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Abstract

The paper aims at addressing some methodological issues in applying
Social Network Analysis indicators to the investigation of nation-wide inter-
sectoral innovation flows matrices. The majority of SNA techniques require
dichotomization of the original matrices and suitable relativization procedures,
in order to avoid size-biases. The relativization procedures used so far suffer
from some limitations, as they either alter the meaning of SNA indicators or
do not take into account the composition of countries’ final demand.

In order to overcome these limitations, we propose two new different
methods and compare them with the existing ones on the basis of their ratio-
nale. Rather than with respect to a single cut-off, the comparison is carried
out by working out SNA indicators distributions. An illustrative application
is carried out by comparing the technological systems of six structurally
different OECD countries in the mid-’90s. In so doing, the robustness of their
conventional innovation ranking is tested and discussed.
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1 Introduction

Although it gained popularity in the early ’90s, the system analysis of the

innovative process has recently undergone an important transformation. The

need of complementing qualitative empirical analyses of those institutions and

organizations which make up systems of innovation – national, sub-national,

super-national and regional – with rigorous quantitative measurements and

evaluations of their relationships, structure and performance, has spurred to

look for new and more suitable methodological tools.

Among these, as Christian DeBresson shew so brightly with his long

research career, the analysis of “economic interdependence” represents an

extremely powerful tool of investigation (DeBresson, 1996a). Indeed, com-

bining input-output analysis with that of innovation activity, and building

up intersectoral innovation flows matrices, provides the researcher with a

precious ‘map’ trough which to investigate the constitutive relationships of

a system of innovation. What is more, this map can be fruitfully explored

by choosing a suitable “navigator”, that is network analysis. Sectors and

intersectoral flows can be in fact dealt with as the constitutive elements of

innovation networks whose properties can be investigated through Social

Network Analysis (SNA). As has been shown by a number of studies (see,

for instance, DeBresson, 1996a; Leoncini and Montresor, 2003b; Chang and

Shih, 2005; Montresor and Vittucci Marzetti, 2007b), several network analysis

indicators have an immediate and equivalent meaning in the system analysis

of innovation.

With respect to this research program, the present paper represents a sort

of step behind, rather than ahead. Its intention is in fact that of going back to

those “crucial” methodological issues one has (as we had!) to tackle to obtain

sound empirical results. In particular, we intend to “lift the carpet” and
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take “frankly” the problem of scale-effects in comparing different technological

systems at the country level on the basis of their innovation intersectoral

flows matrices. In this vein, the paper might sound excessively technical but,

hopefully, also show how pure (and noisy) technicalities are responsible for

larger (and attractive) techno-economic results.1

The structure of the paper is the following. Section 2 sketches the the-

oretical background of the paper. Section 3 discusses the scale issue and

the problem of obtaining proper relative intersectoral innovation flows to

get rid of it. Section 4 critically reviews previously proposed relativization

procedures and compares them with some new methodological proposals.

Section 5 sets these procedures at work in a purely illustrative application

carried out by comparing the technological systems of 6 structurally different

OECD countries (Japan, Korea, Netherlands, Poland, Spain, USA) in the

middle ’90s, and tries to get signs of systematic vs. occasional differences.

Section 6 concludes.

2 Theoretical background: investigating

technological systems through

intersectoral network analysis

The methodological issue this paper addresses is typically faced in comparing

the technological systems of two or more countries (or sectors) by looking at

their intersectoral innovation flows.2

This research program, which has recently attracted a number of studies

(see, for instance, DeBresson, 1996a; Leoncini and Montresor, 2003b; Chang

and Shih, 2005), draws on the following theoretical background.

1In this last respect, the reader will be disappointed. Not so much techno-economic
results here! For consolation, see, for example Montresor and Vittucci Marzetti (2007b).

2More in general, the same issue is relevant whenever two or more countries are compared
on the basis of a certain intersectoral matrix which distributes the sectoral values of a certain
variable along their subsystem structure. The comparative analysis of de-industrialization
and tertiarisation processes is thus another potential field of application for it (Montresor
and Vittucci Marzetti, 2007a).
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First, the innovative process does not occur among (atomistic) economic

agents acting in isolation. Rather, it is innervated and shaped by a set of

relationships through which innovative institutions and organizations (e.g.

firms, research labs, universities, patent offices, and the like) interact, learn

and originate different kinds of systems (of innovations) (Lundvall, 1992;

Edquist, 1997; Edquist and McKelvey, 2000).

Second, not only are innovative relationships institutional and affected

by the topographical, geographical space in which they operate. But they

are also technical and economic in their nature, and thus also affected by

“an abstract economic space of supply and demand of different goods (as

represented by input-output matrices) and [a] technical space (as represented

by the techno-functional classification of patents)” (DeBresson, 1996b, p.151).

Accordingly, a broad notion of Technological System (TS) (Leoncini, 1998;

Leoncini and Montresor, 2003a) is required in order to retain the complexity

of the innovative process.

Third, the constitutive relationships of a TS can be proxied and mapped

by building up a suitable matrix of intersectoral innovation flows, namely, a

(n× n) matrix of R&D flows embodied in vertically integrated subsystems

such as the following:

(1) R = r̂ q̂−1(I−A)−1 ŷ = r̂ B

where r̂, q̂, and ŷ are the sectoral diagonal vectors of, respectively, R&D

expenditures, gross production and final demand, and (I − A)−1 is the

Leontief inverse based on the domestic input-output coefficients matrix (A)

(e.g. Marengo and Sterlacchini, 1990). Indeed, given the way it is defined, such

a matrix actually reflects the functioning of both the innovative sub-system

(proxied by R&D expenditure) and the production sub-system (proxied by

input-output tables) of a TS. Furthermore, the resort to the operator B in

reclassifying R&D flows from pure sectors into vertically integrated sectors

(or subsystems) allows the same flows to retain also the market side of a TS
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through the role of final demand.3,4

Fourth, the structure of a TS and the different role of its constitutive

sectors can be analyzed, especially in a cross-country comparative framework,

by applying to intersectoral innovation matrices suitable Social Network

Analysis (SNA) techniques and indicators (Leoncini et al., 1996; Leoncini

and Montresor, 2000a,b). Indeed, the economic sectors and the intersectoral

techno-economic flows of these matrices can be envisaged as, respectively,

the vertices (or nodes) and the arcs of the constitutive network of the

correspondent TS. In particular, three SNA indicators are particularly useful

in comparing different TSs.5

The first one refers to the TS as a whole, and is the density (δ) of the

correspondent network of n sectors, defined as:

(2) δ(t) =

∑
i

∑
j(i 6=j) dij(t)

n(n− 1)
with 0 ≤ δ(t) ≤ 1

where dij ∈ {0, 1} is the element of the so called “contingency matrix” D(t),

amounting to the dichotomic transformation – according to a certain cut-off

t – of the matrix R or, as we will argue in the next section, of a suitable

relative transformation of it (an issue on which we will return later). The

techno-economic interpretation of δ(t) with respect to a TS is quite immediate:

the larger (the smaller) is δ(t), the more (the less) dense is the network, the

more (the less) connected (i.e. systemic) is the correspondent TS.

Unlike the previous one, the second SNA indicator refers to each vertex j of

a network, and is given by its degree, or more precisely, indegree and outdegree

centrality. This indicator is nothing but the number of vertices through which

3The B operator was first proposed by Siniscalco (1982). Each row of it adds up
to 1 and shows “the shares of output of each sector which contribute to the different
subsystems”. Thus, B can be used to reclassify any physical or value magnitude from
sectors into subsystems. As noted by Rampa (1982), it is relative price invariant and
depends not only on strict technological factors, but also on the structure of final demand.

4As has been argued elsewhere (Leoncini and Montresor, 2005), the map can be refined
by considering, still in an input-output framework, the role of the foreign market and of
the institutional set-up.

5As Montresor and Vittucci Marzetti (2007b) show, the same kind of analysis can be
fruitfully employed also to detected and investigate different forms of innovation clusters
within the TSs.
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a certain node j is reached by (indegree) and reaches (outdegree) the other

n− 1 vertices of the network. In a directed graph, such as that correspondent

to the intersectoral innovation matrices we are dealing with, the indegree and

outdegree centrality of a vertex j are distinct and formally defined as follows:

(3) Cin
j (t) =

∑
i(i 6=j)

dij(t) with 0 ≤ Cin
j (t) ≤ n− 1

(4) Cout
j (t) =

∑
j(j 6=i)

dij(t) with 0 ≤ Cout
j (t) ≤ n− 1

where, as before, t refers to a certain cut-off value. When dealing with TSs,

given that inward and outward arcs represent, respectively, intersectoral

innovative acquisitions and diffusions, the two measures of centrality can help

determining the degree of dependency or pervasiveness of the sectors in a TS.

The last SNA indicator we consider refers to the TS as a whole again, and

is given by the degree, or more precisely, indegree and outdegree centralization

of the correspondent network, defined as:

(5) H in(t) =

∑
j(C

in
j∗ (t)− Cin

j (t))

(n− 1)2
with 0 ≤ H in(t) ≤ 1

(6) Hout(t) =

∑
j(C

out
j∗ (t)− Cout

j (t))

(n− 1)2
with 0 ≤ Hout(t) ≤ 1

where Cin
j∗ and Cout

j∗ are, respectively, the indegree and outdegree centrality of

the most central vertex j∗.

As low values of the centralization identifies a network with similar (cen-

trality) positions, the correspondent TS can be deemed one in which its

sectoral partitions are “evenly distributed”. Conversely, large centralization

values refer to TSs with highly “hierarchic” sectoral partitions (Leoncini and

Montresor, 2000b).

3 “Scale” and “cut-off” in comparing

different TSs: two delicate issues

Although the interpretative power of a network (intersectoral) analysis of

different TSs is quite high, this can be obtained only by dealing satisfactorily
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with two crucial methodological problems.

The first problem is due to the fact that the SNA indicators described

above require us to work with dichotomic matrices, that is matrices made up

of 1s and 0s depending on the values of the retained matrices of intersectoral

innovation flows being, respectively, larger and smaller than a certain cut-off

value t. Although quite crucial, the choice of this cut-off value, and the

sensitivity of the SNA results on it, is insufficiently addressed by the network

analyses of techno-economic phenomena.

In order to attenuate this problem, Leoncini and Montresor (2000b) started

suggesting to work with more cut-off values through a two-step procedure: (i)

for each of the z TSs to be compared, building up a density distribution d(tz∗)

using as cut-off values the ordered distribution, tz∗ , of the n× (n− 1) cells

of a proper reference matrix, that is of a reference TS, z∗; (ii) by comparing

the z density distributions, extracting “heuristically” some cut-off values

out of the distribution tz∗ , with respect to which carrying out the rest of

the network analysis and checking for their robustness. In a recent paper,

Montresor and Vittucci Marzetti (2007b) refined this procedure by suggesting

to run step (i) with respect to a “super-vector” of cut-offs (tZ), whose Z

elements are obtained by ordering the cells of all the z matrices to be compared

(Z = (n(n− 1)) × z). In spite of the difficulties in getting general density

results in front of such numerous cut-off values, this procedure reveals superior

for a set of reasons for which the interested reader should refer to the relative

paper.

The second crucial issue is even preliminary to the first one, and refers to

the choice of the proper “relative” intersectoral innovation flows matrix to

which the dichotomization and the network analysis should be applied. Indeed,

although the need of transforming the absolute values of the R matrices –

through which the correspondent TSs are compared – into relatives ones

might appear intuitive, the actual way such relative matrices are obtained is

far from innocuous: conversely, as we intend to show with this paper for the

first time, the results of a network intersectoral analysis of the TSs are quite

sensitive to it.

First of all, given the way R is defined, it is straightforward that applying

the SNA indicators directly to the R matrices of the z TSs to be compared – of
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course, after having expressed the correspondent vectors of R&D expenditure

in PPP terms – will end out by yielding misleading results. Should country

1 be much larger (in economic terms) than country 2, and thus have a

larger scale of R&D activities across all the considered sectors, the density

analysis would show, a fortiori, higher values for the former than for the latter

country with respect to all the cut-offs. However, concluding that TS1 is more

connected than TS2 would be, in this case, not guaranteed: although less

consistent, and thus systematically excluded from the dichotomization, the

embodied sectoral R&D flows of the latter might be more diffusely distributed

than those of the former. Actually, they could be more polarized (i.e. less

systemic), but by using absolute R&D flows as cut-offs values we are unable

to capture it.

In order to get rid of scale effects, and make density and the other

SNA indicators more robust in informing about the relational structure of

the compared TSs, we need to normalize the absolute intersectoral flows

of R in some way. But with respect to what? Indeed, scale differences

across different TSs could be traced at different levels. Not only could

the scale of R&D activities of different TSs be systematically different, but

two TSs could have similar R&D scales and, still, systematically different

demand volumes – spurring differently the intersectoral innovation flows

in a sub-system framework – or different production volumes – conveying

differently the intersectoral innovation flows embodied in them. What is more,

considering that TSs have also a sectoral dimension, along with a national one

(Malerba, 2004), there could be systematic scale differences across different

subsystems. In the light of these considerations, rather than one relativization

procedure only, different ways of getting normalized intersectoral flows should

be considered. As we will show in the following, these different procedures

yield different results, so that their choice should be based on an accurate

evaluation of their pros and cons and, above all, of their rationale.

4 Alternative relativization procedures

Although the outcome is always represented by some kind of relative matrix,

different relativization procedures can be accomplished, depending on the scale
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of operation one wants to get rid of and on the national or sector/subsystem

focus of the analysis.

4.1 Unit value matrix

A first possible relativization procedure is that proposed by Chang and Shih

(2005), who suggest to compare the intersectoral structure of different TSs

by resorting to a unit value matrix (Runit) defined as follows:6

(7) Runit = r̂ q̂−1(I−A)−1

Let us observe that using this matrix amounts to dividing each column of the

original matrix R by the final demand level of the correspondent subsystem,

that is:

(8) Runit = R ŷ−1

Accordingly, we can conclude that the different subsystems of each TS

are in this way scaled down to the same unit final output, irrespectively of

the ratios between the original operational scales of the different subsystems,

which could be different in different TSs.

In the light of this latter fact, the use of Runit entails a focus on the

individual subsystems of each TS. Therefore, this procedure might be justified

when one is interested in the TS conceived as a distinguishable “constellation”

of individual subsystems. On the other hand, let us observe that Runit, while

it gets rid of the differences in countries’ overall GDP – which is desirable

– it also neutralizes countries’ differences in its structure – which is not as

desirable.7

6Although Chang and Shih (2005) convert all the values in US dollars, this does not
prove strictly necessary. Indeed, denoting with E the nominal exchange rate of the home
currency to the US dollar, we have that the matrix obtained by using E (Runit

E ) is equivalent
to that without (Runit):

Runit = r̂ q̂−1(I−A)−1 = E−1 r̂ q̂−1 E
(
I− E−1A E

)−1
= Runit

E

7It is also worth noting that such method tends to underestimate the weight of the
R&D efforts of the less developed countries, unless a PPP correction is introduced.

9



4.2 Unit basket of final demand

In order to retain the different structure of the final demand in the compared

TSs, while still getting rid of overall scale differences, we suggest to resort to

a different relativization procedure, and work out the following matrix:

(9) Rbasket =
1

i′ y
R

where i′ is a unit row vector.

The matrix Rbasket calculates the innovation flows embodied in the in-

termediate production ones “activated” by a unit basket of final demand.

Thus, while it still scales down the different subsystems to a comparable

cross-country level, it leaves unaltered the operational scale ratios between

the different subsystems of each TS. Just to give an example, in the case of

a fictitious economy made up of three sectors, whose final demand vector is

y = (1500, 2500, 1000), the correspondent unit basket of final demand will be

(0.3, 0.5, 0.2), unlike (1, 1, 1) as for Runit.

4.3 Normalized R

Although the previous relativization removes cross-country differences con-

nected with the “size” of their economy, their relative ranking in terms of

aggregate R&D/GDP ratios still affects the network analysis which is based

on it.

If one is interested in focusing on the purely relational characteristics of

the different TSs, that is, on how embodied innovation flows are distributed

among the different subsystems within each TS, irrespectively of the value of

such flows as a proportion of the overall size of the system, he needs to move

to a different relativization. In this case, a possible relativization procedure

we suggest could be the simple normalization to one of the R matrices, that

is:

(10) Rnorm =
1

i′ R i
R =

1

i′ r
R

Indeed, the ratio between each element of Rbasket (rbasket
ij ) and the correspon-

dent element of Rnorm (rnorm
ij ) is constant and equal to the country’s aggregate
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R&D/GDP ratio:

(11)
rbasket
ij

rnorm
ij

=
rij

i′ y
/
rij

i′ r
=

i′ r

i′ y
(i, j = 1, 2, . . . , n)

4.4 Matrix C

A last possible method to relativize the matrix R is that of normalizing the

subsystem innovative acquisitions, that is of dividing each cell of the original

matrix by the sum of the correspondent column, thus building up a matrix

C defined as follows:

(12) C = R (î′ R)−1

where the hat symbol is used to denote diagonalization.8

This matrix, put forward by Leoncini et al. (1996), has been used by

Leoncini and Montresor (2000b, 2003b, 2005) and, more recently, by Montresor

and Vittucci Marzetti (2007b) for is “mixed” properties. On the one hand,

like Rnorm, C emphasizes “pure” relational aspects. On the other hand, unlike

Rnorm, but like Runit, the focus is kept on the individual subsystems of each

TS.

4.5 A synthesis

In brief, the four relativization procedures described above combine two

different levels of analysis:

(i) the first level concerns the dimension along which one might want to get

rid of scale effects, that is, economic activity (proxied by the volume of

final demand) or technological activity (proxied by R&D expenditure);

(ii) the second dimension refers instead to the focus of the analysis one

wants to carry out through relative matrices, that is, system-focus or

subsystem-focus (see Table 1)

8It is worth noting that, given the way R is defined, dividing its cells by the sum by
row simply returns the operator B; in formal terms:

(13) (R̂i)−1R = ( ̂r̂ B i)−1r̂ B = (̂̂r i)−1r̂ B = r̂−1r̂ B = B
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Table 1: Rationale of the relativization procedures

Focus of the analysis

System Subsystem

Relativization dimension
Economic Rbasket Runit

Technological Rnorm C

On principle, Rbasket and Rnorm appear more consistent with the inner

logic of the TS analysis. However, looking the TS as an “artificial constellation”

of subsystems might be preferable when one is interested in recovering, also

and above all, their different centrality in different TSs. As we will argue in

the following, the choice of one of the four procedures should be inspired by

the research questions one intends to address. Thus, there is no one absolute

best, or worst, procedure among them.

5 An illustrative application

In order to fully grasp the differences among the four relativization procedures

sketched in the previous section, by using input-output data taken from the

“new” OECD Input-Output Database (2005) and crossing them with data

on sectoral R&D expenditure (OECD ANBERD Database, 2005), we have

worked out the R matrix (Equation (1)) with respect to 6 OECD countries,

chosen out of 15 available countries for exemplification purposes: Japan,

Korea, Netherlands, Poland, Spain and the USA.9

It should be stressed that the application is meant to be purely illustrative.

In other words, we will deliberately refrain from using the application results

to enlarge our knowledge about these 6 TSs, although, to be sure, in some

cases we could not avoid it.

With respect to these TSs (i.e. R matrices), the four relativization

procedures have been used to obtained four different benchmarks, with

9Although matrix inversions have been carried out for each country at the maximum
level of disaggregation in order to reduce the distortions introduced by sectoral aggregation,
the blanks in the series of the latter dataset have forced us to limit our empirical application
to 16 sectors only (see Appendix A for details).

12



respect to which we have then applied the dichotomization method discussed

in Section 3. In other words, for each relativization procedure, each TS has

been transformed into a series of 1440 dichotomized matrices (D(t)), one for

each element of the “super-vector” of cut-offs (tZ)10, and with respect to these

matrices the TS distributions obtained by applying the network indicators

discussed in Section 2 have been worked out.

In so doing, it is therefore possible to analyze how the different network

indicators are distributed for each relativization procedure.

5.1 Density distributions

To start with, let us consider how the relative distribution of the six TSs

changes in moving from one relativization method to the other when their

densities (Equation (2)) are considered (Figure 1). By applying the first

method (Section 4.1), Japan actually appears the densest TS all along the

range of cut-off, followed by the USA, Korea and, at a distant, Netherlands,

Spain and Poland (Figure 1(a)). There is practically no inversion in this

ranking and one can therefore conclude that, no matter which is the chosen

cut-off, Japan is at least as dense as all the other countries in the sample,

thus, the most connected TS among the chosen ones. On the contrary, Poland

is the least connected TS.11

However, when the structure of the final demand is considered, that is,

by applying the second method (Section 4.2), the ranking of the densest TSs

becomes more blurred and Korea jumps first over a quite wide range of cut-off

values (Figure 1(b)). Thus, taking into account the proportion in which the

different subsystems are actually operated within each country, thus properly

retaining also the market sub-system in the TS characterization, is by no

means neutral.12

10As we have said, the Z elements of tZ are obtained by ordering the cells of all the 6
relativized matrices, so that Z = (15× 16)× 6 = 1440.

11At first sight, this was the picture one could expect by thinking of what we know about
these TSs in qualitative and quantitative terms. See, for example, Leoncini and Montresor
(2003b) and OECD (2003).

12The substantial improvement of Korea’s position with the second method might also
be partly due to the underestimation of the contribution of R&D efforts for developing
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By looking at the previous density distributions, one is legitimated to

suspect that the low ranking of Poland and Spain, although after having

discounted the different scale of their economy, is still due to the low aggregate

R&D/GDP ratios compared to the others. Discounting for this further

aggregate factor in TSs’ comparisons and confronting the different TSs on

the ground of their “pure” relational aspects is however possible. The density

distributions of Figure 1(c), obtained by working with normalized R matrices

(Section 4.3), actually show that this can radically change the overall picture.

Indeed, quite surprisingly, now Poland and Spain rank, respectively, first and

second all along the range, while the least connected TS becomes Netherlands.

This means that the former two TSs, once discounted for their relatively low

level of aggregate R&D expenditure, turn out to be in fact highly connected.

On the contrary, in the Netherlands, also neglecting the quite low R&D/GDP

ratio characterizing such country with respect to Japan, Korea and the USA,

the TS turns out to be only weakly connected, so to say “structurally”.

As for as Rnorm is concerned, it is worth emphasizing that, although

the sum of its elements is equal to one by definition, that of the elements

out of the main diagonal can range from 0 to 1. Thus, the TS density

distributions worked out from this matrix actually results from: on the

one side, the weight of the intersectoral embodied innovation flows on the

intrasectoral ones; on the other side, the distribution of such intersectoral

flows among the different sectors. As shown by Figure 2, for all the six

analyzed countries but Japan, the ranking in terms of weight of intersectoral

innovation flows over intrasectoral ones corresponds to that derived from the

analysis of countries’ density distributions.13 Japan is instead an exception

suggesting that, although intersectoral flows are quite high in absolute terms

(23.4% of the total), they are apparently more polarized in relative terms,

thus leading to the low ranking of the correspondent TS in Figure 1(c). The

simple comparison of the distribution of the extradiagonal values for Japan

countries introduced by the former method if no PPP correction is used. And this bias
should be taken into account when economic systems with different levels of development
are compared. For the delicate issue of R&D data on PPP see also Dougherty et al. (2007).

13In passing, let us note that intersectoral embodied flows are quite low compared to the
intrasectoral ones, amounting on average for the six countries to 18% of the total flows,
with a coefficient of variation of 32.6%.
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and Spain confirms, in terms of basic indicators, this result (Figure 3).

To conclude, Figure 1(d) shows the density distributions obtained by using

the matrix C of normalized subsystem innovative acquisitions (Section 4.4).

This time, instead of being relativized with respect to the total innovation flows

of the correspondent TS, the inward flows of each subsystem are normalized

with respect to its own total acquisitions. Thus, each subsystem is treated in

relative isolation. Accordingly, what can in fact affect the density distributions

of each TS as a whole is not as much the ratio between its intrasectoral and

intersectoral total embodied innovation flows, as in the former method. But

rather the weight of the innovative acquisitions each subsystem gets from the

other sectors on the total inward flows of the subsystem itself.

Figure 4 reports the box-plots of the distributions of these weights for the

different TSs and shows that the TS density distributions of Figure 1(d) can

be partly explained by the distribution of such weights. For example, the most

(least) structurally dense TS, that is Poland (Netherlands), actually shows

the highest (lowest) ordered statistics when compared with the others.14

By using C, the general picture provided by Figure 1(c) gets somewhat

confirmed, while the TS density distributions become more similar. However,

it has to be emphasized that, given the main subsystem focus of this method,

when one wants to derive features related to the overall TS, as something

different from the sum of its subsystems, relativizing R matrices with such

procedure turns out to be not fully appropriate.15

14However, it is worth noting that, assuming normality – not rejected at the 10%
significance level (5% for Netherlands) by the Kolmogorov-Smirnov test – and variance
homogeneity across the different groups – not rejected by the Levene statistic (F(5,90)=.244,
p-value = .942) –, the ANOVA test does not reject the null hypothesis of mean equality of
these weights across the different TSs (F(5,90) = .354, p-value = .88), and this result does
not change with non parametric statistics (Kruskal Wallis test p-value = .794).

15In this respect, Chang and Shih (2005) are right when they point out that this
relativization procedure is “unable to produce a comparable base for displaying the
differences between [...] countries” (2005, p.157), although it has to be stressed that, as
seen before, such remark can be equally applied to their method too.
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5.2 Centralization distributions

Not only do the relativization procedures discussed above affect density, but

also the other network indicators. This is particularly true when their impact

on the indegree and outdegree centralization (see Section 2) distributions is

considered. In particular, as shown by Figures 5 and 6, the relativization

procedures affect the absolute and local maximums of these indicators as well

as the relative ranking of the TSs according to them.16

At the outset, it should be noted that, if the density distributions are quite

different – such as when one deals with TSs showing remarkable differences

in their aggregate R&D/GDP ratio – by applying one of the first two rela-

tivization methods (Figures 1(a) and 1(b)) the relative degree centralization

distributions are not “centered”, and this can make cross-TS comparisons in

terms of centralization very sensible to the cut-off which is actually chosen

(Figures 5(a), 5(b), 6(a) and 6(b)). In this case, rather than comparing the

TS centralization at the same cut-off, as for the density analysis, a sounder

choice would be to compare the absolute and local maximums of the indicator

for the different TSs. In other words, in the present case, centralization

would serve different research questions: irrespectively of the chosen threshold

flow-size (i.e. cut-off), which might be different in the different TS to be

compared, which is the maximum value of degree centralization attained by

each TS? Which is the relative differences in such maximums? For which

flow-size difference with respect to such maximum is a certain TS equally

hierarchical from another one?

Although this holds true for both Runit and Rbasket, which of the two is

actually chosen could be decided on the ground of their inner logic (Section

4.5): when the indicator refers to the TSs as a whole, as degree centralization

does, and the latter are not simply seen as a constellation of individual

subsystems, the second method should be preferred (Figures 5(c) and 6(c)).

As far as the third relativization procedure is concerned, that is Rnorm,

an interesting relationship with Rbasket should be noticed. Given that, for

each TS, the ratio between every element of Rbasket and the correspondent

16Given the way it is defined, the degree centralization, inward or outward, tends to 0
when the density of the correspondent network tends to 1 or 0.

16



element of Rnorm is constant and equal to country’s aggregate R&D/GDP ratio

(Equation (11)), applying the latter procedure does not alter the centralization

ranking of absolute and local maximums worked out with the former, but

simply “centralizes” the TSs’s distributions. As this makes the TSs more easily

comparable (Figures 5(c) and 6(c)) in terms of centralization, and does not

affect the centralization values, when the latter are the focus (irrespectively

of the correspondent cut-off) Rnorm should thus be preferred.

Following the same line of reasoning and with the same research question

in mind, one can argue that this method should be preferred also to the last

one (Figures 5(d) and 6(d)). Indeed, although by using the matrix C one

can still obtain “centralized” distributions, the main focus of the method on

the individual subsystems should prevent its application when the analysis is

mainly concerned with the whole TSs.

A last comment should be spent on the TS centralization distributions

when indegree rather than outdegree centralization indicators are used. By

comparing Figure 5 and 6 it appears immediately that, in spite of the same

relativization arguments, the TS rankings in the two cases are different.

Just to make an example, when outdegree centralization is considered, the

Netherlands emerge for the highest values and this, apart from the low

density of this TS, seemingly reveals a high dependency on few key sectors for

innovation diffusion. Conversely, by looking at indegree centralization, it is

Japan which stands out, revealing the presence in its TS of one or more sectors

which are dependent on the rest of the TS much more than the average.

More in general, the different meaning of indegree and outdegree central-

ization should be clearly disentangled, whatever relativization procedure is

adopted.

5.3 Centrality distributions

Given the close relationship with the correspondent centralization indicators,

the impact of the alternative relativization procedures on the last network

indicator presented in Section 2, that is, degree centrality, does not require

much further exploration. For exemplification purposes only, we have chosen

textiles (4) out of the 16 available subsystems we have for each TS (Appendix
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A) and decided to accomplish the analysis only with respect to the indegree

centrality (Figure 7).

At the outset, we should notice that, although this sector is structurally

dependent in technological terms, its indegree centrality is quite different

across the six TSs for a number of cut-offs. What is more important, the

relativization procedure crucially alters the centrality gap of the sector across

the TSs, so that the relative choice has to be carefully thought also in this

last respect.

Following the criteria set in Section 4, the relativization methods more

suitable for the analysis of degree centrality should be the first (Runit) and the

last one (C). Indeed, we are now comparing a specific subsystem in different

TSs, thus, the relativization procedure should be able to discount for all the

factors more related to the TS it belongs to, rather than to the subsystem

itself.17

In so doing, it is possible just to rescale the subsystem to the same

operational scale in all the TSs (Figure 7(a)) or normalizing to one its total

embodied innovation inflows (Figure 7(d)).

6 Conclusions

Although the problem of dichotomizing the original value matrices is usually

retained the most crucial in applying the majority of the tools of network

analysis – which cannot be directly applied to value graphs – that of getting

“suitable” matrices to dichotomize is no less crucial.18 As we have argued

in this paper, when network analysis is applied to compare, across different

countries, input-output based matrices which ‘distribute’ across the sectors

and/or sub-systems of an economy some techno-economic kind of variable,

dichotomization has to be preceded by a suitable relativization. Indeed, in

17It has to be stressed that the situation would be different if one instead had to compare
two or more subsystems within the same TS in order to infer their relative position in it.

18In the present paper the dichotomization issue has been dealt with only marginally,
but it is a really crucial one to which we have dedicated at more length elsewhere (see,
for example Montresor and Vittucci Marzetti (2007b)). Still, the paper incorporates the
results we have obtained in these other works.

18



the absence of this relativization, the application of network analysis would

be affected by size-biases and lead to misleading results.

Although referred to the combined use of input-output and network anal-

ysis in comparing different Technological Systems (TSs), the methodological

issue we tackle in the paper is thus quite general, as could arise also in other

application contexts. Similarly, the two new relativization procedures we sug-

gest applying to “our” intersectoral innovation flows of embodied R&D – that

is, (a) scaling down the different subsystems to a comparable cross-country

level, but leaving unaltered the operational scale ratios between the different

subsystems (Rbasket); (b) normalizing to one the original matrix (Rnorm) –

along with the other ‘standard’ two with which we compare them – (c) scaling

down to the same unit final output the different subsystems within each

TS (Runit); (d) building up the matrix of normalized innovative acquisitions

within each subsystems (C) – are based on a rationale which could be more

generally extended. And the same holds true for the rationale of their choice,

which should cross the system (methods Rbasket and Rnorm) or subsystem

(methods Runit and C) focus of the analysis, with the economic (methods

Runit and Rbasket) or technological (methods Rnorm and C) dimension one

wants to normalize.

The illustrative application we have carried out with respect to 6 (arbi-

trarily chosen) OECD countries in the middle ’90s clearly shows that such a

choice of relativization does matter. When the relative R matrices are used

to obtain the network-map of the correspondent TSs – through the relative

contingency matrices – and the system-connectivity, hierarchical structure and

sectoral dependency/pervasiveness of these TSs are worked out – by means

of, respectively, density, degree centralization and degree centrality – their

rankings are extremely sensitive to the adopted relativization procedure. For

example, as far as density is concerned, Japan and Poland appear, respectively,

the most and the least dense/systemic TS among the 6 only when Runit is

used. Conversely, when the structure of the final demand is considered, that

is, by applying Rbasket, and taking into account the proportion in which the

different subsystems are actually operated within each country, Korea jumps

over Japan as the most connected for a large array of cut-off values. What

is more, when one tries to get rid of the different R&D intensities of these 6
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TSs, and work with Rnorm by focusing on the purely relational structure of

the TSs, quite surprisingly the picture is even reversed, as Poland now ranks

first all along the range.

In front of these appreciable differences, the need of resorting to a sound

choice criterion is of course important. Luckily, the same nature of the three

network analysis indicators we have used help in inspiring such a choice. As

far as density is concerned, its systemic nature would normally suggest the

use of Rbasket or Rnorm, resorting to the latter when one wants to discount

for great differences in countries’ aggregate R&D/GDP ratios.19

As far as degree centralization is concerned, the analysis has shown that, in

the presence of consistent density gaps across the TSs, the relative TS ranking,

both inward and outward, is extremely variable across the range of the relevant

threshold values. Accordingly, in this case, instead of comparing the TS

centralization at one or more discrete cut-off values, a sounder choice could be

to simply compare the absolute and local centralization maximum/minimum of

the different TSs, and then checking for which cut-off value they are obtained.

In this respect, that is for the sake of this comparison, Rnorm turns out to

be the more preferable relativization procedure. Indeed, while it shares with

Rbasket the systemic focus of the centralization indicator, it better “centralizes”

TS centralization distributions without altering the relevant values. Thus,

the main results achieved by using the former method are preserved, while

the relative distributions can be more easily compared.

Finally, the conclusion is of course completely different in the case of

degree centrality, where the preferred methods should generally be Runit

and C, because of the main subsystem focus of the analysis based on such

indicator.

In concluding the paper, we would like to stress once more that, although

mainly intended to address the methodological issues encountered in the

comparative analysis of TSs through intersectoral innovation flows matrices,

the achieved results turn out to have a broader set of applications. Indeed, they

19Although possibly less appropriated, the use of C could be however motivated, as in
Leoncini et al. (1996), Leoncini and Montresor (2000a) and Montresor and Vittucci Marzetti
(2007b), when one wants to use density as a reference for choosing the cut-off at which
then focusing on the different sectors/sub-systems of a TS and on the relative clusters.
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can be fruitfully applied each time one deals with value matrices representing

input and output flows which have to be somehow relativized in order to

remove “scale” effects, whatever they are, and then dichotomized by fixing

a certain threshold in order to be able to use the great majority of network

analysis tools. The analysis of intersectoral ‘knowledge flows’ is just an

example of this kind of extensions.
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalized R (d) Matrices C

Figure 1: Density distributions for the different relativization methods
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Figure 2: Weight of intersectoral flows on total embodied innovation flows

(a) Japan (b) Spain

Figure 3: Distributions of intersectoral flows in normalized R

25



Figure 4: Distributions of the weights of intersectoral innovative acquisitions

on total subsystem acquisitions
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalized R (d) Matrices C

Figure 5: Indegree centralization distributions for the different relativization

methods
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalized R (d) Matrices C

Figure 6: Outdegree centralization distributions for the different relativization

methods
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(a) Unit value matrices (b) Unit basket of final demand matrices

(c) Normalized R (d) Matrices C

Figure 7: Indegree centrality distributions of textiles for the different rela-

tivization methods
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A Sector classification

Sector ISIC Rev.3 Code

1 Food products, beverages and tobacco 15-16

2 Textiles, textile products, leather and footwear 17-19

3 Wood, paper, printing, publishing 20-22

4 Coke, refined petroleum products and nuclear fuel 23

5 Chemicals (including pharmaceuticals) 24

6 Rubber and plastics products 25

7 Other non-metallic mineral products 26

8 Basic metals 27

9 Fabricated metal products (except machinery and equipment) 28

10 Machinery and equipment, nec 29

11 Electrical and optical instruments 30-33

12 Motor vehicles, trailers and semitrailers 34

13 Other transport equipment 35

14 Manufacturing, nec; recycling 36-37

15 Electricity, gas and water supply 40-41

16 Construction 45

B Country coverage

Country I-O and ANBERD data

Japan 1995

Korea 1995

Netherlands 1995

Poland 1995

United States 1997
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