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Abstract

We consider agents who do not have any information about others’ preferences.
In this situation they attempt to behave such as to maximize their chances to ob-
tain their most preferred alternative. This defines a solution concept for games
symmetrical to Barberà and Dutta’s protective equilibrium, the demanding equi-
librium. Necessary and sufficient conditions for self implementation in demanding
equilibria (s.i.d.e.) of social choice functions are provided.

1 Introduction

In implementation theory one takes as given a social choice function or correspondence

which gives for any situation those social alternatives that are desirable according to

some criteria. Given that it may be impossible for a social planner, to directly use

all data about a given situation he needs to determine the outcomes, be it for lack

of information, or because such information is not verifiable, the objective then is to

design a mechanism to implement the social choice rule under consideration. Different

approaches are possible with regard to the informational assumptions among the agents,

to the solution concept employed in the implementation, and further restrictions put on

the mechanism. With respect to the latter point, often direct mechanisms are considered,

for which agents’ message spaces in the mechanism coincide with the space of those

characteristics they have private knowledge about. Furthermore, often some notion of

simplicity of the mechanism is invoked. Since any social choice function can itself be

interpreted as a direct mechanism, one could consider this the most natural one to be

used for implementation, where the problem becomes to check whether one gets positive

∗This paper was started while the second author enjoyed the hospitality of the Univerité de Caen.
He gratefully acknowledges financial support from the EU through the TMR research network contract
No. FMRX-CT966-0055. We thank an anonymous referee for very helpful comments.
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2 Vincent Merlin and Jörg Naeve

results using some appropriate equilibrium concept. This is termed self-implementation

by Barberà and Dutta (cf. [4]): Agents are asked to report their characteristics (so the

mechanism is direct), and then the mechanism carries out what the social choice rule

prescribes for the reported data.

Another reason to take such an approach lies in the fact that in some areas it is well

known that the ideal social choice rule does not exist. In voting theory, for example,

the results of Arrow, Gibbard and Satterthwaite (cf. [1, 10, 24]) tell us, that there

are no voting rules satisfying a list of desirable (and seemingly innocent) requirements.

Therefore, the voting rules considered in the literature in themselves already are an

attempt to do as well as possible in the given limits. In this sense, voting rules already

have the character of a mechanism rather than just being a normative prescription of

the socially desirable outcomes. Hence, it may not seem very convincing to come up

with yet another mechanism to implement these rules.

In this line of thinking, Barberà and Dutta [2, 3, 4] present results on social choice rules

which are self implementable in an equilibrium concept they call protective equilibrium,

which is based on an extreme type of risk-aversion of agents faced with decisions under

complete ignorance. This type of behavior has been characterized by Barberà and

Jackson [6] and has been used elsewhere in matching models (Barberà and Dutta [5])

as well as in game theory (Fiestra-Janeiro, Borm and van Mergen [9]).

One motivation for this paper lies in the fact that in the realm of voting rules, while the

antiplurality rule turns out to be self implementable in protective equilibrium, such is not

the case for the plurality rule.1 Given that the latter is much more widely used, we felt

it would be of interest to consider an alternative behavioral assumption which would

support the plurality rule as being self implementable. This is demanding behavior,

the characterization of which can be obtained by re placing a convexity (risk-aversion)

axiom in the characterization of protective behavior by concavity (risk-loving) as has

been demonstrated by Naeve [17]. This intuition is further supported by the fact that

each characterization of the plurality rule has its counterpart for the antiplurality rule,

and vice versa. This generic result has been highlighted by Saari [19, 21, 22], who

remarked that reversal symmetry governs the mirror behavior between these two voting

rules.

This paper should be viewed as part of a more general research project. The Gibbard

and Satterthwaite ([10, 24]) impossibility result for choice functions is based upon the

concept of Nash equilibrium. Nevertheless, in certain contexts one may argue that the

behavior of the agents is governed by a different logic. This is precisely the line of

inquiry followed by Barberà and Dutta who studied, with the concept of protective

equilibrium, voting situations where the agents have no information at all about other

agents’ preferences and only use “protective” strategies of a lexical maximin type. As

a consequence of their results, the use of the antiplurality rule as a democratic self im-

plementable mechanism could be recommended in environments where their behavioral

assumptions are fulfilled. Several other positive results in the literature make a similar

1For a formal definition of both rules as special cases of scoring rules see 6.1 below.
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connection between reasonable voting rules and game theoretic solution concepts which

capture certain types of rationality for the agents. Without being exhaustive, we could

mention Moulin’s results, for the positional rules and the concept of sophisticated voting

[15], Dutta and Sen’s for the Condorcet social choice functions and backward induction

[8] or, more recently, Sanver and Sertel [27], who characterized the outcomes one gets

by considering the strong Nash equilibria of mechanisms the outcome functions of which

are voting rules. Thus, a possible interpretation of our results could be a justification

of the use of the plurality rule in decision contexts where all the agents are risk-lovers

and have no information about the other agents’ behavior.

As most of the results are symmetrical to Barberà and Dutta’s, the organization of

the paper is similar to their Implementability via Protective Equilibria [3]. After having

introduced the basic setup in Section 2, Section 3 presents the concept of self implemen-

tation in demanding equilibria and the first theorem about truthful revelation. Next,

four necessary and sufficient conditions for implementation of social choice correspon-

dences are proposed in Section 4. As one may guess, these axioms are mirror conditions

of the ones used by Barberà and Dutta for the characterization of choice functions which

are directly implementable via protective equilibria (d.i.p.e.).2 Section 5 presents eight

choice functions that serve to prove the independence of the four axioms. In the follow-

ing Section 6, we give several examples of voting rules that are s.i.d.e.. The connection

of Barberà and Dutta’s or our approach, respectively, to Moulin’s results on implemen-

tation under prudent behavior (cf. [15]) is clarified in Section 7. Finally we conclude

with indicating possible lines for further research.

2 Notation

Let A = {a1, . . . , am} be the finite set of alternatives. Let I = {1, . . . , n} be the finite

set of individuals. P denotes the set of linear orderings on A, called preferences. Pn is

the set of preference profiles, a typical element of which is π = (P1, . . . , Pn).

For P ∈ P and r ∈ {1, . . . ,m}, we denote the rth ranking worst alternative in P by

br(P ) and the kth ranking best alternative in P by tk(P ), i. e.,

br(P ) =
{

a ∈ A
∣∣∣ ∣∣{a′ ∈ A | aP a′}∣∣ = r − 1

}
and tk(P ) =

{
a ∈ A

∣∣ ∣∣{a′ ∈ A | a′ P a}∣∣ = k − 1
}

.

Note that br(P ) = tm−r+1(P ) and tk(P ) = bm−k+1(P ). Also we define the l-bottom

B(l, P ) = {br(P ) | r ≤ l}, and the l-top T (l, P ) = {tk(P ) | k ≤ l}.
Given a preference profile π = (P1, . . . , Pn) an agent i ∈ I, and a preference Pi ∈ P, we

write P−i for the preferences in π of all agents other than i, and π/P ′
i for the preference

profile obtained by replacing Pi in π by P ′
i , leaving the other preferences unchanged. So

we have P−i = (P1, . . . , Pi−1, Pi+1, . . . , Pn), π = (Pi, P−i), and π/P ′
i = (P ′

i , P−i).

2Actually, they use only three axioms, one of which is the conjunction of two more basic requirements.
Instead of reproducing this structure we followed the advice of an anonymous referee, and differentiate
four conditions thereby getting a clearer view on the differences between their result and ours.
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A social choice function (SCF) is a mapping f : Pn → A. Given any SCF f , Pi ∈ P,

and x ∈ A we define gf (x, Pi) = {P−i ∈ Pn−1 | f(P−i, Pi) = x}.

Definition 1 Let i ∈ I, Pi, P
′
i ∈ P, and Y ⊆ A. The preferences Pi and P ′

i are

Y -equivalent for i under f iff for all a ∈ Y we have gf (a, Pi) = gf (a, P ′
i ).

Pi, P
′
i ∈ P are called equivalent under f , denoted Pi ∼f P ′

i if they are A-equivalent

under f .

3 Demanding Equilibrium

Agents facing a situation in which they lack information on others’ preferences could

employ very different strategic behavior. The protective equilibrium of [3] describes the

case that agents are extremely prudent in their behavior. Here we deal with another

extreme case. Agents use a lexicographic maxmax behavior. They aim to maximize

the chance of their most preferred alternative to be the solution. Formally, this idea is

captured in the following definitions.

Definition 2 Let f be a given SCF. For i ∈ I with preference Pi, a strategy P̂i domi-

nates P̃i relative to f , denoted P̂idf (Pi)P̃i, if there exists k ∈ {1, . . . , m} such that

gf

(
tk(Pi), P̂i

)
� gf

(
tk(Pi), P̃i

)
and gf

(
tr(Pi), P̂i

)
= gf

(
tr(Pi), P̃i

)
, ∀ r < k.

The set of undominated strategies is :

Df (Pi) =
{
P̄i ∈ P | � P ∗

i ∈ P s.t. P ∗
i df (Pi)P̄i

}
.

First, it is useful to note that the dominance relation is transitive.

Proposition 3 For all i ∈ I, for all Pi ∈ P, and for all SCFs f , the dominance relation

df (Pi) is transitive. Hence, Df (Pi) �= ∅ ∀Pi ∈ P.

The proof follows directly from the definition of the dominance relation.

Definition 4 Let π ∈ Pn. A strategy profile π̄ ∈ Pn is called a demanding equilibrium

with respect to the SCF f iff P̄i ∈ Df (Pi) for all i ∈ I.

Definition 5 A SCF f is self implementable in demanding equilibrium (s.i.d.e.) iff

for all pairs of preference profiles π and π̄, f(π) = f(π̄) whenever π̄ is a demanding

equilibrium with respect to f under π.

Our main goal in this section is to prove the analogue of Theorem 1 of Barberà and

Dutta [3] for our concept of demanding equilibrium. To prepare for this we first state

a series of lemmata concerning properties of the dominance relation df (Pi) and the set

Df (Pi) for SCFs that are s.i.d.e..

The first is the analogue to (a) in the proof of Theorem 1 in [3].
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Lemma 6 Let f be s.i.d.e. Let P̂i, P̃i ∈ P with P̂i �∼f P̃i. Then Df (P̂i) ∩ Df (P̃i) = ∅.

Proof of Lemma 6: Suppose there were P̄i ∈ Df (P̂i)∩Df (P̃i). Since P̂i �∼f P̃i, there

exists P−i ∈ Pn−1 such that a �= f(P̂i, P−i) but a = f(P̃i, P−i), or a = f(P̂i, P−i) but

a �= f(P̃i, P−i). Assume the first case holds. Let P̄−i ∈ Pn−1 be such that P̄k ∈ Df (Pk),

for all k �= i. Since P̄i ∈ Df (P̂i) and f is s.i.d.e., we have f(P̂i, P−i) = f(P̄i, P̄−i);

also f(P̃i, P−i) = f(P̄i, P̄−i) because P̄i ∈ Df (P̃i) and f is s.i.d.e. This results in the

contradiction a �= f(P̄i, P̄−i) and a = f(P̄i, P̄−i).

The second case leads to a contradiction in exactly the same way. �
The next lemma is is the analogue of (b) in Barberà and Dutta’s proof.

Lemma 7 Let f be s.i.d.e. For all Pi ∈ P we have Pi ∈ Df (Pi).

Proof of Lemma 7: Suppose there were P 0
i such that P 0

i �∈ Df (P
0
i ). Then there is

P 1
i ∈ Df (P

0
i ) such that P 1

i df (P
0
i )P 0

i (here transitivity of the dominance relation enters).

This means that there exists P 0
−i ∈ Pn−1, and an alternative a ∈ A, such that

a �= f(P 0
i , P 0

−i) , (1)

a = f(P 1
i , P 0

−i) , (2)

gf (a, P 1
i ) ⊃ gf (a, P 0

i ) . (3)

Since P 0
i and P 1

i are not equivalent, Claim 6 yields P 1
i �∈ Df (P

1
i ). Therefore we can

iterate the above argument to construct a sequence P 0
i , P 1

i , P 2
i , . . . of elements in P such

that, for all t ∈ N, P t
i �∈ Df (P

t
i ) and P t

i ∈ Df (P
t−1
i ).

Since P is finite, there must be some integers T, S ∈ N, such that P T
i and P T+S

i are

equivalent (actually even such that they are equal). P T
i ∈ Df (P

T−1
i ) and P T+S

i ∈
Df (P

T+S−1
i ), P T

i ∼f P T+S
i , and Claim 8 yield P T

i ∈ Df (P
T+S−1
i ) (and P T+S

i ∈ Df (P
T−1
i )).

Thus Df (P
T−1
i ) ∩ Df (P

T+S−1
i ) �= ∅ and hence by Claim 6 also P T−1

i ∼f P T+S−1
i . This

argument can be repeated to arrive at the conclusion that, in particular, P 0
i ∼f P S

i .

Now consider a sequence {P 0
−i, P

1
−i, . . . , P

S
−i} of elements in Pn−1 such that, for all t ∈

{1, . . . , S}, and for all j �= i, P t
j ∈ Df (P

t−1
j ). Such a sequence exists, since Df (Pk) �= ∅,

for all k and all Pk ∈ P.

Equation (1), π1 ∈ Df (π
0), and the fact that f is s.i.d.e. imply

a �= f(P 1
i , P 1

−i) = f(P 0
i , P 0

−i) . (4)

This and equation (3) yield

a �= f(P 0
i , P 1

−i) . (5)

Again we can iterate this type of argument. So Equation (5), (P 1
i , P 2

−i) ∈ Df

(
(P 0

i , P 1
−i)

)
and the fact that f is s.i.d.e. imply

a �= f(P 1
i , P 2

−i) = f(P 0
i , P 1

−i) . (6)
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This and equation (3) yield

a �= f(P 0
i , P 2

−i) , (7)

and so on. Finally,

a �= f(P 0
i , P S−1

−i ) . (8)

Starting from equation (2), and repeatedly using that for all t ∈ {0, . . . , S} we have

(P t+1
i , P t

−i) ∈ Df

(
(P t

i , P
t−1
−i )

)
, and the fact that f is s.i.d.e., we get

a = f(P S
i , P S−1

−i ) . (9)

But equations (8) and (9) contradict P 0
i ∼f P S

i . �
We continue with two observations which are not made explicit in the original proof by

[3] but are used there implicitly.

Lemma 8 Let f be s.i.d.e. Let P̂i, P̃i ∈ P with P̂i ∼f P̃i. Then, for all Pi ∈ P, we have

P̂i ∈ Df (Pi) ⇔ P̃i ∈ Df (Pi).

This lemma states that for any Pi ∈ P the set Df (Pi) is the union of equivalence classes

of preferences. The proof follows directly from the definitions.

Lemma 9 Let f be s.i.d.e. For any Pi ∈ P, P̂i ∈ Df (Pi) and P̃i ∈ Df (Pi) implies

P̂i ∼f P̃i.

This means that for any Pi ∈ P any two elements in Df (Pi) are equivalent. So Claims

8 and 9 together say that each Df (Pi) is exactly one equivalence class. (Recall that

Df (Pi) �= ∅, for all Pi ∈ P.)

Proof of Claim 9: Let P̃i ∈ Df (P̂i) for some P̂i ∈ P. We will show that P̃i ∼f P̂i.

Take any P−i ∈ Pn−1. Since Pj ∈ Df (Pj), for all j �= i by Lemma 7, and f is s.i.d.e. we

have f(P̂i, P−i) = f(P̃i, P−i). Hence we have f(P̂i, P−i) = f(P̃i, P−i), for all P−i ∈ Pn−1,

which means P̂i ∼f P̃i. �
Now we are ready for this section’s main result which tells us, that if a social choice

function is s.i.d.e., to tell the truth is at least as good as any other strategy when the

criterion for individual i is given by the dominance relation df (Pi). So whenever we

can implement in demanding equilibrium we can assume that agents report their true

preference.

Theorem 10 A social choice function f is self implementable via demanding equilib-

rium iff for all i ∈ I, and all Pi ∈ P,

Df (Pi) = {P ∗
i | P ∗

i ∼f Pi}.
Proof If the condition on Df (Pi) is satisfied, f is obviously s.i.d.e.

On the other hand, let f be s.i.d.e. Then we know from Lemma 7 that Pi ∈ Df (Pi) and

by Lemma 9 P̃i ∼f Pi for any P̃i ∈ Df (Pi).

This closes the proof of Theorem 10. ��
We close this section with a another lemma about properties of the dominance relation

that will be used later on in the proof of Theorem 19.
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Lemma 11 Let f be a SCF that is s.i.d.e.. Let Pi, P
′
i ∈ P such that Pi �∼f P ′

i . Then

Pidf (Pi)P
′
i (and also P ′

idf (P
′
i )Pi, of course).

Proof of Lemma 11: If Pi �∼f P ′
i and f is s.i.d.e., it follows from follows from

Theorem 10 that P ′
i �∈ Df (Pi). So there must be a preference P 1

i ∈ P such that

P 1
i df (Pi)P

′
i . Now there are two possibilities: Either, P 1

i ∼f Pi, in which case we would

have Pidf (Pi)P
′
i , or P 1

i �∈ Df (Pi). In the latter case we find P 2
i ∈ P with P 2

i df (Pi)P
1
i .

Continuing with the same argument we must arrive at some l for which P l
i ∼f Pi because

P is finite. So Pi ∼f P l
i df (Pi)P

l−1df (Pi) . . . df (Pi)P
′
i and hence by the definition of ∼f

and the transitivity of the dominance relation we have Pidf (Pi)P
′
i . �

4 Characterization Result

A necessary and sufficient condition for the implementation of a social choice function

in Nash equilibrium is Muller and Satterthwaite’s [16] strong positive association. This

condition reads.

Definition 12 A SCF f satisfies strong positive association (SPA) if for all i ∈ I, for

all π ∈ Pn, and for all P ′
i ∈ P the following implication holds.

[a = f(π) and (aPib ⇒ aP ′
i b) ∀ b ∈ A] ⇒ a = f(π/P ′

i ) .

Barberà and Dutta present the following three conditions which together are equivalent

to SPA.

Definition 13 A SCF f satisfies monotonicity (MON) if for all i ∈ I, for all π ∈ Pn,

and for all P ′
i ∈ P the following implication holds.

a = f(π) ,

Pi and P ′
i agree on A\{a} ,

(aPib ⇒ aP ′
i b) ∀ b ∈ A

⎫⎬
⎭ ⇒ a = f(π/P ′

i ) .

Definition 14 A SCF f satisfies top-invariance (TI) if for all i ∈ I, for all π ∈ Pn,

and for all P ′
i ∈ P the following implication holds.

br(Pi) = f(π) ,

B(r, Pi) = B(r, P ′
i ) ,

Pi and P ′
i agree on B(r, Pi)

⎫⎬
⎭ ⇒ br(Pi) = f(π/P ′

i ) .

Definition 15 A SCF f satisfies bottom-invariance (BI) if for all i ∈ I, for all π ∈ Pn,

and for all P ′
i ∈ P the following implication holds.

tk(Pi) = f(π) ,

T (k, Pi) = T (k, P ′
i ) ,

Pi and P ′
i agree on T (k, Pi)

⎫⎬
⎭ ⇒ tk(Pi) = f(π/P ′

i ) .
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Proposition 16 For all social choice functions, SPA is equivalent to the conjunction

of MON, TI and BI.

The proof is immediate from the definitions.

To charakterize social choice functions that are d.i.p.e. Barberà and Dutta [3] keep

monotonicity and top-invariance, the conjunction of which they term upper strong pos-

itive association (USPA), and replace bottom-invariance by two conditions which are

weaker, namely lower conditional independence (LCI) and bottom equivalence (BE).

We will instead stick to monotonicity and bottom-invariance, which we will continue to

consider as two seperate conditions, and replace top-invariance by two weaker conditions,

which are as follows.

Definition 17 A SCF f satisfies upper conditional independence (UCI) if for all i ∈ I,

and for all Pi, P
′
i ∈ P, the following implication holds.

tk+1(Pi) = f(π) ,

T (k, Pi) = T (k, P ′
i ) = T ,

Pi and P ′
i are T -equivalent and agree on A\T

⎫⎬
⎭ ⇒ tk+1(Pi) = f(π/P ′

i ) .

This condition states that some reshuffling is also possible in T (k, Pi) without changing

the status of tk+1(Pi). However, the admissible P ′
i s are severely constrained: they should

be equivalent to Pi for every alternative in T (k, Pi), have the same top, and agree with

Pi on A\T (k, Pi).

Definition 18 A SCF f satisfies top equivalence (TE) if for all i ∈ I, and for all

Pi, P
′
i ∈ P, the following implication holds.

Pi and P ′
i are T (k, Pi)- but not T (k+1, Pi)-equivalent

Pi and P ′
i agree on A\T (k, Pi)

}
⇒ T (k, Pi) = T (k, P ′

i ).

A consequence of TE is that Pi and P ′
i have exactly the same bottom (A\T (k, Pi)). They

might differ on the ranking of the T (k, Pi), but this changes won’t alter whether or not

any of the alternatives in T (k, Pi) are picked by the social choice function, irrespective

of the preferences of other agents. It will only have some influence on whether tk+1(Pi)

is the socially chosen alternative or not.

Theorem 19 A SCF f is self implementable in demanding equilibrium iff it satisfies

MON, BI, UCI, and TE.

Proof We will first show that all four conditions are necessary for self implementability

in demanding equilibrium.

Claim 20 If a SCF f is s.i.d.e., it satisfies MON.
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Proof of Claim 20: The proof is by contradiction. Suppose f fails to satisfy MON

but is s.i.d.e.. Then there exist i ∈ I, π ∈ Pn, and P ′
i ∈ P such that

a = f(π) , (10)

Pi and P ′
i agree on A\{a} , (11)

(aPi b ⇐ aP ′
i b) ∀b ∈ A (12)

and a �= a′ = f(π/P ′
i ). (13)

So obviously Pi �∼f P ′
i from equations (10) and (13) and thus by Lemma 11 Pidf (Pi)P

′
i

and P ′
idf (P

′
i )Pi.

As we have Pidf (Pi)P
′
i there must exist l ∈ {1, . . . ,m} such that

gf

(
tl(Pi), Pi

)
� gf

(
tl(Pi), P

′
i

)
and gf

(
tr(Pi), Pi

)
= gf

(
tr(Pi), P

′
i

)
, ∀ r < l.

Let k ∈ {1, . . . ,m} be such that tk(Pi) = a. Then we know from equations (11) and

(12), that there is k̄ < k such that tk̄(P
′
i ) = a.

For s < k̄ we have ts(Pi) = ts(P
′
i ), so it cannot be the case that l < k̄ because otherwise

we would get a contradiction to P ′
idf (P

′
i )Pi. But we know from equations (10) and (13)

that gf

(
tk̄(P

′
i ), Pi

) �⊆ gf

(
tk̄(P

′
i ), P

′
i

)
which again contradicts P ′

idf (P
′
i )Pi. �

Claim 21 If a SCF f is s.i.d.e., it satisfies BI.

Proof of Claim 21: Again, the proof is by contradiction. Suppose f fails to satisfy

BI but is s.i.d.e.. Then there exist i ∈ I, π ∈ Pn, P ′
i ∈ P and k ∈ {1, . . . ,m} such that

tk(Pi) = f(π) , (14)

T (k, Pi) = T (k, P ′
i ) , (15)

Pi and P ′
i agree on T (k, Pi) , (16)

and tk(Pi) �= a′ = f(π/P ′
i ). (17)

So we know that Pi �∼f P ′
i and hence by Lemma 11 Pidf (Pi)P

′
i and P ′

idf (P
′
i )Pi. The

first says that there must exist l ∈ {1, . . . ,m} such that

gf

(
tl(Pi), Pi

)
� gf

(
tl(Pi), P

′
i

)
and gf

(
tr(Pi), Pi

)
= gf

(
tr(Pi), P

′
i

)
, ∀ r < l.

If l were less than k, there would be a contradiction to P ′
idf (P

′
i )Pi since Pi and P ′

i

share the same k-top and agree on that set. But since tk(Pi) = f(π) �= f(π/P ′
i )

we know gf

(
tk(Pi), Pi)

) �⊆ gf

(
tk(Pi), P

′
i

)
which (with tk(Pi) = tk(P

′
i )) is equivalent

to gf

(
tk(P

′
i ), P

′
i )

) �⊇ gf

(
tk(P

′
i ), Pi

)
leading to a contradiction of P ′

idf (P
′
i )Pi. �

Claim 22 If a SCF f is s.i.d.e., it satisfies UCI.
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Proof of Claim 22: Suppose that f violates UCI. Then there exist π ∈ Pn, i ∈ I and

P ′
i ∈ P such that tk+1(Pi) = f(π), T (k, Pi) = T (k, P ′

i ), Pi and P ′
i are T (k, Pi)-equivalent

and agree on A\T (k, Pi), but tk+1(Pi) �= f(π/P ′
i ). As P ′

i and Pi are T (k, Pi)-equivalent,

and tk+1(Pi) = f(π) while tk+1(Pi) �= f(π/P ′
i ), it can’t be that P ′

idf (P
′
i )Pi. Thus,

Pi ∈ Df (P
′
i ), which contradicts the fact that Df (P

′
i ) is the class of strategies equivalent

to P ′
i . �

Claim 23 If a SCF f is s.i.d.e., it satisfies TE.

Proof of Claim 23: If TE does not hold, there exists i ∈ I, Pi, P ′
i ∈ P such that

Pi and P ′
i are T (k, Pi)-equivalent (18)

Pi and P ′
i are not T (k + 1, Pi)-equivalent (19)

Pi and P ′
i agree on A\T (k, Pi) (20)

and T (k, Pi) �= T (k, P ′
i ). (21)

Let x = tk+1(Pi). (20) and (21) imply that x ∈ T (k, P ′
i ). Since Pi and P ′

i are not

x-equivalent there are two possibilities :

Case 1. There exists P �
−i ∈ Pn−1 such that x = f(Pi, P

�
−i) and x �= f(P ′

i , P
star

−i ). Let

x = tl(P
′
i ). Pi and P ′

i are T (l − 1, Pi)-equivalent by (18). Then, Pi ∈ Df (P
′
i ), which

contradicts the fact that f is s.i.d.e. as Pi and P ′
i are not equivalent.

Case 2. There exists P ��
−i ∈ Pn−1 such that x = f(P ′

i , P
��
−i) and x �= f(Pi, P

��
−i). As Pi

and P ′
i are T (k, Pi)-equivalent, it cannot be that Pidf (Pi)P

′
i and P ′

i ∈ Df (Pi), which is

a contradiction.

Thus, in either case f is not s.i.d.e. and TE is necessary for s.i.d.e. This concludes the

necessity part. �
Let us now consider a SCF f which satisfies MON, BI, UCI and TE. We shall prove

that f is s.i.d.e. More precisely, for any two non-equivalent strategies Pi and P ′
i , we

shall prove that Pidf (Pi)P
′
i . Thus, Df (Pi) the set of non dominated strategies is the set

of strategies that are equivalent to Pi, and for any π′ ∈ Df (π), f(π) = f(π′).

Suppose Pi and P ′
i are not equivalent. Let tk(Pi) be such that Pi and P ′

i are T (k−1, Pi)-

equivalent, but are not {tk(Pi)}-equivalent. Thus, we have for some P−i ∈ Pn−1

tk(Pi) = f(Pi, P−i) and tk(Pi) �= f(P ′
i , P−i) or (22)

tk(Pi) �= f(Pi, P−i) and tk(Pi) = f(P ′
i , P−i) (23)

or both for different profiles. As the second case is in contradiction with the fact that f

is s.i.d.e., we shall demonstrate that it cannot happen by showing that the assumption

that (23) holds leads to a contradiction.

Now, construct P �
i such that :

T (k − 1, Pi) = T (k − 1, P �
i ) , (24)

Pi and P �
i agree on T (k − 1, Pi) , (25)

and P ′
i and P �

i agree on A\T (k − 1, Pi) . (26)
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Since f satisfies BI, any reshuffling of the alternatives below x ∈ T (k − 1, Pi) keeps the

status of x unchanged. Thus, by (24) and (25), Pi and P �
i are T (k − 1, Pi)-equivalent.

Thus, P ′
i and P �

i are also T (k − 1, Pi)-equivalent and T (k − 1, P �
i )-equivalent. Since P ′

i

and P �
i are T (k − 1, P �

i )-equivalent and agree on A\T (k − 1, P ′
i ), by TE, either we get

(a) P �
i and P ′

i are not {tk(P �
i )}-equivalent and T (k−1, P ′

i ) = T (k−1, P �
i ) = T (k−1, Pi)

or (b) P ′
i and P �

i are {tk(P ′
i )}-equivalent.

Case (a). P �
i and P ′

i share the same top and are perfectly identical on A\T (k − 1, P �
i ).

Consider now the profiles in gf (tk(P
�
i ), P �

i ). Since T (k − 1, P �
i ) = T (k − 1, P ′

i ), P �
i and

P ′
i are T (k − 1, P �

i )-equivalent and agree on A\T (k − 1, P �
i ), by UCI, gf (tk(P

�
i ), P �

i ) ⊆
gf (tk(P

�
i ), P ′

i ). As tk(P
�
i ) = tk(P

′
i ), by using the same argument for P ′

i , we get that

gf (tk(P
�
i ), P �

i ) = gf (tk(P
�
i ), P ′

i ). This contradicts the fact that P �
i and P ′

i are not

{tk(P �
i )}-equivalent and case (b) holds.

Case (b). P �
i and P ′

i are {tk(P �
i )}-equivalent. Using the same argument as in case

(a), we can prove that P �
i and P ′

i are {tk+1(P
�
i )}-equivalent, {tk+2(P

�
i )}-equivalent, etc.

Thus P �
i and P ′

i are equivalent. By construction, we have tk(Pi) = tl(P
�
i ), with l > k.

Consider now the initial profile for which tk(Pi) �= f(Pi, P−i) and tk(Pi) = f(P ′
i , P−i).

Thus tk(Pi) = f(P �
i , P−i), and using MON, tk(Pi) ∈ φ(Pi, P−i). This is in contradiction

with (23), and only (22) is compatible with MON, BI, UCI and TE. Thus, Pidf (Pi)P
′
i .

��

5 Independence of the Axioms

We present a list of examples to show that the axioms MON, BI, TE and UCI are

logically independent. We first show that none of the four axioms is redundant, i. e.

implied by the other three.

Example 1 (A rule satisfying MON, BI and TE but not UCI) Let I = {1, . . . , n},
with n ≥ 2, and A = {a1, . . . , am}, with m ≥ 4. Let Q ∈ P be the ordering a3a4 . . . ama2a1.

Define f1 by the following rule.

f1(π) =

{
a1 if a1P1a2 or P1 = Q

a2 otherwise.

Proof Since the outcome is determined by individual 1’s preferences alone, we only

need to check the properties for changes in 1’s preference.

f1 satisfies MON. If f1(π) = a1 we have P1 = Q or a1P1a2. So for any preference P ′
1

in which a1 has moved up, we have a1P
′
1a2 and hence f (π/P ′

1) = a1. If f1(π) = a2 we

must have a2P1a1 and P1 �= Q. This will still hold when a2 moves up in 1’s preference,

so a2 remains chosen.

f1 satisfies BI. In the case P1 = Q, the chosen alternative is a1 and this is at the bottom,

so no reshuffling is possible. In all other cases, what matters is the relative position of

a1 and a2 in 1’s preference which will not be changed by reshuffling below the chosen

alternative.
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f1 satisfies TE. Consider P1 and P ′
1 wich are T (k, P1)- but not T (k+1, P1)-equivalent for

some k ∈ {1, . . . ,m} and agree on A\T (k, P1). All preferences in P are {a3, a4, . . . , am}-
equivalent since none of these alternatives is ever chosen. If a1 or a2 are in T (k, P1), P1

and P ′
1 would be equivalent. So a1, a2 ∈ A\T (k, P1). Indeed one of a1 and a2 has to be

tk+1(P1) and since both P1 and P ′
1 agree on A\T (k, P1) the other one must be ranked

below in both. P1 cannot be Q because then there would be no P ′
1 with the required

properties. So in both cases the alternative which is tk+1(P1) is chosen.

f1 violates UCI. Consider P1 = a4a3a2a1 and P ′
1 = Q = a3a4a2a1. Then f(π) = a2 =

t3(P1), T (2, P1) = {a3, a4} = T (2, P ′
1), P1 and P ′

1 are {a3, a4}-equivalent and agree on

A\{a3, a4} = {a1, a2} but f(π/P ′
1) = a1.

�

Example 2 (A rule satisfying MON, BI and UCI but not TE) Let m ≥ 3 and

n ≥ 2. Define f2 as follows.

f2(π) =

{
a2 if T (1, Pi) = a2 ∀ i ∈ I ,

a1 otherwise .

Proof f1 satisfies MON. This is obvious, since a2 is chosen if and only if it is every-

body’s top choice. In this case it cannot be moved further up, while in all other cases

a1 is chosen and a2 cannot become the top choice by moving a1 up.

f1 satisfies BI. Again this is trivial. Reshuffling bottoms will not change whether or not

a2 is at the top.

f1 satisfies UCI. Consider Pi and P ′
i such that f2(π) = tk+1(Pi), T (k, Pi) = T (k, P ′

i ) = T ,

Pi and P ′
i are T -equivalent and agree on A\T . tk+1(Pi) must be a1. If a2 is not in T ,

obviously f2(π/P ′
i ) = a1. But if a2 ∈ T , T -equivalence of Pi and P ′

i tells us that either it

is the top choice according to both preferences or it is not the top for both. In the latter

case, clearly f2(π/P ′
i ) = a1 because of P ′

i ; but in the former we know from f2(π) = a1

that also f2(P−i, P
′
i ) = a1, this time because a2 cannot be everybody else’s top choice.

f1 violates TE. Consider Pi = a3a2 . . . and P ′
i = a2a3 . . .. Both are T (1, Pi)-equivalent

(since a3 is never selected) but not T (2, Pi)-equivalent. They agree on A \ T (1, Pi) but

T (1, Pi) �= T (1, P ′
i ). �

Example 3 (A rule satisfying BI, TE and UCI but not MON) Let m ≥ 3 and

n ≥ 2. Let S1(aj) =
∣∣{i ∈ I

∣∣ aj ∈ T (1, Pi)}
∣∣ Then,

aj = f3(π) ⇔
{

S1(aj) < S1(ak)∀ak ∈ A \ {aj} or

S1(aj) ≤ S1(ak)∀ak ∈ A \ {aj} and S1(aj) = S1(ak) ⇒ j < k.

So effectively this rule selects the alternative that does worst in terms of plurality scores,

using the smallest index as a tie-breaking rule.

Proof f1 satisfies BI. This is obvious because reshuffling below any alternative will

not change the top alternative and hence the scores S1 remain unchanged.
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f1 satisfies TE. This property is trivially satisfied since the condition one needs to ckeck

is never satisfied. The reason is that for two preferences Pi and P ′
i to be T (k, Pi)-

equivalent, they need to have the same top, in which case they are equivalent.

f1 satisfies UCI. If Pi and P ′
i are T -equivalent, they have the same top and hence

f3(P−i, Pi) = f3(P−i, P
′
i ) irrespective of P−i.

f1 violates MON. Consider a situation where a1 is chosen because it is tied for the least

score with some other alternative. Then there must be some individual not having a1

at the top. By moving it up to the top in this individuals preference, then, a1 will no

longer be chosen by f3. �

Example 4 (A rule satisfying MON, TE and UCI but not BI) Let m ≥ 3 and

n ≥ 2. Let S2(aj) =
∣∣{i ∈ I

∣∣ aj ∈ T (2, Pi)}
∣∣ Then,

aj = f4(π) ⇔
{

S2(aj) > S2(ak)∀ak ∈ A \ {aj} or

S2(aj) ≥ S2(ak)∀ak ∈ A \ {aj} and S2(aj) = S2(ak) ⇒ j < k.

Here an alternative scores if it belongs to the top two alternatives of an individual. The

highest score wins and ties are broken using the smallest index.

Proof f1 satisfies MON. This is obvious, since by moving any alternative up in any-

body’s ranking its score cannot decrease.

f1 satisfies TE. This property is trivially satisfied since the condition on preferences

that needs to be checked can never be satisfied. If preferences Pi and P ′
i are T (k, Pi)-

equivalent it follows that T (2, Pi) = T (2, Pi). Otherwise there would be two alternatives

one getting one point with Pi and zero with P ′
i while this is reversed for the other. This

fact could be used to make one of the two alternatives a winner under preference Pi

or P ′
i while something from T (k, Pi) wins under the other preference. Hence T (k, Pi)-

equivalence implies equivalence.

f1 satisfies UCI. As we have seen Pi and P ′
i being T (k, Pi)-equivalent implies Pi ∼f4 P ′

i .

Therefore what is chosen with Pi will also be chosen with P ′
i .

f1 violates BI. Consider P1 = a2a3a1 and P ′
1 = P2 = a2a1a3. Then we have f4(P1, P2) =

a2 but f4(P
′
1, P2) = a1. �

Next we demonstrate that each of the four axioms can be satisfied in the absence of the

remaining three, i. e., violation of any triple of axioms does not imply the fourth one to

be violated as well.

Example 5 (A rule satisfying TE but neither MON, BI nor UCI) Let m ≥ 5

and n ≥ 3. Consider an ordering Q = a1a2 . . . am. Define f5 by the following rule. If

T (2, P1) = T (2, Q) and both preferences agree on T (2, Q), then apply f4 to the preference

P2 restricted to A\T (2, P1).
3 In all other cases, apply f4 to the preference P3 restricted

to A\T (2, P1).

3Strictly speaking, we only define all social choice functions for at least two individuals. This is,
because to define equivalence, for example, we need others’ preferences. For those rules, like f4, that
only depend on one individuals preferences, however, there is no problem to also extend them to the
case of n = 1.
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Proof f1 satisfies TE. Since f4 satisfies TE (see Example 4) TE is clearly satisfied

unless we consider changes in 1’s preferences, i. e. pairs of preferences P1 and P ′
1. There

are several cases to be checked. The interesting thing to look at is the set of the two top

ranked alternatives, where a1 and a2 play a special role, because they are in the top of

Q. So we need to distinguish whether they are both included in the top two, just one of

them, or none. For P1 the ranking within the top two matters (because it is equivalence

with respect to T (k, P1) that we need to ckeck), while for P ′
1 the ranking among the top

two makes a difference if and only if T (2, P ′
1) = {a1, a2}. All possibilities are given in

the following table, where the numbers refer to the list of different reasons why TE is

satisfied in each case.

�������P1

P ′
1

a1a2 a2a1
a1a3

or a3a1

a2a3

or a3a2

a3a4

or a4a3

a1a2 1.(a) 2. 3. 4. 4.

a2a1 2. 1.(b) 4. 3. 4.

a1a3 3. 3. 1.(b) 4. 4.

a3a1 4. 4. 1.(b) 3. 3.

a2a2 3. 3. 4. 1.(b) 4.

a3a2 4. 4. 3. 1.(b) 3.

a3a4 4. 4. 3. 3. 1.(b)

a4a3 4. 4. 4. 4. 1.(b)

TE is satisfied for the following reasons according to which case applies.

1. (a) f5(P1, P−1) = f5(P
′
1, P−1) because both are determined by P2 using f4. There-

fore P1 and P ′
1 are equivalent, so TE cannot be checked.

(b) f5(P1, P−1) = f5(P
′
1, P−1) because both are determined by P3 using f4. There-

fore P1 and P ′
1 are equivalent, so TE cannot be checked.

2. P1 and P ′
1 are T (2, P1)- but not T (3, P1)- equivalent and T (2, P1) = T (2, P ′

1), hence

TE is satisfied.

3. P1 and P ′
1 are T (1, P1)- but not T (2, P1)- equivalent but they do not agree on

A \ T (1, P1), so TE cannot be checked.

4. P1 and P ′
1 are not T (1, P1)-equivalent, so TE cannot be checked.

f1 violates MON. Consider preferences P1 = P2 = P3 = a1a2a3a4a5 and P ′
1 = a1a3a2a4a5.

Then f5(P1, P2, P3) = a3 because this is chosen according to f4 applied to P2 restricted

on A\T (2, P1) = {a3, a4, a5}. a3 moves up from P1 to P ′
1 the rest remaining unchanged.

But now f5(P
′
1, P2, P3) = a2 since now f4 is applied using P3 restricted on the set

A \ T (2, P ′
1) = {a2, a4, a5}.
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f1 violates BI. Consider P1 = Q, P2 = a1a2a4a5a3, P ′
2 = a1a2a4a3a5 and P3 arbitrary.

Then f5(P1, P2, P3) = a4 (use f4 with P2 on {a3, a4, a5}). We get P ′
2 from P2 by reshuf-

fling below a4, but f5(P1, P
′
2, P3) = a3 (because now a3 has moved up and wins because

of the tie-breaking rule of f4).

f1 violates UCI. Consider preferences P1 = a1a2a3a4a5, P ′
1 = a2a1a3a4a5, P2 = a1a2a3a4a5

and P3 = a1a2a4a5a3. Then f5(P1, P2, P3) = a3 = t3(P1). T (2, P1) = T (2, P ′
1) = T , P1

and P ′
1 are T - equivalent and agree on A \ T , but f5(P

′
1, P2, P3) = a4. �

Example 6 (A rule satisfying MON but neither BI, TE nor UCI) Let m ≥ 5

and n ≥ 2. Define f6 as always choosing a3 unless a1P1a2 and a4P2a5, in which case a4

is chosen.

Proof f1 satisfies MON. Moving a3 up (or down, for that matter) never changes any

of the relevant conditions, so if a3 is chosen it will still be chosen after any monotonic

change of preferences. If a4 is chosen we have a1P1a2 and a4P2a5 and this will not be

changed by moving up a4 leaving the ranking of other alternatives unchanged.

f1 violates BI. Consider P1 = a1a2 . . ., P2 = a3a5a4 . . ., and P ′
2 = a3a4a5 . . . Then

f6(P1, P2) = a3. We get P ′
2 by reshuffling 2’s preference below a3 but f6(P1, P

′
2) = a4.

f1 violates TE. Consider P1 = a1, a2 . . ., P2 = a5a4a3 . . ., and P ′
2 = a4a5a3 . . . P2

and P ′
2 are T (1, P2)- but not T (2, P2)-equivalent and agree on A \ T (1, P2). However,

T (1, P2) �= T (1, P ′
2).

f1 violates UCI. Consider P1 = a2a1a3 . . ., P ′
1 = a1a2a3 . . ., and P2 = a4a5 . . . f6(P1, P2) =

a3 = t3(P1), T (2, P1) = T (2, P ′
1) = T , P1 and P ′

1 are T -equivalent and agree on A \ T

but f6(P
′
1, P2) = a4. �

Example 7 (A rule satisfying BI but neither MON, TE nor UCI) Let m ≥ 4

and n ≥ 2. Define f7 as always choosing a3 unless P1 = a1a2a3 . . ., P1 = a1a3 . . ., or

P1 = a3 . . ., in which case a4 is chosen.

Proof Since f7 depends on 1’s preferences, only, we just need to consider possible

changes in the first individual’s preferences.

f1 satisfies BI. This is quite clear. Either P1 has one of the three forms that lead to a4

being chosen which will not be changed by reshuffling below a4, or this is not the case,

a3 is chosen, and reshuffling below a3 never leads to the first case.

f1 violates MON. Consider P1 = a4a3 . . ., P ′
1 = a3a4 . . . a1nd arbitrary other prefer-

ences. Obviously f7(π) = a3, a3 has moved up from P1 to P ′
1, the ranking of all other

alternatives remaining unchanged, but f7(π/P ′
1) = a4.

f1 violates TE. Consider P1 = a1a2a3 . . . and P ′
1 = a2a3 . . . P1 and P ′

1 are T (2, P1)- but

not T (3, P1)-equivalent and agree on A \ T (2, P1) but T (2, P1) �= T (2, P ′
1).

f1 violates UCI. Consider P1 = a1a2a3 . . . and P ′
1 = a2a1a3 . . . We have T (2, P1) =

T (2, P ′
1) = T , P1 and P ′

1 are T -equivalent and agree on A \ T but f7(π) = a4 �= a3 =

f7(π/P ′
1). �
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Example 8 (A rule satisfying UCI but neither MON, BI nor TE) Let m ≥ 4

and n ≥ 2.

f8(π) =

{
a2 if a2 ∈ B(2, Pi) ∀i ∈ I

a1 otherwise.

Proof f1 satisfies UCI. The only two possible choices are a1 and a2. If f8(π) = a1

there must be some i with a2 �∈ B(2, Pi). Any changes in preferences other than i’s will

not change anything. Unless a1 is ranked last, any change from Pi which keeps the same

set above a1 and does not change the ranking below cannot result in a2 being in the

2-bottom. But if a1 is ranked last, Pi and P ′
i have to be a2-equivalent and hence a2 must

stay higher in the ranking than the worst two. If a2 is chosen, it is in B(2, Pi) for all

i. This will not be changed by any change in preferences keeping the same alternatives

being ranked above a2.

f1 violates MON. Consider P1 = P2 = a1a2a3 and P ′
1 = a2a1a3. Then f8(P1, P2) = a2,

a2 has moved up, the other alternatives’ ranking stays the same, but f8(P
′
1, P2) = a1.

f1 violates BI. Consider P1 = a1a2a3a4 and P ′
1 = P2 = a1a3a2a4. Then f8(P1, P2) = a1

and we get P ′
1 by reshuffling below a1 but f8(P

′
1, P2) = a2.

f1 violates TE. Consider P1 = a3a4a2a1 and P ′
1 = a3a2a4a1. P1 and P ′

1 are T (2, P1)- but

not T (3, P1)-equivalent and they agree on A \ T (2, P1) but T (2, P1) �= T (2, P ′
1). �

6 Some Side Social Choice Functions

In the previous sections, we described necessary and sufficient conditions for self imple-

mentation via demanding equilibria. We here check whether some famous voting rules

are s.i.d.e. or not, and describe many s.i.d.e. SCF’s. This section adds to the results

obtained by Barberà and Dutta [4], who describe which rules are d.i.p.e.

6.1 Scoring rules

A scoring rule is characterized by a scoring vector w = (w1, . . . , wm) ∈ Rm. The rank

of alternative a in preference Pi, denoted by r(Pi, a), is defined by:

r(Pi, a) = k ⇔ tk(Pi) = a

The score of a for the profile π and scoring vector w is:

Sw(π, a) =
∑
i∈I

wr(Pi,a).

For any w, we can define the scoring rule fw as selecting the alternative with the highest

score, ties being broken according to the indices.

fw(π) = aj ⇔
⎧⎨
⎩

[Sw(π, aj) > Sw(π, ak) ∀ak ∈ A \ {aj} ] or

[Sw(π, aj) ≥ Sw(π, ak) ∀ak ∈ A \ {aj}
and Sw(π, aj) = Sw(π, ak) ⇒ j < k.]
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Table 1: Profile π1

P1 : a1 P1 a3 P1 a4 P1 . . . as P1 a2 P1 as+1 P1 . . . P1 am

P2 : am P2 a1 P2 a3 P2 . . . as−1 P2 as P2 a2 P2 . . . P1 am−1

P3 : am−1 P3 am P3 a1 P3 . . . as−2 P3 as−1 P3 as P3 . . . P3 am−2

...
...

Pm : a3 P4 a4 P4 a5 P4 . . . a2 P4 as+1 p4 as+2 P4 . . . P4 a1

Of course, the natural way to use scoring rules is to assume that wr ≥ wr+1 for r =

1, . . . ,m − 1 and w1 > wm. Without loss of generality, we can also assume that w1 = 1

and wm = 0. Nevertheless, Smith [25] and Young [28] give characterizations of the

scoring rules without these assumptions.

The three most famous scoring rules are the plurality rule, which selects as a social

choice the alternative with the greatest number of first place votes (w = (1, 0, . . . , 0)),

the antiplurality rule where each voter awards one point to any alternative except to

the last ranked in her preference ordering ( w = (1, . . . , 1, 0)), and the Borda count,

which assigns (m − 1) to a candidate each time she appears first in one’s preference

ordering, (m − 2) points each time she appears second, and so on down to zero point

each time she appears last ( w = (m − 1,m − 2, . . . , 1, 0) or w = (1, m−2
m−1

, . . . , 1
m−1

, 0) in

an equivalent way). The constant scoring rule assigns the same number of points to any

rank.

Theorem 24 Let m ≥ 3. The only non constant scoring rule which is s.i.d.e. for any

population size is the plurality rule.

Claim 25 A scoring rule satisfies BI if and only if wr = b ∀r = 2, . . . ,m.

Proof of Claim 25: If w1 = b, we get the constant SCF that always selects a1, and

it trivialy satisfies BI. Whenever w = (a, b, . . . b), any change in the preferences below

the winner does not affect any score.

Now, let us assume that wr > ws for r > 1 and s > 1. Consider the profile π1 with m

voters, displayed on Table 1.

Each alternative fills each position once and only once, and a2 is ranked sth when a1 is

ranked first. Thus, all the alternatives get the same score and fw(π1) = a1 according to

the tie breaking rule. Consider now the preference P ′
1, in which a2 changes its position

with tr(P1) in P1, everything else being unchanged. Thus,

Sw(π1/P
′
1, a2) = Sw(π1, a2) + wr − ws > Sw(π1, a2)

Clearly a2 obtains the highest score alone, and fw(π1/P
′
1) = a2, which contradicts BI. �

Proof of Theorem 24: A scoring rule satisfies BI iff w = (a, b, . . . b). It is non

constant whenever a �= b. If b > a, the scoring rule cannot be monotonic; indeed, it is
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Table 2: Profile π2

P1 : a1 P1 a2 P1 a3

P2 : a3 P2 a1 P2 a2

P3 : a2 P3 a3 P3 a1

equivalent to f3 and selects the alternative with the smallest plurality score. So, only

the case a > b is left. This rule is equivalent to the plurality rule, w = (1, 0, . . . , 0). The

strategies equivalent to Pi are the preferences P ′
i such as T (1, Pi) = T (1, P ′

i ). So, MON,

BI, UCI and TE are satisfied and the plurality rule is the only non constant s.i.d.e.

scoring rule. �

6.2 Condorcet Social Choice Functions

The Condorcet criterion is one of the most famous normative condition in social choice

literature. It asserts that a candidate should be elected each time she gathers a majority

of votes against any opponent in pairwise comparisons. We propose here a slightly

weakened version of this requirement.

Definition 26 Let A be a set of alternatives, I the set of voters and π ∈ Pn. Then,

the alternative a dominates the alternative b for the profile π, denoted by aM(π)b if:

#{i ∈ I
∣∣ aPib} > #{i ∈ I

∣∣ bPia}
We define the set of weak Condorcet winner, CW (π), as the set of undominated alter-

natives:

CW (π) = {a ∈ A
∣∣ bM(π)a for no b ∈ A \ {a}.}

Definition 27 f is a Condorcet Social Choice Function (CSCF) if:

∀π ∈ Pn, CW (π) �= ∅ ⇒ f(π) ⊂ CW (π).

Theorem 28 If m ≥ 3, any CSCF f violates BI, except for the case m = 3, n = 4.

Proof of Theorem 28: Consider first the case m = 3, n = 3, and the profile π2

displayed on Table 2. We get a1M(π2)a2, a2M(π2)a3, a3M(π2)a1, and CW (π2) = ∅.
Assume that f(π2) = a1. By BI, a change in the preferences below a1 should not affect

its status. Consider P ′
1 = a1 P ′

1 a3 P ′
1 a2. Then, f(π2/P

′
1) = a3 = CW (π2/P

′
i ), which

contradicts BI. The same reasoning holds if we assume f(π2) = a2 or f(π2) = a3. We

can generalize the reasoning to m > 3 by adding the alternatives a4, a5, etc... below a3,

a1 and a2 in the profile π2. We can also generalize to n > 4, building a cycle similar to

the one proposed in π1. For n = 4, m ≥ 4, we can check that BI is not satisfied from

the profile π3:

For n = 4, m = 3, CW (π) �= ∅. Thus, any alternative in CW (π) stays in this set when

we affect the preferences below her. �
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Table 3: Profile π3

P1 : a1 P1 a2 P1 a3 P1 a4

P2 : a4 P2 a1 P2 a2 P2 a3

P2 : a3 P3 a4 P3 a1 P3 a2

P3 : a2 P4 a3 P4 a4 P4 a1

6.3 Other s.i.d.e. Voting Rules

We identified two s.i.d.e. voting rules: the constant SCF and the plurality rule. Nev-

ertheless, we can design more s.i.d.e. rules. First, any rule based upon the plurality

scores will be s.i.d.e., as long as it is monotonic. This condition rules out f3 and any

process that eliminates the alternatives progressively on the basis of the plurality scores

(Smith [25] proves that such rules, called scoring run-offs, are not monotonic), but keeps

all the voting procedures that use the plurality scores with thresholds. For example, we

can decide to apply the plurality rule, unless a1 already gets 20% of the total vote, in

which case she is directly elected. For more on voting rules with thresholds, see Saari

[20]. We can also attribute different weights to the voters when they cast their plurality

vote, the extreme case being dictatorship. Using a tie breaking rule on the set of Pareto

alternatives or on the set of alternatives which are ranked first by at least one voter

would also lead to a s.i.d.e. SCF.

7 Protective Behavior versus Prudence, Demanding

Behavior versus Risk Loving

The result we obtained for the plurality rule can be compared to the ones Barberà and

Dutta [4] get for the antiplurality rule: on one hand, the plurality rule is the only s.i.d.e.

scoring rule, and on the other hand, the antiplurality rule is the only d.i.p.e. scoring

rule. In other words, when voters are extremely prudent, asking them to reveal their

last ranked alternative is a good and simple way to avoid manipulation and when voters

have an exaggerated preference for their top choice, asking them to report it will also

avoid strategic behavior.

This typology has to be compared with some results of Moulin [15], who proposes a

different way to model risk aversion, the prudent behavior. In the process of selecting her

optimal strategies, a prudent voter will consider the number of profiles which lead to the

selection of an outcome, i.e. the cardinality of the sets gf (a, Pi), rather than searching

for inclusion relationships among these sets. Formally, for i ∈ I with preference Pi, a

strategy P̂i is prudent iff there does not exist P̃i such that for some k ∈ {1, . . . , m} the

following holds:

#gf

(
bk(Pi), P̂i

)
> #gf

(
bk(Pi), P̃i

)
and #gf

(
br(Pi), P̂i

)
= #gf

(
br(Pi), P̃i

)
, ∀ r < k.
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As noted by Barberà and Dutta, the prudent behavior assumes implicitly that all the

preferences profiles π−i ∈ Pn−1 are equally likely. On the contrary, the demanding

or the protective behavior are applicable even if agents have no subjective probability

distribution about others’ strategies.

Using the same assumption as Moulin on the likelihood of profiles, we can define in a

similar way a “risk loving” or “admiriting ” behavior, by only considering the cardinal-

ities of the sets gf (a, Pi). For i ∈ I with preference Pi, a strategy P̂i is risky iff there

does not exist P̃i such that for some k ∈ {1, . . . ,m} the following holds:

#gf

(
tk(Pi), P̂i

)
< #gf

(
tk(Pi), P̃i

)
and #gf

(
tr(Pi), P̂i

)
= #gf

(
tr(Pi), P̃i

)
, ∀ r < k.

For a SCF f and a preference Pi, the set of risky strategies is denoted by Rf (Pi), and

the set of prudent strategies is denoted by Pf (Pi).

Definition 29 Let π ∈ Pn. A strategy profile π̄ ∈ Pn is called a prudent equilibrium

with respect to the SCF f iff P̄i ∈ Pf (Pi), for all i ∈ I.

Definition 30 A SCF f is self implementable with a prudent behavior iff for all pairs

of preference profiles π and π̄, f(π) = f(π̄) whenever π̄ is a prudent equilibrium with

respect to f under π.

Definition 31 Let π ∈ Pn. A strategy profile π̄ ∈ Pn is called a risky equilibrium with

respect to the SCF f , iff P̄i ∈ Rf (Pi), for all i ∈ I.

Definition 32 A SCF f is self implementable with a risky behavior iff for all pairs of

preference profiles π and π̄, f(π) = f(π̄) whenever π̄ is a risky equilibrium with respect

to f under π.

While the protective behavior (resp. demanding behavior) clearly isolates the antiplu-

rality rule (resp. plurality rule) among the scoring rules, Moulin [15] states that both

plurality rule and Borda count are implementable with a prudent behavior, but leaves

the proof to the reader. In fact, the next proposition extends his comments.

Proposition 33 Both plurality and antiplurality rules are self implementable with a

prudent behavior and with a risky behavior as soon as n ≥ 2.

Proof of Proposition 33: We handle the plurality case, the antiplurality case

being symmetric. First, it is obvious that the plurality rule is implementable with a

risky behavior, as the inclusion relationships between sets gf (a, Pi) lead to dominance

in terms of cardinality.

We propose a detailed proof of the fact that the plurality is also prudent in the case

m = 3; one can extend the arguments to m > 4, tough the number of cases to analyze
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increases rapidly. Let A = {a, b, c} and use the alphabetical order to break ties. We

partition Pn−1 in 7 subsets:

J1 = {π−i ∈ Pn−1
∣∣S1(π−i, a) > S1(π−i, b) and

∣∣S1(π−i, a) > S1(π−i, c)}
J2 = {π−i ∈ Pn−1

∣∣S1(π−i, b) > S1(π−i, a) and
∣∣S1(π−i, b) > S1(π−i, c)}

J3 = {π−i ∈ Pn−1
∣∣S1(π−i, c) > S1(π−i, a) and

∣∣S1(π−i, c) > S1(π−i, b)}
J4 = {π−i ∈ Pn−1

∣∣S1(π−i, a) = S1(π−i, b) > S1(π−i, c)}
J5 = {π−i ∈ Pn−1

∣∣S1(π−i, a) = S1(π−i, c) > S1(π−i, b)}
J6 = {π−i ∈ Pn−1

∣∣S1(π−i, b) = S1(π−i, c) > S1(π−i, a)}
J7 = {π−i ∈ Pn−1

∣∣S1(π−i, a) = S1(π−i, b) = S1(π−i, c)}

The scoring rules are anonymous and neutral when we don’t use tie breaking rules4: all

the individual have the same power, and all the alternatives are equally treated. Thus,

#J1 = #J2 = #J3 and #J4 = #J5 = #J6. J1, J2 and J3 are non empty as soon as

n ≥ 2, J4, J5 and J6 for n = 3 and n ≥ 5, and J7 exists only if n = 3k + 1, k ∈ N.

There are only three possible strategies for the plurality rule: Pa = aPbPc or aPcPb,

Pb = bPaPc or bPaPc and Pc = cPaPb or cPbPa.

Assume that Pi = aPbPc. We want to identify first the strategies that minimize the

number of profiles such that c is selected. Clearly, Pc is not a prudent strategy as using

it instead of Pa will lead to the selection of c instead of a for all the profiles in J5 and

J7 and for some profiles in J3 and J6. Using Pb instead of Pa is useful in J3 each time

S1(π−i, c) = S1(π−i, b) + 1 > S1(π−i, a). By neutrality and anonimity, there is an equal

number of profiles in J3 where S1(π−i, c) = S1(π−i, a) + 1 > S1(π−i, b), in which cases

f(π−i/Pa) = a and f(π−i/Pb) = c. Thus, Pa and Pb are equivalent in order to avoid the

selection of c. Secondly, we want to minimize the number of cases where b is selected;

Pa and Pb are the only left strategies. Clearly, Pa does better than Pb in J2. Voting for

a is a prudent strategy. Similar conclusions can be raised for the other preference types;

this concludes the proof. �
So, why is the plurality prudent, but not d.i.p.e. ? At some point in the proof, Pb

is the only strategy that can avoid the selection of c. So we cannot neither state that

gf (c, Pb) ⊂ gf (c, Pa), nor gf (c, Pb) ⊂ gf (c, Pa)! A protective voter cannot choose between

Pb and Pa, while a prudent voter can use a cardinility argument to eliminate Pb from

her set of admissible strategy. This subtle difference explains the different results we

get for the implementation of the plurality rule and the antiplurality rule.

8 Concluding Remarks

As we have already remarked in the introduction, the concept of self implementation

asks for a given social choice function which behavioral assumptions on the agents are

4For precise statements of these conditions and these results for social choice correspondences and
social welfare functions, see Smith [25] and Young [28].
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compatible with the SCF in the sense that for any profile of individual characteristics ev-

erybody behaving strategically in accordance with that assumption leads to the outcome

prescribed by the social choice function for that profile. Of course, generally there will

be more than one such behavioral assumption. The plurality rule, for example, is self

implementable if we assume demanding behavior (Theorem 24) and also if we assume

prudent or risky behavior (Proposition 33). This is in the same flavor as the concept of

double implementation (cf. Maskin [12]) and should be seen as good news: even if we do

not know exactly how individuals behave we have a whole list of behavioral assumptions

for which we are confident that the SCF under consideration will work. And even if the

plurality is not implementable for some behavioral assumption, it is of interest to find

the domain of profiles under which it is implementable. For example, Lepelley and Mbih

[11] examined its vulnerability to coalitional manipulations, and Dhillon and Lockwood

[7] proposes condition under which the plurality game is dominance solvable.

One may say that these good news even sound better if among the tenable behav-

ior assumptions are two that seem to cover two extreme positions, as prudent versus

risky behavior do. Nevertheless, in the last section, we stressed a different perspective:

Knowing which type of behavior leads to self implementability of a SCF enhances our

understanding of the SCF by telling us in which environments it may or may not be

suitable. In this sense it becomes more important to consider behavioral assumptions

discriminating between different SCFs. It is in this respect that the protective ver-

sus demanding behavior fares better than prudent versus risky because the former pair

drives a clear cut edge between the antiplurality rule and the plurality rule, respectively,

each of them in fact signaling out exactly one from the set of all scoring rules. ¿From

an axiomatic point of view, it would be also interesting in further reasearch to derive

original characterization of the plurality and anti-plurality rules respectively based upon

BI and TI.

Even though we hope we gave a complete picture of the relationships among the different

concepts of risky and prudent behavior we can model for the implementation of SCFs,

we did not tackled this issues for the case of social choice correspondence, i.e. when

the choice set can be multivalued. A preliminary paper [13] proves that it is easy

to adapt the definitions of section 2 and 3 and the proofs of section 4 and 5 to the

case of correspondences. Unfortunately, the simple transposition of the Barberà and

Dutta technique to the correspondence case, although possible, leads to consequence

that are not convincing in term of interpretation: the behavior of the agents implicitly

defines an ordering of the subsets of alternative which does not fit with a risk loving

behavior (see Merlin and Naeve [13] for details). Given these observation, the logical

nest step would be to explecitly introduce ranking on subsets induced by the agent’s

rankings on alternative in a way that is compatible with the demanding behavior we

want to model. We feel that the natural candidate would be the lexicographic maximax

extension characterized by Pattanaik an Peleg [18].
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