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Abstract

The estimation of the jump component in asset pricing has witnessed a considerably growing
body of literature. Of particular interest is the decomposition of total volatility between its
continuous and jump components. Recent contributions highlight the importance of the
jump component in forecasting the volatility at different horizons. In this paper, we extend
the methodology developed by Maheu and McCurdy (2011) to measure the information
content of intraday data in forecasting the density of returns at horizons up to 60 days. We
extract jumps as in Andersen, Bollerslev, Frederiksen and Nielsen (2010) to have a measure
of the jumps in returns. Then, we estimate a bivariate model of returns and volatilities
where the jump component is independently modeled. Our empirical results for S&P 500
futures, WTI crude oil futures, and the USD/JPY exchange rate confirm the importance of
considering the continuous/jump decomposition for density forecasting.
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1 Introduction

When it comes to forecasting the distribution of returns for risk management purposes, is the

separation between volatility and jumps equally important? In a reference paper, Andersen et

al. (2007) provide empirical evidence that disentangling jumps from the continuous component

significantly help in forecasting the realized volatility at horizons up to 22 days. The explana-

tion for this result is the strong persistence in the continuous component and the absence of

autocorrelation in the jump component. Recently, Hansen et al. (2011), Shephard and Shep-

pard (2010), and Maheu and McCurdy (2011) have suggested “complete” models of returns and

volatility. In particular, Maheu and McCurdy (2011) propose a bivariate specification of returns

and volatility to obtain density forecasts at horizons up to 60 days. They confirm, in the density

context, numerous previous findings that intraday data improve forecasts. The estimation of a

multivariate models possesses interesting characteristics compared to the separate estimation of

an univariate model. Namely, multivariate models allow to obtain densities forecasts.1 Maheu

and McCurdy (2011) allow for a rich underlying distribution in the return equation, by using

mixture of normals (see Bertholon et al., 2006). We merge these two strands of this recent liter-

ature to investigate whether the separation between the continuous and the jump components is

of central importance in predicting the density of returns. Our results strongly argue in favor of

separating the two components when forecasting the density of returns up to 60 days. Indeed,

disentangling jumps from the continuous component help in forecasting the density of returns.

Econometric methods used to disentangle jumps and volatility are unveiling new empirical

questions. While recent developments in financial econometrics allow to derive better forecasts

of return densities (see Corradi and Swanson (2006) for a recent survey), the issue of the inclusion

of the jump component and its information content for such a purpose has not been investigated

to date. Hence, in this paper, we examine whether this refinement to use a clear differentiation

between jumps and continuous volatility is empirically worth the trouble in a density forecasting

exercise. We conduct such an analysis at various horizons (up to 60 days), thus allowing a very

detailed analysis of the effects we are interested in.

Forecasting density is essential in empirical finance applications such as portfolio choice, risk

management activities or derivatives pricing. Each activity requires indeed a full specification of

the return distribution. Forecasts of the future values of economic variables are used widely in

decision making. Point forecasts, the often traditional focus, are better seen as the central points

of ranges of uncertainty. Consequently, to provide a complete description of the uncertainty

associated with the point forecast many professional forecasters now publish density forecasts,

or more popularly fan charts. In contrast to interval forecasts, which give the probability that

the outcome will fall within a stated interval, density forecasts provide a complete description

of the uncertainty associated with a forecast. They can thus be seen to provide information on

1It has also advantages when residuals of univariate models are contemporaneously correlated as highlighted in
Bollerslev et al. (2009). We do not consider here the possible correlation between errors in single equations,
which is left for further research.
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all possible intervals. In conjunction with the increased use of density forecasts by professional

forecasters and central banks, the academic literature has also devoted increased emphasis to

density forecasting (for surveying methods for predictive density evaluation, see among others

Tay and Wallis (2000), Clements (2005), Timmermann (2006) and Wallis (2007)).

This paper adopts the parsimonious specification of the Heterogeneous Autoregressive Model

of the Realized Volatility (HAR-RV) model by Corsi (2009) to capture the well-known long-

memory dependence in volatility. We also proceed with the detection of jumps following Huang

and Tauchen’s (2005) statistical test relying on the bipower variation (BPV) estimator. We

adapt the test statistic to the newly developed median realized volatility (MedRV) following

the empirical work by Theodossiou and Zikes (2009) showing the interesting properties of this

estimator.

By using intraday data, it is possible to extract jumps as the difference, when statistically

significant, between realized volatility and bipower variation/median realized volatility. This

decomposition allows to include (or not) jumps for forecasting purposes. Based on the link

between the conditional variance and the realized volatility highlighted by Maheu and McCurdy

(2011), we estimate two kinds of models: (i) EGARCH models based on daily data, and (ii)

bivariate models based on intraday data including jumps (realized volatility) or not (bipower

variation, median realized volatility). The motivation behind considering jump-robust measures

for realized volatility is that they simply have better predictive properties than non-jump-robust

ones (see Shephard and Sheppard (2011), footnote 3).

As mentioned above, we rely on Maheu and McCurdy’s (2011) bivariate model to simultaneously

estimate returns and volatilities, while assuming a possible leverage effect. The cornerstone of

the model is the link that the authors establish between some realized volatility estimators and

the “true” conditional volatility in light of the theory underlying these estimators. Such a model

allows to derive density forecasts from intraday data which can be compared between them or

to standard EGARCH models. This comparison between EGARCH and bivariate specifications

for daily returns and realized volatilities (“naive” and jump-robust estimators) is conducted

by using the predictive likelihood of returns (Diebold and Mariano (1995) and Amisano and

Giacomini (2007)). We find that intraday data convey most of the asset’s informational content,

as discussed by Taylor and Xu (1997), among others, for the point forecast case. Recall that

the central goal of the paper is to assess the contribution of jumps in forecasting the density

of returns thereby extending our understanding of the information contained in the different

components of the volatility process. The bivariate model is estimated through maximum

likelihood with possibly a mixture of normals, which allows to improve significantly the goodness-

of-fit of the model.

This paper makes three contributions: 1) we extend the framework of Maheu and McCurdy

(2011) and show how to model jumps in their bivariate framework, 2) we confirm their findings

that intraday data yield to better densities forecasts than daily data for a larger set of financial

series, and 3) we assess the importance of jumps when forecasting the density of returns by
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comparing jump-robust and non-jump-robust measures of realized volatilities. Compared to

the “naive” measure of realized volatility, considering jumps specifically provides significant

improvement on the accuracy of forecasts of return densities. We thus extend the results in

Andersen et al. (2007) (see also Corsi et al. (2010)) in showing the importance of disentangling

jumps from the continuous component for forecasting purposes.

The remainder of the paper is organized as follows. Section 2 details our modeling strategy for

jumps, the choice of volatility estimators using intraday data and the methodology to estimate

the bivariate model. Section 3 discusses the empirical results. Section 4 concludes.

2 Volatility, jumps and discrete time series model specification

In this section, we present first the time series models, second the parameter estimation proce-

dures, and third the density forecast comparison tests.

2.1 Time series models

The aim of our article is to present empirical evidence regarding the interest of disentengling

jumps from volatility when it comes to forecasting the density of returns. To do so, we evaluate

the relative forecasting performances of different discrete time time series models. These models

are selected for their ability to handle non-Gaussian distributions and time varying volatility.

Jumps have indeed an effect on both the unconditional distribution of returns and volatility.

Their impact on times series models can be of three kinds:

– Jumps can be captured through the conditional distribution chosen in the discrete time

series models.

– Jumps can impact the measurement of volatility, as revealed by the now large literature

on realized risk measures.

– Jumps can impact the dynamics of volatility, as in most time series models the conditional

volatility is computed from past returns or residuals that incorporate a jumps component

by essence.

When a model would be able to handle these three aspects in a way that disentangles jumps

from volatility components, the question of its superior ability to produce density forecast would

still require to be considered. We base our empirical work on the three following time series

models:

– A conditionally Gaussian model:

rt = µ + σtǫt, (1)
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with ǫt ∼ N(0, 1). This model naturally ignores jumps. The only source of leptokurticity

in the returns’ process comes from the time varying behavior of volatility.

– A model based on a mixture of two Gaussian distributions for its conditional distribution:

rt = µ + σtǫt, (2)

with ǫt ∼ MN(θ, µ1, σ1, µ2, σ2). This model accomodates jumps in two different ways:

first, jumps are captured through ǫt that is obtained by mixing two different Gaussian

densities. As presented in Bertholon et al. (2006), this distribution is able to span a very

large scope of couples of kurtosis and skewness. Possibly, this distribution is consistent

with a mixture of a Gaussian distribution and of an extreme-type of jumps (see Section

4.2. in Bertholon et al. (2006)). However for most of the methodologies used here, condi-

tional volatilities σt are functions of ǫt−1. With this modelling approach, the dynamics of

volatility is a function of past jumps.

– A model mixing a conditionally Gaussian distribution with jumps:

rt = µ + σtǫt +

Nt
∑

i=0

xi,t, (3)

with ǫt ∼ N(0, 1), xi,t ∼ N(µx, σx) and Nt ∼ P(λ). With such an approach, the past

volatility is no longer a function of past jumps, as ǫt has been cleansed from the jump

component. This latter component is assumed to be captured by
∑Nt

i=0 xi,t, that is through

a separated component.

For each of these models, the structure for the continuous volatility is an Heterogenous Autore-

gressive Model, as presented in Corsi (2009). We propose to use this specification jointly with

different high frequency measures of volatility:

– The realized variance for day d that is given by the sum of squared intraday returns:

RVd,M =

M
∑

j=1

r2
d,j , (4)

where the rd,j are intraday returns computed as rd,j = pd,j−pd,j−1 for j = 1, ...,M . pd,j are

intraday observations allowing to compute M continuously compounded intraday returns

each day.

– Barndorff-Nielsen and Shephard (2004)’s bipower variation (BPV) measure, which is com-

puted as the scaled summation of the product of adjacent absolute returns. Formally, BPV

is defined as follows:

BPVd,m = ξ1

M−1
∑

j=1

|rd,j+1||rd,j | (5)

5



where ξp ≡ 2p/2Γ(1/2(p+1)
Γ(1/2) ) = E(| Z |p) denotes the mean of the absolute value of standard

normally distributed random variable2, Z. The BPV is a consistent estimator of integrated

volatility, and allows to decompose the realized volatility into its diffusive and non-diffusive

parts. As the sampling frequency increases, the presence of jumps should have no impact

because the return representing the jump is multiplied by a non-jump return which tends to

zero asymptotically. This is true in case of rare jumps (one each day) when the probability

of two consecutive jumps is negligible.

– Nevertheless, the BPV can be upward or downward biased in empirical applications as

the sampling frequency is not high enough to eliminate the influence of jumps (or in

presence of zero-return). This has motivated the need for alternative estimators which do

not suffer from this weakness. Recently, Andersen et al. (2009) suggested the following

median realized volatility (MedRV) estimator:

MedRVN =
π

6 − 4
√

3 + π

(

N

N − 2

) N−1
∑

i=2

med(| ∆Yi−1 |, | ∆Yi |, | ∆Yi+1 |)2 (6)

The MedRV estimator has two main advantages: first, the impact of jumps completely

vanishes except in the case of two consecutive jumps (which is quite rare at the sampling

frequencies used in our empirical application) and second, the estimator is more robust to

occurence of zero-returns.3

In Section 3, we discuss different empirical key elements related to the use of such volatility

measures, such as the intra-day sampling frequency. Using both the BPV and the MedRV, we

present in the meantime a way to estimate jumps from intra-day time series. For the time being,

we assume that jumps are observable.

Now, we discuss the joint dynamics of volatility and returns. Maheu and McCurdy (2011) relate

the conditional variance of daily returns σ2
t to the realized volatility estimator through a cross-

equation restriction. Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003) show

that under empirically realistic assumptions, the conditional variance of daily returns should

equal the conditional expectation of quadratic variation, or:

Et−1(QVt) = V art−1(rt) ≡ σ2
t , (7)

2This notation is used consistently in the paper.
3We could use other estimators to obtain measures of integrated variance, such as QRV (Christensen et al., 2009)
estimator, which are shown to be more robust in the presence of microstructure noise and zero-returns. A
comparison of these estimators and their properties for density forecasting is beyond the scope of this paper and
left for future research.
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where Et−1 stands for the conditional expectation at time t − 1, QVt the quadratic variation,

V art−1(rt) and σ2
t the conditional variance of returns. Assuming that RVt is an unbiased

estimator of QVt, it follows that:

σ2
t = Et−1(RVt). (8)

In other words, the one-period-ahead conditional expectation of the realized volatility should

equal the “true” conditional volatility assuming the unbiasedness of the realized volatility es-

timator. Under the assumption of a log-normal distribution for the realized volatility4 , the

conditional expectation can then be expressed as:

σ2
t = Et−1(RMt) = exp

(

Et−1 log(RMt) +
1

2
Vart−1(log(RMt))

)

. (9)

with RMt a given realized measure (RVt, BPVt, MedRVt).

We now turn to the specification of a predictive model for realized volatility. The HAR-RV

model initially developed in Corsi (2009) has been used with success in a number of recent con-

tributions (Andersen et al. (2007), Corsi et al. (2008), Liu and Maheu (2009), among others).

The economic intuition behind this model is that different groups of investors have different

investment horizons, and consequently behave differently (see Muller et al. (1997) for the pre-

sentation of the H ARCH original model relying on the Heterogeneous Hypothesis). The genuine

HAR-RV model is formally a constrained AR(22) model using RV as the realized measures of

variance but the HAR can naturally accommodate all realized measures and transformations

of these measures.5. The HAR-RV model using daily, weekly and monthly6 realized volatility

components may be written as follows:

√

RVt = α0 + αd

√

RVt−1 + αw(
√

RV )t−5:t−1 + αm(
√

RV )t−22:t−1 + ut. (10)

The error term ut is chosen to fit the distribution of the residuals, but could very well be

modeled as a GARCH error (see Corsi et al. (2008), Bollerslev et al. (2009)). Since the

logarithmic transformation exhibits superior forecasting performance (Andersen et al. (2007)),

4Empirical evidence of this hypothesis can be found in early contribution such as ABDL (2001a and b, 2003).
Similar evidence for foreign exchange rates, futures markets, crude oil futures and the FTSE index may be found
in Pong et al. (2004), Thomakos and Wang (2003), Wang et al. (2008) and Areal and Taylor (2002), respectively.

5Forsberg and Ghysels (2007) and Ghysels and Sohn (2009), note that other power transformations may be used
to model the dynamics of the realized volatility. These studies show that for a number of stochastic volatility
processes used in the financial literature the absolute value of the realized volatility is a better predictor of the
future realized volatility, particularly for longer horizons. We do not follow this approach here.

6The optimal lag structure for the HAR model has been investigated in Craioveanu and Hillebrand (2010) who
find that the genuine structure suggested in Corsi (2009) performs the best.
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we retain the following specification:

log(RVt) =ω + φ1 log(RVt−1) + φ2 log(RVt−5,5) (11)

+ φ3 log(RVt−22,22) + γǫt−1 + ηvt vt ∼ NID(0, 1) (12)

The error term in the volatility equation is assumed to follow a standard Gaussian, as it is

well-known since Andersen et al. (2001) that the logarithmic transformation of the realized

volatility is normally distributed. The latter specification captures asymmetries coming from

two distinct sources: leverage effects (through γ), and unconditional asymmetry (with the mix-

ture of normals).

Densities forecasts using intraday futures will be compared with forecasts obtained with the tra-

ditional EGARCH model based on daily data. The EGARCH model considered is the standard

specification by Nelson (1991):

rt = µ + σtǫt, ǫt ∼ NID(0, 1) (13)

log(σ2
t ) = ω + β log(σ2

t−1) + γut−1 + ξ|ǫt−1| (14)

To make comparisons easier, a leverage term is introduced in the volatility equation. Depending

on the standardized return innovation ut in the return equation, the volatility is impacted

through the coefficient γ. The estimated value of this coefficient is generally found to be negative.

Indeed, an unexpected fall in returns translates into a positive impact on the level of volatility.7

2.2 Parameters estimation of the time series models

The models presented in Section 2.1 are similar to those presented in Maheu and McCurdy

(2011). As in their case, the estimation is performed by maximum likelihood: the estimation is

possible as both the returns and the volatility are observed.8 On top of that – and in a similar

fashion to Maheu and McCurdy (2011) – we assume that ǫt and vt, that is the disturbances

respectively associated to the returns and volatility, are uncorrelated.9 As it is well-known since

Bertholon et al. (2006), the mixture of normals yields to estimates by QML which are very

close to the true distribution.

We discuss rapidely the estimation of the model presented at equation (3)-(12,13). Let r̃t be

7Note that the model does not allow the asymmetry to propagate into future volatility as in the EGARCH model.
8As in Maheu and McCurdy (2011), we do not resort to Monte-Carlo simulations, which would be too computa-
tionally demanding in terms of numerical implementation, particularly in a rolling window setting that we adopt
for the out-of-sample forecasting comparison.

9The assumption of conditional independence does not lead to unconditional independence as the two equation
are related through the leverage term. A more complete model allowing for conditional dependence has been
developed in Bollerslev et al. (2009).
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the ex-jump return, that is

r̃t = rt −
Nt
∑

i=0

xi,t. (15)

Let Ωt be vector containing the following three processes:

Ωt = (r̃t, σt, Jt), (16)

where Jt is the jump component, that is
∑Nt

i=0 xi,t. The estimation of the parameters driving

the joint behavior of the three processes can be obtained by maximizing their joint likelihood.

The conditional joint density given the past observation of Ωt can be writen as follow:

f(r̃t, σt, Jt|Ωt−1) = f(r̃t, Jt|Ωt−1, σt)g(σt, Jt|Ωt−1) (17)

= f(r̃t|Ωt−1, σt)g(σt, Jt|Ωt−1)h(Jt|Ωt−1, σt). (18)

In equation (20)-(21), f(.), g(.) and h(.) are marginal densities. Equation (21) is obtained as

r̃t and Jt are assumed to be independant. The maximization of the joint loglikelihood then

clearly amounts to maximizing each of its three components independently, given that they do

not share common parameters.

Maximum likelihood estimates are thus obtained through the following expressions:

max
θr̃

T
∑

t=1

log f(r̃t|Ωt−1, σt) (19)

max
θσ

T
∑

t=1

log g(σt, Jt|Ωt−1) (20)

max
θJ

T
∑

t=1

log h(Jt|Ωt−1, σt). (21)

As jumps are i.i.d. random variables, it is possible to obtain closed form expressions for the

model’s parameters estimates:

λ̂ =
1

T

T
∑

t=1

Nt (22)

µ̂x =
1

∑T
t=1 Nt

T
∑

t=1

Nt
∑

i=0

xi,t (23)

σ̂2
x =

1
∑T

t=1 Nt

T
∑

t=1

Nt
∑

i=0

(xi,t − µ̂x)
2
. (24)

9



Such a straightforward estimation approach is made possible by two key elements: first, the

fact that the volatility σt is included within the filtration at time t; second, we assume that
∑Nt

i=0 xi,t is observable and unrelated to the other components in the dynamics of rt. With

such an approach, we obtain a realistic split between the contributions of jumps and those of

volatility to the evolutions of rt.

2.3 Density forecasting power comparison

To compare the various models presented earlier, we rely on out-of-sample density forecasting

exercises. This subsection presents the empirical approach that we retained.

To compare density forecasts between the standard EGARCH model and the bivariate model

of daily returns and HAR, we use a criteria known as the predictive likelihood (or loga-

rithmic score). The average predictive likelihood over the out-of-sample observations t =

τ + kmax, . . . , T − k is:

DM,k =
1

T − τ − kmax + 1

T−k
∑

t=τ+kmax−k

logfM,k(rt+k | Φt, θ), k ≥ 1 (25)

with fM,k(x | Φt, θ) the k-period ahead predictive density for model M, given Φt and parameter

θ, evaluated at the realized return x = rt+k. Therefore, better forecasts will translate into larger

DM,k.

We use a rolling window scheme to evaluate the predictive power of our forecasts. As in Maheu

and MacCurdy (2011), compute the 1 to 60 day-ahead forecasts for each window. We thus

obtain T − τ − kmax + 1 data blocks for each asset. For each block, we compute the predictive

likelihoods and then average over all blocks.

To evaluate the relative accuracy of competing forecasts, we rely on the test statistics developed

by Diebold and Mariano (1995) in the context of the comparison of density forecasts (Amisano

and Giacomini, 2007). The null hypothesis is that predictive likelihood forecasts of horizon h

and models A and B have the same performance. The test statistics is given by:

tkA,B =
(DA,k − DB,k)

(σ̂A,B,k)√
T−τ−kmax+1

(26)

which is asymptotically standard normal. As for the interpretation of the Diebold and Mariano

(1995) (DM) test, a significant positive (negative) estimated value rejects the null of equal per-

formance between competing forecasts, and provides evidence in favor of model A (B).
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An additional issue arises when computing the Amisano and Giacomini (2007)’s test statistics

when the jumps are explicitly incorporated within the data generating process of rt. Indeed,

as future jumps are unobservable, we need to compute the conditional distribution of rt+h

conditionally upon the information available at time t.

f(rt+h|Ft) =

∞
∑

i=0

f(rt+h|Ft, Nt+h = i) × P (Nt+h = i), (27)

where P (Nt+h = i) is the probability that the number of jumps between the date t + h− 1 and

t + h is equal to i, given the estimated parameters. Given the estimated values for the average

number of jumps by working day, we approximate the previous quantity by truncating the

previous infinite sum. We compute it from i = 0 to 10. Beyond this threshold, the results of the

numerical tests remain qualitatively unaffected. In the various HAR-based models considered

here, f(rt+h|Ft, Nt+h = i) is computed as in Maheu and McCurdy (2011) and in the previously

mentioned cases that are not based on an explicit modeling of jumps. We also follow Maheu and

McCurdy (2011) for the simulations, computations, and the use of the Newey-West long-run

variance (HAC) again to make our results comparable with theirs.

3 Empirical Results

In this section, we present first the data used. Then, we detail the procedures used to find

the optimal sampling frequency when using intraday data and to extract jumps. Finally, we

comment in details the results obtained for all types of models (with/without jumps), along

with the comparison of density forecasts.

3.1 Dataset

In our empirical analysis, we use tick-by-tick data from three different classes of assets: stock

index futures, energy futures, and exchange rate. While all assets are very liquid (and are

therefore suitable for using realized estimators), we need to remove days where the trading

activity has not been sufficient to compute these estimators. To this end, we filter our time

series with respect to three parameters: the length of the trading period in the day, the number

of zero-returns and the number of transactions. Let us describe below each asset considered in

the empirical analysis, and provide more details about the cleaning procedure.

The S&P 500 futures data is a very liquid contract traded on the CME which is a tradable asset

in opposition with the underlying S&P 500 cash index. The time span for the S&P 500 futures

is from January 1, 1996 to July 31, 2008 (3,192 trading days originally). As is usual, we consider

the continuous series of the front month contract using a rollover procedure which selects the
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largest volume each day to jump from one contract to the next.10. Trading of the S&P 500

futures contract occurs from 8:30 AM to 3:15 PM which should, on normal days, provide 81

intraday returns when using a sampling interval of 5 minutes.11 We remove days with less than

81 returns which is generally an indication of part closure of the trading place. We check that

all accepted days have a sufficient number of transactions, and a limited number of zero-returns

as well. After cleaning the data, we obtain a sample of 3,135 days. For these selected days, the

average number of trades for the continuous rollover series is 3,090 (the total number of ticks

is equal to 9,809,697). We observe a relative stability of the number of transactions each day

during the whole period.

Our second asset is the West Texas Intermediate (WTI) light sweet crude oil futures contract,

traded on the New York Mercantile Exchange (NYMEX) now a branch of CME. The rollover

series is built as explained previously for the S&P 500. The period considered is from October

8, 2001 to January 15, 2010. The WTI contract is one of the most traded futures contract

in the world. The total number of ticks for the continuous time series of the front month

contract is equal to 52,099,419. The trading period for the WTI futures is from 9:00 AM to 2:30

PM, which should provide 60 intraday returns each day (54 intraday returns for the September

2001/January 2007 period where trading began at 10:00 AM). Similarly to the previous asset,

we remove days with less than 60 (54) intraday returns, days with more than 15 zero-returns,

and days with less than 700 registered ticks. The number of observations is therefore reduced

from 2,140 days to 2,081 days when all these requirements are met. The mean number of trades

is equal to 25,035. In contrast to S&P 500 futures, this figure is very different before and after

mid-2006, which is mainly due to the launch of electronic trading.12

The USD/JPY exchange rate, the third asset, covers the period going from December 30, 1996

to June 1, 2007, i.e. a sample of 2,701 days (2,720 initially before cleaning the data) with a

total of 22,530,929 transactions (8,342 ticks per day on average). As in previous contributions

(see Andersen et al. (2001) among many others), we consider the period going from 9:00 PM to

8:59 PM the next day as a unit period, because the FX market is opened on a 24-hour window.

Insert Figure 1

Figure 1 displays the time-series of S&P 500 futures, WTI futures, and the USD/JPY exchange

rate, along with the open-to-close log-returns.13 As may be seen from these plots, we include

in our analysis time-series with very different properties: more or less pronounced volatility

clustering, bear and bull markets, extreme variations in a short period of time, etc.

10We do not build our continuous series using a fixed number of days prior to maturity, thus avoiding calendar
effects.

11We discuss the issue of sampling frequency in the next section.
12We have an average number of 2,214 ticks per day during the September 4, 2001 / August 31, 2006 period vs.

57,054 ticks for the September 1, 2006 / January 15, 2010 period.
13We choose to work with open-to-close returns because overnight returns have shown to follow a very different

dynamics. In addition, including overnight returns may alter our analysis when standardizing returns as we work
with volatility computed with intraday transaction data.
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Insert Table 1

We also present summary statistics for all time series in Table 1. We observe that the realized

volatility and the bi-power variation measures present nonzero skewness and excess kurtosis.14

These descriptive statistics therefore reveal a “fat tailed” distribution. The logarithm transfor-

mations of these quantities are nearly Gaussian, which is a common finding since Andersen et

al. (2001) among others.15

3.2 Optimal sampling frequency and jump detection

This subsection presents empirical technicalities regarding the intra-day volatility and jumps

measures: (i) the determination of the optimal sampling frequency for each asset, (ii) the jump

detection, and (iii) the sequential jump detection procedures.

3.2.1 Optimal sampling frequency

For these three estimators of realized volatility, theory suggests that returns should be computed

at the highest possible frequency, so that estimators converge asymptotically towards the true

conditional volatility. However, it is well-known since Andersen and Bollerslev (1997, 1998)

and Taylor and Xu (1997) that microstructure noise (due to price discreteness, bid-ask spread,

non-synchronous trading, etc.)16 may impact the realized volatility estimator at high frequency.

To deal with this issue while making our results comparable with the rest of the literature, we

follow the 5 minutes ’rule-of-thumb’. As our three series are highly liquid assets, this sampling

interval is adequate to make our realized measures not to be impacted by the noise.

Insert Figure 2

Insert Figure 3

We examine further this question for the WTI crude oil futures price series, which did not benefit

from such an analysis in previous research. In Figures 2 and 3, we report the volatility signature

plot for oil futures. This analysis is crucial as the trading activity dramatically increased in

14Note for a normally distributed random variable skewness is zero, and kurtosis is three.
15We come back on this issue when modeling the volatility using the log transformation. Goncalves and Meddahi

(2011) suggest a new class of nonlinear transformations based on the Box-Cox transformation which outperform
the log transformation in Monte Carlo simulations. We leave as an extension this possible transformation and
follow the bulk of the empirical literature by considering the logarithm.

16See Hansen and Lunde (2006) for a thorough discussion of this issue and Andersen et al. (2011) for a theoretical
and empirical analysis of the impact of microstructure noise on the forecast of realized volatility. To deal with
this issue, we use staggered versions of BPV and MedRV as advocated in Huang and Tauchen (2005).
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September 2006 following the generalization of electronic trading (see Section 3.1) and may

result in different noise structure before and after this event. These graphs confirm that the

standard 5-minute sampling frequency seems to be appropriate in this case as well.

3.2.2 Jump detection

Once the optimal sampling frequency is determined, realized volatility, bipower variation and

median realized volatility estimators are computed. The difference between RV and a jump-

robust estimator such as BPV or MedRV provides, when it is statistically significant, an estimate

of the sum of squared jumps
∑J(t)

j=1 κ2(tj) which have occurred during the period under investi-

gation. Note that a small estimated value for a jump may not be actually a jump but a variation

due to the continuous path of the stochastic process and the presence of a jump has thus to be

formally tested. BNS (2004, 2006) develop such a testing framework using asymptotic theory

on realized variance and multipower variations.17

As Andersen et al. (2007) put it, “significant” jumps may be identified by comparing realizations

of test statistics to a standard normal distribution. They use the test statistic by Huang and

Tauchen (2005) to examine the significance of a jump when the chosen jump-robust estimator

is the BPV:

ZJBPV (N, d) =
√

N
(RVd,N − BPVd,N )RV −1

d,N
(

(ξ−4
1 + 2ξ−2

1 − 5)max{1, TQd,NBPV −2
d,N}

)1/2
(28)

with TQ the realized tripower quarticity, which converges in probability to the integrated quar-

ticity. The ratio-statistic in equation (28) has reasonable power against several empirically

realistic calibrated stochastic volatility jump diffusion models (Andersen et al., 2007).

The test may be adapted to the MedRV estimator as follows:

ZJMedRV (N, d) =
√

N
(RVd,N − MedRVd,N )RV −1

d,N
(

0.96max{1,MedRQd,NMedRV −2
d,N}

)1/2
(29)

with MedRQ an estimate of the integrated quarticity obtained by using the same methodology

as for MedRV . Theodossiou and Zikes (2009) show by means of many simulations and em-

pirical analysis that this test has better properties in the presence of jumps of finite or even

infinite activity and zero-returns.18 If, as we will demonstrate, disentangling jumps from the

17Veraart (2010) studies the limit theory of these estimators in the presence and absence of jumps.
18Several other estimators for identifying jumps in the series, such as QRV (Christensen et al., 2010) estimator,

which are shown to be more robust in the presence of microstructure noise and zero-returns, may be used.
Theodossiou and Zikes (2009) provide a very complete treatment of existing jump detection tests as well as
their relative performance in case of microstructure noise and/or jumps. In light of the good properties of the
MedRV-based test, we focus on this alternative estimator.
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continuous component help in forecasting the density of returns, we are particularly interested

in investigating whether the better properties of the test base on MedRV compared to BPV

will translate in an improvement in density forecasting as well. A preliminary analysis19 shows

that for both samples “jumpy days” are similar using MedRV instead of BPV, but that the

magnitude of jumps is slightly different.

Insert Figure 4

Insert Figure 5

Insert Figure 6

Figures 4 to 6 show the realized volatility, the BPV and the jump component from BPV, as well

as the MedRV and the jump component from MedRV for our four series. A preliminary analysis,

not reproduced here to conserve space, but available upon request to the authors, shows that

for both samples “jumpy days” are quite similar using MedRV instead of BPV, but that the

magnitude of jumps is slightly different.

Insert Table 2

More interestingly, Table 2 provides statistics about the contribution of jumps to the total re-

alized volatility for our four series and for different level of significance of the test.20 These

values are in line with results in Huang and Tauchen (2005) and Andersen et al. (2007) for

S&P 500 and FX. Our results for WTI are new but very similar to the S&P 500 futures case.

Overall, these results point to the fact that jumps contribute to a significant part of the total

return variation. Because it is well-known that jumps are not persistent while the continuous

component is, considering jumps independently is likely to be rewarded in a forecasting exercise.

Insert Table 3

Table 3 gives the Kolmogorov-Smirnov statistics for different distributions. Results indicate that

the Gaussian distribution does not provide a good fit to the series of returns standardized by

realized volatility, bipower variation, and median realized volatility. Given these results (where

we do not specifically model the jumps), we assume that the conditional distribution of returns

is a mixture of Gaussian distributions, in a manner closely related to Maheu and McCurdy

(2011).

19Not reproduced here to conserve space, but available upon request to the authors.
20The “no threshold” case corresponds to the case measure of jump contribution in Huang and Tauchen (2005)

where the difference between RV and BPV is taken directly.
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3.2.3 Sequential jump detection

For the purpose of modeling the jump component independently from the continuous compo-

nent, we need a precise measure of jumps including their size along with their sign. We obtain

such a measure using the sequential jump detection procedure developed in Andersen et al.

(2010).21 The idea behind this procedure is simple. We first use the standard test presented be-

low using either BPV or MedRV on intraday returns for day d. If we do not reject the existence

of a jump for day d, we consider that the largest return in absolute value is a jump and remove

it from intraday returns. We replace this “jump” return with the mean of remaining intraday

returns and run the jump test again to check the presence of another jump in the same day.

Insert Figure 7

Insert Figure 8

One may wonder whether, in light of the rarity of jumps, sequential detection is useful? To

answer this question we first plot in Figures 7 and 8 transactions for S&P 500 and WTI and

FX respectively. For each asset, the left panel plots a day with exactly one jump while the right

panel plots a day with two or more jumps identified with the sequential procedure.

Insert Table 4

As a second, and more rigorous evidence, we provide in Table 4 statistics about the number of

jumps we detect each day for all series. These statistics support the view that days with more

than a single jump are quite common.

Using the sequential detection procedure with both the BPV and the MedRV procedure, we

obtain for each asset a series of jumps along with their sign and size which will be used in the

econometric estimation below. As a rapid check of our results, we compare squared jumps with

the squared component resulting from the difference between RV and the jump-robust measure

(when significant) and confirm the importance of the sequential procedure.

3.3 Estimation Results

As noted above, we estimate the models on a rolling window of 1,260 daily observations for all

series. Concerning the average volatility level for each asset class, we obtain the expected result

that the BPV and MedRV estimators are less volatile than the “naive” RV estimator (Table

1). For the S&P500, we find that the logarithmic transformations of the volatility measures

21A quite similar procedure is developed earlier in Andersen et al. (2007b).

16



present a distribution with thin tails. For the WTI futures and the USD/JPY exchange rate,

we find evidence of leptokurticity (but globally less for log(BPVt) and log(MedRVt)). Besides,

the ranking of volatilities is coherent with our economic intuition: the WTI futures contract is

found to be more volatile than the S&P500, and finally the USD/JPY exchange rate.

Concerning the Kolmogorov-Smirnov statistics for daily open-to-close standardized returns, we

uncover the adequation to various distributions. The returns are clearly non-Gaussian when

looking at the skewness and kurtosis statistics in Table 3. In all models, we unambiguously

reject the adequation to the Gaussian law. Due to the asymmetric patterns present in the data,

the Student-t distribution is rejected as well. Interestingly, we accept various distributions

which account for asymmetry such as the Generalized Hyperbolic and the Mixture of Gaussian

distributions. In the estimation of the bivariate models, we focus on the Mixture of Normals

because its parameters are easily interpretable in economic terms. In addition, its estimation is

easier numerically and thus more adapted to a rolling estimation scheme.

Concerning the presence of jumps, we find for all assets a contribution of jumps to the volatility

level (Tables 2 and 4). The contribution of jumps is the highest for the USD/JPY exchange

rate (14.45% with no threshold for the detection as in Huang and Tauchen (2005)), followed by

the WTI futures contract (6.88%), and finally the S&P500 (5.24%). In terms of frequency, the

number of days with jumps is quite important, and strictly positive for all assets. The most

common situation is when we observe the occurence of one jump per day. Furthermore, we

note that the WTI futures contract is characterized by the highest frequency of jumps (as the

percentage of days with jumps is superior to 11%). Finally, it seems that for the USD/JPY the

jumps are less frequent than for other assets (6.78%). However, the USD/JPY and the S&P

500 are characterized by the highest number of days with several jumps within the same day.

The S&P 500 records 82 days with more than one jump, which is roughly equal to 28% of the

number of days with jumps. These ratios are equal to 29% and 44% for, respectively, the WTI

futures contract and the USD/JPY exchange rate.

Insert Table 5

Insert Table 6

Insert Table 7

Moving to the estimates of the bivariate models in Tables 5 to 7, we focus our comments on

the most interesting parameters. The leverage effect varies depending on the estimates. For the

WTI futures contract and the S&P 500, γ is closer to zero when relying on the MedRV or BPV

estimators. For the USD/JPY exchange rate, we find that γ is statistically equal to zero based

on the MedRV and BPV measures. When looking at the persistence of the HAR components,

we find that the φ1, φ2 and φ3 coefficients vary depending on the distributions and the measures

of volatility. In the case of the WTI futures contract for instance, the φ1 and φ3 components
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lose in persistence when one moves from the RV estimator to the BPV and MedRV estimators.

However, the φ2 component gains relatively in persistence. In the case of the S&P 500, if we

compare the HAR-MedRV-Mixture with the HAR-MedRV-Jump, we find that the persistence

of the φ1 (φ2) component decreases (increases) when moving to the latter model. These effects

can be seen as being very specific to the sample data. In addition, the mixture parameter φ also

varies depending on the volatility measure used. With the WTI futures contract, we find that

φ̂ = 0.449 with the RV estimator, and φ̂ = 0.486 with the BPV estimator. For the remaining

parameters, we can notice a relative stability of the results obtained across Tables 5 to 7.

Note that we can also compare the degree of activity of the jump component, i.e. it is possible

to rank the assets depending on the intensity and the volatility level of jumps. In the case of the

HAR-BPV-Jump model for instance, the USD/JPY exchange rate records the highest intensity

of jumps (λ = 1.19), while the WTI futures contract ranks second (λ = 0.149), and the S&P 500

exhibits the lowest intensity (λ = 0.138). Finally, the WTI futures contract exhibits the highest

volatility of jumps (σx = 0.010), followed by the S&P 500 (σx = 0.006) and the USD/JPY

exchange rate (σx = 0.002) for the HAR-BPV-Jump model. Thus, we uncover that there are

different types of jumps (i.e. either frequent and small jumps, or less frequent and large jumps)

specific to each asset class considered in this article.

3.4 Forecast accuracy

Insert Table 8

In terms of forecast accuracy, we find that the bivariate models which take explicity into account

the jumps tend to perform better than the models based on a Gaussian distribution. This

comment is valid for all assets. For the S&P 500, the BPV and MedRV Gaussian models are

dominated by the RV Gaussian model. For instance, in Table 8, the Diebold-Mariano test

statistic is equal to 2.878 for the Realized Gaussian vs. Bipower Gaussian models at a 30-day

horizon. Besides, we confirm the result by Maheu and McCurdy (2011) that the EGARCH model

is dominated by the Realized Gaussian model (with a Diebold-Mariano test statistic equal to

-3.050 at the 10-day horizon). More generally, at the 5- and 10-day horizons, all non Gaussian

models are equivalent, whatever the volatility measure. In Table 8, it appears interesting to

note that the Bipower Jump model beats the MedRV Jump model at all horizons. At the more

distant horizons (up to 60-day), we can conclude that the Bipower Jump model dominates all

other models.

Insert Table 9

When looking at the WTI futures contract, we uncover the same effects as in Maheu and

McCurdy (2011), and regarding the comparison of the BPV/MedRV models compared to the

Realized Gaussian model. For instance, the Diebold-Mariano test statistic is equal to 4.717 for
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the Realized Gaussian vs. Bipower Gaussian models at a 30-day horizon. At the 5-day horizon,

all non Gaussian models either are equivalent or dominate Gaussian models according to the

Diebold-Mariano test statistics in Table 9. For the horizons superior to 10-day, the Realized

MN model dominates the Bipower MN and MedRV MN models. In addition, we note that the

BPV Jump model dominates the MedRV model at all horizons.

Insert Table 10

Finally, the results of the Diebold-Mariano test statistics for the USD/JPY exchange rate are

presented in Table 10. They show, by and large, that the Bipower Gaussian and MedRV

Gaussian models dominate the Realized Gaussian model, which is equivalent to or preferred to

the EGARCH model for any horizon superior to 30-day. The Bipower Jump and MedRV Jump

models dominate all other models, while MedRV tends to dominate BPV at all horizons in that

latter case.

Insert Figure 9

Insert Figure 10

Insert Figure 11

The same insights can be gathered by looking at the average predictive likelihood for the density

of the three assets at various horizons (up to 60-day) in Figures 9 to 11. When looking at these

graphs, recall that for the interpretation of the Diebold-Mariano test statistic, a significant

positive (negative) estimated value rejects the null of equal performance between competing

forecasts, and provides evidence in favor of model A (B). These graphs confirm the highly

superior forecast accuracy of models based on intraday data for all of our series. This was

the main result in Maheu and McCurdy (2011), and we confirm their findings for the three

assets under investigation. For the S&P 500, we observe the superiority of BPV Jump and

MedRV Jump estimators for density forecasting particularly at horizons of 20 to 60 days. BPV

and MedRV estimators also have good performance for the WTI in comparison with models

using realized volatility estimated using the mixture of normals. This indicates that the jump

component either included in the total realized volatility (using the mixture of normals) or

modeled separately provides information in forecasting the density of returns. Results are very

similar for the USD/JPY. The superiority of the BPV Jump and the MedRV Jump is evident

at all horizons.

Overall, the empirical results obtained concerning the forecast accuracy depend on the asset

under consideration, and the nature of the activity of the jump component. Departing from

Maheu and McCurdy (2011), our results therefore tend to provide a deeper understanding of the

effects at stake when decomposing the jump and continuous components of volatility. Namely,
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modeling explicitly jumps is of primary importance to achieve better performances with bivariate

models, while decomposing between jumps and the continuous component volatility appears of

secondary importance.

4 Conclusion

Jumps in assets’ returns are to be related to strong directional variations in the prices that

the market participants agree on given their evaluation of the perspectives for a given financial

asset.22 On the contrary, volatility reflects a certain lack of agreement within financial markets:

as they do not lead to strong directional variations but up-and-down swings in prices, they

should not be mistaken with jumps. In such cases, jumps and volatility do not receive the

attention they deserve from an econometric viewpoint.

This paper has examined the forecasting power of jumps in addition, specifically, to the continu-

ous component when the density of returns is the variable of interest. Whilst numerous authors

have considered the informational content of continuous vs. jump components for volatility fore-

casting, none have thought to address the particular question of density forecasting. Detection

of such information for different classes of assets would indicate the ability of new econometric

models to anticipate the evolution of density returns in a fundamentally different way compared

to more traditional forecasting models.

Our results unveil new effects regarding the importance of distinguishing between the continuous

and jump components of volatility. In this regard, this article specifically extends the findings by

Maheu and McCurdy (2011) by considering various bivariate models with/without jumps. The

empirical application is devoted to three types of assets: the S&P 500, the WTI futures contract,

and the USD/JPY exchange rate. The main results may be summarized as follows. First, we

confirm the findings by Maheu and McCurdy (2011) that intraday data yield better densities

forecasts than daily data. Second, and more importantly, we assess the importance of jumps

when forecasting the density of returns by comparing jump-robust (bipower variation, median

realized volatility) and non-robust measures of realized volatilities. Compared to the “naive”

measure of realized volatility, considering jumps specifically provides significant improvement

on the accuracy of forecasts of return densities.

Two central concluding remarks arise. First, we have shown in this paper that the explicit

modelling of jumps is central in the estimation of bivariate models in the fashion of Maheu

and McCurdy (2011). Such an explicit modeling task yields better performances, as shown in

our empirical application and with the forecast accuracy tests of all competing models. Second,

discriminating between the continuous component of volatility and jumps appears comparatively

less important across our estimates. From that perspectives, our results can be seen as an

extension of the contribution by Maheu and McCurdy (2011).

22Lahaye et al. (2011) and Evans (2011) have related news to the occurrence of jumps in intraday data. Nevertheless,
some jumps are not related to macro announcements or news and may be the consequence of microstructure effects.
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Other jump detection techniques may be used (see Boudt et al. (2011), or Christensen et al.

(2010) among others). Boudt et al. (2011) in particular provide very interesting empirical results

because their measure take the intraday periodicity into account and thus does not over-detect

jumps in low-volatility periods and does not under-detect jumps in periods of high-volatility.

Nevertheless, collectively taken, our results are sufficiently strong so that we can believe they

would be robust to alternative jump detection methods.
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Figures

Figure 1: Raw time-series (left panel) and open-to-close standardized log-returns (right panel)
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Figure 2: Volatility signature plot for the oil futures contract using front month rollover and
the realized volatility, bipower variation and median realized estimators (2001-2006).
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Figure 3: Volatility signature plot for the oil futures contract using front month rollover and
the realized volatility, bipower variation and median realized estimators (2006-2010).
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Figure 4: Realized volatility, bi-power variation with jump component, and median realized
volatility with jump component for S&P500 futures (from top to bottom and left to right).
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Figure 5: Realized volatility, bi-power variation with jump component, and median realized
volatility with jump component for WTI futures (from top to bottom and left to right)
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Figure 6: Realized volatility, bi-power variation with jump component, and median realized
volatility with jump component for USD/JPY (from top to bottom and left to right).
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Figure 7: Jumpy days
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Figure 8: Jumpy days
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Figure 9: Average predictive likelihood based on Amisano and Giacomini (2007) for the density
of S&P 500 futures
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Figure 10: Average predictive likelihood based on Amisano and Giacomini (2007) for the density
of WTI futures
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Figure 11: Average predictive likelihood based on Amisano and Giacomini (2007) for the density
of USD/JPY
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Tables

Table 1: Summary Statistics
S&P500 Rt RVt BPVt MedRVt log(RVt) log(BPVt) log(MedRVt)

Mean 0.0515 0.1601 0.1559 0.1544 -9.6046 -9.6671 -9.694
Std. Dev. 0.183 0.0021 0.0019 0.0019 0.8759 0.892 0.9012
Skewness -0.1334 6.8497 5.2274 5.3659 0.2984 0.2674 0.255
Kurtosis 3.2819 87.9456 44.1957 45.6785 0.0514 -0.0452 -0.0485

Observations 3135

WTI Rt RVt BPVt MedRVt log(RVt) log(BPVt) log(MedRVt)

Mean 0.1445 0.3061 0.2954 0.2896 -8.1738 -8.2469 -8.2860
Std. Dev. 0.3846 0.0061 0.0057 0.0055 0.6940 0.6971 0.6975
Skewness -0.1724 3.8354 3.9463 3.8867 0.6875 0.6670 0.6506
Kurtosis 3.2218 19.9500 22.0793 20.8598 0.7653 0.7854 0.7764

Observations 2058

USD/JPY Rt RVt BPVt MedRVt log(RVt) log(BPVt) log(MedRVt)

Mean 0.0039 0.1155 0.1068 0.1044 -10.1308 -10.2755 -10.3121
Std. Dev. 0.1087 0.0014 0.0011 0.0011 0.6756 0.6706 0.6561
Skewness -0.8422 22.2219 23.9665 24.9671 0.7511 0.6286 0.6807
Kurtosis 7.343 770.7384 872.5957 924.6845 1.9751 1.95 1.9959

Observations 2703

Note: Mean values are given as the mean of the annualized squared root values.
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Table 2: Relative contribution of jumps in percents computed as the ratio between the difference
between RV and BPV, when significant at a given threshold, and RV.

Contribution of jumps S&P 500 WTI crude oil USD/JPY

0.1% threshold 2.65% 2.61% 7.79%
0.5% threshold 3.21% 3.37% 9.22%
1% threshold 3.56% 3.81% 9.86%
5% threshold 4.53% 5.06% 11.88%
no threshold 5.24% 6.88% 14.45%
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Table 3: Kolmogorov-Smirnov statistics for daily open-to-close standardized returns. The
distributions considered are the Gaussian, the symmetric Student-t, the Generalized Hyperbolic
(GH), the Normal Inverse Gaussian (NIG), the Hyperbolic (H) and the Mixture of Normals
(MN). The values in the table are p-values.

S&P500 WTI

RVt BPVt MedRVt RVt BPVt MedRVt

Gaussian 0 0 0 0 0 0
Student-t 0 0 0 0 0 0

Generalized Hyperbolic 0.93 0.42 0.15 0.94 0.55 0.95
Normal Inverse Gaussian 0.67 0.51 0.15 0.69 0.75 0.95

Hyperbolic 0.97 0.5 0.07 0.26 0.95 0.44
Mixture of Gaussian 0.25 0.45 0.58 0.84 0.95 0.96

USD/JPY

RVt BPVt MedRVt

Gaussian 0.01 0.38 0.36
Student-t 0 0.21 0.67

Generalized Hyperbolic 0.65 0.28 0.61
Normal Inverse Gaussian 0.28 0.63 0.88

Hyperbolic NA NA NA
Mixture of Gaussian 0.21 0.53 0.67
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Table 4: Descriptive statistics about jumps extracted using the sequential procedure in Andersen
et al. (2010). The chosen significance threshold is 1%.

Jump descriptive statistics S&P 500 WTI crude oil USD/JPY

Total number of jumps 433 329 308
Number of days with jump(s) 297 232 183

Percentage of days with jump(s) 9.47% 11.15% 6.78%
Average duration between two jumps (days) 7.24 6.33 8.76

Average duration between two days with jump(s) 10.56 8.97 14.76
Number of days with exactly 1 jump 215 165 102

Percentage of days with exactly 1 jump 6.86% 7.93% 3.78%
Number of days with exactly 2 jump 50 48 49

Percentage of days with exactly 2 jump 1.59% 2.31% 1.81%
Number of days with exactly 3 jump 18 10 20

Percentage of days with exactly 3 jump 0.57% 0.48% 0.74%
Number of days with exactly 4 jump 6 7 12

Percentage of days with exactly 4 jump 0.19% 0.34% 0.44%
Number of days with exactly 5 jump 8 2 -

Percentage of days with exactly 5 jump 0.26% 0.09% 0%
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Table 5: Estimation results for S&P500 Futures.
EGARCH ω α θ β

Average -0.328 -0.129 0.078 0.970
Standard Dev. 0.196 0.038 0.027 0.021

Skewness -0.554 -0.415 -0.097 -0.697
Kurtosis -0.953 -1.104 0.372 -0.817

5% quantile -0.681 -0.190 0.033 0.931
95% quantile -0.087 -0.079 0.123 0.993

HAR-RV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -0.956 0.283 0.432 0.185 -0.105 0.000 0.445
Standard Dev. 0.429 0.045 0.072 0.023 0.013 0.000 0.037

Skewness -0.260 -0.484 0.374 -0.501 -0.463 0.479 0.611
Kurtosis -1.327 -1.170 -1.320 -0.846 -1.022 -1.191 -0.698

5% quantile -1.674 0.210 0.341 0.142 -0.128 0.000 0.397
95% quantile -0.409 0.341 0.550 0.216 -0.088 0.000 0.520

HAR-BPV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -0.886 0.294 0.436 0.178 -0.101 0.000 0.441
Standard Dev. 0.368 0.043 0.072 0.018 0.014 0.000 0.033

Skewness -0.229 -0.404 0.232 -0.372 -0.511 0.479 0.836
Kurtosis -1.337 -1.256 -1.383 -0.577 -1.031 -1.191 -0.328

5% quantile -1.500 0.227 0.342 0.147 -0.126 0.000 0.402
95% quantile -0.420 0.349 0.546 0.202 -0.084 0.000 0.512

HAR-MedRV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -0.894 0.297 0.428 0.182 -0.099 0.000 0.450
Standard Dev. 0.356 0.040 0.076 0.017 0.013 0.000 0.031

Skewness -0.200 -0.447 0.209 0.207 -0.381 0.479 0.848
Kurtosis -1.366 -1.085 -1.301 -0.262 -1.197 -1.191 -0.302

5% quantile -1.484 0.227 0.324 0.156 -0.121 0.000 0.414
95% quantile -0.443 0.349 0.546 0.208 -0.082 0.000 0.518
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Table 5 (continued): Estimation results for S&P500 Futures.
HAR-RV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -0.945 0.283 0.433 0.188 -0.104 0.267 -1.071 1.134 0.302 1.098 0.000 0.445
Standard Dev. 0.436 0.042 0.071 0.022 0.011 0.187 0.586 0.215 0.164 0.204 0.000 0.037

Skewness -0.288 -0.516 0.423 -0.313 -0.293 0.601 -1.289 4.262 0.541 1.204 0.479 0.612
Kurtosis -1.319 -1.028 -1.254 -0.940 -1.117 -0.828 2.971 21.666 -0.609 0.249 -1.191 -0.697

5% quantile -1.673 0.211 0.345 0.149 -0.122 0.052 -1.917 0.999 0.104 0.911 0.000 0.397
95% quantile -0.381 0.338 0.553 0.221 -0.087 0.623 -0.380 1.368 0.625 1.554 0.000 0.520

HAR-BPV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -0.889 0.296 0.436 0.178 -0.099 0.235 -1.143 1.073 0.318 1.007 0.000 0.441
Standard Dev. 0.368 0.040 0.070 0.017 0.012 0.125 0.343 0.096 0.125 0.119 0.000 0.033

Skewness -0.262 -0.449 0.270 -0.411 -0.388 0.886 -0.087 0.791 0.844 1.398 0.479 0.838
Kurtosis -1.327 -1.100 -1.325 -0.569 -1.125 -0.226 -0.681 0.247 -0.210 0.906 -1.191 -0.326

5% quantile -1.503 0.228 0.344 0.150 -0.119 0.094 -1.662 0.957 0.173 0.899 0.000 0.402
95% quantile -0.429 0.350 0.547 0.202 -0.083 0.500 -0.582 1.273 0.583 1.289 0.000 0.512

HAR-MedRV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -0.902 0.301 0.428 0.181 -0.096 0.236 -1.172 1.068 0.333 0.989 0.000 0.450
Standard Dev. 0.353 0.039 0.074 0.015 0.012 0.114 0.319 0.084 0.119 0.106 0.000 0.031

Skewness -0.243 -0.557 0.254 0.093 -0.261 0.858 -0.086 0.840 0.804 1.309 0.479 0.850
Kurtosis -1.351 -0.847 -1.243 -0.424 -1.272 -0.297 -0.558 0.069 -0.294 0.479 -1.191 -0.300

5% quantile -1.489 0.228 0.327 0.158 -0.114 0.102 -1.655 0.973 0.188 0.890 0.000 0.414
95% quantile -0.463 0.351 0.546 0.206 -0.081 0.469 -0.653 1.244 0.575 1.228 0.000 0.518

HAR-BPV-Jump ω φ1 φ2 φ3 γ µ η λ µz σz

Average -0.886 0.291 0.440 0.177 -0.101 0.000 0.441 0.138 0.000 0.006
Standard Dev. 0.376 0.042 0.072 0.019 0.013 0.000 0.033 0.035 0.000 0.002

Skewness -0.259 -0.410 0.209 -0.190 -0.376 0.514 0.848 0.484 0.399 -0.229
Kurtosis -1.284 -1.180 -1.407 -0.685 -1.027 -1.122 -0.319 -1.363 0.308 -1.534

5% quantile -1.524 0.224 0.343 0.144 -0.123 0.000 0.402 0.102 0.000 0.003
95% quantile -0.402 0.347 0.551 0.204 -0.083 0.000 0.512 0.196 0.001 0.008

HAR-MedRV-Jump ω φ1 φ2 φ3 γ µ η λ µz σz

Average -0.892 0.296 0.431 0.181 -0.099 0.000 0.450 0.138 0.000 0.006
Standard Dev. 0.362 0.040 0.077 0.019 0.013 0.000 0.031 0.035 0.000 0.002

Skewness -0.238 -0.443 0.173 0.224 -0.251 0.514 0.863 0.484 0.399 -0.229
Kurtosis -1.306 -1.034 -1.338 0.012 -1.207 -1.122 -0.287 -1.363 0.308 -1.534

5% quantile -1.504 0.226 0.325 0.150 -0.119 0.000 0.414 0.102 0.000 0.003
95% quantile -0.428 0.348 0.549 0.209 -0.081 0.000 0.518 0.196 0.001 0.008
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Table 6: Estimation results for WTI Futures.
EGARCH ω α θ β

Average -0.563 -0.078 0.104 0.938
Standard Dev. 0.404 0.029 0.014 0.052

Skewness -0.433 -0.723 -0.525 -0.458
Kurtosis -1.014 -0.292 0.728 -0.970

5% quantile -1.240 -0.128 0.075 0.849
95% quantile -0.149 -0.047 0.123 0.990

HAR-RV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -0.736 0.076 0.543 0.294 -0.041 0.001 0.422
Standard Dev. 0.444 0.007 0.033 0.026 0.003 0.000 0.004

Skewness -0.072 0.104 -0.299 -0.267 -0.225 0.260 -0.257
Kurtosis -1.842 0.484 -1.487 -0.954 0.138 -1.016 -0.898

5% quantile -1.324 0.064 0.490 0.250 -0.047 0.000 0.414
95% quantile -0.255 0.086 0.582 0.331 -0.036 0.001 0.428

HAR-BPV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -0.698 0.085 0.543 0.289 -0.038 0.001 0.410
Standard Dev. 0.409 0.011 0.051 0.017 0.004 0.000 0.003

Skewness -0.080 -0.121 -0.089 -0.883 -0.259 0.260 -0.262
Kurtosis -1.850 -0.099 -1.784 1.708 -0.204 -1.016 -0.106

5% quantile -1.232 0.066 0.476 0.258 -0.045 0.000 0.405
95% quantile -0.258 0.101 0.605 0.314 -0.031 0.001 0.414

HAR-MedRV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -0.710 0.089 0.524 0.304 -0.036 0.001 0.413
Standard Dev. 0.419 0.020 0.061 0.018 0.004 0.000 0.003

Skewness -0.107 0.152 -0.123 -0.347 -0.124 0.260 -0.014
Kurtosis -1.818 -1.498 -1.813 -0.031 -0.365 -1.016 -0.889

5% quantile -1.277 0.061 0.442 0.275 -0.042 0.000 0.409
95% quantile -0.262 0.117 0.595 0.331 -0.029 0.001 0.417
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Table 6 (continued): Estimation results for WTI Futures.
HAR-RV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -0.693 0.100 0.524 0.298 -0.038 0.449 -0.763 1.057 0.626 1.238 0.001 0.422
Standard Dev. 0.395 0.027 0.068 0.049 0.005 0.173 0.267 0.119 0.259 0.217 0.000 0.004

Skewness -0.232 -0.112 -0.493 -0.215 -0.004 -0.654 -1.672 5.545 -0.272 0.828 0.260 -0.242
Kurtosis -1.403 2.986 1.660 3.405 3.367 -0.245 3.595 32.467 -0.434 1.303 -1.016 -0.851

5% quantile -1.282 0.060 0.413 0.223 -0.046 0.098 -1.323 1.000 0.160 0.944 0.000 0.414
95% quantile -0.201 0.140 0.616 0.373 -0.030 0.677 -0.471 1.118 1.011 1.623 0.001 0.428

HAR-BPV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -0.695 0.119 0.540 0.263 -0.032 0.486 -0.757 1.084 0.762 1.325 0.001 0.410
Standard Dev. 0.411 0.041 0.068 0.054 0.009 0.219 0.324 0.178 0.379 0.350 0.000 0.003

Skewness -0.319 0.464 -0.474 -0.407 -0.182 -0.636 -1.446 3.648 -0.239 1.629 0.260 -0.041
Kurtosis -0.898 2.343 1.962 2.900 8.250 -0.586 2.359 12.512 -0.572 6.993 -1.016 0.471

5% quantile -1.348 0.060 0.424 0.175 -0.044 0.046 -1.462 1.001 0.050 0.914 0.000 0.405
95% quantile -0.144 0.190 0.656 0.344 -0.020 0.769 -0.385 1.576 1.316 1.949 0.001 0.415

HAR-MedRV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -0.666 0.110 0.543 0.273 -0.030 0.518 -0.748 1.054 0.832 1.300 0.001 0.413
Standard Dev. 0.383 0.036 0.062 0.041 0.007 0.164 0.239 0.100 0.299 0.274 0.000 0.003

Skewness -0.261 0.261 -0.610 0.584 -0.709 -0.841 -1.572 5.561 -0.375 0.972 0.260 -0.049
Kurtosis -0.989 2.461 3.723 1.194 6.061 0.689 4.999 31.912 0.094 0.898 -1.016 -0.854

5% quantile -1.247 0.051 0.447 0.215 -0.040 0.186 -1.162 1.007 0.280 0.952 0.000 0.409
95% quantile -0.161 0.167 0.645 0.346 -0.021 0.743 -0.427 1.066 1.274 1.820 0.001 0.417

HAR-BPV-Jump ω φ1 φ2 φ3 γ µ η λ µz σz

Average -0.704 0.084 0.544 0.288 -0.038 0.001 0.410 0.149 -0.001 0.010
Standard Dev. 0.412 0.011 0.051 0.018 0.004 0.000 0.003 0.014 0.001 0.000

Skewness -0.106 -0.072 -0.015 -0.549 -0.256 0.260 -0.260 -0.308 -0.199 0.479
Kurtosis -1.814 0.113 -1.676 0.548 -0.167 -1.016 -0.115 -0.088 -0.694 -1.117

5% quantile -1.273 0.065 0.478 0.254 -0.044 0.000 0.405 0.121 -0.003 0.010
95% quantile -0.261 0.101 0.612 0.315 -0.031 0.001 0.414 0.171 0.000 0.011

HAR-MedRV-Jump ω φ1 φ2 φ3 γ µ η λ µz σz

Average -0.719 0.088 0.523 0.303 -0.036 0.001 0.413 0.156 -0.002 0.011
Standard Dev. 0.419 0.020 0.060 0.018 0.004 0.000 0.003 0.015 0.001 0.000

Skewness -0.112 0.129 -0.094 -0.143 -0.143 0.260 -0.013 -0.544 0.302 0.432
Kurtosis -1.806 -1.473 -1.779 -0.264 -0.274 -1.016 -0.874 0.057 -0.827 -1.277

5% quantile -1.292 0.062 0.444 0.275 -0.042 0.000 0.409 0.123 -0.003 0.010
95% quantile -0.265 0.116 0.596 0.333 -0.029 0.001 0.417 0.177 -0.001 0.012
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Table 7: Estimation results for USD/JPY.
EGARCH ω α θ β

Average -0.734 -0.047 0.103 0.934
Standard Dev. 0.583 0.060 0.060 0.056

Skewness -1.386 -1.314 1.066 -1.442
Kurtosis 0.729 0.173 -0.669 0.905

5% quantile -2.098 -0.183 0.056 0.800
95% quantile -0.160 -0.002 0.214 0.988

HAR-RV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -1.943 0.251 0.286 0.277 -0.050 0.000 0.449
Standard Dev. 0.343 0.030 0.050 0.055 0.046 0.000 0.021

Skewness -0.061 -0.017 0.085 0.444 -0.353 -0.039 0.984
Kurtosis -0.856 -1.393 -1.355 -0.154 -1.625 -0.278 0.090

5% quantile -2.546 0.209 0.216 0.194 -0.116 0.000 0.425
95% quantile -1.395 0.294 0.363 0.391 -0.003 0.000 0.493

HAR-BPV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -1.743 0.283 0.315 0.237 -0.039 0.000 0.433
Standard Dev. 0.305 0.023 0.044 0.041 0.040 0.000 0.018

Skewness -0.221 0.105 -0.081 0.684 -0.344 -0.039 1.154
Kurtosis -0.801 -1.371 -1.370 0.409 -1.638 -0.278 0.637

5% quantile -2.318 0.249 0.249 0.178 -0.098 0.000 0.413
95% quantile -1.274 0.316 0.382 0.327 0.003 0.000 0.473

HAR-MedRV-Gaussian ω φ1 φ2 φ3 γ µ η

Average -1.742 0.292 0.319 0.224 -0.035 0.000 0.420
Standard Dev. 0.320 0.020 0.042 0.035 0.037 0.000 0.019

Skewness -0.105 0.088 -0.194 1.017 -0.358 -0.039 1.170
Kurtosis -0.930 -1.065 -1.346 1.147 -1.593 -0.278 0.661

5% quantile -2.306 0.259 0.252 0.175 -0.091 0.000 0.399
95% quantile -1.242 0.321 0.376 0.308 0.005 0.000 0.463
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Table 7 (continued): Estimation results for USD/JPY.
HAR-RV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -1.850 0.249 0.296 0.279 -0.047 0.150 -0.232 1.709 0.037 1.080 0.000 0.449
Standard Dev. 0.375 0.034 0.046 0.049 0.042 0.031 0.134 0.099 0.012 0.023 0.000 0.021

Skewness -0.009 0.095 0.240 0.596 -0.321 0.601 -1.678 1.121 0.985 0.365 -0.039 0.984
Kurtosis -1.145 -1.237 -0.926 0.280 -1.653 3.067 1.987 1.728 0.682 3.174 -0.278 0.090

5% quantile -2.479 0.200 0.231 0.204 -0.107 0.095 -0.537 1.592 0.025 1.037 0.000 0.425
95% quantile -1.302 0.302 0.374 0.389 -0.002 0.194 -0.125 1.921 0.062 1.111 0.000 0.493

HAR-BPV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -1.669 0.285 0.325 0.233 -0.035 0.159 -0.279 1.600 0.039 1.085 0.000 0.433
Standard Dev. 0.354 0.025 0.043 0.036 0.037 0.050 0.256 0.117 0.017 0.041 0.000 0.018

Skewness 0.134 0.371 0.034 0.607 -0.306 0.341 -2.118 0.844 0.167 -0.001 -0.039 1.155
Kurtosis -1.025 -0.691 -0.970 0.652 -1.672 1.056 4.770 0.543 0.867 1.323 -0.278 0.637

5% quantile -2.252 0.249 0.259 0.181 -0.087 0.073 -0.865 1.446 0.002 1.010 0.000 0.413
95% quantile -1.097 0.324 0.392 0.310 0.004 0.253 -0.006 1.830 0.070 1.157 0.000 0.473

HAR-MedRV-Mixture ω φ1 φ2 φ3 γ φ µ1 σ1 µ2 σ2 µ η

Average -1.671 0.295 0.328 0.220 -0.031 0.158 -0.311 1.586 0.042 1.083 0.000 0.420
Standard Dev. 0.350 0.024 0.042 0.036 0.034 0.051 0.321 0.121 0.017 0.043 0.000 0.019

Skewness 0.232 0.527 0.015 0.600 -0.313 -0.231 -2.493 1.101 0.294 -0.703 -0.039 1.172
Kurtosis -0.981 -0.001 -0.764 0.813 -1.628 0.200 7.053 0.956 1.056 1.009 -0.278 0.663

5% quantile -2.206 0.260 0.260 0.164 -0.081 0.063 -1.040 1.441 0.011 0.998 0.000 0.399
95% quantile -1.091 0.335 0.395 0.301 0.006 0.241 -0.035 1.829 0.074 1.148 0.000 0.463

HAR-BPV-Jump ω φ1 φ2 φ3 γ µ η λ µz σz

Average -1.791 0.286 0.328 0.218 -0.030 0.000 0.434 1.190 0.000 0.002
Standard Dev. 0.321 0.024 0.038 0.037 0.035 0.000 0.019 0.062 0.000 0.000

Skewness -0.144 0.046 -0.211 1.009 -0.329 0.044 1.080 0.113 0.250 0.546
Kurtosis -0.939 -1.278 -1.179 0.988 -1.624 -0.194 0.433 -0.961 0.562 -1.363

5% quantile -2.357 0.248 0.267 0.167 -0.084 0.000 0.413 1.101 0.000 0.002
95% quantile -1.307 0.321 0.380 0.307 0.007 0.000 0.475 1.296 0.000 0.003

HAR-MedRV-Jump ω φ1 φ2 φ3 γ µ η λ µz σz

Average -1.797 0.297 0.332 0.202 -0.027 0.000 0.421 1.190 0.000 0.002
Standard Dev. 0.353 0.021 0.038 0.033 0.033 0.000 0.020 0.062 0.000 0.000

Skewness -0.126 -0.039 -0.277 1.247 -0.325 0.044 1.108 0.113 0.250 0.546
Kurtosis -1.043 -1.009 -1.110 1.578 -1.586 -0.194 0.485 -0.961 0.562 -1.363

5% quantile -2.422 0.261 0.268 0.160 -0.076 0.000 0.399 1.101 0.000 0.002
95% quantile -1.280 0.329 0.385 0.285 0.008 0.000 0.465 1.296 0.000 0.003
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Table 8: Average Diebold-Mariano (1995) pairwise test statistic with 5-, 10-, 30-, and 60-day horizon for S&P500 Futures.
5-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH -2.638 0.291 1.260 -3.533 -3.002 -2.338 -4.248 -3.054
Realized Gaussian 2.428 2.400 -2.098 -2.609 -2.440 -6.993 -4.469
Bipower Gaussian 2.230 -2.291 -2.764 -26.063 -5.266 -3.731
MedRV Gaussian -2.320 -2.737 -2.914 -5.581 -5.086

Realized MN 0.420 0.792 0.086 1.757
Bipower MN 1.310 -0.236 1.115
MedRV MN -0.933 0.450

Bipower Jump 2.177
MedRV Jump

10-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH -3.050 -0.566 -0.013 -3.538 -3.810 -3.312 -3.211 -2.425
Realized Gaussian 2.545 3.263 -6.566 -2.282 -1.784 -2.496 -1.298
Bipower Gaussian 4.663 -3.234 -4.052 -4.813 -4.550 -12.159
MedRV Gaussian -3.294 -3.951 -4.184 -5.198 -4.384

Realized MN 0.378 1.740 0.296 0.651
Bipower MN 1.961 0.260 0.681
MedRV MN -0.040 0.481

Bipower Jump 14.063
MedRV Jump

30-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH -2.308 -1.802 -1.256 -2.619 -2.448 -2.092 -4.529 -3.879
Realized Gaussian 2.878 4.669 -1.748 -1.428 -0.829 -5.628 -3.901
Bipower Gaussian 4.094 -2.003 -1.796 -1.340 -3.798 -3.024
MedRV Gaussian -2.554 -2.366 -1.899 -4.571 -3.894

Realized MN 1.458 2.857 -0.621 -0.164
Bipower MN 4.790 -0.881 -0.411
MedRV MN -1.214 -0.749

Bipower Jump 3.554
MedRV Jump

60-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH -2.042 -1.974 -1.820 -1.042 -0.727 -0.374 -4.611 -4.577
Realized Gaussian 1.413 1.771 1.782 2.174 2.748 -5.714 -4.682
Bipower Gaussian 2.307 0.772 1.224 1.765 -3.548 -3.243
MedRV Gaussian 0.521 0.977 1.511 -3.809 -3.526

Realized MN 2.136 3.157 -3.106 -2.837
Bipower MN 5.400 -3.440 -3.220
MedRV MN -3.828 -3.638

Bipower Jump 2.088
MedRV Jump

Note: this table presents the results of the average Diebold-Mariano (1995) pairwise test statistic with 5-. 10-. 30-. and 60-day horizon. The table reads the following way: a significant positive (negative)
estimated value rejects the null of equal performance between competing forecasts, and provides evidence in favor of model A (B).
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Table 9: Average Diebold-Mariano (1995) pairwise test statistic with 5-. 10-. 30-. and 60-day horizon for WTI Futures.
5-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH 1.924 3.594 4.291 -4.509 -3.733 -3.439 -0.205 -0.633
Realized Gaussian 8.021 8.657 -6.779 -6.743 -10.645 -2.995 -1.144
Bipower Gaussian 9.167 -7.690 -7.806 -11.633 -6.069 -5.520
MedRV Gaussian -8.080 -8.228 -11.199 -7.170 -9.106

Realized MN 1.139 2.095 2.275 2.724
Bipower MN 2.023 2.227 2.771
MedRV MN 2.588 2.907

Bipower Jump 2.587
MedRV Jump

10-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH 2.535 5.096 6.065 -7.054 -3.328 -12.148 -0.851 0.557
Realized Gaussian 10.306 12.469 -4.452 -3.484 -4.732 -2.734 -1.570
Bipower Gaussian 15.213 -5.976 -2.235 -6.792 -5.897 -9.110
MedRV Gaussian -6.680 -5.982 -7.684 -7.009 -11.586

Realized MN 1.776 4.001 1.567 2.217
Bipower MN -1.050 0.973 1.697
MedRV MN 1.337 2.138

Bipower Jump 2.400
MedRV Jump

30-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH -3.874 -2.211 -1.154 -3.355 -3.561 -2.915 -6.019 -4.824
Realized Gaussian 4.717 4.515 -2.381 -2.691 -1.459 -4.998 -0.912
Bipower Gaussian 4.139 -2.934 -3.254 -2.418 -5.760 -7.116
MedRV Gaussian -3.118 -3.458 -2.741 -6.751 -15.612

Realized MN 0.702 2.984 0.769 1.127
Bipower MN 5.294 0.781 1.159
MedRV MN -0.121 0.457

Bipower Jump 1.772
MedRV Jump

60-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH -3.572 -2.229 -1.526 -2.647 -3.139 -1.923 -4.842 -3.847
Realized Gaussian 3.009 2.874 -1.087 -1.624 0.204 -2.416 -0.439
Bipower Gaussian 2.540 -1.588 -2.090 -0.767 -23.491 -3.515
MedRV Gaussian -1.730 -2.189 -1.049 -11.892 -6.148

Realized MN -0.529 4.604 0.174 0.510
Bipower MN 4.075 0.327 0.688
MedRV MN -0.888 -0.327

Bipower Jump 1.294
MedRV Jump

Note: this table presents the results of the average Diebold-Mariano (1995) pairwise test statistic with 5-. 10-. 30-. and 60-day horizon. The table reads the following way: a significant positive (negative)
estimated value rejects the null of equal performance between competing forecasts, and provides evidence in favor of model A (B).
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Table 10: Average Diebold-Mariano (1995) pairwise test statistic with 5-. 10-. 30-. and 60-day horizon for USD/JPY Futures.
5-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH -0.166 -1.442 -1.761 -1.855 -2.574 -2.860 -4.021 -4.301
Realized Gaussian -4.087 -3.991 -4.325 -5.569 -5.875 -23.285 -29.566
Bipower Gaussian -3.191 -1.480 -2.926 -3.442 -12.589 -13.883
MedRV Gaussian -0.952 -2.280 -2.795 -11.706 -12.657

Realized MN -4.171 -4.638 -10.633 -12.495
Bipower MN -12.403 -6.039 -7.003
MedRV MN -5.236 -6.159

Bipower Jump -4.210
MedRV Jump

10-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH 1.592 -1.231 -2.051 -4.072 -5.276 -5.861 -3.823 -4.243
Realized Gaussian -5.097 -4.906 -46.915 -81.027 -41.709 -20.121 -24.834
Bipower Gaussian -12.436 -1.735 -3.403 -3.880 -11.716 -13.543
MedRV Gaussian -1.062 -2.610 -3.097 -9.506 -10.980

Realized MN -4.702 -4.279 -15.814 -33.723
Bipower MN -5.553 -7.514 -10.237
MedRV MN -6.541 -9.047

Bipower Jump -5.545
MedRV Jump

30-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH 2.469 0.470 -0.219 -0.324 -1.456 -1.862 -2.269 -3.015
Realized Gaussian -9.312 -9.104 -27.744 -32.359 -46.091 -18.215 -22.006
Bipower Gaussian -8.026 -1.968 -5.125 -42.168 -10.976 -13.711
MedRV Gaussian -0.349 -3.260 -44.743 -8.542 -10.981

Realized MN -8.782 -7.907 -7.388 -10.478
Bipower MN -4.807 -3.345 -5.673
MedRV MN -2.391 -4.675

Bipower Jump -10.427
MedRV Jump

60-day horizon EGARCH Realized Gaussian Bipower Gaussian MedRV Gaussian Realized MN Bipower MN MedRV MN Bipower Jump MedRV Jump

EGARCH 6.140 3.450 2.229 2.309 0.508 -0.551 -0.392 -1.631
Realized Gaussian -13.920 -13.521 -19.590 -24.772 -24.024 -25.915 -29.580
Bipower Gaussian -12.057 -8.335 -15.093 -15.630 -13.284 -16.986
MedRV Gaussian 1.376 -12.496 -12.942 -8.305 -12.164

Realized MN -13.394 -84.304 -8.866 -13.503
Bipower MN -25.172 -2.801 -6.989
MedRV MN 0.097 -3.579

Bipower Jump -13.641
MedRV Jump

Note: this table presents the results of the average Diebold-Mariano (1995) pairwise test statistic with 5-. 10-. 30-. and 60-day horizon. The table reads the following way: a significant positive (negative)
estimated value rejects the null of equal performance between competing forecasts, and provides evidence in favor of model A (B).
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