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Abstract

This paper proposes an interpretation of the experimental evidence on
tacit coordination games involving randomly matched players provided by
Van Huyck, Battalio and Beil (1990), based on the notion of stochastic
stability. When the model is calibrated with the parameters chosen in the
experiment, it predicts that every strict Nash equilibrium is stochastically
stable; therefore, in the long run we should not observe the emergence
of any particular pattern of behavior, as suggested by the experimental
evidence. The model is also compatible with the experimental evidence
provided by Goeree and Holt (2005).
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1 Introduction

In this note we are concerned with the interpretations of part of the experimental
evidence from tacit coordination games put forward by Van Huyck, Battalio and
Beil (1990) (hereafter VHBB).

Consider a simple symmetric game in which two agents have to decide the
effort they want to put into a joint project. Because of the tecnological comple-
mentarities, the output is determined by the minimum effort provided. Denoting
by e, e; the actions taken by two players, the payoff function of the generic agent
iis

Vi (e;,€j) = amin (e;, e;) — be; (1)

where, for any i, e; € [1,2,..,€] and where a > b. This last condition ensures
that the game has a multiplicity of symmetric strict, Pareto rankable, Nash
equilibria. The Nash equilibrium (€,€) is Pareto dominant. Call G this game.
In VHBB the parameter values are e; € [1,2,..,7],a = 0.2 and b = 0.1.
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We are interested in disussing VHBB'’s treatment C where the stage game G
is played for a sequence of periods by two randomly selected players (experiments
6 and 7). No pre-play negotiation is allowed and, after each repetition of the
stage game, the minimum action was publicly announced. The only common
historical data available to the players is then the minimum effort. The outcome
of these experiments are reported in the Table below (Table 5 in VHBB).

The main conclusions which can be derived from this Table are the following:
(a) there is no evidence that successive repetitions of the basic stage game (where
each repetition involves two newly randomly matched players) converge to any
equilibrium; (b) the first-best outcome (which is the payoff dominant equilibrium
in which both agents choose to supply the maximum effort, i.e. 7) is quite an
unlikely outcome.

Period
21 22 23 24 25

Experiment 6
No. of 7’s
No. of 6s
No. of 5’s
No. of 4’s
No. of 3’s
No. of 2’s
No. of 1’s

Experiment 7
No. of 7’s - -
No. of 6s - -
No. of 5’s - -
No. of 4’s - -
No. of 3’s - -
No. of 2’s - -
No. of 1’s - - 3 5 3
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Several students have found an explanation of these results; see in particular
Crawford (1990, 1995), Anderson and alii (2001) as well as Goere and Holt
(2005).

Crawford proposes an interpretation based on agents’ adaptive behavior.
The idea is that in each stage, each player adjusts his strategy by choosing
a best reply action to his beliefs, where these beliefs are influenced by what
he can learn from past strategy choices. These adjustments then determine a
new choice, which will be part of the experience available to the players in the
subsequent stage, and so on. By assuming that players’ beliefs are subject to
idiosyncratic random shocks — reflecting the differences in which they interpret
their experience — Crawford shows that, although the influence of such shocks
on players’ adaptive adjustment can be expected to die out over time, they



can nevertheless alter the course of players’ adjustments, and thereby the final
outcome. A full model along these lines is developed in Crawford (1995).

Anderson and alii (2001) makes the observation that the human decision
processes, instead of being so clearly defined as in our game G, exhibit some
randomness. This induces the authors to model the decision process as a logit
probabilistic choice framework which allows them to derive a logit equilibrium
which determines a unique probability distribution of decisions in an analogue
of game G. They show that in a minimum-effort coordination game with a
continuum of Pareto-ranked Nash equilibria, the introduction of even a small
amount of noise results in a unique equilibrium distribution over effort choices.

In a similar model Goere and Holt (2005) discuss the effect of changes of
the effort-cost parameter. They show that when the effort-costs is low the more
frequently observed effort is the maximum one while the opposite occurs when
the effort-cost is high.

In what follows we suggest an interpretation of VHBB ’s results based on
the notion of stochastic stability introduced by Young (1993). As we shall show,
the evidence reported in Table 1 above is very well compatible with the absence
of a unique stochastically stable equilibrium that occurs when the considered
model is calibrated with the parameters chosen by VHBB. We shall also show
that the predictions of our model are compatible with the evidence provided by
Goere and Holt (2005). With respect to the previously quoted literature, we
believe that our interpretation has the great merit of simplicity.

2 Stochastic stability

In this Section we briefly discuss the notion of stochastically stable state in-
troduced by Young (1993). Let ¢t = 1,2, ... denote successive time periods and
consider a fixed (but large) population of N players. Let N7 and Ny be the sub-
populations of agents 1 and 2 respectively. In each period the finite basic game
G is played once by two agents randomly selected from these sub-populations.
When selected, each agent has to form an expectation on the behavior of his
opponent. Let h (t) = (e (1), ..., e (¢)) be the history of plays at the end of period
t; it consists of the past plays of the game where each play denotes the profile
of strategies played in that period, i.e.e(t) = (e1 (t),e2 (t)). Since gathering
information is costly, each agent bases his current action not on the whole past
plays available but rather on a sample of k plays taken from the most recent m
(with 1 < k < m) past plays.

Thus at the beginning of period ¢ + 1 (with ¢ > m) each agent consults k
plays of the game and derives the empirical frequency with which each (pure)
strategy was played in the past by other agents; then with probability 1 — €
he chooses an action which is a best reply to the derived empirical frequencies
while with probability ¢ he chooses an action which is not the best reply to
the derived empirical frequencies (i.e. he makes a mistake). Current actions



are recorded! and the economy moves from the current state h to the successor
state h’. Period ¢ + 1 then closes. In the new period ¢ + 2, the game is played
again by two other randomly selected agents. As before, each consults k plays
of the game from the most recent m periods and with probability 1 — e chooses
an action which is the best reply to the newly derived empirical frequencies
while with probability ¢ he makes a mistake. This moves the economy from the
current state b’ to the successor state, A’ and so on.

The transition from one state to its successor is governed by the perturbed
Markov process P¢ with transition function Py, . If we assume that all mistakes
are possible and that the probability to make a mistake is time-independent,
then the transition matrix associated with Pf,, is strictly positive and the
Markov process is irreducible and aperiodic (ergodic). The process has thus
a unique stationary distribution p¢. When the probability of mistakes is small,
the stationary distribution of the perturbed process P€¢ coincides with one of
the stationary distributions of the unperturbed process. Hence we say that a
state h is stochastically stable relative to the process P€ if lim._,o u€ (k) > 0.
When there is a unique stochastically stable state, this stationary distribution
is concentrated around just one equilibrium; this is the state that, in the long
run, will be observed with probability close to one.

In order to apply Young’s result we have to derive the stochastic potential
of the game. We start by observing that a Markov chain can be represented by
a tree having a node in each state. A tree rooted at h consists of directed edges
such that from every node h’ # h there exists one and only one direct path from
h to h'. Let the resistance 7 (h,h’) be the total number of mistakes needed to
move from state h to the successor? state h'. Let the total resistance of a rooted
tree to be the sum of resistances associated with its edges and let the stochastic
potential of a state h be the least total resistance among all h—trees. If the
basic game is acyclic and the sample is sufficiently limited?, then Corollary of
Theorem 2 in Young (1993) establishes that a stochastically stable state is a
convention with minimum stochastic potential.

Each stochastically stable state is thus a convention h = (€, ...,€) in which
the same Nash equilibrium profile € = (€1, €3) is played m times in succession. If
k and m are sufficiently large, the stochastically stable state is unique. In order
to detect the stochastically stable state it is sufficient to consider, for each strict
Nash equilibrium €, all the trees rooted at this equilibrium € (rather than at h),
where the resistance on each directed edge now tells us the minimum number of
mistakes needed to move the economy from one equilibrium to another. Hence,
even if the basic game has many strict Nash equilibria, the adaptive process

ISince the memory size is finite, the inclusion of the current period implies that agents
disregards the most distant play.

21f state h’ is not a successor of state h, then = (h, h') = co.

3The precise condition is if k < m (Lp + 2)~! where L (e) denote the length of the shortest
best reply path originated in the profile e and Lr = max L (e) .



with mistakes can converge to one of these. This, in turn, gives a theory of
equilibrium selection.

As put forward by Binmore, Samuelson and Young (2003), the computation
of the minimum stochastic potential is made easier when the game satisfies the
bandwagon property. This because the minimum number of mistakes needed to
switch from the strict Nash equilibrium § = (51, 52) to the strict Nash equilib-
rium 5 = (31, 52) is found when agents by mistake play an action belonging to
the profile s.

3 Stochastic stability in VHBB’s model

Consider the game G. The game is acyclic and satisfies the bandwagon prop-
erty.* Acyclicity means that the best reply graph contains no directed cycles,
a property satisfied by all coordination games. A sufficient condition for the
(marginal) bandwagon property to hold for generic (i.e. not necessarily acyclic)
symmetric games has been proved by Kandori and Rob (1998). A reformula-
tion which holds for acyclic but not necessarily symmetric two players games is
given by Binmore, Samuelson and Young (2003). This essentially says that, for
both agents, deviations from the equilibrium strategy are more costly when the
opponent plays his part of the equilibrium.

Consider two Nash equilibria e* = (e*,e*) and € = (€,€) and let e* be
the fixed initial state. The bandwagon property implies that the path of least
resistance from e to € is the direct path. This implies that, in order to derive the
resistance of this path it is sufficient to analyze the restrict game where the only
strategies available are those corresponding to the two equilibria considered.
Two cases are possible: either € > e* or € < e*. The former corresponds to a
situation in which we exit from the state e* to the right (i.e. such that & > e*)
while the latter corresponds to a situation in which we exit from the state e* to
the left (i.e. such that € < e*).

Let € = e’ > e* and consider the following payoff matrix

e et
e* | e*(a—b);e*(a—b) | e*(a—b);e*a—eTb
et | efa—ethe* (a—b) | et (a—b);eT (a—b)

Let (01, 02) be a mixed strategy profile where o1 (resp. o2) is the probability
that agent 1 (resp. 2) plays e*. The best reply correspondence is
b
Vi(e*,0;) > Vi(et,0j) <= o0;>1——. (2)
a
Let m be the memory size and k£ be the sample size used by both agents.
Suppose that in the past plays agents 2 choose et by mistake from period

4See Bagnoli and Negroni (2008) for further details.



t=m+1tot=m+k' inclusive, where k' < k. If agent 1 draws a sample that
includes these &’ choices of e, as well as k— &’ choices of e*, then agent 1 deduce
that 09 =1 — %’ and 1 — o9 = % It then follows from (2) that the minimum
numbers of mistakes past agents 2 must make in order to induce actual agent 1

to choose €; as best reply is

!/
kK > ak. (3)
In other words, k&’ mistakes by agent 2 are sufficient to move the economy from
e* to et. Due to the symmetry of the game, analogous considerations holds
when the mistakes are made by agent 1. Hence the resistance of the path from
e* toet isr(er,et) =2

Let € = e~ < e* and consider the following payoff matrix

* —

e e
e* | e*(a—0b);e*(a—b) | eca—e*be” (a—b)
e (a—b);ea—e*db | e (a—b);e (a—0D)

Let (01, 02) be a mixed strategy profile where o1 (resp. o2) is the probability
that agent 1 (resp. 2) plays e*. The best reply correspondence is

b
Vi(e*,Uj)ZVi(e"',aj) = JjZE. (4)

Proceeding as before, the minimum numbers of mistakes past agents 2 must
make in order to induce actual agent 1 to choose e~ as best reply is

k’z(l—i)k (5)

Due to the symmetry of the game, analogous considerations holds when the
mistakes are made by agent 1. Hence the resistance of the path from e* to e~
isr(efe”)=1-— 3. A direct application of Binmore, Samuelson and Young’s
(2003) naive minimization test leads to the following Proposition.’

Proposition 1 The exit resistances are constant over all possible states; this
means that they do not depend neither on the state from which the path originates
nor on the state into which the path flows. The following cases are possible.

(a) If 7 (e*,e™) < r(e*,e™) the stochastically stable state corresponds to the
Nash equilibrium in which agents supply their mazimum effort. This occurs
when b < 3.

(b) If r (e*,e™) < r(e*,et) the stochastically stable state corresponds to the
Nash equilibrium in which agents supply their minimum effort. This occurs
when b > 3.

5Notice that the Proposition holds true even when the action set is continuous and bounded,
i.e. when e; € [e, €] for any ¢



(c) If r(e*,e™) = r(e*,et) any equilibrium profile has the same stochastic
potential. Therefore any equilibrium profile is stochastically stable This occurs

when b= 3.

‘We can use this Proposition to evaluate treatment C in VHBB. Recall that in
this treatment, agents are randomly matched to play the stage game; we are thus
in the same framework studied by Young (1993). In that case the parameters
are b = 0.1 and a = 0.2. Hence, since b = 3, we are exactly in the case in which
Point (c) of the above Proposition applies. Since a unique stochastically stable
equilibrium does not exist, the theory predicts that in the long run we should
not observe the emergence of a particular pattern of behavior. This is exactly

what emerges in the VHBB’s experiments involving randomly matched players.

Our interpretation is also compatible with the experimental evidence pro-
vided by Goeree and Holt (2005) and illustrated in their Figure 2 (bottom),
plotting the effort choice frequencies. If we let ¢ = b/a, our stage game G co-
incide with the stage game considered by these authors where ¢; € [110,170].
They report evidence from two treatments, one in which ¢ = 1/4 and another
in which ¢ = 3/4. They show that when ¢ = 1/4 the more frequently observed
effort is the maximum one while the opposite occurs when ¢ = 3/4. This evi-
dence is in accord with the predictions of our model. In fact, from Proposition
1 we deduce that the Nash equilibrium in which agents supply their maximum
effort is the stochastically stable state when ¢ = £ = i < % while the Nash

a
equilibrium in which agents supply their minimum effort is the stochastically
stable state when ¢ = g = % > % Hence, in the long run, we expect to observe
more frequently the equilibrium with minimum (resp. maximum) effort when

the effort-cost is low (resp. high).

4 Conclusions

This paper has given an interpretations of the experimental evidence on tacit co-
ordination games involving randomly matched players provided by Van Huyck,
Battalio and Beil (1990), treatment C. The experimental results found no evi-
dence that successive repetitions of the basic stage game converge to any equi-
librium. Our interpretation was based on the notion of stochastic stability intro-
duced by Young (1993). We have shown that, when the model is calibrated with
the parameters chosen by VHBB, then a unique stochastically stable equilibrium
does not exist. The theory thus predicts that in the long run we should not ob-
serve the emergence of any particular pattern of behavior, which is compatible
with the experimental evidence. With respect to the previously literature our
interpretation has the great merit of simplicity. Our model is also compatible
with the experimental evidence provided by Goeree and Holt (2005).
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