifiable parameters and the original elements of the

covariance matrix, to find out what can be learnt about the correlations between

the stochastic components of the non-normalized utilities. We show that, in certain

circumstances, it is possible to obtain information on these behavioural parameters

and define appropriate tools for inference. We illustrate the usefulness of our results

in applied settings using an example.
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1. INTRODUCTION

In the context of discrete choice modelling, the multinomial probit model (MNP) is

often adopted as a way to avoid the well known limitations of the simpler multinomial

logit (MNL), viz., the independence from irrelevant alternatives. This property of the

MNL follows from the assumption that the stochastic components of the utilities are

independent and identically distributed as type 1 extreme value variates. The inadequacy

of such assumption, for many cases where it is realistic to assume that some alternatives are

more similar to each other for the individual performing the choice, has been thoroughly

noted in the literature.

Although the MNP does not impose any restrictions on the covariance matrix of the

stochastic components of the utilities, its elements are not identified. Indeed, due to

the fact that in any random utility model the utility functions are only identified up

to scale and location (Dansie, 1985), all that is possible to identify are the parameters

in the covariance matrix of the normalized utilities. These parameters are functions of

the original elements of the covariance matrix and are unfit to be given an economic or

behavioural interpretation.

In this study, we explore the relation between the original elements of the covariance

matrix and their functions which are identified after normalization, to find out what can

be learnt about the correlations between the stochastic components of the non-normalized

utilities. We show that, in certain circumstances, it is possible to obtain information on

these behavioural parameters and define appropriate tools for inference. The results we

obtain are very simple, but they appear not to be currently available in the specialized

literature.

Although we focus on the MNP model, some of our results are easy to extend to other

models, like the mixed multinomial logit of McFadden and Train (2000), or the hetero-

geneity adjusted logit of Chesher and Santos Silva (2002). This issue, however, is not

pursued in the current version of this paper and is the subject of ongoing research.
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The remainder of the paper is organized as follows. Section 2 briefly presents the MNP

and introduces the necessary notation. Section 3 discusses the information content of the

identified elements in the normalized covariance matrix of the MNP. In particular, we show

that it is not possible to distinguish a model with homoskedastic1 and independent errors

from a model with homoskedastic and equicorrelated disturbances. Moreover, we show

how the space of the identified covariance matrix parameters in a MNP can be partitioned

into two regions. One region corresponds to the existence of some non-zero covariances

between the errors of the original (non-normalized) utilities. The points in the second

region may or may not entail non-null covariances between the original stochastic utilities.

In section 4 we present an empirical illustration of our main results and, finally, section 5

concludes.

2. THE MULTINOMIAL PROBIT

For simplicity, we present the MNP for the three alternative case (J = 3). The model

assumes that individuals select one of three mutually exclusive alternatives. The random

utility of individual i, i = 1, ..., N , for choice j, j = 1, 2, 3, is formulated as

uij = αj + x0iβj + εij (1)

where: xi is a (k × 1) vector of explanatory variables for individual i, which may contain

both individual specific characteristics and alternative specific attributes faced by individ-

ual i;2 εi = (εi1, εi2, εi3)
0 is a vector of stochastic terms which is assumed to be distributed

as a trivariate normal, identically and independently across the N individuals, with zero

1Throughout the paper, homoskedasticity is interpreted as meaning that the stochastic component of

the utility has the same variance for all alternatives.
2Keane (1992) shows that in multinomial probit models identification is tenuous unless exclusion

restrictions are present, i.e., there are some alternative-specific attributes which enter as regressors only

the utility function associated with one alternative and not the others.
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mean and covariance matrix

Σ = Cov(εi) =

⎛⎜⎜⎝
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞⎟⎟⎠
with σjj > 0, ∀j (positive definiteness).

Arranging the parameters in (1) as α = (α1, α2, α3)
0, β = (β01, β

0
2, β

0
3)
0, the log-likelihood

function associated with the model is

L(α, β,Σ) =
1

N

NX
i=1

3X
j=1

yij lnPij(α, β,Σ) (2)

where yij = 1 if individual i chooses alternative j and yij = 0 otherwise, while

Pij(α, β,Σ) = Pr(uij > uik, k 6= j = 1, 2, 3) represents the probability that individual

i chooses alternative j and involves the evaluation of a bivariate integral in this three

alternative case. Unfortunately, it is not possible to get unique maximum likelihood es-

timates of the parameters α, β,Σ in the above model, as they are not identified. Dansie

(1985) gives the first systematic explanation of the identification problem in multinomial

probit models and of its two sources. The first source of the identification problem is that

the observed choices are only informative on the differences of the utilities and not on the

utilities themselves. This means that, in (2), all the probabilities of selection Pij(α, β,Σ)

can be rewritten in terms of differenced utilities, without altering the value of the log-

likelihood function. In what follows, we discuss the identification taking differences with

respect to the utilities associated with j = 3, i.e., we take the third alternative as the

reference state used to normalize location of the latent variable. This leads to

u∗il = uil − ui3 = α∗l + x0iβ
∗
l + ε∗il (3)

where, α∗l = αl − α3, β
∗
l = βl − β3, ε

∗
il = εil − εi3, l = 1, 2, 3. As a consequence, u

∗
i3 = 0

and the relevant distribution of the disturbances is not the above-mentioned trivariate

one, but the bivariate distribution of ε∗i = (ε
∗
i1, ε

∗
i2)

0, which is normal with zero mean and

covariance matrix

Σ∗ = Cov(ε∗i ) =

⎛⎝ σ∗11 σ∗12

σ∗21 σ∗22

⎞⎠ (4)
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with σ∗lk = E(εil−εi3)(εik−εi3), l, k = 1, 2. The second source of the identification problem

concerns the lack of information on the scale in the available data, i.e., the utilities can

be multiplied by an arbitrary constant without changing the value of the log-likelihood

function. Therefore, in order to achieve identification, it is necessary to impose a restriction

on Σ∗, and only two out of the three parameters of the bivariate covariance matrix are

identified. The usual way of imposing this identification restriction is to standardize in

order to have the first utility disturbance with unit variance, i.e., the utilities become

u∗∗il =
u∗il√
σ∗11
= α∗∗l + x0iβ

∗∗
l + ε∗∗il (5)

with α∗∗l = α∗l /
√
σ∗11, β

∗∗
l = β∗l /

√
σ∗11, ε

∗∗
i = ε∗i /

√
σ∗11, l = 1, 2, u

∗∗
i3 = 0 and

Σ∗∗ = Cov(ε∗∗i ) =

⎛⎝ 1 σ∗∗12

σ∗∗21 σ∗∗22

⎞⎠ (6)

with σ∗∗lk = σ∗lk/σ
∗
11, l, k = 1, 2.

The log-likelihood function of the identified model can now be written as

L(α∗∗, β∗∗,Σ∗∗) =
1

N

NX
i=1

3X
j=1

yij lnP
∗∗
ij (α

∗∗, β∗∗,Σ∗∗) (7)

where, P ∗∗ij (α
∗∗, β∗∗,Σ∗∗) = Pr(u∗∗ij > u∗∗ik , k 6= j = 1, 2, 3). For example

P ∗∗i1 (α
∗∗, β∗∗,Σ∗∗) = Pr(u∗∗i1 > u∗∗i2 , u∗∗i1 > 0)

=
R
−∞

(α∗∗1 +x0iβ
∗∗
1 )−(α∗∗2 +x0iβ

∗∗
2 )√

1+σ∗∗22−2σ
∗∗
12

R α∗∗1 +x0iβ∗∗1
−∞

ϕ(z1, z2; ρ1) dz1dz2

where ϕ(z1, z2; ρ1) is the bivariate normal density function of two random variables hav-

ing zero mean, unit variance and correlation coefficient ρ1 = (1− σ∗∗12)/
√
1 + σ∗∗22 − 2σ∗∗12.

Similarly, P ∗∗i2 and P ∗∗i3 can be derived.

This approach, consisting of working directly in a J − 1 space, is the more general one.

Alternatively, identification can be achieved by imposing arbitrary normalizations and

identification restrictions in the J space, for example, by setting some of the covariances

equal to zero. Bunch (1991) points out that this practice has been adopted in some studies

without a clear recognition of the number of restrictions required for identification and
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shows that it can lead to invalid (i.e., non positive definite) covariance matrixes in the J−1

space. Note that this is the approach of the routine implemented in STATA 9 (StataCorp,

2005). Imposing a structure on the covariance matrix makes the estimated coefficients

directly interpretable as covariances between the errors of the original utilities, but this

interpretation rests on strong and untestable assumptions. We consider the case in which

no structure is imposed on the covariance matrix.

3. INFERENCE ON BEHAVIOURAL PROPERTIES

3.1. The identified covariance elements

We add to the notation above a superscript (j) denoting the chosen reference state.

When j = 3, the elements of the (2 × 2) matrix Σ∗ in (4) are expressed as the following

functions of the elements of the original (3× 3) covariance matrix Σ

σ
∗(3)
11 = E(ε1 − ε3)

2 = σ11 + σ33 − 2σ13

σ
∗(3)
22 = E(ε2 − ε3)

2 = σ22 + σ33 − 2σ23

σ
∗(3)
12 = E(ε1 − ε3)(ε2 − ε3) = σ12 − σ13 − σ23 + σ33.

The covariance element in the identified covariance matrix Σ∗∗(3) in (6) is given by

σ
∗∗(3)
12 = σ

∗(3)
12

.
σ
∗(3)
11 .

Notice that changing the reference state adopted for estimation allows the identification

of two other covariance elements in the corresponding (2×2) matrix Σ∗∗(j), namely σ∗∗(1)12 =

σ
∗(1)
12

.
σ
∗(1)
11 and σ

∗∗(2)
12 = σ

∗(2)
12

.
σ
∗(2)
11 where

σ
∗(1)
12 = E(ε2 − ε1)(ε3 − ε1) = σ23 − σ12 − σ13 + σ11

σ
∗(2)
12 = E(ε1 − ε2)(ε3 − ε2) = σ13 − σ23 − σ12 + σ22

σ
∗(1)
11 = E(ε2 − ε1)

2 = E(ε1 − ε2)
2 = σ

∗(2)
11 .
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3.2. Independence vs. equicorrelation

The so-called independent multinomial probit (IMP) is often presented in the literature

as the MNP that more closely approximates the MNL. Indeed, the IMP, characterized

by independent and homoskedastic errors, has been used by Horowitz (1981) and Terza

(1998) as the basis of tests of the independence from irrelevant alternatives property.

However, it is perhaps not widely appreciated that the identified covariance structure

of the IMP is indistinguishable from the identified covariance structure corresponding to

the homoskedastic and equicorrelated probit (HEP). This applies to any homoskedastic

discrete choice model whose identification requires normalization of location and scale.

Proposition 1 Equicorrelation and non-correlation are observationally equivalent in any

homoskedastic discrete choice model identified through normalization of location and scale.

Proof: Without loss of generality, consider an equicorrelated and homoskedastic probit,

with original covariance matrix ΣHEP characterized by diagonal elements σjj = τ , τ > 0

for all j = 1, ..., J and off-diagonal elements σjs = γ. After normalizing the location with

respect to alternative J, the errors are of the type ε∗il = εil − εiJ and σ
∗(J)
lk = E(εil −

εiJ)(εik − εiJ) = τ − γ for all l, k. That is, all the covariances of the location normalized

errors ε∗il, l = 1, ..., J−1, must be equal to each other and to τ−γ. The variance elements

are all equal to σ
∗(J)
ll = E(εil− εiJ)

2 = 2(τ − γ). Therefore, after normalization of scale is

performed, we obtain the following identified covariance matrix for the HEP

Σ∗∗HEP

(J−1)×(J−1)
=

⎡⎢⎢⎢⎢⎢⎣
1 0.5 · · · 0.5

0.5 1 0.5
...

... 0.5
. . . 0.5

0.5 · · · 0.5 1

⎤⎥⎥⎥⎥⎥⎦ .

The particular case of the IMP is obtained setting γ = 0 and it is straightforward to see

that this restriction has no impact on the structure of the identified covariance matrix (cf .

Terza, 1998, p. 7). ¥

7



This result states that models like the IMP and MNL may be an adequate representa-

tion of behaviour when all the alternatives exhibit the same degree of similarity to each

other. Independence is obtained in particular homoskedastic cases for which the com-

mon correlation coefficient is equal to zero. However, that cannot be distinguished from

an homoskedastic and equicorrelated error structure. The result has an intuitive appeal

in terms of behavioural interpretation since independence is often used just as a way to

express the idea that, for a given individual, all alternatives are equally dissimilar.

The results above suggest that the procedures of Horowitz (1981) and Terza (1998)

actually have as the null hypothesis the homoskedasticity and equicorrelation of the errors,

rather than their homoskedasticity and independence. Within the MNP estimation, the

equicorrelation hypothesis

H0 : Σ∗∗ = Σ∗∗HEP

H1 : Σ∗∗ 6= Σ∗∗HEP

can be easily checked using the classical likelihood ratio or Wald tests.

3.3 Dependence

It has been noted in empirical applications of the MNP that the estimation results on

the identified parameters of the covariance matrix are not useful for inferring individual

preferences and are difficult to interpret from an economic perspective. This is a direct

consequence of the identification problem of the econometric model, which only permits the

estimation of particular functions of the parameters of interest. The following proposition

shows that there is a region of the identified covariance matrix parameter space of the

MNP which corresponds to the existence of at least one non-zero covariance between the

errors of the non-normalized utilities.

Proposition 2 (case J = 3) Non positiveness of one of the identified covariance elements

across the reference states is a sufficient condition for the existence of a non null covariance

among the error terms of the original stochastic utilities. That is σ
∗∗(j)
12 ≤ 0 for some j

(j = 1, 2, 3) =⇒ σlm 6= 0 for some l,m (l,m = 1, 2, 3; l 6= m).
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Proof: Consider the identified covariance elements obtained with reference state 3

σ
∗∗(3)
12 ≤ 0 ⇔ σ

∗(3)
12 = σ12 − σ13 − σ23 + σ33 ≤ 0 ⇔ σ33 ≤ −σ12 + σ13 + σ23. As σ33 > 0,

the case of all σlm being simultaneously equal to zero must be ruled out. The same applies

to the identified covariance elements σ
∗∗(2)
12 and σ

∗∗(1)
12 , obtained with alternative reference

states. ¥

It is straightforward to generalize the proposition above to the case of J > 3, where the

number of identified covariance elements for a given reference state j isM = (J−1)×(J−

2)/2. The result is obtained replacing σ
∗∗(j)
12 with σ

∗∗(j)
rs , (r = 1, ..., J − 1; s = 2, ..., J ; r 6=

s). For example, with J = 4, reference state 4, we have σ
∗(4)
12 = E(ε1 − ε4)(ε2 − ε4),

σ
∗(4)
13 = E(ε1− ε4)(ε3− ε4), σ

∗(4)
23 = (ε2− ε4)(ε3− ε4). The following proposition applies in

the general case of J alternatives:

Proposition 3 (general case) Non positiveness of one of the identified covariance ele-

ments across the reference states is a sufficient condition for the existence of a non null

covariance among the error terms of the original stochastic utilities. That is σ
∗∗(j)
rs ≤ 0 for

some j (j = 1, ..., J) and some r, s (r = 1, ..., J − 1; s = 2, ..., J ; r 6= s) =⇒ σlm 6= 0 for

some l,m (l,m = 1, ..., J ; l 6= m).

Proof: Trivial, analogous to J = 3 case. ¥

The proposition above states that the sign of the identified covariance element has

an informational content about the covariance structure of the stochastic utilities in the

original space. Indeed, if, across all possible reference states, it is possible to find an

identified covariance element which is equal to zero or negative, this implies that the

original covariances can not all be equal to zero. Not surprisingly, given the identification

problem, this is a weak result in the sense that it gives no information on how many and

which covariances are different from zero. Moreover, finding that the identified covariance

elements are positive across all possible reference states is inconclusive about the existence

of non-zero covariances between the stochastic components of the non-normalized utility

functions.
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This result sheds some light on MNP applications in which identified correlation ele-

ments are found to be negative and high in absolute value (see for example Monfardini,

2003). We are now in the position to argue that these results can be interpreted as due

to the non validity of the non-correlation/independence assumption, therefore supporting

the use of models that do not impose a priori the zero covariance pattern.

The proposition above can be made operational without having to estimate the MNP

with different reference states. For illustrative purposes, consider the case J = 3.3 Accord-

ing to Proposition 1, some dependence exists as long as an identified covariance element

across the 3 possible reference states is zero or negative. To exclude this case, all identified

covariance elements across the 3 possible reference states have to be strictly positive. We

can then define the two following mutually exclusive sets of conditions:

D∗∗ : σ
∗∗(1)
12 ≤ 0 ∨ σ

∗∗(2)
12 ≤ 0 ∨ σ

∗∗(3)
12 ≤ 0

D
∗∗
: σ

∗∗(1)
12 > 0 ∧ σ

∗∗(2)
12 > 0 ∧ σ

∗∗(3)
12 > 0,

where the set D
∗∗
is inconclusive, being consistent with both dependence or independence

patterns, while set D∗∗ corresponds to the existence of some dependence.

The inequalities defining D∗∗ can be transformed in order to make them dependent only

on the identified covariance matrix elements corresponding to a chosen reference state.

That is, it is possible to transform the inequalities defined over the different reference

states to different restrictions applied to the identified covariance matrix elements from a

single reference state. To show this, it is useful to go one step back to the one-star notation

denoting only normalization of location, but not of scale, and write

σ
∗(1)
12 = E(ε2 − ε1)(ε3 − ε1) = E [(ε2 − ε3) + (ε3 − ε1)] (ε3 − ε1) = −σ∗(3)12 + σ

∗(3)
11

σ
∗(2)
12 = E(ε1 − ε2)(ε3 − ε2) = E [(ε1 − ε3) + (ε3 − ε2)] (ε3 − ε2) = −σ∗(3)12 + σ

∗(3)
22

σ
∗(3)
12 = E(ε1 − ε3)(ε2 − ε3).

These two relations allow us to express the three restrictions defining D∗∗ as functions

of σ
∗∗(3)
12 and σ

∗∗(3)
22 , i.e., the parameters of the identified covariance matrix after location

3In the appendix we illustrate how the same manipulation can be performed for J > 3 and explicitly

consider the case of J = 4.
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and scale normalization. Indeed,

σ
∗∗(3)
12 ≤ 0

σ
∗∗(1)
12 ≤ 0⇔ σ

∗(1)
12

σ
∗(1)
11

≤ 0⇔ −σ
∗(3)
12 + σ

∗(3)
11

σ
∗(3)
11

σ
∗(3)
11

σ
∗(1)
11

≤ 0⇔ 1− σ
∗∗(3)
12 ≤ 0

σ
∗∗(2)
12 ≤ 0⇔ σ

∗(2)
12

σ
∗(2)
11

≤ 0⇔ −σ
∗(3)
12 + σ

∗(3)
22

σ
∗(3)
11

σ
∗(3)
11

σ
∗(2)
11

≤ 0⇔ σ
∗∗(3)
22 − σ

∗∗(3)
12 ≤ 0.

Let S(3) be the admissible region of the identified covariance matrix elements with

reference state 3.4 The result above implies the following partition of S(3) = D(3) ∪D(3)
,

with D(3) ∩D(3)
= ∅ and

D(3) : σ
∗∗(3)
12 ≤ 0 ∨ σ∗∗(3)12 ≥ 1 ∨ σ∗∗(3)12 ≥ σ

∗∗(3)
22

D
(3)
: 0 < σ

∗∗(3)
12 < 1 ∧ σ∗∗(3)12 < σ

∗∗(3)
22 ,

where D
(3)
is the inconclusive region, while points in D(3) correspond to the existence of

some dependence.

Figure 1 illustrates the partition of S(3). Notice that the inconclusive region contains

the point
³
σ
∗∗(3)
12 = 0.5, σ

∗∗(3)
22 = 1

´
which, as discussed above, is compatible both with

independence and equicorrelation.

Fig. 1 - The partition of S(3
)

4Notice that the region of the two dimensional space with
³
σ
∗∗(3)
12

´2
> σ

∗∗(3)
22 is not admissible.
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In empirical applications, it may be interesting to check whether the estimation results

allow the researcher to reach any conclusion concerning the existence of dependence among

the stochastic components of the non-normalized utilities.

The set of inequalities defining D(3) can be formally tested using the procedures initially

developed by Perlman (1969),5 or the alternative method proposed by Hansen (2003).

However, these methods are not particularly attractive for routine use by practitioners.

Fortunately, it is possible to use much simpler tools to check whether the data are com-

patible with a matrix Σ∗∗(3) whose identified elements belong to D(3).

Let σ̂
∗∗(3)
12 and σ̂

∗∗(3)
22 denote the maximum likelihood estimates of the identified elements

of Σ∗∗(3) and let V̂ denote an estimator of their covariance matrix. Defining δ = (δ1, δ2)
0,

with δl = σ̂
∗∗(3)
1l − σ

∗∗(3)
1l , l = 1, 2, standard asymptotic results imply that δ0V̂ −1δ ∼̇ χ2(2).

If qk1−α denotes the 1−α quantile of the χ2(k) distribution, then the inequality δ
0V̂ −1δ <

q21−α defines a confidence region of level 100 (1− α)% for the vector
³
σ
∗∗(3)
12 , σ

∗∗(3)
22

´0
. If this

confidence region is contained within D(3), this provides evidence supporting the existence

of at least one non-zero covariance between the errors of the non-normalized utilities.

In case J > 3, visual inspection is not appropriate to check whether the confidence ellip-

soid is within the dependence region. In such cases, one can just minimize the quadratic

form defining the confidence region with respect to the elements of Σ∗∗(J), subject to the

restriction that these belong to the inconclusive region. If the minimum obtained is smaller

than qv1−α, where v is the number of identified variance and covariance elements of Σ
∗∗(J),6

then the confidence region is not contained within the region of the parameter space that

implies dependence.

4. AN EMPIRICAL ILLUSTRATION

In this section, we use the data on the choice of fishing mode studied by Herriges and

Kling (1999) to illustrate the application of our results.7 These data consist of a sample of

5See also Wolak (1989, 1991).
6The total number of distinct identified elements of the matrix is v = [(J − 1)J/2]− 1.
7These data are made available through Cameron and Trivedi (2005).
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1182 individuals for which we have information on the choice of fishing mode (beach, pier,

private boat or charter boat), as well as on income (which is individual specific and does

not vary across alternatives), catch rate and price (both of which vary across individuals

and fishing mode). For our illustration, we use a trinomial model obtained by collapsing

in a non-boat option the choices pier and beach, which have the same price.8 Descriptive

statistics for these variables are given in Table 1.

Table 1: Descriptive Statistics

Mean Std. Dev. Min. Max.

Modes

Noboat 0.26 0.44 0 1

Private 0.35 0.48 0 1

Charter 0.38 0.49 0 1

Income ($1000) 4.10 2.46 0.42 12.50

Prices ($)

Pnoboat 103.42 103.64 1.29 843.19

Pprivate 55.26 62.71 2.29 666.11

Pcharter 84.38 63.54 27.29 691.11

Catch rates

Qnoboat 0.20 0.17 0.04 0.49

Qprivate 0.17 0.21 0.00 0.74

Qcharter 0.63 0.71 0.00 2.31

For this particular example, the following specification is adopted for the stochastic

utilities associated with the three alternatives

ui1 = α1 + β11Incomei + β12Pnoboati + β13Qnoboati + εi1,

ui2 = α2 + β21Incomei + β22Pprivatei + β23Qprivatei + εi2, (8)

ui3 = α3 + β31Incomei + β32Pcharteri + β33Qcharteri + εi3.

This specification implies that each utility depends only on its own price and catch rate,

and we let the parameters of these regressors to differ across the three alternatives. The

8The catch rate for the non-boat alternative is obtained as the average of the catch rates for the beach

and pier options.
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identified model used for estimation is subsequently obtained by normalizing with respect

to the third choice (charter boat). Therefore, after location and scale normalization, the

estimated model is (cf. with 5):

u∗∗i1 = α∗∗1 + β∗∗11Incomei + β∗∗12Pnoboati − β∗∗32Pcharteri + β∗∗13Qnoboati − β∗∗33Qcharteri + ε∗∗i1

u∗∗i2 = α∗∗2 + β∗∗21Incomei + β∗∗22Pprivatei − β∗∗32Pcharteri + β∗∗23Qprivatei − β∗∗33Qcharteri + ε∗∗i2

with α∗∗l = (αl − α3)/
√
σ∗11, β

∗∗
l1 = (βl1 − β31)/

√
σ∗11, ε

∗∗
l1 = (εl1 − ε31)/

√
σ∗11, l = 1, 2 and

β∗∗jk = βjk/
√
σ∗11, j = 1, 2, 3; k = 2, 3.

Table 2 presents the main estimation results. Since 1 < σ̂
∗∗(3)
12 < σ̂

∗∗(3)
22 , the pair³

σ̂
∗∗(3)
12 , σ̂

∗∗(3)
22

´
falls into D(3), which is compatible with the existence of some dependence

between the error terms of the stochastic utilities in (8). In order to check the strength

of this evidence, we can follow the procedure described in the previous section, to check

whether a 95% confidence region for
³
σ
∗∗(3)
12 , σ

∗∗(3)
22

´
is contained within D(3). Minimization

of δ0V̂ −1δ with respect to σ
∗∗(3)
12 and σ

∗∗(3)
22 , subject to the restriction that these parameters

belong to D
(3)
, leads to δ0V̂ −1δ = 0.0971, for σ

∗∗(3)
12 = 0.9999 and σ

∗∗(3)
22 = 2.3029. Since

0.097173 < q20.95 = 5.99, the 95% confidence region is not contained within D(3).

Table 2: Trinomial Probit results

Parameter Estimate Std. Error

α∗∗1 −0.1789 0.2094

β∗∗11 0.1346 0.0258

β∗∗12 −0.0168 0.0019

β∗∗32 −0.0064 0.0012

β∗∗13 2.9222 0.4608

β∗∗33 0.4105 0.0737

α∗∗2 −0.7006 0.2300

β∗∗21 0.1538 0.0504

β∗∗22 −0.0106 0.0020

β∗∗23 1.1316 0.3650

σ
∗∗(3)
12 1.1775 0.5696

σ
∗∗(3)
22 2.7785 1.5939

Cov
³
σ
∗∗(3)
12 , σ

∗∗(3)
22

´
0.8690

Log-likelihood −0.8077
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In this case, because J = 3, this result can be confirmed by visual inspection of Figure

2, which plots the 95% confidence region for
³
σ
∗∗(3)
12 , σ

∗∗(3)
22

´
, as well as the partition of S(3)

into D(3) and D
(3)
. Clearly, there is an overlap between this confidence region and D

(3)
,

and therefore the evidence in favour of the existence of dependence between the errors

in (8) is weak. From this picture, it is also clear that the point
³
σ
∗∗(3)
12 = 0.5, σ

∗∗(3)
22 = 1

´
belongs to this confidence region and therefore the equicorrelated homoskedastic probit

cannot be rejected.9 Given the relatively small size of the sample used in this illustration,

these results do not come as a surprise. However, in many applications the samples used

are much larger and in those cases more conclusive results may be obtained.

Fig. 2 - Confidence region for σ
∗∗(3)
12 , σ

∗∗(3)
22 and the partition of S(3).

5. CONCLUSIONS

In this paper, we study what can be learnt about correlations between the errors of the

original (non-normalized) stochastic utilities from multinomial probit estimates, which

only identify the covariance parameters for the errors of the normalized utilities. Two

results emerge.

9The Wald test statistic for H0 : Σ
∗∗ = Σ∗∗HEP is 1.421, to which corresponds a p-value of 0.491.
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First, we show that, with homoskedastic errors, it is not possible to distinguish an in-

dependent probit from a probit with equicorrelated errors. Second, more interestingly,

we show that certain combinations of the identified parameters from the normalized co-

variance matrix of the errors of the stochastic utilities, imply the existence of correlations

between the errors of the original (non-normalized) utilities. This result provides addi-

tional information to practitioners, which generally believe that the estimation results on

the identified parameters of the covariance matrix are not useful for inferring about the

more interesting parameters of the original utilities. For this result to be useful in practice,

it is necessary to have simple inference tools, to check the compatibility of the data with

the existence of correlations between the errors of the original utilities. We show that this

can easily be done using confidence regions, whose use is illustrated in an application.

APPENDIX

To illustrate what happens in the general case of a number of alternatives J greater than

3, consider the case of J = 4 alternatives. The number of distinct identified covariance

elements is M = 3. According to Proposition 2, some dependence exists as long as an

identified covariance element across the 4 possible reference state is zero or negative. To

exclude this case, all identified covariance elements across the 4 possible reference state

have to be strictly positive. This delivers a set of M × J inequalities. Applying the same

manipulation as above, such inequalities can be written as a function of the elements

corresponding to a fixed reference state, to define the inconclusive region. Taking the

fourth alternative as the reference state, the restrictions defining the inconclusive region

D
(4)
can be derived as follows:

1. σ
∗∗(4)
12 =

σ
∗(4)
12

σ
∗(4)
11

= E(ε1−ε4)(ε2−ε4)
E(ε1−ε4)2 > 0

2. σ
∗∗(4)
13 = E(ε1−ε4)(ε3−ε4)

σ
∗(4)
11

> 0

3. σ
∗∗(4)
23 = E(ε2−ε4)(ε3−ε4)

σ
∗(4)
11

> 0
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4. σ
∗∗(3)
12 > 0⇔ σ

∗(3)
12

σ
∗(3)
11

> 0⇔ E(ε1−ε3)(ε2−ε3)
σ
∗(4)
11

σ
∗(4)
11

σ
∗(3)
11

> 0⇔ σ
∗∗(4)
12 − σ

∗∗(4)
13 − σ

∗∗(4)
23 + σ

∗∗(4)
33 > 0

5. σ
∗∗(3)
13 > 0⇔ E(ε1−ε3)(ε4−ε3)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(3)
11

> 0⇔ −σ∗∗(4)13 + σ
∗∗(4)
33 > 0

6. σ
∗∗(3)
23 > 0⇔ E(ε2−ε3)(ε4−ε3)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(3)
11

> 0⇔ −σ∗∗(4)23 + σ
∗∗(4)
33 > 0

7. σ
∗∗(2)
12 > 0⇔ E(ε1−ε2)(ε3−ε2)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(2)
11

> 0⇔ σ
∗∗(4)
13 − σ

∗∗(4)
12 − σ

∗∗(4)
23 + σ

∗∗(4)
22 > 0

8. σ
∗∗(2)
13 > 0⇔ E(ε1−ε2)(ε4−ε2)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(2)
11

> 0⇔ −σ∗∗(4)12 + σ
∗∗(4)
22 > 0

9. σ
∗∗(2)
23 > 0⇔ E(ε3−ε2)(ε4−ε2)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(2)
11

> 0⇔ −σ∗∗(4)23 + σ
∗∗(4)
22 > 0

10. σ
∗∗(1)
12 > 0⇔ E(ε2−ε1)(ε3−ε1)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(1)
11

> 0⇔ σ
∗∗(4)
23 − σ

∗∗(4)
12 − σ

∗∗(4)
13 + 1 > 0

11. σ
∗∗(1)
13 > 0⇔ E(ε2−ε1)(ε4−ε1)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(1)
11

> 0⇔ −σ∗∗(4)12 + 1 > 0

12. σ
∗∗(1)
23 > 0⇔ E(ε3−ε1)(ε4−ε1)

σ
∗(4)
11

σ
∗(4)
11

σ
∗(1)
11

> 0⇔ −σ∗∗(4)13 + 1 > 0
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