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Abstract

We investigate dynamic R&D for process innovation in a duopoly where firms

may either undertake independent ventures or form a cartel for cost-reducing

R&D investments. By comparing the profit and welfare perfomances of the

two settings in steady state, we show that private and social incentives to-

wards R&D cooperation coincide for all admissible levels of the technological

spillovers characterising innovative activity. This results stems from smooth-

ing the investment reffort over the time horizon of the game.

J.E.L. Classification: C73, D43, D92, L13, O31

Keywords: differential games, process innovation, R&D cooperation,
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1 Introduction

The role of technological spillovers in shaping the incentives to conduct R&D

for process innovation has attracted a wide attention in the existing literature

on oligopoly theory. The most relevant contributions in this vein are those

of d’Aspremont and Jacquemin (1988), Kamien et al. (1992), Suzumura

(1992) and Amir (2000), to mention only a few. A general appraisal of

the advantages associated with R&D cooperation, and the related policy

measures, can be found in Katz and Ordover (1990).1

The theoretical debate on the private and social advantages generated

by R&D cooperation was triggered by an analogous policy debate on the

same issue, leading to the National Research Cooperation Act that passed in

the US in 1984.2 Then, following Katz (1986), a large body of literature has

discussed the theoretical and empirical facets of welfare-improving technology

policies based upon two forms of R&D cooperation, namely, R&D cartels and

research joint ventures.3 Here, we shall briefly summarise the approaches

adopted in d’Aspremont and Jacquemin (1988) and Kamien et al. (1992).

d’Aspremont and Jacquemin (1988) consider a homogeneous Cournot

duopoly, where each firm enjoys a spillover from the rival in terms of the

final outcome of R&D activity, in the following sense. To firm i, investing

ki costs an amount bk
2
i , which captures the presence of decreasing returns

to innovative activity, but the total effective R&D contributing to reduce

1The underlying relationship between innovation and market structure came to the fore

even earlier, of course. To this regard, see Spence (1984) and Reinganum (1989), inter alia.

The above mentioned contributions share with Brander and Spencer (1983) the concept

of R&D as a cost-reducing activity, adding to the Brander-Spencer setup the possibility

of information transmission or technological externalities.
2For the EU and Japan, see Goto and Wakasugi (1988) and the CE Commission (1990).
3A relatively scanty attention has been paid to the possibility that any form of R&D

cooperation facilitates collusion, either in prices or in quantities. To this regard, see Martin

(1995), Lambertini et al. (1998, 2002, 2003) and Cabral (2000).
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firm i’s marginal cost ci is in fact Ki = ki + βkj, where β is the techno-

logical externality generated from the rival’s investment kj. Therefore, given

a generic initial marginal cost c, we have ci = c − Ki. In Kamien et al.

(1992), instead, the spillover effect is measured in terms of Dollars or Euro,

in the sense that they assume each firm to have a concave R&D technology

f (Yi) , where Yi = yi + βyj is the effective R&D effort, comprehensive of

the external effect, and the reduction in firm i’s marginal cost is given by

ci = c − f (Yi) . This technology is coupled with linear R&D costs equal to

yi for each firm. In other terms, what changes from the first to the second

model is the way chosen to make the setup concave. In the former case,

concavity is achieved through a convex R&D cost function, while in the lat-

ter case the same property rests upon a concave R&D technology. Using

f (Yi) =
p
yi + βyj, Amir (2000) shows that the two models are isomorphic

up to the transformation ki = yi/
√
b. For this reason, one can focus upon

d’Aspremont and Jacquemin (1988). They compare two different games: one

where firms behave noncooperatively in choosing both R&D efforts and out-

put levels, the other where firms form a cartel in the R&D stage, choosing

thus R&D investments so as to maximise joint profits in that stage only, while

they continue to adopt a Nash behaviour in the market stage. Comparing the

two setups, d’Aspremont and Jacquemin (1988) find that (i) for high spillover

levels [β > 1/2] , R&D investments - and also cost reduction, clearly - are

higher under cooperative behaviour, and conversely for low spillovers; (ii) for

high spillover levels [β > 1/2] , social welfare is higher under cooperative be-

haviour, and conversely. Unfortunately, they also find that cartel profits are

higher than noncooperative profits when spillovers are low [β < 1/2] . This

yields an undesirable conflict between private and social incentives towards

R&D cooperation (or cartelisation).4

4The literature on this topic has also discussed the issue of equilibrium stability, as for

low levels of R&D costs (i.e., low levels of parameter b) there exists no internal solution
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The d’Aspremont-Jacquemin model, or some variation of it, has been

used thereafter to investigate several related issues, e.g., the possibility of

setting up research joint ventures in relation to absorptive capacity (Kamien

and Zang, 2000), the efficiency comparison between Bertrand and Cournot

behaviour with product differentiation (Qiu, 1997), the endogenisation of

spillovers (Katsoulacos and Ulph, 1998; Poyago-Theotoky, 1999; Amir and

Wooders, 1999, 2003) and the effects of increasing the number of firms in the

market (Hinloopen, 2000).5

However, the above mentioned lack of overlapping between social and pri-

vate incentives towards cooperation has remained unsolved. To tackle this

problem, we adopt an explicitly dynamic approach to describe the R&D ac-

tivity aimed at process innovation, modelled as a differential game whose

basic components are as close as possible to the original ones contained in

d’Aspremont and Jacquemin (1988). As in their paper, we confine our atten-

tion to the alternative cases where firm either behave fully noncooperatively

or build up a cartel in R&D investments. We compare steady state profits

and social welfare at the subgame perfect equilibria of the two cases, find-

ing that irrespective of the spillover level, R&D cooperation is preferable to

noncooperative behaviour from both a private and a social point of view.

Intuitively, this result stems from investment smoothing, which is carried

out by firms over the time horizon of the dynamic setting, while it is utterly

impossible to achieve in a static two-stage game where firms are compelled

to invest one-shot the full amount of resources required to achieve the equi-

librium efficiency level of their productive technology.

The remainder of the paper is structured as follows. Section 2 illustrates

as second order conditions are not met. On this issue, see Henriques (1990), d’Aspremont

and Jacquemin (1990), Qiu (1997) and Amir and Wooders (1998).
5A large amount of research has also been carried out on the empirical side. See

Lambertini et al. (2004) and the references therein.
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the dynamic setup. Independent ventures are investigated in section 3, while

the performance of the R&D cartel is described in section 4. Section 5 con-

tains some concluding remarks.

2 The setup

We consider a duopoly with homogeneous goods over continuous time, t ∈
[0,∞) . In every instant, the market demand function writes as follows:

p(t) = A− q1(t)− q2(t) . (1)

Each firm i supplies the market through a technology characterised by

a constant marginal cost. Accordingly, her instantaneous cost function is

Ci (ci, qi, t) = ci(t)qi(t). the marginal cost borne by firm i evolves over time

as described by the following kinematic equation:

dci(t)

dt
≡ ·
ci = ci (t) [−ki(t)− βkj(t) + δ] , (2)

where ki(t) is the R&D effort exerted by firm i at time t, while parameter β ∈
[0, 1] measures the positive technological spillover that firm i receives from

the R&D activity of firm j. Parameter δ ∈ [0, 1] is a constant depreciation
rate measuring the instantaneous decrease in productive efficiency due to the

ageing of technology. Equation (2) can be rewritten as follows:

·
ci

ci (t)
= −ki(t)− βkj(t) + δ , (3)

so as to highlight that the rate of change of firm i’s marginal cost over

time is linear in the instantaneous investment efforts. That is, (2) is indeed

adynamic version of the linear R&D technology employed by d’Aspremont

and Jacquemin in the static model.

The instantaneous cost of setting up a single R&D laboratory is:

Γ(k, t) = b [k(t)]2 , (4)
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where k(t) is the R&D effort carried out at time t within the laboratory, and b

is a positive parameter. Now define the instantaneous R&D investment of

firm i as Γi(ki, t). If firms undertake independent ventures (i.e., each firms

sets up her own R&D division or laboratory), then:

Γi(ki, t) = b [ki(t)]
2 . (5)

In such a case, firms may behave either noncooperatively or collusively.

Throughout the game, firms discount future profits a the common and con-

stant discount rate ρ > 0.

3 Independent ventures

In this setting, firms adopt a strictly noncooperative behaviour in choosing

both the output levels and the R&D efforts, each firm operating her own

R&D division. The Hamiltonian of firm i is:

Hi(q,k, c, t) = e−ρt{[A− q1(t)− q2(t)− ci(t)] qi(t)− b [ki(t)]
2+ (6)

−λii(t)ci(t) [ki(t) + βkj(t)− δ]− λij(t)cj(t) [kj(t) + βki(t)− δ]}
where λij(t) = µij(t)e

ρt is the co-state variable (evaluated at time t) associ-

ated with the state variable cj(t), and q,k, c are the vectors of control and

state variables.

As a first step, we prove the following result:

Lemma 1 The open-loop Nash equilibrium of the game with independent

ventures is subgame (or Markov) perfect.

Proof. We are going to show that the present setup is a perfect game in

the sense of Leitmann and Schmitendorf (1978) and Feichtinger (1983). In

summary, a differential game is perfect whenever the closed-loop equilibrium
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collapses into the open-loop one, the latter being thus strongly time consis-

tent, i.e., subgame perfect.6 Consider the closed-loop information structure.

The relevant first order conditions (FOCs) are:

∂Hi (., t)

∂qi(t)
= A− 2qi(t)− qj(t)− ci(t) = 0 ; (7)

∂Hi (., t)

∂ki(t)
= −2bki(t)− λii(t)ci(t)− βλij(t)cj(t) = 0 . (8)

As a first step, observe that (7) only contains firm i’s state variable, so that in

choosing the optimal output at any time during the game firm imay disregard

the current efficiency of the rival. That is, there is no feedback effect in the

output choice. Conversely, at first sight there seem to be a feedback between

the R&D decisions, as (8) indeed contains both state variables, at least for

any positive spillover effect.7 the core of the proof consists in showing that

no feedback effect are actually present, even for positive spillover levels.

Taking the above considerations into account, the adjoint or co-state

equations are:

−∂Hi (., t)

∂ci(t)
− ∂Hi (., t)

∂kj(t)
· ∂k

∗
j (., t)

∂ci(t)
=

∂λii(t)

∂t
− ρλii(t)⇔ (9)

∂λii(t)

∂t
= qi (t)+λii(t) [ki(t) + βkj(t) + ρ− δ]− β

2b
λji(t) [λij(t)cj(t) + βλii(t)ci(t)]

−∂Hi (., t)

∂cj(t)
− ∂Hi (., t)

∂ki(t)
· ∂k

∗
i (., t)

∂cj(t)
=

∂λij(t)

∂t
− ρλij(t)⇔ (10)

∂λij(t)

∂t
= λij(t)

½
[kj(t) + βki(t) + ρ− δ]− β

2b
[2bki (t) + λii(t)ci(t) + βλij(t)cj(t)]

¾
6The label ‘perfect game’ is due to Fershtman (1987), where one can find a general tech-

nique to identify any such games. Another class of games where open-loop equilibria are

subgame perfect is investigated by Reinganum (1982). For further details, see Mehlmann

(1988, ch. 4) and Dockner et al. (2000, ch. 7).
7Intuitively, if β = 0, then the two investment plans are completely independent and

therefore it is apparent that no feedback effect operates.
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where
∂Hi (., t)

∂kj(t)
· ∂k

∗
j (., t)

∂ci(t)
(11)

capture the feedback effects, and partial derivatives ∂k∗j (., t) /∂ci(t) are cal-

culated using the optimal values of investments as from FOC (8):

k∗j (., t) = −
λjj(t)cj(t) + βλji(t)ci(t)

2b
. (12)

These conditions must be evaluated along with the initial conditions

{ci(0)} = {c0,i} and the transversality conditions

lim
t→∞

λij(t) · cj(t) = 0 , i, j = 1, 2. (13)

From (10), we note that ∂λij(t)/∂t = 0 in λij(t) = 0. Then, using this

piece of information, we may rewrite the expression for the optimal invest-

ment of firm i as follows:

k∗i (., t) = −
λii(t)ci(t)

2b
, (14)

which entails that ∂k∗i (., t) /∂cj(t) = 0. By the underlying symmetry of the

model, this holds for both firms, i.e., feedback (cross-)effects are nil along

the equilibrium path. Accordingly, the open-loop equilibrium is a degenerate

closed-loop one, and it is strongly time consistent, or equivalently, subgame

perfect. It is also worth observing that this procedure shows that FOCs are

indeed unaffected by initial conditions as well. The property whereby the

FOCs on controls are independent of states and initial conditions after replac-

ing the optimal values of the co-state variables is known as state-redundancy,

and the game itself as state-redundant or perfect.

On the basis of Lemma 1, we can proceed with the characterisation of

the open-loop solution. The FOCs on control as well as the transversality

conditions are the same as above, while the co-state equations simplify as

follows:

−∂Hi (., t)

∂ci(t)
=

∂λii(t)

∂t
− ρλii(t)⇔ (15)
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∂λii(t)

∂t
= qi (t) + λii(t) [ki(t) + βkj(t) + ρ− δ]

−∂Hi (., t)

∂cj(t)
=

∂λij(t)

∂t
− ρλij(t)⇔ (16)

∂λij(t)

∂t
= λij(t) [kj(t) + βki(t) + ρ− δ]

From FOCs (7-8) we have, respectively:

q∗i (t) =
A− qj(t)− ci(t)

2
, (17)

ki (t) = − [λii(t)ci(t) + βλij(t)cj(t)]

2b
. (18)

While (17) has the usual appearance of a standard Cournot best reply func-

tion, the optimal R&D effort in (18) depends upon co-state variables. Such

expression can be differentiated w.r.t. time to get the dynamic equation of

ki(t) :

dki(t)

dt
≡

·
ki = −

ci(t)
∂λii(t)

∂t
+ λii (t)

dci(t)

dt
+ β

·
cj(t)

∂λij(t)

∂t
+ λij (t)

dcj(t)

dt

¸
2b

(19)

with ∂λii(t)/∂t and ∂λij(t)/∂t obtaining from (9-10). Then, (19) can be

further simplified by using

λii (t) = −2bki (t) + βλij (t) cj (t)

ci (t)
(20)

which obtains from (8). As to the second co-state variable, its dynamic

equation (10) must be treated autonomously8 and, by imposing stationarity,

8That is, whenever the FOCs of firm i cannot determine the optimal value of the co-

state variable attached to the rival’s state dynamics, the co-state equation pertaining to

the state variable of firm j is to be treated as an additional state equation, on which one

must impose stationarity in equilibrium. For more details on this issue, see Başar and

Olsder (1982, 19952), Mehlmann (1988) and Dockner et al. (2000).
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i.e., ∂λij(t)/∂t = 0, we obtain λij (t) = 0. This yields:

·
ki = −ci (t)

2b

·
qi (t)− 2bki (t)

ci (t)

¸
. (21)

The next step consists in solving the system of best reply functions (17),

yielding the Cournot-Nash output level of firm i as a function of state vari-

ables:

qCNi (t) =
A− 2ci(t) + cj(t)

3
(22)

which can be plugged into (21). After imposing the symmetry condition

cj(t) = ci(t) = c(t), we may characterise the dynamics of the R&D effort of

firm i is terms of her own state and control variables only:

·
ki = ρki (t)− c (t) [A− c (t)]

6b
. (23)

Imposing the stationarity condition
·
ki = 0 we obtain:

kIV (t) =
c (t) [A− c (t)]

6bρ
≥ 0 for all c (t) ∈ [0, A ] , (24)

where the superscript IV stands for independent ventures. Before proceeding

to the characterisation of the steady state equilibrium, it is worth noting that,

in general, the level of c (t) will depend upon the technological spillover β,

so that we can write:

∂kIV

∂β
=
[A− 2c (t)] · ∂c (t) /∂β

6bρ
(25)

which, in principle, may take either sign, depending upon the relative size of

A and c (t) as well as the sign of ∂c (t) /∂β.

The steady state level of marginal cost c(t) can be found by solving:

·
c = −c(t) £kIV (t) (1 + β)− δc(t)

¤
= 0 (26)

which yields:

c = 0; c =
A (1 + β)±p(1 + β) [A2 (1 + β)− 24bδρ]

2 (1 + β)
(27)
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All solutions in (27) are real if and only if δρ ≤ A2 (1 + β) / (24b) . If so, they

also satisfy the requirement c ∈ [0, A ] . By checking the stability conditions,
we may prove the following:

Proposition 2 Provided that δρ ≤ A2 (1 + β) / (24b) , the steady state point

cIV =
A (1 + β)−p(1 + β) [A2 (1 + β)− 24bδρ]

2 (1 + β)

kIV =
δ

1 + β

is the unique saddle point equilibrium of the game with independent ventures.

Proof. See Appendix 1.

Equilibrium output and profits are:

qIV =
A (1 + β) +

p
(1 + β) [A2 (1 + β)− 24bδρ]
6 (1 + β)

; (28)

πIV =
A2 (1 + β)2 − 6bδ [3δ + 2ρ (1 + β)] +A

q
(1 + β)3 [A2 (1 + β)− 24bδρ]

18 (1 + β)
,

(29)

From the steady state expressions of R&D investment, one can immedi-

ately derive the following intuitive property:

∂kIV

∂β
= − δ

(1 + β)2
< 0, (30)

which implies that, as the size of technological spillover effects increases,

the incentive to invest in process innovation shrinks as it becomes increas-

ingly difficult to internalise the benefits from R&D activity. Observe that,

in steady state, R&D investment is needed only to make up for the depre-

ciation rate, with each firm receiving a positive externality from the other.

Indeed, the total effective investment perceived from the viewpoint of firm i is

kIV (1 + β) = δ, which entails that the reduction of firm i’s individual R&D
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effort if fully made up for by the spillover effect. This, however, accounts for

the specific functional form of kIV in the steady state only, keeping in mind

(25).

Moreover, in steady state the following also holds:

∂cIV

∂β
= − 6bδρq

(1 + β)3 [A2 (1 + β)− 24bδρ]
< 0. (31)

This is due to the fact that any increase in β entails a reduction in kIV , as

we know from (30). Indeed, using (25) and (30), we can write:

[A− 2c (t)] · ∂c (t) /∂β
6bρ

= − δ

(1 + β)2
(32)

which must hold in equilibrium. From the above condition, we obtain:

∂c (t)

∂β
= − 6bδρ

(1 + β)2 [A− 2c (t)] ; (33)

Then, noting that A > 2cIV , it follows that ∂cIV /∂β < 0.

Consumer surplus and welfare in steady state are:

CSIV ≡
¡
A− pIV

¢P2
i=1 q

IV
i

2
=

h
A
√
1 + β +

p
A2 (1 + β)− 24bδρ

i2
18 (1 + β)

(34)

SW IV ≡ 2πIV + CSIV = (35)

=

2

·
A2 (1 + β)2 − 3bδ [3δ + 4ρ (1 + β)] +A

q
(1 + β)3 [A2 (1 + β)− 24bδρ]

¸
9 (1 + β)

.

4 R&D cartel

Here, we examine the case where firms noncooperatively choose output levels,

while maximising joint profits w.r.t. the choice of their respective R&D

efforts. As in the previous section, each firm operates her own laboratory.

11



This amounts to imposing a priori the symmetry conditions ci(t) = cj(t) =

c(t) and ki(t) = kj(t) = k(t). The state equation now looks as follows:

·
c = c(t) [− (1 + β) k(t) + δ] . (36)

Therefore, the Hamiltonian of firm i can be written as follows:

Hi(q, k, c, t) = e−ρt{[A− q1(t)− q2(t)− c(t)] qi(t)− b [k(t)]2+ (37)

+λ(t)c(t) [− (1 + β) k(t) + δ]}
where λ(t) = µ(t)eρt is the co-state variable (evaluated at time t) associated

with the state variable c(t), and q is the vector of individual outputs. As in

the previous case, it can be shown that the open-loop equilibrium is subgame

perfect.9 The open-loop first order conditions for the optimum are:

∂Hi (., t)

∂qi(t)
= A− 2qi(t)− qj(t)− c(t) = 0 ; (38)

∂Hi (., t)

∂k(t)
= −2bk(t)− λ(t) (1 + β) c(t) = 0 ; (39)

−∂Hi (., t)

∂c(t)
=

∂λ(t)

∂t
− ρλ , (40)

along with the initial conditions {c(0)} = {c0} , and the transversality con-
ditions

lim
t→∞

λ(t) · c(t) = 0 . (41)

Solving (39), we obtain λ(t) = −2bk(t)/ [(1 + β) c(t)] , entailing also:

dk(t)

dt
≡

·
k = −(1 + β)

2b

·
c(t)

∂λ(t)

∂t
+ λ (t)

dc(t)

dt

¸
. (42)

From (40) we obtain:

∂λ(t)

∂t
= qi(t)− [δ − ρ− (1 + β) k(t)]λ(t) . (43)

9The details are omitted for brevity, as they closely replicate the same line as in the

proof of Lemma 1.
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This expression, together with the optimal values of the co-state variable and

the Cournot-Nash output level qCN = [A− c(t)] /3, can be plugged into (42),

which simplifies as follows:

·
k = ρk(t)− c(t) [A− c(t)] (1 + β)

6b
. (44)

Therefore, dk(t)/dt = 0 in correspondence of:

kCl(t) =
c(t) [A− c(t)] (1 + β)

6bρ
, (45)

where superscript Cl stands for cartel. Before proceeding, we may com-

pare kCl(t) against kIV (t), as defined in (24), to ascertain that the following

property:

c(t) [A− c(t)] (1 + β)

6bρ
>

c (t) [A− c (t)]

6bρ
⇒ kCl(t) > kIV (t) (46)

holds for all β ∈ (0, 1] and c(t) > 0. This entails:

Lemma 3 Setting up a cartel in the R&D stage leads firms to invest more

than in the fully noncooperative case, for all positive levels of spillovers and

marginal cost.

Of course, the reason for this result is that R&D cooperation permits to

better internalise the beneficial externality, therefore boosting firms’ incen-

tives to invest. The consequence of the above Lemma is that the private

and social desirability of R&D cooperation drastically hinges upon its ability

of reducing marginal cost significantly below the level resulting from Nash

behaviour.

Plugging kCl(t) into the state dynamics and imposing the stationarity

condition, we have:

·
c = −c (t)

"
c(t) [A− c(t)] (1 + β)2

6bρ
− δ

#
= 0 (47)
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yielding:

c = 0; c =
A (1 + β)±

q
A2 (1 + β)2 − 24bδρ

2 (1 + β)
. (48)

The above analysis allows us to state:

Proposition 4 Provided that δρ ≤ A2 (1 + β)2 / (24b) , the steady state point

cCl =
A (1 + β)−

q
A2 (1 + β)2 − 24bδρ

2 (1 + β)

kCl =
δ

1 + β

is the unique saddle point equilibrium of the game where firm set up a cartel

in the R&D stage.

Proof. See Appendix 2.

The steady state R&D effort is exactly the same as in the noncooperative

case. This is obviously due to the fact that, in both cases, the investment

needed to keep constant firm i’s marginal cost is km (1 + β) = δ, m = IV, Cl.

What changes, instead, is the steady state level of the marginal cost. To this

regard, it can be easily verified that

cIV − cCl ∝
q
A2 (1 + β)2 − 24bδρ

1 + β
−
p
A2 (1 + β)− 24bδρ√

1 + β
(49)

which is strictly positive for all β ∈ (0, 1] .
Individual output and profits under R&D cartelisation are:

qCl =
A (1 + β) +

q
A2 (1 + β)2 − 24bδρ

6 (1 + β)
; (50)

πCl =
A2 (1 + β)2 − 6bδ (3δ + 2ρ) +A (1 + β)

q
A2 (1 + β)2 − 24bδρ

18 (1 + β)2
. (51)
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Consumer surplus and welfare in steady state are:

CSCl ≡
¡
A− pCl

¢P2
i=1 q

Cl
i

2
=

·
A (1 + β) +

q
A2 (1 + β)2 − 24bδρ

¸2
18 (1 + β)2

(52)

SWCl ≡ 2πCl + CSCl = (53)

=

2

·
A2 (1 + β)2 − 3bδ (3δ + 4ρ) +A (1 + β)

q
A2 (1 + β)2 − 24bδρ

¸
9 (1 + β)2

.

Propositions 2 and 4 immediately entail the following Corollary:

Corollary 5 For all β ∈ (0, 1] the parameter region wherein the R&D car-
tel problem admits an internal optimum is wider than the parameter region

wherein noncooperative R&D activity yields an internal optimum.

Proof. To show this, it suffices to verify that

A2 (1 + β)2 / (24b) > A2 (1 + β) / (24b) (54)

for all β ∈ (0, 1] .
This of course stems from the fact that R&D cooperation is substantially

equivalent to a reduction in ρ (or δ, or both). That is, when investing within

a cartel, firms behave as if they were more patient than in the alternative

case.

5 Private and social incentives to R&D co-

operation

Now we are in a position to assess the incentive to activate a cartel in the

R&D stage, both from the standpoints of each firm and from the regulator’s,

15



in the parameter region where both organizational arrangements are admissi-

ble, i.e., δρ ≤ A2 (1 + β) / (24b). This task involves, respectively, evaluating

πCl against πIV and SWCl against SW IV . In both cases, we obtain:

πCl − πIV ∝ SWCl − SW IV ∝ Θ (55)

Θ ≡ 12bβδρ+A (1 + β)

·q
A2 (1 + β)2 − 24bδρ−

p
1 + β

p
A2 (1 + β)− 24bδρ

¸
with the expression Θ being positive for all β ∈ (0, 1] . Therefore, we have
proved our main result:10

Proposition 6 Consider the parameter range δρ ≤ A2 (1 + β) / (24b) . For

all positive spillover levels, the R&D cartel is preferable to independent ven-

tures from private and social standpoints alike.

As a final remark, we may observe that the beneficial effect of R&D

cartelisation on social welfare comes from both sides of the market, since:

πCl > πIV and CSCl > CSIV (56)

for all β ∈ (0, 1] . This can be explained on the following grounds. Given that
cIV − cCl > 0, one expects firms to expand output under cooperative R&D,

as against case where they undertake independent ventures. By comparing

(28) and (50), there indeed emerges that qCl > qIV always. Accordingly,

consumer surplus is enhanced by R&D cooperation because industry output

is larger and market price is lower than in the fully noncooperative setting.

As for the performance of firms, the increase in profits generated by the

cartel arrangement is not obvious a priori, because the increase in productive

efficiency is surely beneficial but the opposite holds for the output expansion.

In balance, it appears that the first effects outweighs the second.

10Also note that, for all β ∈ (0, 1] , the parameter region where the cartel solution is
admissible, i.e., δρ ≤ A2 (1 + β)2 / (24b) , is wider than the analogous region defined for

independent ventures to yield an admissible solution, i.e., δρ ≤ A2 (1 + β) / (24b) .
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The interpretation of these results (in particular, Proposition 6) is straight-

forward. With convex R&D costs, allowing firms to smooth their investment

plans over some time span11 is advantageous both because it permits firms to

enhance profits and because it yields a higher welfare, as Jensen’s inequality

applied to the cost function Γi(ki, t) trivially implies.

6 Concluding remarks

We have analysed dynamic R&D investments for cost-reducing innovation in

a Cournot duopoly where firms may either compete or cooperate in the R&D

phase. The foregoing analysis has shown that a unique stable equilibrium

exists in each setting. By comparing the steady state profit and welfare

performances of the industry in the two cases, there emerges that private

and social incentives towards R&D cooperation coincide for all admissible

levels of the technological spillovers characterising innovative activity, in the

sense that cartelisation dominates competition from both standpoints over

the whole admissible parameter range.

The setup employed in the present paper is a dynamic version of the static

game examined in d’Aspremont and Jacquemin (1988). The drastic difference

between our results and theirs relies upon smoothing the investment efforts

over a long time horizon, a perspective which is ruled out by definition in a

static setting.

11The length of the horizon and the assumption that time be treated as a continuous

variable are both, in fact, immaterial to the conclusions. It can be easily shown that an

analogous differential game over t ∈ [0, T ] (no matter whether in continuous or discrete
time) would produce qualitatively equivalent results.
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7 Appendices

7.1 Appendix 1: Proof of Proposition 2

Assume δρ ≤ A2 (1 + β) / (24b) . The stability properties of the system (23-

26) can be assessed by evaluating the trace and determinant of the following

Jacobian matrix:

JIV ≡


∂
·
c

∂c
= δ − (1 + β) k

∂
·
c

∂k
= − (1 + β) c

∂
·
k

∂c
= −A− 2c

6b

∂
·
k

∂k
= r


in correspondence of the steady state values of c and k. At c = k = 0, the

trace is T (JIV ) = δ + ρ > 0 and the determinant is ∆ (JIV ) = δρ > 0.

Therefore, such a point is unstable. In correspondence of

k =
c [A− c]

6bρ
; c =

A (1 + β) +
p
(1 + β) [A2 (1 + β)− 24bδρ]
2 (1 + β)

(a1)

we obtain T (JIV ) = ρ > 0 and

∆ (JIV ) =
A2 (1 + β)− 24bδρ+A

p
(1 + β) [A2 (1 + β)− 24bδρ]
12b

(a2)

which is clearly positive in the admissible parameter range. Finally, in

k =
c [A− c]

6bρ
; c =

A (1 + β)−p(1 + β) [A2 (1 + β)− 24bδρ]
2 (1 + β)

(a3)

we have T (JIV ) = ρ > 0 again, and

∆ (JIV ) =
A2 (1 + β)− 24bδρ−A

p
(1 + β) [A2 (1 + β)− 24bδρ]
12b

. (a4)

In this case, ∆ (JIV ) < 0 in the admissible parameter region. Therefore, (a3)

is the unique stable steady state point of the dynamic system; in particular,

it is a saddle point. Simplifying the expression for optimal investment in

steady state, we obtain kIV = δ/ (1 + β) .¥
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7.2 Appendix 2: Proof of Proposition 4

Assume δρ ≤ A2 (1 + β)2 / (24b) . The stability properties of the system (36-

44) can be assessed by evaluating the trace and determinant of the following

Jacobian matrix:

JCl ≡


∂
·
c

∂c
= δ − (1 + β) k

∂
·
c

∂k
= − (1 + β) c

∂
·
k

∂c
= −(1 + β) (A− 2c)

6b

∂
·
k

∂k
= r


in correspondence of the steady state values of c and k. Observe that the

only difference between JCl and JIV is to be found in ∂
·
k/∂c, since in the

cooperative case this partial derivative fully embodies the spillover effect,

which is absent in the previous case.

At c = k = 0, the trace is T (JCl) = δ + ρ > 0 and the determinant is

∆ (JCl) = δρ > 0. Therefore, such a point is unstable. In correspondence of

k =
c [A− c]

6bρ
; c =

A (1 + β) +
q
A2 (1 + β)2 − 24bδρ

2 (1 + β)
(a5)

we obtain T (JCl) = ρ > 0 and

∆ (JCl) =

q
A2 (1 + β)2 − 24bδρ

·
A (1 + β) +

q
A2 (1 + β)2 − 24bδρ

¸
12b

(a6)

which is clearly positive in the admissible parameter range. Finally, in

k =
c [A− c]

6bρ
; c =

A (1 + β)−
q
A2 (1 + β)2 − 24bδρ

2 (1 + β)
(a7)

we have T (JCl) = ρ > 0 again, and

∆ (JCl) =
A2 (1 + β)2 − 24bδρ−A (1 + β)

q
A2 (1 + β)2 − 24bδρ

12b
. (a8)
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In this case, ∆ (JCl) < 0 in the admissible parameter region. Therefore, (a7)

is the unique stable steady state point of the dynamic system; in particular,

it is a saddle point. Simplifying the expression for optimal investment in

steady state, we obtain again kCl = δ/ (1 + β) = kIV .¥
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