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A geometric chracterization of the nucleolus of the assignment game

Abstract: Maschler et al. (1979) provide a geometrical characterization for the intersec-

tion of the kernel and the core of a coalitional game, showing that those allocations that lie

in both sets are always the midpoint of certain bargaining range between each pair of play-

ers. In the case of the assignment game, this means that the kernel can be determined as

those core allocations where the maximum amount, that can be transferred without getting

outside the core, from one agent to his/her optimally matched partner equals the maximum

amount that he/she can receive from this partner, also remaining inside the core. We now

prove that the nucleolus of the assignment game can be characterized by requiring this

bisection property be satisfied not only for optimally matched pairs but also for optimally

matched coalitions.

Key words: cooperative games, assignment games, core, kernel, nucleolus

JEL: C71, C78

Resum: Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i

del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós

conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors.

En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté

aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és

igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest tre-

ball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que

aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions

entre sectors aparellades òptimament.



1 Introduction

A two-sided assignment market consists of two disjoint sets of agents, let us say buyers

and sellers or firms and workers, and a non-negative real number associated with each

possible partnership between two agents of different sectors, that represents the potential

profit of forming that pairing. Assuming transferable utility to share the profits of these

partnerships, Shapley and Shubik (1972) introduce the assignment game to model this

situation in a coalitional form where only individual coalitions and mixed-pair coalitions

are relevant. They show that the core of this game is non-empty and consists of those

individually rational allocations that are efficient and satisfy pairwise stability, that is, no

buyer-seller pair can form a partnership and produce more than the sum of their payoffs.

The core of the assignment game has been widely studied in the literature and, since it very

rarely reduces to only one point, it becomes necessary to make a selection inside the core.

An outstanding element of the core for arbitrary coalitional games is the nucleolus

(Schmeidler, 1969), which is the unique individually rational allocation that lexicograph-

ically minimizes the vector of non-increasingly ordered excesses of coalitions. This defi-

nition can be interpreted as in Maschler et al. (1979), saying that the nucleolus is fair in

the sense that it is the result of an arbitrator’s desire to minimize the dissatisfaction of the

most dissatisfied coalition. In the aforementioned paper it is described a finite process that

iteratively reduces the set of payoffs to a singleton, called the lexicographic center, that is

proved to coincide with the nucleolus. The nucleolus has also been analyzed for different

classes of combinatorial optimization games, take for instance flow games (Deng et al.,

2008) and cyclic permutation games (Solymosi et al., 2005).

Solymosi and Raghavan (1994) present a definition of lexicographic center specialized

for assignment games, based on the fact (already pointed out by Huberman, 1980) that for

assignment games, only one-player coalitions and mixed-pair coalitions play a role in the

calculation of the nucleolus. Making use of that they provide an algorithm that computes

the nucleolus of an assignment game. A specialization of this algorithm to the class of

neighbor games is given in Hamers et al. (2003).2

The kernel is another solution concept for arbitrary coalitional games. It was intro-

2See also Raghavan and Sudhölter (2006) for examples of application of this algorithm.
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duced by Davis and Maschler (1965) and it always contains the nucleolus. It is shown in

Maschler et al. (1979) that for two games with the same core the intersection of the ker-

nel and the core also coincides. In the same paper, a geometric characterization of those

allocations in the intersection of the core and the kernel of a game is given. It is shown

there that an outcome that lies in both the kernel and the core is always the midpoint of a

certain bargaining range between each pair of players. Each endpoint of this range is in

the boundary of the core, representing a maximum demand by one player, in that the other

player can find a coalition to support him in resisting any greater demand. This view of the

kernel gives it an intuitive interpretation as a ”fair division” scheme. However, a similar

geometric characterization of the locus of the nucleolus inside the core is not possible for

arbitrary games, since there are games with the same core but different nucleolus.3 Nev-

ertheless, it is known from Núñez (2004) that two assignment games with the same core

have the same nucleolus.4 This suggests the possibility of characterizing the locus of the

nucleolus in the core of the assignment game.

The kernel of the assignment game is always included in the core (Driessen, 1998)

and it is characterized in Rochford (1984) as those core elements that remain fixed after

a rebargaining process. Driessen (1999) relates Rochford’s bargaining procedure with the

geometric interpretation of the kernel given in Maschler et al. (1979): given an allocation

in the core of the assignment game and an optimally matched pair, one can consider the

maximum amount that can be transferred from one member of the pair to her/his partner,

the payoff to the remaining agents being unaltered, without getting outside the core. In

a kernel element, and for each optimal pair, the transfers of both partners are balanced,

that meaning that the kernel element is at a midpoint with respect to certain ranges of the

core. The aim of the present paper is to determine which other bisection conditions in

terms of transfers are necessary to individualize the nucleolus of the assignment game.

Under the assumption that there are as many buyers as sellers we consider, for each core

allocation and for each subset of buyers, which is the maximum equal payoff that each

of them can transfer to his optimal partner without leaving the core. When this maximum

3See Maschler et al. (1979) page 335.
4An analysis of different assignment games with the same core can be found in Martı́nez-de-Albéniz et

al. (2011a) and Martı́nez-de-Albéniz et al. (2011b).
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transfer equals the maximum transfer of the coalition of partners we say that the initial core

allocation satisfies the bisection property with respect to this coalition of buyers. Then, the

nucleolus of the assignment game is characterized as the unique core allocation that has

the bisection property with respect to all coalitions.

The paper is organized as follows. Section 2 includes the preliminaries about coalitional

games and assignment games and Section 3 contains the geometric characterization of the

nucleolus.

2 Definitions and notations

Let N = {1,2, ...,n} denote a finite set of players, and 2N the set of all possible coalitions

or subsets of N. The cardinality of coalition S is denoted by |S|. Given two coalitions S and

T , S⊆ T denotes inclusion while S⊂ T denotes strict inclusion.

A cooperative game in coalitional form (a game) is a pair (N,v), where v : 2N −→ R,

with v( /0) = 0, is the characteristic function which assigns to each coalition S the worth

v(S) it can attain.

Given a game (N,v), a payoff vector is x ∈RN , where xi stands for the payoff to player

i∈N. The restriction of x to a coalition S is denoted by x|S. An imputation is a payoff vector

x that is efficient, ∑i∈N xi = v(N), and individually rational, xi≥ v({i}) for all i∈N. The set

of all imputations of a game (N,v) is denoted by I(v), and when I(v) 6= /0 the game is said to

be essential. The excess of a coalition S at an imputation x∈ I(v) is ev(S,x) = v(S)−∑i∈S xi.

A solution concept defined on the set of games with player set N is a rule that assigns to

each such game a subset of efficient payoff vectors. The best known set-solution concept

for coalitional games is the core. The core of a game is the set of payoff vectors that are

efficient and coalitionally rational, that is, ∑i∈S xi ≥ v(S) for all S⊆ N. A game with a non-

empty core is called balanced. Given a balanced game (N,v), a well known single–valued

core selection is the nucleolus (Schmeidler, 1969).

Let us define the vector θ(x) ∈ R2n−2 of excesses of all coalitions (different from the

grand coalition and the empty set) at x , arranged in a nonincreasing order. That is to

say, for all k ∈ {1, . . . ,2n−2} , θ(x)k = ev(Sk,x) , where {S1, . . . ,Sk, . . . ,S2n−2} is the set
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of all nonempty coalitions in N different from N , and ev(Sk,x) ≥ ev(Sk+1,x) . Then the

nucleolus of the game (N,v) is the imputation η(v) which minimizes θ(x) with respect

to the lexicographic order over the set of imputations: θ(η(v))≤Lex θ(x) for all x ∈ I(v) .

This means that, for all x ∈ I(v) , either θ(η(v)) = θ(x) or θ(η(v))1 < θ(x)1 or there

exists k ∈ {1,2, . . . ,2n−3} such that θ(η(v))i = θ(x)i for all 1≤ i≤ k and θ(η(v))k+1 <

θ(x)k+1 .

The kernel (Davis and Maschler, 1965) is another set-solution concept for cooperative

games. The kernel, K (v), of an essential cooperative game (N,v) is always nonempty

and it contains the nucleolus. For zero–monotonic games,5 as it is the case of assignment

games, the kernel can be described by

K (v) = {z ∈ I(v) | sv
i j(z) = sv

ji(z) for all i, j ∈ N , i 6= j} ,

where the maximum surplus sv
i j(z) of player i over another player j with respect to the

imputation z is defined by

sv
i j(z) = max{ev(S,z)|S⊆ N , i ∈ S , j 6∈ S} .

We will just write si j(z) when no confusion regarding the game v can arise.

The assignment model

A two-sided assignment market (M,M′,A) is defined by a finite set of buyers M, a finite set

of sellers M′, and a nonnegative matrix A =
(
ai j

)
(i, j)∈M×M′ . The real number ai j represents

the profit obtained by the mixed-pair (i, j) ∈M×M′ if they trade. Let us assume there are

|M|= m buyers and |M′|= m′ sellers, and n = m+m′ is the cardinality of N = M∪M′.

A matching µ ⊆ M×M′ between M and M′ is a bijection from M0 ⊆ M to M′
0 ⊆ M′,

such that |M0| =
∣∣M′

0

∣∣ = min{|M| , |M′|} . We write (i, j) ∈ µ as well as j = µ (i) or i =

µ−1 ( j) . The set of all matchings is denoted by M (M,M′) . If m = m′, the assignment

market is said to be square.

5A game (N,v) is zero-monotonic if for any pair of coalitions S,T , S ⊂ T ⊆ N it holds v(S) +

∑i∈T\S v({i})≤ v(T ).
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A matching µ ∈ M (M,M′) is optimal for the assignment market (M,M′,A) if for

all µ ′ ∈ M (M,M′) we have ∑(i, j)∈µ ai j ≥ ∑(i, j)∈µ ′ ai j, and we denote the set of optimal

matchings by M ∗
A (M,M′) .

Shapley and Shubik (1972) associate to any assignment market (M,M′,A) a cooperative

game in coalitional form, with player set N = M∪M′ and characteristic function wA, de-

fined by: for S⊆M and T ⊆M′,wA (S∪T ) = max
{

∑(i, j)∈µ ai j | µ ∈M (S,T )
}

, M (S,T )

being the set of matchings between S and T . The core of the assignment game is always

non-empty, and it is enough to impose coalitional rationality for one-player coalitions and

mixed-pair coalitions:

C (wA) =



(u,v) ∈ RM

+ ×RM′
+

∣∣∣∣∣∣
∑i∈M ui +∑ j∈M′ v j = wA (N) ,

ui + v j ≥ ai j, for all (i, j) ∈M×M′



 , (1)

where R+ stands for the set of non-negative real numbers. It follows from (1) that, if µ is

an optimal matching, unassigned agents receive null payoff and, moreover,

if (i, j) ∈ µ , then ui + v j = ai j. (2)

Since the assignment game has a non-empty core, its nucleolus always lies in the core.

Moreover, it can be deduced from Huberman (1980) that only individual coalitions and

mixed-pair coalitions need to be taken into account in the computation of the nucleolus of

an assignment game. Solymosi and Raghavan (1994) provide an algorithm to compute the

nucleolus of the assignment game.

As for the kernel of assignment games, it turns out that it is always included in the

core, K (wA) ⊆C(wA) (Driessen, 1998). Moreover, if (u,v) ∈C(wA), then (a) si j(z) = 0

whenever i, j ∈M or i, j ∈M′, and (b) if i ∈M and j ∈M′, then si j(z) is always attained at

the excess of some individual coalition or mixed–pair coalition:

si j(u,v) = max
k∈M′\{ j}

{−ui,aik−ui− vk}.

As a consequence, given (u,v)∈C(wA), we get that (u,v)∈K (wA) if and only if si j(u,v)=

s ji(u,v) for all (i, j) belonging to all the optimal matchings, since the remaining equalities

hold trivially.
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By adding dummy players, that is, null rows or columns in the assignment matrix, we

can assume from now on, and without loss of generality, that the number of sellers equals

the number of buyers.

3 Characterization of the nucleolus

Given an arbitrary coalitional game (N,v), with any core allocation z∈C(v) and any pair of

agents i, j ∈N, there is associated a non-negative real number δ v
i j(z) designating the largest

amount that can be transferred from player i to player j with respect to the core allocation

z while remaining in the core of the game (N,v):

δ v
i j(z) = max{ε ≥ 0 | z− εei + εe j ∈C(v)},

where, for all i ∈ N, ei ∈ RN is the vector defined by ei
i = 1 and ei

k = 0 for all k 6= i, k ∈ N.

This critical number δ v
i j(z) was introduced by Maschler et al. (1979). For any core element

z ∈ C(v), this number δ v
i j(z) is related to the excess sv

i j(z) in the definition of the kernel

by δ v
i j(z) = −sv

i j(z). They prove in the aforementioned paper that a bisection property

characterizes those elements in the intersection of the kernel and the core: z∈C(v)∩K (v)

if and only if z is the midpoint of the core segment with extreme points z−δ v
i j(z)e

i+δ v
i j(z)e

j

and z+δ v
ji(z)e

i−δ v
ji(z)e

j, for all i, j ∈ N. In this section we introduce a stronger bisection

property that characterizes the nucleolus of the assignment game.

Let (M,M′,A) be an assignment market with as many buyers as sellers, that is, |M| =
|M′| = m. For any R ⊆ M or R ⊆ M′, the vector eR ∈ Rm stands for eR

k = 1 if k ∈ R and

eR
k = 0 if k 6∈ R. Then, for each S⊆M and T ⊆M′, S,T 6= /0, we define the largest amount

that can be transferred from players in S to players in T with respect to the core allocation

(u,v) while remaining in the core of wA by

δ wA
S,T (u,v) = max{ε ≥ 0 | (u− εeS,v+ εeT ) ∈C(wA)}. (3)

Similarly,

δ wA
T,S(u,v) = max{ε ≥ 0 | (u+ εeS,v− εeT ) ∈C(wA)}. (4)

We write δS,T (u,v) and δT,S(u,v), respectively, if no confusion arises regarding the assign-

ment game (M∪M
′
,wA).
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Notice that if there exists an optimal matching µ ∈M ∗
A (M,M′) such that S and T do not

correspond each other by this optimal matching (µ(S) 6= T ), then δS,T (u,v) = δT,S(u,v) = 0

for all (u,v) ∈ C(wA). The reason is that if there exists i ∈ S such that µ(i) 6∈ T (and

similarly for j ∈ T such that µ−1( j) 6∈ S) we have that the payoff vector (u′,v′) = (u−
εeS,v + εeT ) will lie outside the core for all ε > 0, since u′i + v′µ(i) = ui − ε + vµ(i) 6=
aiµ(i). This is why we will only consider transfers between coalitions that correspond by

an optimal matching.

Definition 1. Let (M,M′,A) be an assignment market, µ ∈M ∗
A (M,M′) and S⊆M, S 6= /0.

The core allocation (u,v) has the S-bisection property with respect to µ if and only if

δS,µ(S)(u,v) = δµ(S),S(u,v).

Both for theoretical and practical purposes, it will be useful to have an explicit expres-

sion of the critical numbers δS,T (u,v) when S⊆M and µ(S) = T by some optimal matching

µ . Given (u,v) ∈C(wA), if we want the allocation (u′,v′) = (u−εeS,v+εeT ) to remain in

the core of the assignment game, the inequalities ui−ε ≥ 0 for all i∈ S and ui−ε +v j ≥ ai j

for all i ∈ S and all j ∈ M′ \T must hold. This means that, for all (u,v) ∈C(wA), given a

non-empty coalition S⊆M and µ ∈M ∗
A (M,M′),

δS,µ(S)(u,v) = min
i∈S, j∈M′\µ(S)

{ui,ui + v j−ai j}. (5)

and, similarly,

δµ(S),S(u,v) = min
i∈M\S, j∈µ(S)

{v j,ui + v j−ai j}. (6)

At this point it is worth to remark that, by Maschler et al. (1979) and Driessen (1999),

the kernel of the assignment game is the set of core allocations satisfying the {i}-bisection

property for all i ∈ M. Since the nucleolus belongs to the kernel, it satisfies this property.

What we state in the next theorem is that the nucleolus of the assignment game can be

characterized by the S-bisection property, for all S ⊆ M, S 6= /0, and with respect to any

optimal matching µ.

Theorem 2. Let (M,M′,A) be a square assignment market. The nucleolus is the unique

core allocation satisfying the S-bisection property, for all S⊆M, S 6= /0. Formally, if (u,v)∈
C(wA) and µ ∈M ∗

A (M,M′), then

(u,v) = η(wA) if and only if δs,µ(S)(u,v) = δµ(S),S(u,v) for all S⊆M,S 6= /0.
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Proof. We first prove that the nucleolus satisfies the S-bisection property for all S⊆M, S 6=
/0. Let us denote (for short) by η = (η|M,η|M′) the nucleolus η(wA), and let us fix a coalition

S⊆M, S 6= /0. We now consider the core segment [η−S ,η+
S ] that can be obtained from η by

means of doing equal transfers from agents in S to agents in µ(S) (and reciprocally). By

(3) and (4), the extreme points of the segment are

η−S =
(

η|M−δS,µ(S)(η)eS,η|M′ +δS,µ(S)(η)eµ(S)
)

and

η+
S =

(
η|M +δµ(S),S(η)eS,η|M′−δµ(S),S(η)eµ(S)

)
.

For simplicity of notation we will omit the subscript and write η− and η+.

Let K = δS,µ(S)(η)+δµ(S),S(η), then the segment [η−,η+] can be described as the set

of those payoff vectors (u,v) ∈ RM×RM′
for which there exists ε(u,v) ∈ [0,K] such that

ui = η+
i − ε(u,v) for all i ∈ S, ui = η+

i for all i ∈M \S

v j = η+
j + ε(u,v) for all j ∈ µ(S), v j = η+

j for all j ∈M′ \µ(S).
(7)

Note, from the definition of η+ and η−, that εη+ = 0 and εη− = K. Moreover, the nucleolus

η is described taking εη = δµ(S),S.

Since by definition the vector of ordered excesses (with respect to individual and mixed-

pair coalitions) of the nucleolus, θ(η), satisfies θ(η)≤L θ(u,v) for all (u,v) ∈C(wA), we

have, in particular, that θ(η) lexicographically minimizes the vector of excesses θ(u,v)

over [η−,η+]. We will see that η satisfies the equation δS,µ(S)(η) = δµ(S),S(η) or, equiva-

lently, εη = K
2 .

If the segment [η−,η+] reduces to a single point, we are done. Otherwise, let us fix an

arbitrary allocation (u,v)∈ [η−,η+] and analyze first the excesses of mixed-pair coalitions

at (u,v):

• If (i, j) ∈ S×µ(S), and taking (7) into account, there exists ε(u,v) ∈ [0,K] such that

e({i, j},(u,v)) = ai j−ui− v j = ai j− (η+
i − ε(u,v))− (η+

j + ε(u,v))

= ai j−η+
i −η+

j = e({i, j},η+).
(8)

• Similarly, if (i, j) ∈ (M \S)× (M′ \µ(S)), then

e({i, j},(u,v)) = ai j−ui− v j = ai j−η+
i −η+

j = e({i, j},η+). (9)
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Since the excesses of the above coalitions are constant on [η−,η+] they need not be

considered to lexicographically minimize the vector of excesses θ(u,v) over the segment

[η−,η+]. Thus, the relevant excesses of mixed-pair coalitions are those with either one

agent in S and the other one in M′ \µ(S) or one agent in M \S and the other one in µ(S):

• If (i, j) ∈ S× (M′ \ µ(S)), by (7) and the fact that η+
i = η−i + K and η+

j = η−j , we

have
e({i, j},(u,v)) = ai j−ui− v j = ai j− (η+

i − ε(u,v))−η+
j

= ai j−η−i −η−j −K + ε(u,v) ≤−K + ε(u,v).
(10)

• Similarly, if (i, j) ∈ (M \S)×µ(S), then, by (7),

e({i, j},(u,v)) = ai j−ui− v j = ai j−η+
i − (η+

j + ε(u,v))≤−ε(u,v). (11)

Let us now analyze the excesses of individual coalitions at the allocation (u,v) ∈
[η−,η+]. Notice that if i ∈ M \ S, by (7) we have e({i},(u,v)) = −η+

i and similarly, if

j ∈ M′ \ µ(S) it holds e({ j},(u,v)) = −η+
j . Again, since the excess of the above indi-

vidual coalitions is constant on [η−,η+] they need not be taken into account to compute

the lexicographic minimum of the vector of ordered excess over [η−,η+]. It remains to

consider the excesses of individual coalitions at (u,v) with i ∈ S or j ∈ µ(S):

• If i ∈ S, then by (7) and taking into account that η+
i = η−i +K, we have

e({i},(u,v)) =−(η+
i − ε(u,v)) =−η−i −K + ε(u,v) ≤−K + ε(u,v). (12)

• If j ∈ µ(S), by (7) we get

e({ j},(u,v)) =−(η+
j + ε(u,v))≤−ε(u,v). (13)

Now, by definition of η+, there must be some core constraint that is tight at the extreme

point η+ and not at all points of the segment [η−,η+]. If this core constraint were related to

a coalition {i}with i∈ S, then η+
i = 0 would imply, by (7), ui =−ε(u,v)≥ 0 or, equivalently,

ε(u,v) = 0, for all (u,v)∈ [η−,η+], in contradiction with the assumption that [η−,η+] is not

a singleton. Also, if the constraint that is tight at η+ is {i, j}with (i, j)∈ S×(M′\µ(S)) we

have, by the second equality in (10), that for all (u,v) ∈ [η−,η+], e({i, j},(u,v)) = ε(u,v)

and since excesses at core allocations are always non-positive we obtain ε(u,v) = 0 for all

(u,v) ∈ [η−,η+], which implies, as before, a contradiction. This means that either:
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a) There exists (i∗, j∗) ∈ (M \ S)× µ(S) such that η+
i∗ + η+

j∗ = ai∗ j∗, and then for all

(u,v) ∈ [η−,η+], and taking (11) and (13) into account, we have

e({i∗, j∗},(u,v)) = ai∗, j∗−η+
i∗ − (η+

j∗+ ε(u,v)) =−ε(u,v) ≥ e(T,(u,v)), (14)

for all T = {i, j} with (i, j) ∈ (M \S)×µ(S) and all T = { j} with j ∈ µ(S).

b) Or there exists j∗ ∈ µ(S) with η+
j∗ = 0, and then for all (u,v) ∈ [η−,η+], again taking

(11) and (13) into account, we have

e({ j∗},(u,v)) =−ε(u,v) ≥ e(T,(u,v)), (15)

for all T = {i, j} with (i, j) ∈ (M \S)×µ(S) and all T = { j} with j ∈ µ(S).

Similarly, there must be some core constraint that is tight at η− and not at all other

points of [η−,η+]. If this core constraint were related to a coalition { j} with j ∈ µ(S),

then η−j = 0 would imply, by (7), v j = η+
j + ε(u,v) = η−j −K + ε(u,v) =−K + ε(u,v). Since

ε(u,v) ∈ [0,K] and v j ≥ 0, we have v j = 0 for all (u,v) ∈ [η−,η+]. Also, if the constraint

that is tight at η− is {i, j} with (i, j) ∈ (M \ S)× µ(S) we have by (11), and the fact

that η−i = η+
i and η−j = η+

j +K, e({i, j},(u,v)) = ai j−η+
i − (η+

j + ε(u,v)) = ai j−η−i −
(η−j −K + ε(u,v)) = K− ε(u,v) ≤−ε(u,v), for all (u,v) ∈ [η−,η+], which implies K = 0 or,

equivalently, the reduction of the segment [η−,η+] to only one point, in contradiction with

our assumption. This means that either:

c) There exists (i∗, j∗) ∈ S× (M′ \ µ(S)) such that η−i∗ + η−j∗ = ai∗ j∗, and then for all

(u,v) ∈ [η−,η+], and taking (10) and (12) into account, we have

e({i∗, j∗},(u,v)) =−K + ε(u,v) ≥ e(T,(u,v)), (16)

for all T = {i, j} with (i, j) ∈ S× (M′ \µ(S)) and all T = {i} with i ∈ S.

d) Or there exists i∗ ∈ S with η−i∗ = 0, and then for all (u,v) ∈ [η−,η+], again taking (10)

and (12) into account, we have

e({i∗},(u,v)) =−K + ε(u,v) ≥ e(T,(u,v)), (17)

for all T = {i, j} with (i, j) ∈ S× (M′ \µ(S)) and all T = {i} with i ∈ S.

12



To sum up, let us denote by C the set of coalitions that are essential for the computation

of the nucleolus of the assignment game (individual and mixed-pair coalitions). Then, for

all (u,v) ∈ [η−,η+] we have

max
S∈C

e(S,(u,v)) = max{−ε(u,v),−K + ε(u,v)}

and thus

min
(u,v)∈[η−,η+]

max
S∈C

e(S,(u,v))

is attained at the point (u,v) ∈ [η−,η+] such that −ε(u,v) =−K + ε(u,v), that is ε(u,v) = K
2 .

Since the nucleolus lexicographically minimizes the vector of excesses over the segment

[η−,η+] we deduce that εη = K
2 and thus, since εη = δµ(S),S(η), we have δS,µ(S)(η) =

δµ(S),S(η), which proves the S-bisection property of the nucleolus with respect to the arbi-

trary coalition S⊆M.

To conclude the proof we must see that a core allocation different from the nucleolus

fails to satisfy the S-bisection property for some coalition S ⊆ M,S 6= /0. Let us consider

z ∈C(wA) such that z 6= η . This implies the existence of a non-empty coalition S⊆M such

that zi > ηi for all i ∈ S and zi ≤ ηi for all i ∈M \S(otherwise we interchange the roles of z

and η). As a consequence, it follows from (2) that z j < η j for all j ∈ µ(S) and z j ≥ η j for

all j ∈M′ \µ(S). Then, making use of expressions (5) and (6),

δS,µ(S)(z) = min
i∈S, j∈M′\µ(S)

{zi,zi + z j−ai j}> min
i∈S, j∈M′\µ(S)

{ηi,ηi +η j−ai j}
= min

j∈µ(S),i∈M\S
{η j,ηi +η j−ai j}> min

j∈µ(S),i∈M\S
{z j,zi + z j−ai j}= δµ(S),S(z),

where the second equality follows from the fact that δS,µ(S)(η)= δµ(S),S(η). Then, δS,µ(S)(z)>

δµ(S),S(z) implies that z does not satisfies the S-bisection property.

Let us stress that Theorem 2 is useful to check if a given allocation in the core of an

assignment game (M∪M′,wA) is in fact its nucleolus. Moreover, whenever several optimal

matchings exist, the difficulty of the problem may be reduced. Indeed, because of the re-

mark made after expression (4), it is enough to check that the given allocation satisfies the

S-bisection property for all coalitions S⊆M that have the same image by all optimal match-

ings µ ∈M ∗
A (M,M′). Formally, if S =

{
S⊆M | µ(S) = µ ′(S) for all µ, µ ′ ∈M ∗

A (M,M′)
}

,

then

η(wA) =
{
(u,v) ∈C(wA) |δS,µ(S)(u,v) = δµ(S),S(u,v) for all S ∈S

}
. (18)
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Also, after Theorem 2 one may wonder if the nucleolus of the assignment game could

be characterized by imposing the bisection property for some smaller subset of coalitions

of M. The next example shows that, in this sense, our characterization cannot be refined.

Example 3. Let it be the assignment market with set of buyers M = {1,2,3}, set of sellers

M′ = {4,5,6} and defined by matrix

A =




7 6 3

5 4 1

3 2 1


 .

This market has two optimal matchings: µ1 = {(1,4),(2,5),(3,6)} and µ2 = {(1,5),(2,4),(3,6)}.

Thus, to check that a given allocation is the nucleolus we only need to verify that it

satisfies the bisection property for those S ⊆ M such that µ1(S) = µ2(S). In this case,

η(wA) = (3.5,1.5,0.5;3.5,2.5,0.5) since it satisfies the bisection property with respect to

coalitions {3}, {1,2} and {1,2,3}. Moreover, if we consider the core element (u,v) =

(3,1,0.5;4,3,0.5) we realize that δ{3},{6}(u,v) = 0.5 = δ{6},{3}(u,v), δM,M′(u,v) = 0.5 =

δM′,M(u,v), but δ{1,2},{4,5}(u,v) = 0.5 while δ{4,5},{1,2}(u,v) = 1.5. This last remark shows

that the characterization of Theorem 2 cannot be improved.
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[7] Martı́nez-de-Albéniz FJ, Núñez M, Rafels C (2011a) Assignment markets that are

uniquely determined by their core. European Journal of Operational Research 212,

529–534.
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