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ABSTRACT

As a phenomenon, risk represents a latent quantity of money or equivalent values 
needed as a guarantee. We would like to model in some essential way the approach to 
potential loss caused by various agents. If the interest focuses on security, it is necessary 
to determine a limit. 

The aim of this paper is to refer to relevant literature and show how measure theory 
can be built as a mathematical discipline into economic theory providing thereby risk 
managers with a tool by means of which they will be able to link mathematical and 
economic thought. 
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INTRODUCTION

   From a statistical point of view, a decision-making problem can be considered as a 
game played by two players. One player is reality and the other is a statistician, whereby 
the reality condition denoted by q  is unknown to a statistician.

Let us denote the set of all reality conditions (parameter space) by Ω .
A statistician (operator) takes an action (decision) a , if he/she fi nds out that the reality 

condition is q . 
Let A be a set of all actions or decisions. 
The result of observation is a random variable1 X for which law of probability ( ),f x q  

depends on an unknown parameter q .
If the random variable X takes the value x , the operator makes a decision ( )a d x= , 

whereby ( )d X  is the decision function. 

1 Sarapa, N., Teorija vjerojatnosti, Školska knjiga, Zagreb, 1988 
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     The decision-making procedure itself consists of the following: 

a) We defi ne the set of all possible values q  might take in the problem under  
       consideration.
b) We defi ne the set of all possible actions or decisions which might be made.
c) We defi ne the decision function ( )1 2, ,..., na d X X X=  of a random sample       

       { }1 2, ,..., nX X X
 

In this game the operator (statistician) will have either profi t or loss, depending on the 
decision that will depend on a  and q .

For the purpose of quantitative measuring let us introduce a loss function 

( ) ( )( )1 2, , ,..., ,nL a L d X X Xq q=  as a numeric function which associates number 

( ) ( )( )1 2, , ,..., ,nL a L d x x xq q=  representing loss to every decision ( )1 2, ,..., na d x x x=  
from A and every parameter value q  from Ω . 

       A correct decision is a decision for which loss is equal to zero.
Clearly, loss function ( ),L a q  is a random variable for which the expected value 

( )( ),E L a q  represents a risk obtained by a decision a  when the reality condition is q .
On the basis of the aforementioned, let us introduce a risk function ( ),R d q  as the 

expected value of the loss function ( ) ( )( )1 2, , ,..., ,nR d E L d x x xq q =    .

Two cases might occur:

1) If  X  is a continuous random variable, then   

       

( ) ( )( ) ( ) ( )1 2 1 1, ... , ,..., , , ... , ...n n nR d L d x x x f x f x dx dxq q q q

∞ ∞

−∞ −∞

= ∫ ∫

2) If X  is a discrete random variable, then  

       
( ) ( )( ) ( ) ( )

1 2

1 2 1, ... , ,..., , , ... , .
n

n n

x x x

R d L d x x x f x f xq q q q=∑∑ ∑

Furthermore, two decision functions 1d  and 2d  may be compared by means of 
corresponding risk functions ( )1,R d q  and ( )2 ,R d q . The decision function with the risk 
function taking a less value is a better one.

In order to be able to select a decision function, it is natural to use maximum values of 
the risk function. 

BAYESIAN APPROACH 

Bayesian approach is simple and therefore interesting from the point of view of 
exploitability in the decision-making theory.
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The reality condition is considered to be a random variable q  with the law of probability 

( ),xp q  which is a result of operator’s (statistician’s) personal conviction referring to the 
condition of reality. 

Since q  is a random variable, risk function ( ),R d q  will also be a random variable, 

whereby the associated law of probability reads ( ) ( ) ( ),f x f xq p q q= .
In this case the expected risk function value with respect to the law of probability of 

the a priori parameter q  defi nes a new function (Bayes risk)

( ) ( ), ,r d E R dp q =   .

According to (1) and (2) we have 

I)    ( ) ( ) ( ) ( ), ,r d R d dp q p q q

∞

−∞

= ∫        and 

II)    ( ) ( ) ( )
1

, ,
n

i i

i

r d R dp q p q
=

=∑ , respectively, depending on the random variable 

being continuous or discrete.

In this paper we will implement this approach into risk theory with special attention 
being paid to risk measure, by which security strategies will be optimised.

Naturally, security function depends on many variables and their bounds and the 

problem of risk is located on the fi nite time interval [ ]0, t .
An interesting defi nition of risk was given in 1989 by Castagnoli, not assuming market 

integrity, but defi ning risk as a future unacceptable value in the interval [ ]0, t .

Let us assume that D is a set of acceptable situations, X a random variable of the 
observed situations, and i  the feedback instrument. 

Risk will be measured as minimum additional capital C, which should be invested into 
the project in order to have the value of the new situation C and +X acceptable.  

Risk measure can be taken as mapping
: ,m D R→  ( ) { }inf :m X C Ci X D= + ∈ , whereby we accept all laws from the 

mathematical measure theory2, such as nonnegativity,  subadditivity, translation, etc.
Since we deal with approximation, variance can be used, a mathematical notion 

2 P.R. Halmos, Measure Theory, Van Nostrand, Princeton, New Jersey, 1963
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frequently used in statistics:

( ) ( ) ( )pm X E X k Xs= − +  or ( ) ( ) ( )( )( )pm X E X E X Xs= − + − , where E is 
mathematical expectancy. 

Clearly, measures defi ned in this way are not subadditive3.
Probability distribution cannot be found easily, so that we encounter a defi nition 

problem by means of family p  of possible situations. Let us take risk measure as expected 
loss from the most unfavourable situation

( ) sup :p

X
m X E P

i
p

 − = ∈  
   , least upper bound4.

Let us mention some examples of measures of the previously mentioned type:

• average surplus function (P. Embrechts-C. Kluppenberg-T. Mikosch, 1997)

                 ( ) ( ):V f E X f X f= − >

• retarded measure (Wirch-Hardy, 1999), which introduces a concave function5 
[ ] [ ]: 0,1 0,1d →  with properties ( ) ( )0 0,  1 1d d= =

                                          
[ ] ( )

0

DE X d P X x dx

∞

 = > ∫

A general risk theory is studied well in (C. Fishburn, 1977) using much of the stochastic 
theory and utility theory.

With respect to the situation f  risk is defi ned as the measure 

                            ( ) ( ) ( )
f

m F f x dF xj
−∞

= −∫ , where ( ) ( )0,  0,  0 0y yj j≥ ≥ = , the 

domain is bounded with f, and F is a distribution function6.

Average risk usefulness model exists if and only if there exists a real function H such 
that distribution F is more favourable than G, i.e. if and only if  

                                               
( ) ( )( ) ( ) ( )( ), ,H E F m F H E G m G>

 . 

3 H.L. Royden, Real Analysis, Macmillan, New York, 1968
4 See Appendix A and Appendix B.
5 M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, University Press,   Warszaw, 
1985
6 N. Sarapa, Teorija vjerojatnosti, Školska knjiga, Zagreb, 1988
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Dynamic approach to risk measures 

We have seen how risk is measured in one period. However, very often insurance 
contracts, investments, etc. require a longer period of time, so that time must be clearly 
taken into account when defi ning risk and modelling risk measure.

Let [ ]0, t  be a fi nite time interval and C capital with due time t.
In case of a complete market, whereby there is no arbitration, and there is an interested 

party who cannot invest the whole amount immediately, i.e. in time t=0, so that

                                      ( )
( )0

0 :
C

C E
S t

 
=  

  
, which guarantees certain protection.

( )0S T  is the price of a non-risky investment at the market, E expectancy of the bounded 
risk, and C is a risk that has to be measured.

A very interesting proposal was given in 1999 by J. Cvitanić and I. Karatzes. 
If the model depends on probability distribution, strategies g  should be selected aiming 

at the decrease of expected probabilities of net losses;

                                       ( )
( ) ( )

( )
( )

,

0

inf
x g

C
g G x

C X t
m X E

S t⋅ ∈

 −
=  

  
 , whereby x  is the initial 

capital, and  ( )G x  a set of acceptable situations (strategies).
This measure is agreeing provided that investment strategy X  and liability C  are 

proportional.
This stochastic problem is solved under certain circumstances.

Uncertainty is determined through family ( )a a A
P

∈  strategies.
For the purpose of controlling risk, we determine the interval of possible measures 

with bounds:

 ( )
( ) ( )

( )
( )

,

0

sup inf
x g

g G xa A

C X t
m X E

S t⋅ ∈∈

  −
=       

, whthe most unfavourable strategy (lower

 bound) and ( )
( ) ( )

( )
( )

,

0

inf sup
x g

g G x a A

C X t
M X E

S t⋅ ∈ ∈

  −
=       

, upper bound of the worst strategy.
           

Being familiar with laws of mathematical analysis enables us to divide interval [ ]0, t  
into subintervals [ ], 1n n + , where n  comes from the set of natural numbers and take into 

account that 1nX +V is a change of portfolio values in the interval[ ], 1n n + .

Thus, time interval [ ]0, t  does not make a unit any more, but it is divided into 
subintervals, so that every subinterval is considered separately as a partition Π
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( ) 1

1 sup :
n

n
n n p n

n

X
m X F E x P

i

+
Π +

   
= − ∈Π  

   

V
V V

,
whereby ni  is a feedback instrument.

If { }0,  max ,0
n nm m CΠ Π> −  ensures alleviation of losses to the investor.

If { }0,  min ,
n n nm m CΠ Π< −  gives a possibility of withdrawal from the account, putting 

up with the expected loss.

     It can be easily seen that by means of real series ( ),n na b  the risk measure interval 
is given,

                                         

1

1

inf :

sup :

k
k k

k
k k

n
n nFF

n

n
n nF

F n

X
a E x k K

i

X
b E x k K

i

+

∈Π

+

∈Π

   
= − ∈  

   

   
= − ∈  

   

V
V

V
V

                                          

                                           

{ } { }min ,0 ,max ,0n n n na C b C − − 

for which there holds everything given in the following appendices.

Appendix A

Let ( )n n N
a

∈
 be a real series and S a set of all its accumulation points (S may also be 

an empty set). Element L  of the set R∞  is called the upper limit (limes superior, upper 

accumulation point) of the series ( )n n N
a

∈
 , and it is determined in the following way

( )
( )

( )
n +

,  if the series  is unbounded above;

- , if the series   is bounded above and the set S is empty (i.e. if lim );

supS, if the series is bounded above and the set S is not empt

n n N

n nn N

n n N

a

L a a

a

∈

∈ → ∞

∈

+∞

= ∞ = −∞

y. 







The lower limit (limes inferior, lower accumulation point) of the series ( )n n N
a

∈
 is 

defi ned analogously.
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The upper limit of the series ( )n n N
a

∈
 is denoted by lim sup n

n
a

→+∞
, and the lower limit of 

the same series by lim inf n
n

a
→+∞

.

The upper and the lower limit are unambiguously determined (as elements of the set

R∞ ) for every real series and each of them is a series accumulation point in case the series 
is fi nite.

Hence, if lim sup n
n

a R
→+∞

∈ , we have lim sup maxn
n

a S
→+∞

= , and if lim inf n
n

a R
→+∞

∈ , then

lim inf minn
n

a S
→+∞

= .

In case a real series ( )n n N
a

∈
 is unbounded above i.e. below, the symbol+∞ , i.e. −∞  

is often referred to as its accumulation point. If this is taken into consideration, then the 

sequence of the set R  naturally expanded to the setR∞ , the upper and the lower limit can 
be defi ned with no bounds in the following way: 

                                    lim sup sup
def

n
n

a S
→+∞

=  ,           lim inf inf
def

n
n

a S
→+∞

= ,

but also in this way:

                                     lim sup max
def

n
n

a S
→+∞

=  ,          lim inf min
def

n
n

a S
→+∞

= .

Appendix B 

      1.    Let na  and nb  ( n N∈ ) be real series. If for n  great enough na ≤ nb , then

                                         
lim inf lim infn n
n n

a b
→+∞ →+∞

≤
 and  

lim sup lim supn n
n n

a b
→+∞ →+∞

≤

2. Let ( )n n N
a

∈
 and ( )n n N

b
∈

 be two real series. Excluding the cases with meaningless 
notions, the following inequalities hold:

               

( )

( )

lim inf lim sup lim sup lim sup lim sup ,

lim inf lim inf lim inf lim inf lim sup .

n n n n n n
n n n n n

n n n n n n
n n n n n

a b a b a b

a b a b a b

→+∞ →+∞ →+∞ →+∞ →+∞

→+∞ →+∞ →+∞ →+∞ →+∞

+ ≤ + ≤ +

+ ≤ + ≤ +
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3. If 0na ≥ , 0nb ≥  for n  great enough, then, with the same restriction as before, 
       the following inequalities hold:

       

( )

( )

lim inf lim sup lim sup lim sup lim sup ,

lim inf lim inf lim inf lim inf lim sup .

n n n n n n
n n n n n

n n n n n n
n n n n n

a b a b a b

a b a b a b

→+∞ →+∞ →+∞ →+∞ →+∞

→+∞ →+∞ →+∞ →+∞ →+∞

⋅ ≤ ⋅ ≤ ⋅

⋅ ≤ ⋅ ≤ ⋅

4. For every real series ( )n n N
a

∈
      

                
( ) ( )lim inf lim sup , lim sup lim infn n n n

n n n n
a a a a

→+∞ →+∞ →+∞ →+∞
− = − − = −

,
        

        If ( )0 1,2,...na n> =
, then 

    

                 

1 1 1 1
lim inf , lim sup

lim sup lim infn n
n n n n

n n
a a a a→+∞ →+∞

→+∞ →+∞

= =

,

         where, in addition to the previously adopted convention 
1

0=
+∞

, it is taken  

        that 
1

0
= +∞ .

5. Let ( )n n N
a

∈
 and ( )n n N

b
∈  be two real series. If         

        ( )  and  for  great enough, then n nb n b n→+∞ → +∞ ↑
           
   

       1 1

1 1

lim inf lim inf lim sup lim sup .n n n n n n

n n n n
n n n n n n

a a a a a a

b b b b b b

− −

→+∞ →+∞ →+∞ →+∞
− −

− −
≤ ≤ ≤

− −

INSTEAD OF A CONCLUSION

This paper partially gives a mathematical set of instruments to managers who can  
link a mathematical to an economic thought. 
Risk measure assessment (interval) is given explicitly. 

Dominika Crnjac



249

LITERATURE   

1. P. Artzner, F. Delbaen, J.M. Eber, D. Heath, Coherent risk measures, Mathematical 
Finance, 1999, Vol. 9, pp. 203-228

2. E. Castagnoli, Qualche rifl essione sull’utilitá attesa, Proceed. 13th Italian 
Conference of the Association for Mathematics Applied to Economic and Social 
Sciences, 1989, pp. 993-995

3. J. Cvitanik, I. Karatzas, On dynamic measures of risk, Finance and Stochastics, 
1999, Vol. 3, pp. 451-482

4. C. Fishburn, Mean-risk analysis with risk associated with below-target returns, 
The American Economic Review, 1977, Vol. 67, pp. 116-126

 
5.  P.R. Halmos, Measure Theory, Van Nostrand, Princeton, New Jersey, 1963
 
6.  S. Karlin, Mathematical Methods and Theory in Games, Pergamon Press, 
         London-Paris, 1959                                                                         

7.  M. Kuczma, An Introduction to the Theory of Functional Equations and  
     Inequalities,1985, University Press, Warszawa

8.  J. von Neumann, O. Morgenstern: Theory of Games and Economic Behavior, 
     Princenton University Press, 1953

 9.  H.L. Royden, Real Analysis, Macmillan, New York, 1968
 
10. N. Sarapa, Teorija vjerojatnosti, Školska knjiga, Zagreb, 1988 
      
11. S.D. Stoller, Operations Research: Process and Strategy, University of California  
      Press, Berkley and Los Angeles, 1964
      
12. J.L. Wirch, M.R. Hardy, A synthesis of risk measures for capital adequacy, 
      Insurance: Mathematics and Economics, 1999, Vol. 25, pp. 337-347
      
13. Williams J.D., The compleat strategist, being a primer on the theory of games of
      strategy, Mc Graw-Hill Book Co., New York, 1966 

    

 

RISK MEASURE MODELLING


