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Abstract

We investigate dynamic R&D for process innovation in an oligopoly where

firms invest in cost-reducing activities. We focus on the relationship between

R&D intensity and market structure, proving that the industry R&D invest-

ment monotonically increases in the number of firms. This Arrowian result

contradicts the established wisdom acquired from static games on the same

topic.
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1 Introduction

We propose a dynamic analysis of the relationship between market power

and R&D efforts, in order to reassess a well-known issue in the theory of in-

dustrial organization, that can be traced back to the debate between Schum-

peter (1942) and Arrow (1962). The so-called Schumpeterian hypothesis

maintains that there exists an inverse relationship between the intensity of

competition and the pace of technical progress. That is, according to Schum-

peter, monopoly is the market structure that should ensure the fastest and

largest technical progress. This relies upon the idea that monopoly ensures

the highest profit level and therefore the larger internal sources for funding

R&D activities. Exactly the opposite view is expressed by Arrow, since he

focuses upon the replacement effect, according to which a monopolist should

be induced to rest on his laurels, while a firm operating in a competitive

environment should strive for new technologies or new products, in order to

throw her rivals out of business.1

In order to assess this issue, we take a differential game perspective,

proposing a dynamic version of a model first introduced in a static framework

by d’Aspremont and Jacquemin (1988). We consider an oligopoly where

n firms sell a homogeneous product and compete in quantities. Moreover,

they also invest at each point in time in R&D for process innovation, i.e.,

reducing the marginal cost of production of the final good. The R&D activity

is characterized by positive externalities, entailing that each firm receives a

positive spillover from the investments carried out by all other firms in the

industry.

Our model has the desirable property of being state-redundant or per-

fect, so that the open-loop solution is a Markovian equilibrium. We proceed

1For an exhaustive overview of the related literature, see Reinganum (1989) and Martin

(2001).

1



in two steps. First, we characterize the individually optimal path of R&D

investment for a given level of marginal production cost. Second, we obtain

the steady state levels of investment and marginal cost. With respect to both

the optimal path and the steady-state level of R&D investment, the following

conclusions hold. The individual effort is always decreasing in the number

of firms while the opposite holds for the aggregate R&D investments. This

result has an Arrowian flavour, since as the degree of competition becomes

tougher, the aggregate investment becomes larger. This is in sharp contrast

with the conclusions drawn from the static version of the same model (Hin-

loopen, 2000) where a non-monotone relationship exists between aggregate

R&D investment and market structure. Under this perspective, our model

highlights the value added of a properly dynamic analysis over the static

approach based upon a multistage game.

The remainder of the paper is structured as follows. Section 2 illustrates

the basic setup. The solution of the open-loop game is investigated in section

3, while the industry R&D performance is assessed in section 4. Section 5

contains concluding remarks.

2 The setup

We consider an oligopoly with n firms selling a homogeneous goods over

continuous time, t ∈ [0,∞) . In every instant, the market demand function
writes as follows:

p(t) = A− qi(t)−Q−i(t) . (1)

where Q−i(t) is the output supplied by all firms other than i. Each firm sup-

plies the market through a technology characterized by a constant marginal

cost, ci. Accordingly, her instantaneous cost function for the production of

the final good is Ci (ci, qi, t) = ci(t)qi(t). The marginal cost borne by firm i
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evolves over time according to the following kinematic equation:

dci(t)

dt
≡ ·
ci = ci (t) [−ki(t)− βK−i(t) + δ] , (2)

where ki(t) is the R&D effort exerted by firm i at time t, while K−i(t) is the

aggregate R&D effort of all other firms and parameter β ∈ [0, 1] measures the
positive technological spillover that firm i receives from the R&D activity of

the rivals. Parameter δ ∈ [0, 1] is a constant depreciation rate measuring the
instantaneous decrease in productive efficiency due to the ageing of technol-

ogy. Equation (2) is indeed a dynamic version of the linear R&D technology

employed by d’Aspremont and Jacquemin (1988).

The instantaneous cost of running R&D activity is:

Γ(ki, t) = b [ki(t)]
2 , (3)

where b is a positive parameter. Throughout the game, firms discount future

profits a the common and constant discount rate ρ > 0.

Firms adopt a strictly noncooperative behaviour in choosing both the out-

put levels and the R&D efforts, each firm operating her own R&D division.2

The objective of firm i consists in maximizing discounted profits:

Πi =

Z ∞

0

©
[A− qi(t)−Q−i(t)− ci(t)] qi(t)− b [ki(t)]

2ª e−ρtdt (4)

subject to the set of dynamic constraints (2). The corresponding Hamiltonian

function is:

Hi(q,k, c, t) = e−ρt{[A− qi(t)−Q−i(t)− ci(t)] qi(t)− b [ki(t)]
2+ (5)

−λii(t)ci(t) [ki(t) + βK−i(t)− δ] +

−
X
j 6=i

λij(t)cj(t)

"
kj(t) + β

Ã
ki(t) +

X
l 6=i,j

kl(t)

!
− δ

#)
2For a discussion of R&D cooperation in the same model, see Cellini and Lambertini

(2003).

3



where λij(t) = µij(t)e
ρt is the co-state variable (evaluated at time t) associ-

ated with the state variable cj(t), and q,k, c are the vectors of control and

state variables.

3 The open-loop solution

Here we characterize the Nash equilibrium under the open-loop information

structure. As a first step, we prove the following result:

Lemma 1 The open-loop Nash equilibrium of the game is subgame (or Markov)

perfect.

Proof. We are going to show that the present setup is a perfect game in

the sense of Leitmann and Schmitendorf (1978) and Feichtinger (1983). In

summary, a differential game is perfect whenever the closed-loop equilibrium

collapses into the open-loop one, the latter being thus strongly time consis-

tent, i.e., subgame perfect.3 Consider the closed-loop information structure.

The relevant first order conditions (FOCs) are:

∂Hi (., t)

∂qi(t)
= A− 2qi(t)−Q−i(t)− ci(t) = 0 ; (6)

∂Hi (., t)

∂ki(t)
= −2bki(t)− λii(t)ci(t)− β

X
j 6=i

λij(t)cj(t) = 0 . (7)

As a first step, observe that (6) only contains firm i’s state variable, so that in

choosing the optimal output at any time during the game firm imay disregard

the current efficiency of the rival. That is, there is no feedback effect in the

3The label ‘perfect game’ is due to Fershtman (1987), where one can find a general tech-

nique to identify any such games. Another class of games where open-loop equilibria are

subgame perfect is investigated by Reinganum (1982). For further details, see Mehlmann

(1988, ch. 4) and Dockner et al. (2000, ch. 7).
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output choice. Conversely, at first sight there seem to be a feedback between

the R&D decisions, as (7) indeed contains all state variables, at least for any

positive spillover effect.4 The core of the proof consists in showing that no

feedback effect are actually present, even for positive spillover levels.

Taking the above considerations into account, the adjoint or co-state

equations are:

−∂Hi (., t)

∂ci(t)
−
X
j 6=i

∂Hi (., t)

∂kj(t)
· ∂k

∗
j (., t)

∂ci(t)
=

∂λii(t)

∂t
− ρλii(t)⇔ (8)

∂λii(t)

∂t
= qi (t) + λii(t) [ki(t) + βK−i(t) + ρ− δ] + (9)

− β

2b

X
j 6=i

λji(t)

"
βλii(t)ci(t) + λij(t)cj(t) + β

X
l 6=i,j

λil(t)cl(t)

#

−∂Hi (., t)

∂cj(t)
−∂Hi (., t)

∂ki(t)
·∂k

∗
i (., t)

∂cj(t)
−
X
l 6=i,j

∂Hi (., t)

∂kl(t)
·∂k

∗
l (., t)

∂cj(t)
=

∂λij(t)

∂t
−ρλij(t)⇔

(10)

∂λij(t)

∂t
= λij(t)

"
kj(t) + βki(t) + β

X
l 6=i,j

kl (t) + ρ− δ+ (11)

− β

2b

Ã
2bki (t) + λii(t)ci(t) + β

X
j 6=i

λij(t)cj(t)

!#
+

− β

2b

X
l 6=i,j

λlj (t)

"
βλii (t) ci (t) + λil (t) cl (t) + β

X
j 6=i,l

λij(t)cj(t)

#
where each term

∂Hi (., t)

∂kj(t)
· ∂k

∗
j (., t)

∂ci(t)
(12)

captures the feedback effect from j to i, and partial derivatives ∂k∗j (., t) /∂ci(t)

are calculated using the optimal values of investments as from FOC (7):

k∗j (., t) = −
λjj(t)cj(t) + βλji(t)ci(t)

2b
. (13)

4Intuitively, if β = 0, then the investment plans are completely independent and there-

fore it is apparent that no feedback effect operates.
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These conditions must be evaluated along with the initial conditions

{ci(0)} = {c0,i} and the transversality conditions

lim
t→∞

λij(t) · cj(t) = 0 , i, j = 1, 2. (14)

Note that, on the basis of ex ante symmetry across firms, λlj(t) = λij(t)

for all l. Accordingly, from (11), we have ∂λij(t)/∂t = 0 in λij(t) = 0. Then,

using this piece of information, we may rewrite the expression for the optimal

investment of firm i as follows:

k∗i (., t) = −
λii(t)ci(t)

2b
, (15)

which entails that ∂k∗i (., t) /∂cj(t) = 0 for all j 6= i, i.e., feedback (cross-

)effects are nil along the equilibrium path. Accordingly, the open-loop equi-

librium is a degenerate closed-loop one, and it is strongly time consistent, or

equivalently, subgame perfect. It is also worth observing that this procedure

shows that FOCs are indeed unaffected by initial conditions as well. The

property whereby the FOCs on controls are independent of states and initial

conditions after replacing the optimal values of the co-state variables is known

as state-redundancy, and the game itself as state-redundant or perfect.

On the basis of Lemma 1, we can proceed with the characterization of

the open-loop solution. The FOCs on controls as well as the transversality

conditions are the same as above, while the co-state equations simplify as

follows:

−∂Hi (., t)

∂ci(t)
=

∂λii(t)

∂t
− ρλii(t)⇔ (16)

∂λii(t)

∂t
= qi (t) + λii(t) [ki(t) + βK−i(t) + ρ− δ]

−∂Hi (., t)

∂cj(t)
=

∂λij(t)

∂t
− ρλij(t)⇔ (17)

∂λij(t)

∂t
= λij(t) [kj(t) + βK−j(t) + ρ− δ]

6



From FOCs (6-7) we have, respectively:

q∗i (t) =
A−Q−i(t)− ci(t)

2
, (18)

ki (t) = −λii(t)ci(t)
2b

, (19)

since λij(t) = 0 for all j 6= i, at any t ∈ [0,∞) . While (18) has the usual
appearance of a standard Cournot best reply function, the optimal R&D

effort in (19) depends upon i’s co-state variable. Such expression can be

differentiated w.r.t. time to get the dynamic equation of ki(t) :

dki(t)

dt
≡

·
ki = − 1

2b

·
ci(t)

·
λii(t) + λii (t)

·
ci(t)

¸
(20)

with
·
λii(t) obtaining from (9). Then, (20) can be further simplified by using

λii (t) = −2bki (t)
ci (t)

(21)

which obtains from (7). This yields:

·
ki = − 1

2b
[ci (t) qi (t)− 2bki (t)] . (22)

The next step consists in imposing the symmetry conditions cj(t) = ci(t),

kj(t) = ki(t) and qj(t) = qi(t) for all j, and solve the system of the best reply

functions (18), yielding the Cournot-Nash output level of each firm:

qN(t) =
A− c(t)

n+ 1
(23)

which can be plugged into (22). Accordingly, we may simplify the dynamics

of the R&D effort of any single firm as follows:

·
k = − 1

2b

·
c (t) [A− c (t)]

n+ 1
− 2bρk (t)

¸
. (24)

Imposing the stationarity condition
·
k = 0, we obtain:

kN(t) =
c (t) [A− c (t)]

2bρ (n+ 1)
≥ 0 for all c (t) ∈ [0, A ] , (25)
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where the superscript N stands for Nash equilibrium.

The steady state level of marginal cost c(t) can be found by solving:

·
c = −c(t) £kN(t) (1 + β (n− 1))− δc(t)

¤
= 0 (26)

which yields c = 0 and

c =
A (1 + β (n− 1))±p(1 + β (n− 1)) [A2 (1 + β (n− 1))− 8bδρ (n+ 1)]

2 (1 + β (n− 1))
(27)

All solutions in (27) are real if and only if δρ ≤ A2 (1 + β (n− 1)) / [8b (n+ 1)] .
If so, they also satisfy the requirement c ∈ [0, A ] . By checking the stability
conditions, we may prove the following:

Proposition 2 Provided that δρ ≤ A2 (1 + β (n− 1)) / [8b (n+ 1)] , the steady
state point

css =
A (1 + β (n− 1))−p(1 + β (n− 1)) [A2 (1 + β (n− 1))− 8bδρ (n+ 1)]

2 (1 + β (n− 1))
kss =

δ

1 + β (n− 1)
is the unique saddle point equilibrium.

Proof. Omitted for brevity.

4 Comparative statics

Now we focus on the interplay between market structure (as measured by

the number of firms) and the industry incentive to invest in process R&D.

To this aim, we examine effect of a change in n on individual and aggregate

R&D efforts, both along the equilibrium path (expression (25)) and in steady

state.

8



This discussion revisits the debate between Schumpeter (1942) and Arrow

(1962). Their respective views can be summarized as follows. According to

the Schumpeterian hypothesis, R&D investments and technical progress are

positively related to the flow of profits and therefore we should expect to

observe higher R&D efforts and a faster innovation process under monopoly

than any other market form. Conversely, Arrow claims that the incentive

to generate technical progress is negatively affected by market power, being

then maximized under perfect competition. The Arrowian position relies

upon the idea that innovation is more attractive for a competitive firm than

for a monopolist who, by definition, can not improve his market power.

In order to assess this issue in the present model, we proceed as follows.

The aggregate R&D investments along the equilibrium path and in steady

state are, respectively:

KN (t) =
c (t) [A− c (t)]n

2bρ (n+ 1)
; Kss =

δn

1 + β (n− 1) (28)

It is immediate to verify that:

∂KN (t)

∂n
=

2bρc (t) [A− c (t)]

4 [bρ (n+ 1)]2
> 0 (29)

∂Kss

∂n
=

δ (1− β)

[1 + β (n− 1)]2 ≥ 0

which entails that the behaviour of the industry is clearly Arrowian. If in-

stead we examine the individual investment, we obtain ∂kN (t) /∂n, ∂kss/∂n <

0 everywhere. This entails that any increase in the number of firms brings

about a decrease in individual R&D effort. This is caused by two facts: on

the one hand, tougher market competition reduces profits and therefore that

funds available to any given firm for conducting R&D activity; on the other, a

larger population of firms means a larger amount of positive externality that

any firm receives from the rivals. On the aggregate, a scale effect prevails,

9



so that the overall expenditure of the industry is monotonically increasing in

n.5

Hinloopen (2000) has solved the oligopoly equilibrium with n firms in

the static case, finding that both aggregate and individual R&D efforts are

non-monotone (first increasing and then decreasing) w.r.t. n. Under this

respect, the static approach proves to fall short of appropriately accounting

for the inherently dynamic nature of research and development which is not

captured by multistage game modelling.

5 Concluding remarks

We have analyzed dynamic R&D investments for cost-reducing innovation in

a Cournot oligopoly in order to evaluate the influence of market structure on

R&D incentives.

The setup employed in the present paper is a dynamic version of the

static game examined in d’Aspremont and Jacquemin (1988). Two features

are worth stressing. First, the game is state-redundant, so that the open-loop

solution is Markovian. Second, an Arrowian conclusion is established, as the

aggregate R&D effort is everywhere increasing in the number of firms. The

drastic difference between our results and the ambiguous conclusions drawn

from the static model relies upon smoothing the investment efforts over a

long time horizon, a perspective which is ruled out by definition in a static

setting.

5For a similar result concerning the incentives towards R&D for product innovation,

see Cellini and Lambertini (2002, 2004).
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