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Abstract

We depart from the classic setting of bandit problems by endowing the
agent with a disappointment-elation utility function. The disutility of a
loss is assumed to be greater than the elation associated with same-size
gain, according to Kahneman-Tversky findings on the attitude of agents
towards a change in wealth. We characterise the optimal experimentation
strategy of an agent in a two-armed bandit problem setting with infinite
horizon and we derive an existence theorem, specifying a condition on the
disappointment aversion parameter. The model, solved in closed form in
a one-armed bandit setting, shows that an agent who feels disappointment
experiments more intensively than the agent characterised by the standard
expected utility model, despite disappointment, but only if the degree of
disappointment is under a certain threshold level. The threshold level
depends both on the probability of rewards along the unknown projects
relative to the expected number of trials and on the expected reward of
the unknown project.
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Footfalls echo in the memory
Down the passage we did not take
T.S. Eliot

1 Introduction

In many areas of human activity, an agent has to choose from a number of
actions, each with a cost and an uncertain reward. Some of these actions are
highly likely to produce a short-term gain, while others, such as gathering infor-
mation to eliminate some of the uncertainty, may result in a long-term benefit
only.

The classic multi-armed bandit problem is a formalisation of such a situation:
in each period the agent pays a cost to pull one of a fixed number of arms,
different arms having different, unknown and possibly interdependent pay-off
probabilities. The agent’s problem is to maximise the expected discounted sum
of pay-offs. In bandit problems currently in the economic literature projects are
equated with arms (Weitzman,1981, Roberts and Weitzman, 1981).

The present work studies the bandit problem under alternative models of
rational behaviour, providing a bridge between the standard optimising analysis
of the bandit problem and the modern literature on alternatives to the expected
utility model of behaviour under uncertainty, pioneered by Loomes and Sugden,
among others.

The question addressed in the paper is the following: suppose the experi-
menter has psychological feelings that affect his rational choices under uncer-
tainty: the individual receives not only the utility derived directly from the
actual consequence of an uncertain prospect, but in addition he feels some de-
gree of disappointment and elation.The agent forms a priori expectation about
any uncertain prospect, when evaluating that prospect and, after uncertainty is
resolved, the individual compares the actual consequence of the prospect with
the a priori expectation: if the actual consequence turns out to be worse than
the expectation, he feels disappointment. On the other hand, the individual
experiences some degree of elation, if the actual consequence is better than the
a priori expectation. Will this agent experiment more in the setting of a bandit
problem?

We depart from the classic setting of bandit problems by endowing the agent
with a disappointment-elation utility function (Sugden and Loomes, 1986): we
assume the agent aims at maximising the expected utility of profits, instead
of assuming the maximization of expected profits as an objective function. A
particular specification of the disappointment-elation utility function is used
to capture the spirit of Kahneman-Tversky findings (1979) on the attitude of
agents towards a change in wealth. We assume that the disutility of a loss is
greater than the elation associated with a gain of the same amount.

The decisional problem faced by the agent has the same characteristics of
the standard one: facing the decision between an unknown arm and a safe one,
the agent faces an optimal stopping problem, i.e. he has to decide how many



trials to do along the unknown arm and when he finds optimal to switch to
the safe one, so that once switched the agent won’t find it optimal to choose
the unknown arm again. Here the assumption about the agent’s utility function
modifies the objective function of the experimenter, i.e. how the agent evaluates
his payoffs.

In the present paper, we consider an experimenter which is trying to choose
between two projects. The agent who does not know with certainty the conse-
quence of a particular project may choose it and observe the result. However
such experimental procedure of choice is costly: in the short run, the agent bears
the loss in case of a negative result. This loss must be traded off against the po-
tential informational gain associated with experimentation, in terms of a more
correct estimate of the probability of having a positive result when undertaking
a certain project. In the standard framework, the agent’s optimal strategy con-
sists of finding the way of weighting these two opposite forces. Here, the agent
must take into account an additional trade-off associated with experimentation:
in the short run the agent faces the additional cost due to the sensation of disap-
pointment he has in case the project yields a negative result. The experimenter
trades off this cost against the gain in expected terms associated with the psy-
chological feeling of rejoycing he will have by undertaking the project which the
present information indicates is most profitable. This additional trade-off plays
a key role in characterising the optimal strategy of the agent and deriving the
main result of the paper.

In the first part of the paper, we consider two projects with unknown prob-
ability of a reward and an infinite horizon and we characterise the optimal
strategy of the agent. We derive an existence theorem analogous to the one
stated in Rothschild (1974), specifying an additional condition on the parame-
ter capturing disappointment.

In the second part, the decision problem faced by the experimenter is exam-
ined using the mathematical tool of dynamic allocation indexes, which allow us
to compare the sequential strategy chosen by the agent under expected utility
framework and under disappointment theory in terms of experimentation inten-
sity. In this setting we present the central result of the paper- that the agent who
is characterised by the disappointment-elation utility model of Loomes and Sug-
den will choose to experiment more intensively than the consumer characterised
by the standard expected utility model, under certain conditions regarding the
degree of disappointment. This result appears to be counterintuitive, since one
would expect that an agent who weighs more disappointment relative to elation
will be less keen on experimenting than an agent characterised by the standard
expected utility theory model. Here we show that an agent who feels disap-
pointment experiments more, despite disappointment, but only if the degree of
disappointment is under a threshold level. The threshold level depends both on
the probability of rewards along the unknown projects relative to the expected
number of trials and on the expected reward of the unknown project. The eco-
nomic intuition driving the result lies in the trade-off explained above: an agent
characterized by a disappointment-elation utility function will decide to exper-
iment more, instead of switching to the known project, because he evaluates



the possibility of having a sufficiently bad run of luck and the disappointment
he could have in the case he sticks forever with the known project, paying the
lower expected reward. It is shown that the result holds for n periods and for
a generic distribution function F' and that when the number of periods n in-
creases, the threshold on the degree of disappointment increases, becoming a
less tight constraint.

Finally, we characterise the decision procedure of the experimenter under a
specific distributional assumption and within this framework we compare the
standard expected utility theory case with the one where the experimenter is
characterised by disappointment.

The paper is organised as follows. In Section 2 we overview the related
literature, both in two-armed bandit problems and in the alternative frameworks
to standard expected utility. In Section 3 we derive an existence theorem of the
optimal experimentation strategy of the agent. In Section 4 the result on the
intensity of experimentation of the disappointment-adverse agent is stated. In
Section 5 we consider a special case of the decision procedure of the experimenter
under a specific distributional assumption and a finite horizon time. Finally,
Section 6 concludes.

2 Related literature

The departure point of our analysis is the seminal paper on experimentation of
Rotschild (1974). He examines the pricing decision of a monopolist facing an
unknown stochastic demand. The store can choose between two possible prices
(arms), each with an unknown probability to make a sale; each period the
monopolist selects the price to charge and he updates his beliefs on the basis of
the resulting sales to customers. The monopolist faces the trade-off between the
short-term benefit, represented by charging the price that maximises his payoff
given his current information and the information gained on the demand at
the other price, which has long-term value. Rotschild shows that with positive
probability the monopolist will choose the inferior price, i.e. the price less
likely to make the sale and therefore, inefficiency may arise in the long run.
Rothschild’s analysis relates to the multi-armed bandit literature, on which
Gittins (1979) and others have worked to characterise the index policy. In
the economics literature Weitzman (1981) and Roberts and Weitzman (1981)
provide two important applications of bandit problems with independent arms
to R&D settings.

Another literature branch relevant to the present paper is the one which ex-
amines alternative frameworks to the expected utility model of behaviour under
uncertainty. Experimental research into choice under uncertainty has revealed
that people behave in ways that systematically violate the set of basic axioms
formulated by Von Neumann and Morgenstern (1947) and Savage (1954), upon
which the conventional expected utility theory is built. In particular, the em-
pirical evidence presented by Kahneman and Tversky (1979) and others show
a number of patterns of choice that reveal behavioural regularities that sistem-



atically contradict the predictions of conventional expected utility. After the
discovery of Allais paradox and Ellsberg paradox, many attempts have been
done to develop alternative frameworks for the analysis of choice under uncer-
tainty, consistent with the observed behavioural regularities. A subset of them
start from an attempt at a psychological explanation of Allais Paradox phenom-
ena. One of the earliest was prospect theory (Kahneman and Tversky, 1979),
generalized later by cumulative prospect theory (1992). Two more intuitive
and parsimonious psychologically based theories are regret theory (Sugden and
Loomes, 1982, 1987) and disappointment theory (Sugden and Loomes, 1986);
both of them incorporate ex ante considerations of ex post psychological feel-
ings: of regret, or rejoicing, in the former and of disappointment, or elation, in
the latter. ”The fundamental idea behind regret theory is that the psychologi-
cal experience of "having z” can be influenced by comparison between = and y
that one might have had, had one chosen differently. If, for example, I bet on
a horse which fails to win, I may experience something more than a reduction
in my wealth: I may also experience a painful sense of regret arising out of the
comparison between my current state of wealth and the state that I would have
enjoyed, had I not bet” (Sugden, 1991).

3 The model

Consider an experimenter which is facing the following decision problem. The
agent has to decide which project (chosen from a fixed set) to undertake in
each period. Here we assume only two projects are available to the agent.
Each project pays out a fixed reward at an unknown probability. In the case
he knows the true probability of the reward of each project i, II;, he would
simply choose the project with the highest expected reward. Here we assume
the agent does not know II; and he can learn the probability of the reward
through experimentation.

The generality of the description lends itself to a number of possible inter-
pretations: we can think the agent to be a researcher employed in an R&D
department, which has been assigned to the task of finding a more efficient
way to produce some commodity and he has to choose among two substitute
technologies, each offering uncertain benefits until the development work is com-
pleted. Or consider the research work of a PhD student, who has to select the
topic of his thesis from a pool of possible interesting areas, each with an un-
certain probability to yield a publishable paper!. We can interpret the reward
yielded by a project as a preliminary positive result in a simplified analytical
framework he is working on or a significative t-test yielded by regressions with
the new data at the basis of his research. On the other hand, the project can
held no result, in the sense of no significative advances toward the goal of the
research. The framework fits as well the case of a monopolistic store trying to
price its commodity and learning the demand function through experimenta-
tion, as the one in Rotschild (1974), where a positive result indicates the event

1'We obviously abstract from his skills!



of a customer buying the commodity, associated with a return equal to the price
of the good net of the cost of production, and symmetrically the negative re-
sult represents the event the customer goes away the store without buying the
good?.

In mathematical and statistical literature this problem is known as the two
armed bandit problem and it has been widely analysed?. Here, we assume that
the agent’s preferences are described by the following utility function (Sugden
and Loomes, 1986):

U (zis) = zis + D (x5 — T;)

where x;; denotes the utility of project 7 under state of the world s and Z;
denotes the expected utility of project .

According to the utility function, the economic agent receives not only the
utility derived directly from the actual consequence of an uncertain prospect,
but in addition he feels some degree of disappointment and elation. When the
agent evaluates a prospect, he forms a priori expectation about any uncertain
prospect and after uncertainty is resolved he compares the actual consequence of
the prospect with the a priori expectation. If the actual consequence turns out
to be worse than the expectation, he feels disappointment. On the other hand,
the individual experiences some degree of elation, if the actual consequence is
better than the a priori expectation.

We assume ;5 to be linear and exactly equal to the payoff in state s of project
i and the disappointment-elation utility function D (-) to take the following
functional form:

& €20

DO = e “elob>1

The utility function is defined on deviations from the reference point?, i.e.
the utility function is kinked at the origin. The parameter b captures the inten-
sity of disappointment aversion and we require the utility function to be steeper
for losses than for gains. This second characteristic reflects a salient feature of
attitudes to changes in welfare, that is the disappointment that one experiences
in losing a sum of money appears to be greater than the pleasure associated
with gaining the same amount. This specification of the D (-) function captures
the spirit of the Kahneman-Tversky descriptive theory of judgement under un-
certainty (Kahneman and Tversky, 1979)°°. The choice of this utility function
allows us to investigate the effect of a psychological attitude, as disappointment

2Note that since we endow the agent with a utility function, not all economists would be
satisfied with this intepretation

3See Gittins (1979), Berry and Fristedt (1985)

4The reference point is represented by the origin, since we do not endow the agent with
any legacy or other forms of wealth inherited from the past.

5Here, for simplicity, we do not introduce Kahneman and Tversky’s assumption according
to which the utility function for changes of wealth is normally concave above the reference
point (D” (z) < 0, for x > 0) and often convex below it (D” (z) > 0, for = < 0). The
economic meaning of this assumption is that the marginal value of both gains and losses
generally decreases with their magnitude.

6The parameter b is defined in an analogous way to the coefficient of loss aversion in
Kahneman and Tversky (1979, 1992). Empirical studies conducted by Kahneman and Tversky
indicate that the best estimate of the coefficient of loss aversion is 2,25.



aversion, on the experimentation strategy optimally chosen by the experimenter.

3.1 The analytical set-up

We consider two projects. The generic project i pays off 1 with probability
IT; and 0 with probability (1 —II;). The experimenter does not know the true
probability II;. He decides which project to undertake according to his prior
beliefs about the parameter II; and selects the one with the highest probability
of a reward. We assume the agent has an infinite horizon.

Let N; be the number of trials along project ¢ and s; be the number of
positive results along 4, with ¢ = 1, 2.

The information in the sample can be represented by using the statistics
defined as fcl)llows:

Pi

T1+N;
14+ N;
When the agent chooses project i, p; becomes

o
Pi
+ p;

. In case of a positive

result on ¢, the statistics p; becomes:

pi +p;
s (ui) = 1+,
?

while in case of a negative result, p; becomes:
f ) = i
1+p;

Therefore, the information contained in the sample is given by (g1, fo, P15 P2)s
which is a subset of R*, constitued by a fourfold copy of the closed unit interval
[0,1]. Denote the domain of (u, p) as A.

The experimenter’s belief about the parameters 7; with ¢ = 1,2 are given
by the prior density function g (71, 72). We do not assume the independence of
the probabilities of success along the two projects, but we assume:

g(m1,m) >0 forall (71, m) € (0,1) x (0,1)

excluding all nonextreme combinations of II;and Ils.

The experimenter with experience (u, p) updates his prior beliefs from g (71, 72)
to h (w1, ma, i, p). The probability density is proportional to

£ A—(p+p)] E2 (1= (2+p5)]

it (I-m) o om?(l-m) 2 g(m,m)

The posterior mean of the experimenter’s belief about the parameter II;
given the sample information (4, p) and the prior density function g is defined
as follows:

Ai (.u’a p) = f()l fol mih (7T17 T2 [y P) dﬁldﬂ28

TAs the number of trials increases, p; approaches the sample mean f; = %, ie.
i
i = fim
8 i (1, p) is defined and continuous V (u, p) such that p; > 0, i = 1,2. It is possibly to show

that A; (11, p) can be extended by continuity to [0, 1]%, since



3.2 Dynamic programming equations and properties

The experimenter maximizes the expected discounted utility of his rewards over
the infinite horizon. The problem can be written in terms of dynamic program-
ming equations, satisfying the following functional form?:

Vi p) = n{%xw (1, p)

where

Wi (i, p) = Xi (11, 0) [L+ D (1= Xi (11, p ))] (1= Xi () D (=i (s p)) +
SN (s p) V (i (1 p)) + (1 = Ni (1, ))V(wl(u,p))}

where 0 < § < 1 and o; (i, p) and v, (u, p) are vectors indicating the state
of information after respectively a positive or a negative result on .

Define the functions V* (u, p) and W} (u, p) as follows:

VO (u,p) =0

Vi (p,p) = H{la}xW (ks p)

where

Wi (1, p) = Ai(pp) [1+D (1= N (1, 0))] + Ai (1, 0)) D (=i (1, p)) +

6[&( p) VI (oi (,p)) + (1= N (p,p)) V™ (%(u p))]

Lemma 1 The functions V* (u, p) and W} (w,p) are continuous

Proof. The proof is given by induction. We know that

VO (u,p)=0
V() = H{la}xW (1)
where:

W (1, 0) = Xi (11, 0) [14+ D (1= Ni (11, )] + (1 = X (1, 0)) D (=i (11, p))

since V° (i, p) = 0.

Given the continuity of \; (i, p) and of the disappointment-utility function
D (-), W} (u, p) is continuous.

Let us suppose that V™! (i, p) and W™ (i, p) are continuous. By the
definition of W} (u, p), we have:

WY (1, ) = Ai (1) [1+ D (1= A (1 o)) + (1= s (1,9)) D (=i (1)) +
5 Xi () VI (0 () + (1= N (1, ) VI (0, (1 p))]

which is continuous since it is the sum of contlnuous functions. The same
argument applies to V! (u, p), since:

Vi (1, p) = H{la}xW (n,p) m

Lemma 2 The functions V' (u, p) and W} (u, p) are monotonic

lim A; (1, p) = 1,

pi—0

by the law of large numbers

9From now on we use the general specification of the disappointment-elation function D (-)
and we consider the specific functional form assumed only when necessary to derive the result.



Proof. The proof is given by induction.

First, we show that V1 > V9 and VVi1 > I/Vi0 =0.

We know that V (u, p) = 0. Therefore, we need to show that V' > 0. By
simply applying the formula,

Wi (1, p) = Xi (1 p) [L+ D (1= X (1, p)]+(1 = Ni (1, 0)) D (=i (1, p)) 20

that is,

Wi (mg) =AAZ- (1, p) [2 = i (115 p)] + (1 = Ai (12, ) (=bX; (11, 0)) > 0

iff b < 1_)\222:2; since A; (1, p) € [0, 1].

Let us assume that V'~ * (1, p) is monotone increasing and show the monotonic-
ity of Vi* (1, p).-

By the definition of W} (u, p), we have:

Wi () = Ni(pp) [L+ D (1= Ni (1, 0))] + (1= Ni (11, ) D (=Ai (1, p)) +
8 [N (1, p) VI (i (1)) + (1= Ni (11, p)) VL (F; (12 p))]

which is monotone increasing, under the condition stated on the parameter of
disappointment aversion b, since it is the sum of monotone increasing functions.
The same argument applies to V;' (1, p), since:

Vi (1, p) = H{laifo (n,p) m

K3

Lemma 3 V! (u,p) and W} (i, p) converge uniformly to V (u, p) and W; (u, p)
respectively

Proof. In order to show the uniform convergence of V* (11, p) and W} (i, p),
we need to show that exists a majorant M, greater than the maximum of
Ai (s p) [1+ D (1= Ai (1, ))] (1= X (1, p)) D (=Ai (1, p)). Note that M ex-
ists, since A; () € [0,1], D(1— i (.p) € (0,1), D(=i (p) € R —
{- oo} 10 and hm Ai (14, p) = ;. Then, it has to be the case that V! (u,p) <

M
M Z ST <M Z 5 = 13
=0 T=
The bequenceb & (u, p) and W} (u, p) are bounded above and converge re-
spectively to V' (u, p) and W; (i, p), which are defined as follows:
V (i, p) = i V* (, p)
Wi (i, p) = lim Wi (g, p)

Indicate with V' (i, p) the present discounted value of the expected utility
of the sum of rewards from the first ¢ periods when following a policy described

by the system of dynamic programming equations. Then, V' (u, p) > v (1, p).

Then, V (p,p) < V' (,p) + 0" Y OTM < Vi (mp) + 875

M
[V (1, p) =V (11, p)| < 5t17_5. Since the previous inequality is independent of

which implies

(11, p), V** (1, p) converges uniformly to V' (1, p). A similar argument for uniform
convergence applies to W} (i1, p). ®

10given the condition on the parameter b stated in Lemma 2



Proposition 4 V (u,p) and W; (i, p) are continuous on A

Proof. This follows from Lemma 1 and 3. =
Define A; = {(u,p) e (0,1 : W, (i, p) > W (1, p)} the information set such

that project i is optimally chosen.
Lemma 5 A; is an open set

Proof. This follows from Lemma 1. =

3.3 Main results

Theorem 6 If the true parameters satisfy 0 < II; < Ily < 1, and the dis-
2— )\i (Ma p)
1- )\’i (,u’a P)
follows an optimal strategy will with positive probability choose project 1 infi-
nitely often and project 2 only a finite number of times.

appointment aversion parameter satisfies b < , then an agent who

The proof of the theorem is given in an analogous way to the one stated in
Rothschild (1974). Lemma 7 shows that the agent while experimenting will find
optimal to undertake project 1 if he has a very bad run of trials along project 2,
even if project 1 is the inferior one. The main difference in the proof lies in the
additional condition on the disappointment aversion parameter b, characterizing
the agent. This condition tells us that the agent will implement the same optimal
experimentation strategy of a standard expected utility maximising agent under
the condition that the intensity of disappointment aversion he feels is not ”too
strong”. Note that the threshold value under which the agent is going to follow
this experimentation strategy is endogenously determined by the beliefs on the
likelihood of the generic project i to pay out the reward, A; (i,p), updated
in each period on the basis of the state of information (u,p). The surprising
finding relies in the fact that, for every value of A; (i, p), the condition satisfies
the asymmetry on the weights given to losses and gains, i.e. for every value of
i (1, p), the agent is allowed to weight consistently more losses relative to gains
and nonetheless he will follow the same experimentation strategy as a standard
EUT maximiser.

2 — i (s p)

1= Xi (. p)
II; > 1 >0 and 0 < 63 < 1, there exists € > 0 such that W1 (, p) > Wa (i, p)
whenever py + py < € and either py > Iy — d1 or p; > da.

Lemma 7 Under the condition b < and for every 61,02, such that

Proof. Consider the compact set:
K = {(p1, 12,61,02) € A py 21y — 61 > 0 or p; = 63 and py = py = 0}

We want to show the conditions under which K C A;. Consider:
Wl (,LLa Oa P 0) Z /\1 (:U', 07 P, 0) [1 + D (1 - )‘1 (,ua Oa P O))]+(1 - )‘1 (,ua Oa P 0)) D (7)‘1 (p,, 0’ j2 0)) >

From Lemma 2, the second inequality holds iff:

10



b< 2 — )\z (/.L,O,,0,0)
I=X (1“’7 0,p, 0)

while if

W2 (,LL, Oa P 0) > Wl (,Uf) 07 Ps 0)

then

V (1, 0,p,0) = Wa (1,0,p,0) =0[1+ D (1)]4+1[0+ D (0)]4+0 [0V (1,0, p,0) + 1V (1,0, p, 0)]

= V (11,0,p,0) =V (1,0, p, 0)

This equality holds only if V' (i, 0, p,0) =0 < W7 (i, 0, p, 0), a contradiction.

From Lemma 4, Ay is an open set, centered at any (u, p). Therefore, K is an
open ball contained in A;. Let us indicate with B, (x) the generic ball centered
at point x with radius r. Then, there is a finite number J of balls covering the
set Ay, such that K C |J By, (z;).
JjEJ

Let us denote with ¢ = {n’li?]l}’ly. It has to be the case that any point
j€

(11, tg, P1, P2) such that py + py < € and either py > IIy — 1 or p; > 02
belongs to a open ball B, (z;) € A;. =

For the second lemma needed to establish the theorem, refer to Rothschild
(1974).

As in Rothschild, the proof of Theorem 1 is obtained without using the
condition ITy < II;. This means that there exists a support in the probability
distribution such that the experimenter will find optimal to choose to undertake
project 1 only a finite number of times and project 2 infinitely often. This means
that inefficiency may arise in the long run, since nothing guarantees even in the
long term that the experimenter will end up choosing the arm more likely to
pay out the reward. This result holds even when we characterise the preferences
of the agent in terms of the disappointment-elation utility function.

In the following proposition we establish the limiting conditions on the pa-
rameter of disappointment aversion, b.

Proposition 8 As the number of trials on project i increases, the condition on
the parameter b becomes:
< 2= (s p)

= 1=y (s p)
b<2aspu, —0andp;, —0

b<ooasp;, —1andp, —0

as p; — 0

Proof. The proof is straightforward m

From Proposition 8 two are the main observations. First, b is allowed to
assume values greater than 1, consistently with the Kahneman and Tversky
psychological findings of a higher disutility associated with same size losses
relative to gains. Secondly, and more surprisingly, even if the experience on
project i is very poor, the condition on the disappointment parameter b never
violates the requirement on the utility function.

11



4 The model with the Dynamic Allocation In-
dex

In this section the problem of the optimal experimentation of the agent is han-
dled by using the analytical tool of the dynamic allocation indexes. Gittins
(1979) showed that the optimal policy in the framework of multi-armed bandit
problems can be described in terms of the so called dynamic allocation index: if
the arms are independent (that is pulling one arm is uninformative about other
arms) then it is possible to attach to each arm an index, which depends only on
the current state of information on that arm. According to the optimal strategy,
the experimenter will find optimal to choose the arm with the highest index.
This index acts therefore as a reservation value. The tractability of the problem
with dynamic allocation indexes allows us to determine a closed form for the
reservation value the agent assigns to each project, and in turns to make explicit
quantitative comparison in terms of how much experimentation the agent will
undertake when characterised by a disappointment-elation utility function, as
defined in Section 3.

Within this framework we determine the condition on the parameter of disap-
pointment aversion b under which the agent characterised by the disappointment-
elation utility model of Loomes and Sugden will choose to experiment more
intensively than the consumer characterised by the standard expected utility
model.

4.1 The analytical set-up

Consider an agent that faces the decision between a project that pays off a
reward with an uncertain probability and a ”safe” one. Assume the first project
X1 has a binomial distribution with p = Pr(X; = 1) unknown but selected by
a known priori distribution, F', while the second X3 has a binomial distribution
with a known parameter, q. In other terms, the experimenter knows that the
second project pays off ¢ with certainty, while with project 1 he gets a reward
equal to 1 with probability p = Pr(X; = 1), which is drawn from a known
(general) distribution F'(p). In statistical terms, the problem is reduced to a
one armed bandit problem.

The experimenter is allowed to play n times and his objective is to determine
the sequential strategy which will maximise the expected utility of rewards of
the unsafe project (out of n independent observations). We consider n-horizon
uniform discounting. The problem is therefore reduced to an optimal stopping
one, in which the experimenter has to decide in each period whether to go on
with experimentation along the unknown project or to undertake the safe one.

The agent’s preferences are described by the disappointment-elation utility
function (Sugden and Loomes, 1986), as defined in the above section.

We characterize the optimal experimentation strategy in terms of the dy-
namic allocation index or Gittins index, indicated as @ (n, F'), which is a func-
tion of n trials remaining and F' the a priori distribution of p at that time.
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According to the optimal strategy, the experimenter will choose the safe project
if ¢'* > @ (n, F) and to undertake project 1, yielding an uncertain reward, in
the opposite case. The optimal strategy followed by the experimenter takes the
form of an optimal stopping rule.

According to Bradt, Johnson and Karlin (1956), within this analytical set-
up, the optimal strategy has the following form for the appropriate k;:

1. Observe the result on the unknown project X; until a failure occurs.

2. There exists an integer k; > 0 such that if at least k; positive results
preceded the first negative one, continue with X7; otherwise switch to the
safe project Xs for the remaining trials.

3. There is an integer ko > 0 attached to the second negative result such that
if at least k1 + ko positive results with X; precede the second negative one
of X7, continue with X7; otherwise switch to X5 for the remaining trials.

4. In general, let S, be the number of positive results that precede the r-th
negative one of X;. If S, > ki + ko + ... + k., continue with X;; otherwise
switch to X5 for the remaining trials.

Thus, any sequence k = (k1, ko, ..., k,,) of integers, 0 < k; < n, corresponds
to a strategy of the same form as the optimal.

Let E) denote expectation given k and W,, (F,q) denote the expected value
of utility of the n observations against a priori distribution function F on project
1 and a given parameter g on project 2, pursuing an optimal strategy. In using
any strategy for n trials, X; will be used a certain number, N, of times, and
there will be used a certain number, S, of positive results with X;; similarly
for Xs.

In the following Proposition, a closed formula for the dynamic allocation
index Q (n, F') is determined. We use a specification of the disappointment-
elation utility function, where ¢ denotes the a priori expected reward yielded
by project 1 calculated when n periods of experimentation are available to the
agent and against a priori distribution function F'. In calculating the explicit
formula taken by the index in Proposition 9, we do not allow the agent to
update ¢ after each period of experimentation- this implies that the evaluation
of the disappointment and elation is made against the a priori expected reward
of project 1 and not with respect to the updated expected reward according to
the new beliefs formed after each trial'?. This simplifying assumption allows
us to obtain a well-defined closed formula for @ (n, F'). Nonetheless, it does
not play a key role in the following analysis, since it can be shown that the
expression of @Q (n, F') given in the following proposition underestimates the
expected utility associated with experimentation and can be roughly interpreted

1 Note that along the safe project the agent feels neither elation nor disappointment

121n the previous model, with dynamic programming equations, the agent evaluates disap-
pointment and elation by taking into account in each period the beliefs correctly formed after
each trial
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as a downside boundary to the expected utility associated with undertaking the
unsafe project!. Intuitively, the agent who can update his current evaluation of
the expected reward of project 1 according to the beliefs formed after each period
of experimentation can implement a ”better” strategy and therefore reach in
expected terms higher payoffs level associated with each strategy. Allowing the
agent to update ¢ in each period according to his beliefs does not undermine the
result stated in the next section on the parameter of disappointment aversion,
b.

In the following Proposition, the explicit formula of the dynamic allocation
index associated with the unsafe project is given.

- By, [S,] _ < Ej, [Sz]) _ }
Proposition 9 n, F') = max 1+D(1-¢)+(1- D(-c
b QP =mpx{ g (1 D)+ (12 g5 ) D (-9
Proof. At the boundary, ¢ = @ (n, F)). This implies that ng = W, (F,q).

Since the optimal strategy is defined in terms of a sequence of k, it has to be the
case that: ng = max {F% [Sz,] 1+ D (1 —7¢)) + (Ex [Nay] — Fx [Sz,]) D (=€) + Ex [Na,] q}y

where ¢ = fol pdF'. Note that neither Fj, [Sy,] nor Ej [N,,] depend on ¢q. More-
over, neither Ej, [Sy,] nor Ej [N,,] depend on the way the agent evaluates his
payoffs. Note Ej [N;,] = n — E[N,,]. Hence, ¢ = Q (n,F) implies nqg =
max {Ey, [Sz,] (1 + D (1 =€) + (Ey, [Noy] = B [Si,]) D (=2) + Bk [No] 4}

jq > %(EJ D't(; - C))l.: <1 - M) D (—¢) for all k.
or some kK, 1 olds wi equallty:
g = max {g’: [[f;:]] (1+D(1-¢)+ <1 - 75;: [[]%:]]) D (c)} n

According to Proposition 9, the agent attaches to the unsafe project an index
Q (n, F), which can be interpreted as the expected payoff yielded by the unsure
project. Note that @ (n, F') depends on the expected success to trial ratio and
on the evaluation of project payoffs in case of a positive and a negative result.

4.2 Main results

In this section, we address the question whether an agent characterized by a
psychological sensation of disappointment experiments more than a standard
expected utility maximizer agent. According to the literature on the armed
bandit problem, the natural benchmark is provided by the framework in which
the agent is characterised by the standard expected utility paradigm. In the
standard optimising literature on bandit problem, it is assumed that the agent
is risk neutral and maximises expected profits; we consider, therefore, the case
where the utility function of the agent is linear and exactly equal to the payoff'.

13 As it is shown explicitly in the following section under a specific distributional assumption
14 This choice is motivated for homogeneity with the standard economic literature on bandit
problems
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Proposition 10 An agent characterised by a disappointment-elation utility func-
tion experiments more than a standard EUT mazximising agent when the follow-
ing condition on the disappointment aversion parameter b is satisfied:
Ep[S:](1—¢ Ep[S:](1—¢
b min|BHEACD B0
¢[Ey [Nz] — By [S:]] ¢[Ey [Ny] — Bk [S:]]

Proof. The agent will decide to experiment more when characterized by
disappointment when the following inequality is satisfied:

QP (n, F) > QEVT (n, F)

where:

QP (n, F) is calculated according to Proposition 9.

EUT _ Ej, [Sw} 15

Q (n,F)—m’?x{Ek [Nz]}

Under the specific assumption of piecewise linear disappointment-elation
utility function, this is equivalent to check under which conditions the following
inequality holds:

mes ey @9+ (1 i)~ = e )

Two possible cases arises.

1. max k [Sa] coincide in both expressions. In this case, the previ-
k Ek [Nm]

ous inequality simplifies to —bé +

Ey [SJJ (1 — E)
¢[Ek [No] — B [S:])

{l-e—(-O)} 20 =10 <

2. max { Ek [[]i ]] }do not coincide in the expressions of @ (n, F') and QFVT (n, F)
k T

Let us indicate

Ey [SL] _ max{ Ey [S4]
Ey [N,] k Ey [N,]
previous inequality becomes:
Ek [N:c] Ek [N:c]
By [S:] (1 —7)
E[Ek [Nw] - Ek [Sw]]
E[S:] _ Ex[S.] ]

where k = ClEg [Nz] — Ex [S:]] -

} under EUT. In this case, the

+ —be +
Ek [Nx]

{I-2)—=(-bo)} >0=0b<k+

In the standard framework of expected utility theory, the agent faces a well-
known trade-off, according to which in the short run he bears the loss in case of a
negative result. This loss must be traded off against the potential informational

15See Karlin, Bradt and Johnson (1956)
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gain associated with experimentation, in terms of a more correct estimate of
the probability of having a positive result when undertaking a certain project.
The agent’s optimal strategy consists of finding the way of weighing these two
opposite effects associated with the experimental procedure.

When introducing disappointment, the agent must take into account an ad-
ditional trade-off associated with experimentation: in the short run the agent
faces the additional cost due to the sensation of disappointment he has in case
the project yields a negative result. The experimenter trades off this cost against
the gain in expected terms associated with the psychological feeling of rejoyicing
he will have by undertaking the project which present information indicates is
most profitable. This additional trade-off plays a key role in characterising the
optimal strategy of the agent and determines the condition on the disappoint-
ment aversion parameter.

The condition stated on the parameter b can be written as follows'® to enlight

the existence ([)f z}n additional trade-off for the agent:
_ Ek Sx — _
bc + Er [V,] {1-¢—(=bc)} >0

where the first term represents the loss associated with the disappointment
sensation in the short run caused by a negative result when undertaking project
1. The second term represents the gain associated with the elation sensation
in the long run given by the "real” elation sensation of the agent because of a
positive result and the elation sensation due to not feeling disappointment on
that occasion. This overall elation sensation is weighted by the success to failure
ratio (in expected terms).

The economic intuition driving the result lies in the trade-off explained
above: an agent characterized by a disappointment-elation utility function will
decide to experiment more, instead of switching to the safe project, because he
evaluates the possibility of having a sufficiently bad run of luck and the disap-
pointment he could have in the case he sticks forever with the known project,
paying the lower expected reward.

In other terms, the agent will experiment more under disappointment if the
intensity of disappointment aversion captured by the parameter b is lower than
the ratio of the expected elation to the expected disappointment.

5 An example: the uniform distribution

Here we consider a special case of the decision procedure of the experimenter
presented in the previous section. We fully characterize the decision rule followed
by the experimenter under a specific distributional assumption of the parameter
p. In particular, we assume p is distributed according to a uniform on the
support [0,1], i.e. p = Pr(X; = 1) ~ f = U(0,1). We allow the agent to
experiment under a finite horizon time.

16 The condition is stated referring to case 1, according to the Proof in Proposition 10, which
is the more interesting from an economic point of view
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We provide a full characterisation of his decision procedure both in the
standard framework of expected utility and in the one with disappointment.
We derive an explicit comparison between the two decision procedure in terms
of the parameter of disappointment aversion, b.

5.1 The Expected Utility Theory framework

We consider an agent characterized by the standard expected utility function.
In particular, we assume the utility function to be linear and equal to the payoff.
Suppose n = 3, i.e. the agent has three more periods of experimentation.

The individual will decide at n = 3 whether to undertake the project 1 or
to choose the safe one. Each time he takes the decision whether to experiment
or not, he faces the trade-off between a sure payoff equal to ¢ yielded by the
safe project and the cost of experimenting by investing in project 1, that is
represented by the loss in the case of a negative result.

The individual will calculate the boundary at which he is indifferent be-
tween experimenting and not experimenting. This is analogous to determine
the dynamic allocation index attached to project 1.

The case n = 3 is an interesting one, since it allows to show how the optimal
strategy specified in terms of a sequence of k; works. Since the horizon time is
n = 3, we should distinguish between two different potential optimal strategies
in terms of k; in the calculation of the boundary: kj,the number of positive
results realized before a a negative one required by the agent in order not to
switch to the safe project, can either take the value 1 or 2 when n = 3. The
agent chooses the strategy that maximises the value of the dynamic allocation
index, i.e. he selects the experimentation strategy in terms of k; that maximises
the expected payoff under experimentation.

Proposition 11 Undern =3 and p ~ U(0, 1), the decision rule is summarized

as follows:

13
Undertake project 1 if and only if ¢ < 23

3
If it yields a negative result, undertake project 1 if and only if ¢ < 3

If it yields a negative result again, undertake project 1 if and only if g <

= =

The dynamic allocation index is determined by applying the following pro-
cedure. In order to be indifferent between experimenting and not, the agent
must equate the expected payoffs under two different strategies: the strategy
under which he chooses the sure project for all three periods and the strategy
under which he undertakes project 1 in the first period and he switches to the
safe one only in the case he experiences a negative result in the first run of trials

under the specification of k; = 2. In analytical terms'”:

17We leave the indication of the zero payoff to ease the comparison with the boundary in the
case the agent evaluates his payoff according to the disappointment elation utility function.
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3q =
1p+0 (1 — p)+1p°+0p (1 — p)+q (1 — p)+1p*4+0p* (1 — p)+qp (1 — p)+q (1 — p)

i.e. the sum of the sure payoff of the safe project undertaken for three
periods must be equal at the boundary to the sum of the expected payoffs in
the case the agent undertakes project 1 in the first period and then follows
the strategy specifying k; = 2. This means that in the second run of trial the
individual sticks with the unsure project, in case of a positive result in the first
period, while he switches to the safe project, with a sure payoff equal to ¢, in
case of a negative result. Again, in the third period, he chooses to experiment
by undertaking project 1 in the case of two consecutive positive results in the
previous two trials, while he chooses to switch to the safe project otherwise in
case of a negative result in the second period

Taking expectations and solving for g:

1 2 3
p+p° +p°)dp 13
1= =2 Lip_13
k=2 Jo A +p+p?)dp

Similarly, for n = 3 and k; = 1:

3¢=1p+0(1—p)+1p*+0p(1—p) +q(1 —p) +1p* + 0p* (1 —p) +
1p* (1 —p) + 0p(1 —p)* +¢q (1 —p)

i.e. the only difference happens when the first negative result occurs in the
second period, after one positive realized in the first trial: in this case, the
individual chooses to experiment even in the third period when he follows the
strategy specifying k1 = 1.Taking expectations:

Jo (p+20*)dp _ T

- U)y=20 " 17777
! %(:3{) Jy(+2p)dp 12

The individual will choose the strategy in terms of k; in order to maximise
the expected payoff from experimenting, i.e. the expression of the boundary
Q (3,U) will take the following form:

Jo 0+ 7% dp fy (p+2p2)dp} -2
22

QB.U) = max L] 2 =
{k1=1;k1=2} fO (1+p+p*dp fo (1+2p)dp

The individual will decide to experiment if and only if ¢ < @ (3,U) 8. In case
of a success, the player will find convenient to undertake again project 1, while
in case of a negative result, he will update his beliefs on U and calculate again
the dynamic allocation index attached to project 1, according to information
obtained in the experimentation.

18By convention, the individual wil experiment when indifferent between the safe and the
uncertain project, i.e. when at the boundary.
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In case of a failure, the time horizon is n = 2 and the agent has to calcu-
late @ (2, Ut ), where U7 indicates the posterior distribution updated after the
realization of one negative result yielded by project 1, given the uniform as the
prior distribution function. Now, the only possible case is k1 = 1.

Under k1 = 1 and n = 2, the dynamic allocation index takes the following
form:

1 2 f
_o(a.uf) = o () dUT 3
1=Q U7 Fa+pdur 8

Suppose the agent undertakes project 1 and it yields a negative result for
the second time. The decision problem of the agent is simplified, since the
horizon time shrinks to n = 1. Let us indicate the posterior distribution after
two failures with U7/ (p). The dynamic allocation index in this case is:

¢=Q(LUI) =1 [; pdU!f = i”’

After two negative results, with n = 1, the individual will compare ¢ with
the updated probability of getting a positive result, given that he experienced
a negative one in the first two runs of trial.

5.2 Introducing disappointment

In this section, we characterize the sequential strategy of the agent facing the
same decisional problem described in the previous section, but here we assume
the player experiences the psychological feelings of disappointment and elation
and he takes them into account when evaluating the optimal strategy.

The agent’s preferences are described by the disappointment-elation utility
function, as defined in section 3.

Proposition 12 Under n = 3 the decision rule is summarized as follows:
Undertake project 1 if and only if
q < max {ﬁ— ) 2—%b}

= k1 ko) 44”24 2
If it yields a negative result, undertake project 1 if and only if ¢ < %7— %Bb
If 1t yields a negative result, undertake project 1 if and only if ¢ < {5 — 15b

In order to keep the agent indifferent between experimenting or not, it has
to be verified the following equality:

19The general formula indicating the probability of getting a success given that the individ-
ual has experimented ¢ times and has registered s successes, if the parameter p = Pr(X = 1)
is drawn from a uniform distribution U(0, 1), takes the following form
s+1
q<
t+2
where s indicates the number of successes out of all trials and ¢ the number of trials along
the unknown arm.
In our simple case, s = 0, t = 2. It follows that the individual will experiment again along

the unknown arm if ¢ < 1
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3¢=(1+(1-2) p+ —be(l —p)
+ (14 (1—72))p* —bep(1 —p) + q(1 —p)
+(1+(1—-7¢)p*—bep*(1—p)+qp(l —p)+q(1—p)

At the boundary, the agent equates the sum of the utility of the sure payoff
associated with undertaking three times the safe project and the sum of the
expected utility of payoffs in the case the agent decides to undertake project 1 inf
the first period and then act according to the optimal strategy specifying k; = 2.
The mechanism driven by the vector k£ plays a key role in understanding the
functional form of dynamic allocation indexes, since now the agent experiences
a negative level of utility in case of a negative result yielded by project 1, while
he has zero utility level in case of standard expected utility theorem paradigm.
According to the same procedure shown above, the dynamic allocation index
has the following expression:

_ fol (p+p2+p3) dp 7 fol 1—p
1 1—¢ —be
max e Jo (L+p+p2)dp " fo 1+p+p)dp
{1 ko) 1+(1- C))M 12 Jo (L+p—2p*)dp
Jy (1+2p)dp 3 (1+2p) dp

Under the distributional assumption of a uniform distribution, it reduces to:
QP (3,F) = max {33 — 2p 2t — 5p}
{k1,k2}

The decision rule followed by the individual remains unchanged: the agent
will decide to experiment if and only if ¢ < QP (3, F), i.e. the individual will
decide to experiment if the utility associated with the payoff of the sure project
is lower or equal to the expected utility associated with payoff obtained by
following the optimal strategy on project 1. Assume ¢ < QP (3, F). Accordingly
to the decision rule, the individual will find convenient to undertake project 1 If
he experiments and gets a positive result, he will find convenient to experiment
again. In the case he gets a negative result,the time horizon is n = 2 and the
agent has to calculate @ (2, Ut ), where U7 indicates the posterior distribution
updated after the realization of a negative result with project 1. When the time
horizon is n = 2, the only possible case is k1 = 1.

Under k1 = 1 and n = 2, the dynamic allocation index takes the following

form:
+p?) dU’ (1—p*du’
1= @Un) = (14 (1—eh)) PNy oL
2—f0 (1—p)dUf 2—f01— VdU f
where & = fol pdUf =%

It follows that if ¢ < QP (2,U7) boundary calculated after a negative result,
the individual will find convenient to undertake again project 1. In the opposite
case, he will decide to switch to the safe project forever.

The optimal strategy predicts a ”stay with a winner” rule, so that the agent
needs to evaluate the convenience of his action only in case of a negative result..
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Suppose the agent experiments along the unknown arm and a negative result
occurs for the second time. The decision problem of the agent is simplified, since
the horizon time shrinks to n = 1. and the individual will compare ¢ with the
updated expected utility of the reward of project 1, given that he experienced a
negative result in the first two runs of trial. Therefore, the dynamic allocation
index becomes:

QP (1, FI1) = (14 (1 —¢/)) [ pdFIT + (—be! ) [} (1 - p)dFI7
where &/ f :foldeff =1

5.3 Comparisons

Does the agent experiment more when he feels disappointment in case of a
failure? The aim of this section is to provide an answer in the simple setting
with a finite horizon examined above and we determine the conditions on the
disappointment parameter under which the economic agent is willing to experi-
ment more when characterized by a disappointment-elation utility function with
respect to the standard EUT paradigm.

The agent will decide to experiment more when characterized by disappoint-
ment when the following inequality is satisfied:

QP (n,F) > QFYT (n, F).

This table exhibits the values of the parameter that satisfy the above condi-
tion under the specification of the disappointment-elation function considered
in Section 3 and 4 and under different assumption on the time horizon of exper-
imentation. In the second last column we report the value of the parameter b in
the case we do not allow the agent to update the distribution function and the
expected payoff ¢ of the unsafe project after each experimentation trial, while
in the last column we report the value of parameter b when updating is allowed.

N=2 Q2U)=3 b<3 b<1,15
Q(l,Uf):S% b<1 b<1
N=3 Q(3,U)=;—23 bg? b<1,24
Q(Q,Uf):g b<f¢ b<1,16
QLU =1 b<1  b<1
N=4 QMU =% bg% b<1,28
QB UN=35 b<3 b<1,2
Q2,Ul) =L bg% b<1,15
Q(l,Ufff)zz b<1 b<1

From the inspection of table I, it can be seen that the parameter b increases
as NN increases: i.e. as the number of trials of experimentation before the
end of the game increases, the maximum intensity of disappointment aversion
that the agent can bear, in order to have more experimentation with respect
to the standard EUT, increases. Not surprisingly, the parameter b decreases
after each failure: since the agent’s utility is reduced after each failure and
losses have a higher weight than gains, he is willing to bear a lower intensity
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level of disappointment after a failure. It is worth noting that the agent can
weigh consistently more losses relative to gains in psychological terms and still
decide to experiment more than a standard EUT maximiser- which again is
counterintuitive.

More interestingly, the table shows that the result of Proposition 10 are
not vulnerable to the simplifying assumption of an expected value of the payoff
of the unsafe project not updated after each trial of experimentation. Note
that when we allow the agent to update both the distribution function and the
expected payoff, the range of values of the parameter b satisfying the condition
on more experimentation shrinks but the agent can still weigh more losses to
gains and decide to experiment more with respect to a standard expected utility
maximiser agent.
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