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Abstract

The object of this paper is to produce non-parametric maximum likelihood estimates
of forecast distributions in a general non-Gaussian, non-linear state space setting. The
transition densities that de�ne the evolution of the dynamic state process are represented
in parametric form, but the conditional distribution of the non-Gaussian variable is esti-
mated non-parametrically. The �ltering and prediction distributions are estimated via a
computationally e¢ cient algorithm that exploits the functional relationship between the
observed variable, the state variable and a measurement error with an invariant distrib-
ution. Simulation experiments are used to document the accuracy of the non-parametric
method relative to both correctly and incorrectly speci�ed parametric alternatives. In an
empirical illustration, the method is used to produce sequential estimates of the forecast
distribution of realized volatility on the S&P500 stock index during the recent �nancial
crisis. A resampling technique for measuring sampling variation in the estimated forecast
distributions is also demonstrated.
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1 Introduction

The focus of this paper is on forecasting non-Gaussian time series variables. Such variables are

prevalent in the economic and �nance spheres, where deviations from the symmetric bell-shaped

Gaussian distribution may arise for a variety of reasons, for example due to the positivity of

the variable, to its inherent integer or binary nature, or to the prevalence of values that are

far from, or unevenly distributed around, the mean. Against this backdrop, the challenge is

to produce forecasts that are coherent - i.e. consistent with any restrictions on the values

assumed by the variable - and that also encompass all important distributional information.

Point forecasts, based on measures of central tendency, are common. However, they may

not be coherent - evidenced, for example, by a real-valued conditional mean forecast of an

integer-valued variable. Moreover, such measures convey none of the distributional information

that is increasingly important for decision making (e.g. risk management), most notably as

concerns the probability of occurrence of extreme outcomes. In contrast, an estimate of the full

probability distribution, de�ned explicitly over all possible future values of the random variable

is, by its very construction, coherent, as well as re�ecting all of the important distributional

features (including tail features) of the variable in question.

Such issues have informed recent work in which distributional forecasts have been produced

for speci�c non-Gaussian data types (Freeland and McCabe, 2004; McCabe and Martin, 2005;

Bu and McCabe, 2008; Czado et al., 2009; McCabe, Martin and Harris, 2011; Bauwens et al.,

2004; Amisano and Giacomini, 2007). In addition, the need to forecast the probability of large

�nancial losses has been the primary reason for the recent focus on distributional forecasting

of portfolio returns (Diebold et al., 1998; Berkowitz, 2001; Geweke and Amisano, 2010), with

this literature, in turn, closely linked to that in which extreme quantiles (or Values at Risk)

are the focus of the forecasting exercise (Giacomini and Komunjer, 2005; de Rossi and Harvey,

2009). The extraction of risk-neutral distributional forecasts of non-Gaussian asset returns

from derivative prices (Ait-Sahalia and Lo, 1998; Bates, 2000; Lim et al., 2005) is motivated

by similar goals; i.e. that deviation from Gaussianity requires attention to be given to the

prediction of higher order moments and to future distributional characteristics.1

In the spirit of this evolving literature, we develop a new method for estimating the full

forecast distribution of non-Gaussian time series variables. In contrast to the existing literature,

in which the focus is almost exclusively on the speci�cation of strict parametric models, a �exible

non-parametric approach is to be adopted here, with a view to producing distributional forecasts

that are not reliant on the complete speci�cation of the true data generating process (DGP).

1Discussion of the merits of probabilisitic forecasting in general is provided by, amongst others, Dawid (1984),
Tay and Wallis (2000), Gneiting et al. (2007) and Gneiting (2008).
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The method is developed within the general framework of non-Gaussian, non-linear state space

models, with the distribution for the observed non-Gaussian variable, conditional on the latent

state(s), estimated non-parametrically. The estimated forecast distribution, de�ned by the

relevant function of the non-parametric estimate of the conditional distribution, thereby serves

as a �exible representation of the likely future values of the non-Gaussian variable, given its

current and past values, and conditional on the (parametric) dynamic structure imposed by the

state space form.2

The recursive �ltering and prediction distributions used both to de�ne the likelihood func-

tion and, ultimately, the predictive distribution for the non-Gaussian variable (and for the

state also, when of inherent interest), are represented via the numerical solutions of integrals

de�ned over the support of the independent and identically distributed (i:i:d:) measurement

error - with this support readily approximated in empirical settings. Any standard determinis-

tic integration technique (e.g. rectangular integration, Simpson�s rule) can be used to estimate

the relevant integrals. The ordinates of the (unknown) measurement density are estimated

as unknown parameters using maximum likelihood (ML) methods, with this aspect drawing

on the recent work of Berg et al. (2010) on discrete penalized likelihood (see also Scott et al.,

1980; Engle and Gonzalez-Rivera, 1991). The relative computational simplicity of the proposed

method - for reasonably low dimensions of the measurement and state variables - is in marked

contrast with the high computational burden of the Gaussian sum �lter, an alternative method

for avoiding a strict parametric speci�cation for the measurement distribution (see Sorenson

and Alspach, 1971; Kitagawa, 1994; Monteiro, 2010). The modest computational burden of the

proposed method also stands in contrast with the simulation-based estimation methods needed

to implement �exible mixture modelling in the non-Gaussian state space realm (e.g. Durham,

2007; Caron et al. 2008; Jensen and Maheu, 2010; Yau, Papaspiliopoulos, Roberts and Holmes,

2010).

Extensive simulation exercises are used to assess the predictive accuracy of the non-parametric

method, against both correctly speci�ed and misspeci�ed parametric alternatives, and for a

variety of DGPs. Assessment of the resulting forecast distributions is based on a range of com-

parative and evaluative methods including predictive score, probability integral transform and

coverage methods. The non-parametric estimation method is then applied to the problem of es-

timating the forecast distribution of realized volatility for the S&P500 market index during the

recent �nancial turmoil. Using the approach developed in McCabe, Martin and Harris (2011),

resampling is used to cater for estimation uncertainty in the production of the probabilistic

forecasts of volatility. (See also Rodriguez and Ruiz, 2009).

2Note that the terms �forecast distribution�and �predictive (or prediction) distribution�are used interchange-
ably in the paper.
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The outline of the paper is as follows. In Section 2 we describe the proposed recursive

algorithm, with the Dirac delta function (�-function) used to recast all �ltering and predictive

densities into integrals de�ned over the constant support of the measurement error. In Section

3.1, we discuss the linear and non-linear models considered in the simulation experiments. In

Section 3.2 we then outline the various tools used to compare and evaluate the predictive

distributions obtained via the non-parametric and parametric methods, with simulation results

then presented in Section 3.3. The empirical application is documented in Section 4, with

details given of the subsampling method used to measure the impact of sampling variation on

the estimated forecast distribution. Section 5 concludes.

2 Non-parametric Estimation of the Forecast Distribu-
tion

2.1 An Outline of the Basic Approach

Our non-parametric estimate of a forecast distribution is developed within the context of a

general non-Gaussian, non-linear state space model for a scalar random variable yt: Consider

the system governed by a measurement equation for yt and a transition equation for a scalar

state variable xt;

yt = ht (xt; �t) (1)

xt = kt (xt�1; vt) ; (2)

for t = 1; 2; :::; T; where each �t is assumed to be an i:i:d: random variable and the functions

given by ht (�; �) are assumed to be di¤erentiable with respect to each argument. Further, we
assume that, for given values yt and �t, the function

G (xt) = yt � ht (xt; �t)

is assumed to have a unique root at xt = x�t (yt; �t) as well as having a non-zero derivative

at that root. For the sake of generality we focus on the case where yt is continuous, with all

distributions expressed using density functions as a consequence. With simple modi�cations

the proposed methodology applies equally to the case of discrete measurements and/or states.

Extension to the multivariate setting is also possible, although the simple grid-based method

emphasized here is clearly most suitable for reasonably low-dimensional problems. We also

focus here on the case where x�t (yt; �t) is analytically available, in addition to being unique,

with adaptation of the method obviously required when neither of these conditions are met.

As is common, we assume that �t is independent of xt, in which case the probability density

function (pdf) for �t is simply p (�tjxt) = p (�t), for all t = 1; 2; :::; T:We also assume time-series
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independence for �t; that is, any dynamic behaviour in yt is captured completely by ht (�; �) and
kt (�; �) : However, rather than assume a potentially incorrect parametric speci�cation for p (�t),
we allow its distributional form to be unknown. An initial (parametric) distribution p (x1)

is speci�ed for the scalar state, with the transition densities resulting from (2) denoted by

p (xtjxt�1), t = 2; 3; :::; T: In the examples considered in the paper (and as would be standard in
many empirical problems), ht (�; �) and kt (�; �) are assumed to be known functions for all t; and
kt is such that the transition densities p (xtjxt�1) are available. To avoid unnecessary notation,
we suppress the t subscript on the functions h and k from this point.

Given the model de�ned by (1) and (2), the one-step ahead forecast distribution for yT+1,

conditional on the observed data, y1:T = (y1; y2; :::; yT )
0, is

p (yT+1jy1:T ) =
Z
p (yT+1jxT+1) p (xT+1jy1:T ) dxT+1; (3)

where the explicit dependence of p (yT+1jy1:T ) on any unknown �xed parameters that char-
acterize h (�; �), p (x1), or any of the transition densities fp (xtjxt�1) ; t = 2; 3; :::; Tg, has been
suppressed. The primary aim of the paper is to incorporate, within an overarching ML in-

ferential approach, non-parametric estimation of the conditional measurement distribution,

p (yT+1jxT+1), which via (3), will yield a non-parametric estimate of the one-step ahead fore-
cast density, p (yT+1jy1:T ). In cases where the state variable is also of interest, a non-parametric
estimate of the corresponding forecast density for the state, p (xT+1jy1:T ) ; may be obtained.
As outlined below, the non-parametric method is implemented by representing the unknown

density, p (yT+1jxT+1), by its ordinates de�ned, in turn, for N grid points on the support of

�T+1: The nature of these grid-points is determined by the integration method used to estimate

the integrals that de�ne the relevant �ltering/prediction algorithm. This approach introduces

an additional N unknown parameters to be estimated (via ML) along with any other unknown

parameters that characterize the model. Estimation is subject to the usual restrictions associ-

ated with probability distributions and to any restrictions to be imposed on the distribution as

a consequence of the role played by xT+1. A penalty function is used to impose smoothness on

the estimated density of yT+1 given xT+1.

Using standard prediction error decomposition, the likelihood function for the collection of

all unknown �xed parameters �; augmented, in the current context, by the unknown ordinates

of p (yT+1jxT+1), is given by

L (�) / p (y1)
T�1Y
t=1

p (yt+1jy1:t) ; (4)

where y1:t = (y1; y2; :::; yt)
0 : The likelihood function thus requires the availability of the one-step
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ahead prediction distributions,

p (yt+1jy1:t) ; t = 1; 2; :::T � 1 (5)

and the marginal distribution

p (y1) ; (6)

where both (5) and (6) are (suppressed) functions of �: In the following section we outline a

computationally e¢ cient �ltering algorithm for computing (5) and (6), needed for the speci�-

cation of the likelihood function in (4). The unknown parameters are estimated by maximizing

the (penalized) likelihood function subject to the smoothness and coherence constraints noted

above. Conditional on these estimates, the predictive density in (3) is estimated, with sampling

error able to be quanti�ed in empirical settings using resampling methods, as illustrated in

Section 4.3.

Crucially, the computational burden associated with evaluation of the likelihood function

in (4) is shown to be a linear function (only) of the sample size, T: This is in contrast with

the computational burden associated with a kernel density representation of p (�t) ; such as the

one used in the Gaussian sum �lter, which is known to be geometric in T (see, for example,

Kitagawa, 1994). The computational simplicity of our method derives from the fact that given

observed data for period t, the representation of the invariant measurement error density on a
common grid implies a variable grid of values for the corresponding state variable, xt. Hence,
the computational requirements of evaluating the likelihood using our �lter are equivalent to

those that either assume or impose discretization on the state (see, for example, Arulampalam,

Maskell, Gordon and Clapp, 2002; Clements, Hurn and White, 2006).

2.2 A Grid-based Filter

The objective of �ltering is to update knowledge of the system each time a new value of yt is

observed. Within the general state space model in (1) and (2), along with the initial distribution

p (x1), �ltering determines the distribution of the state vector, xt, given a portion of the observed

data, y1:t, as represented by the �ltered density p (xtjy1:t) ; for t = 1; 2; :::; T : Therefore, �ltering
is a recursive procedure that is applied for each t, revising the �ltered density, p (xtjy1:t), using
the new observation yt+1, to produce the updated density, p (xt+1jy1:t+1).
The �ltering algorithm proposed here provides an approximation to the true �ltering dis-

tributions that are in general not available in closed form, even when the measurement error

distribution, p (�), is known. Our approach exploits the functional relationship between the

observation yt and the i:i:d: variable �t, for given xt, in (1). Utilizing this relationship, the

�ltering expressions are manipulated using properties of the �-function, in such a way that all
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requisite integrals are undertaken with respect to the invariant distribution of �. When this

measurement error distribution is unknown, the method may be viewed as a non-parametric

�ltering algorithm, with ordinates of the unknown error density p (�), at �xed grid locations,

estimated within an ML procedure.

2.2.1 Preliminaries

The �-function3 may be represented as

� (z� � z) =
�
1 if z� = z
0 if z� 6= z

where
R1
�1 � (z

� � z) dz = 1 andZ 1

�1
f(z)� (z� � z) dz = f(z�), (7)

for any continuous, real-valued function f (�). Note z� is the root of the argument of the �-
function. Further, denoting by � (G (z)) the �-function composed with a di¤erentiable function

G (z) having a unique zero at z�, a transformation of variables yieldsZ 1

�1
f(z)� (G (z)) dz =

Z 1

�1
f(z)

����@G (z)@z

�����1 � (z � z�) dz; (8)

resulting, via (7), in Z 1

�1
f(z)� (G (z)) dz = f(z�)

����@G (z)@z

�����1
z=z�

, (9)

where
���@G(z)@z

���
z=z�

denotes the modulus of the derivative of G (z), evaluated at z = z�. The

transformation in (8) makes it explicit that the root of the argument of the � function is z = z�,

and as a consequence of this result, we sometimes write

� (G (z)) =

����@G (z)@z

�����1 � (z � z�) (10)

when considering the composite function � (G (z)) explicitly in terms of z. Further discussion

of using the these and other properties of the �-function may be found in Au and Tam (1999)

and Khuri (2004).

In the context of a state space model, we use the �-function to express the transformation

in (1) from the iid measurement error �t to the observed data yt, given xt; so that

p (ytjxt) =
Z 1

�1
p (�) � (yt � h(xt; �)) d�; (11)

3Strictly speaking, � (x) is a generalized function, and is properly de�ned as a measure rather than as a
function. However, we take advantage of the commonly used heuristic de�nition here as it is more convenient
for the �ltering manipulations that are to follow in the next section. See, for example, Hassani (2009).
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where � is a variable of integration that traverses the support of p(�): This result, along with

the transformation of variables relation in (10), enables all integrals required to produce the

likelihood function in (4) to be expressed in terms of the measurement error variable, �.

2.2.2 The initial �ltered distribution: p (x1jy1)

Using the representation of the measurement density as an integral involving the �-function in

(11), it follows that the �ltered density of the state variable at time t = 1 may be expressed as

p (x1jy1) =
p (x1) p (y1jx1)

p(y1)

=
p (x1)

R1
�1 p (�) � (y1 � h(x1; �)) d�R1

�1 p (x1)
hR1
�1 p (�) � (y1 � h(x1; �)) d�

i
dx1

:

We simplify the expression of the resulting �ltered density in two ways. First, the numerator

is written in terms of the state variable using (10). Second, the order of integration is reversed

and (8) and (9) used in the denominator to obtain

p (x1jy1) =
p (x1)

R1
�1 p (�)

��� @h@x1 ����1 � (x1 � x�1(y1; �)) d�R1
�1 p (x

�
1(y1; �)) p (�)

��� @h@x1 ����1x1=x�1(y1;�) d�
; (12)

where x�1(y1; �) is the (assumed unique) solution to y1 � h1(x1; �) = 0 for any value � in the

support of p (�) :

Next, to numerically evaluate the �ltered distribution in (12) via rectangular integration,

an evenly spaced grid
�
�1; �2; :::; �N

	
is de�ned, with interval length m, resulting in the ap-

proximation for p (x1jy1) given by

p (x1jy1) �
p (x1)

PN
j=1mp (�

j)
��� @h@x1 ����1 � �x1 � x�j1 �PN

i=1mp (x
�i
1 ) p (�

i)
��� @h@x1 ����1x1=x�i1

;

where p (�j) is de�ned as the unknown density ordinate associated with the grid-point indexed

by j. Note that conveniently using the numerical integration approach in the numerator as well

as in the denominator serves to produce an implied state, x�j1 = x
�
1(y1; �

j); associated with each

�j, such that the �rst �ltered distribution has representation (up to numerical approximation

error) as a discrete distribution, with density

p (x1jy1) =
NX
j=1

W j
1 �
�
x1 � x�j1

�
, (13)
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and where

W j
1 =

p (�j)
��� @h@x1 ����1x1=x�j1 p �x�j1 �PN

i=1 p (�
i)
��� @h@x1 ����1x1=x�i1 p (x�i1 )

; (14)

for j = 1; 2; :::; N .4 Implicit in this approximation to the �rst �ltered state density is the �rst

likelihood contribution,

p (y1) = m
NX
i=1

p
�
�i
� ���� @h@x1

�����1
x1=x�i1

p
�
x�i1
�
; (15)

obtained from approximating the denominator in (12).

Having obtained the representation in (13) for time t = 1, we show that for any time

t = 2; 3; :::; T , an appropriate discrete distribution can be found to approximate the �ltered

distribution

p (xtjy1:t) =
NX
j=1

W j
t �
�
xt � x�jt

�
, (16)

where the iteratively determined weights satisfy
PN

j=1W
j
t = 1; and each state grid location

x�jt = x
�
t (yt; �

j) (17)

is determined by the unique zero of yt � h(xt; �j); for j = 1; 2; :::; N .
4Note that densities employing the Dirac delta notation should be interpreted carefully. In (13), x1 given y1

has a discrete distribution with probability mass equal to W j
1 at x1 = x

�j
1 . It is referred to as a density because

cZ
�1

p (x1jy1) dx1 =

cZ
�1

NX
j=1

W j
1 �
�
x1 � x�j1

�
dx1

=
NX
j=1

W j
1

cZ
�1

�
�
x1 � x�j1

�
dx1

=

N�(c)X
j=1

W j
1

where N� (c) denotes the number of x�j1 that are less than or equal to c.
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2.2.3 The predictive distribution for the state: p (xt+1jy1:t)

Assuming (16) holds in period t, it follows that the one-step ahead state prediction density is

a mixture of transition densities, since

p (xt+1jy1:t) =

Z
p (xt+1jxt) p (xtjy1:t) dxt

=

Z
p (xt+1jxt)

NX
j=1

W j
t �
�
xt � x�jt

�
dxt

=
NX
j=1

Z
W j
t p (xt+1jxt) �

�
xt � x�jt

�
dxt

=
NX
j=1

W j
t p
�
xt+1jx�jt

�
; (18)

for t = 1; 2; :::; T . The notation p
�
xt+1jx�jt

�
denotes the transition density of p (xt+1jxt), viewed

as a function of xt+1 and given the �xed value of xt = x�jt : As it is assumed that the transi-

tion densities p (xt+1jxt) are available, no additional approximation is needed in moving from
p (xtjy1:t) to p (xt+1jy1:t).

2.2.4 The one-step ahead predictive distribution for the observed: p (yt+1jy1:t)

Having obtained a representation for the �ltered density for the future state variable, xt+1, the

corresponding predictive density for the next observation is given by

p (yt+1jy1:t) =
Z 1

�1
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1:

Utilizing (11) for p (yt+1jxt+1) ; the one-step ahead prediction density has representation

p (yt+1jy1:t) =
Z 1

�1

Z 1

�1
p (�) � (yt+1 � h(xt+1; �)) d� p (xt+1jy1:t) dxt+1;

which, after integration with respect to xt+1 (and using (9) once again), yields

p (yt+1jy1:t) =
Z 1

�1
p (�)

���� @h@xt+1

�����1
xt+1=x�t+1(yt+1;�)

p(x�t+1(yt+1; �)jy1:t)d�:

Invoking again the pre-speci�ed grid of values for �, we have (up to numerical approximation

error),

p (yt+1jy1:t) = m
NX
i=1

p
�
�i
� ���� @h@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

p
�
x�t+1(yt+1; �

i)jy1:t
�
: (19)

Noting that p
�
x�t+1(yt+1; �

i)jy1:t
�
in (19) denotes the one-step ahead predictive density from

(18) evaluated at xt+1 = x�t+1(yt+1; �
i), it can be seen that p (yt+1jy1:t) is computed as an N2

mixture of (speci�ed) transition density functions as a consequence.
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2.2.5 The updated �ltered distribution: p (xt+1jy1:t+1)

Finally, the predictive distribution for the state at time t + 1 is updated given the realization

yt+1 as

p (xt+1jy1:t+1) =
p (yt+1jxt+1) p (xt+1jy1:t)

p (yt+1jy1:t)

�
m
PN

j=1 p (�
j)
��� @h
@xt+1

����1 � �xt+1 � x�jt+1� p (xt+1jy1:t)
m
PN

i=1 p (�
i)
��� @h
@xt+1

����1
xt+1=x�it+1

p
�
x�it+1jy1:t

� ;

for t = 1; 2; :::; T � 1; and where x�jt+1 = x�t+1(yt+1; �j) is determined by the jth grid point �j and
the observed yt+1. Hence, the updated �ltered distribution has representation (up to numerical

approximation error) as a discrete distribution as in (16), with density

p (xt+1jy1:t+1) =
NX
j=1

W j
t+1�

�
xt+1 � x�jt+1

�
,

where, for j = 1; 2; :::; N;

W j
t+1 =

p (�j)
��� @h
@xt+1

����1
xt+1=x

�j
t+1

p
�
x�jt+1jy1:t

�
PN

i=1 p (�
i)
��� @h
@xt+1

����1
xt+1=x�it+1

p
�
x�it+1jy1:t

�
denotes the probability associated with location x�jt+1 given by the unique zero of yt+1 �
h(xt+1; �

j); for j = 1; 2; :::; N .

2.2.6 Summary of the algorithm for general t

While the derivation details the motivation behind the general �lter, the actual algorithm is

easily implemented using the following summary. Denote by x�jt = x�t (yt; �
j) the unique zero

of yt � h (xt; �j), for each j = 1; 2; :::; N and all t = 1; 2; :::; T . Initialize the �lter at period 1

with (13) and (14). For t = 1; 2; :::; T � 1;

p(xt+1jy1:t) =

NX
j=1

W j
t p
�
xt+1jx�jt

�
; (20)

p (yt+1jy1:t) =

NX
i=1

M i
t+1 (yt+1) p(x

�
t+1(yt+1; �

i)jy1:t) (21)

p (xt+1jy1:t+1) =
NX
j=1

W j
t+1�

�
xt+1 � x�jt+1

�
; (22)
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with

M i
t+1 (yt+1) = mp

�
�i
� ���� @h@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

and

W j
t+1 =

M j
t+1 (yt+1) p

�
x�jt+1jy1:t

�PN
i=1M

i
t+1 (yt+1) p

�
x�it+1jy1:t

� :
The computational burden involved in the evaluation of the tth component of the likelihood

function (p (yt+1jy1:t)) is of order N2 for all t, implying an overall computational burden that

is linear in T . Note that, although the approximation renders the state �ltered distribution

discrete, the state prediction density is continuous, as is the prediction density for the observed

variable. Conditional on known values for p (�j) (and all other parameters), for large enough

N the �ltering algorithm is exact, in the sense of recovering the true �ltered and predictive

distributions for the state, plus the true predictive distribution for the observed, at each time

point.

Our approach has two key bene�ts. Firstly, establishing a grid of �j values for the region

of integration to a reasonable level of coverage need only be done once for the i:i:d:random

variable � (and not for each t). This is in contrast, for example, with the approach of Kitagawa

(1987) for the case of a fully parametric non-Gaussian nonlinear state space model, in which

numerical integration is performed over the non-constant e¤ective supports of the �ltered and

predictive distributions of xt, which are, in turn, determined by the observed data up to time

point t: Secondly, and the case of interest here, when the measurement error density, p (�),

is unknown, the mass associated with each of the grid points resulting from the rectangular

integration procedure,

gj = p
�
�j
�
m; (23)

for j = 1; 2; :::; N , may be estimated within an ML procedure. Since m is known, an estimate

of p (�) is obtained over the regular grid. Extensions of the algorithm incorporating alternative

numerical integration methods, such as Simpson�s rule, are straightforward but avoided here to

keep the complexity to a minimum.

We complete this section by noting that the non-parametric �lter could, in principle, be

replaced by a �lter in which the measurement error density at each grid point is represented as

a K-mixture of normal distributions: p (�j) = 1
b

PK
k=1 g

k�
�
�j��k
b

�
; where �k; k = 1; 2; :::; K are

the K local grid points on which the normal mixtures are centred, while f�j; j = 1; 2; :::; Ng
represent the grid-points in the support of � over which integration is performed.5 The parame-

ter b is the standard deviation of each mixture density, assumed here to be constant across all

5Note that a mixure of non-normal parametric distributions is also possible.
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the mixture densities and gk is the unknown weight attached to the kth mixture, which could

again be estimated via ML. Insertion of this density for � into the �ltering recursions (rather

than the discrete non-parametric representation) would lead to an increase in the computational

burden associated with evaluating the likelihood function from order TN2 to order T (N2K) (in

the scalar case). This increase in computational requirement, along with the distinct decrease in

the �exibility with which the unknown p (�) is represented, has led to us not pursuing this modi-

�cation further in this paper. However, it is worth noting that this less �exible representation of

p (�) may produce some computational gains, relative to the non-parametric representation, in

the high-dimensional case, given that the number of weights to be estimated, K, is independent

of the dimension of �. We leave further exploration of this issue for later work, focussing here on

novel and computationally feasible use of the non-parametric representation in the univariate

(or low-dimensional) setting.

2.3 Penalized Log-likelihood Speci�cation

The product of the elements p (yt+1jy1:t) in (21), for t = 1; 2; :::; T � 1, along with the marginal
distribution p (y1) in (15), de�nes the likelihood function in (4). Motivated by the prior belief

that the true unknown distribution of � is a smooth function that declines in the tails, the

logarithm of this likelihood function is penalized accordingly. Speci�cally, we augment the log

likelihood with two components that (with reference to (23)) respectively: (i) impose smooth-

ness on gj as a function of j; and (ii) penalize large values of j�0g��jj, where g and � are
the (N � 1) vectors containing the elements gj and �j. (See Berg et al., 2010). The penalized
log-likelihood function then becomes

lnL (�) = ln p (y1) +

T�1X
t=1

ln p (yt+1jy1:t)� !
1

2
g0H

�
N; �2

�
g� (1� !)k (c)0 g; (24)

where

H
�
N; �2

�
= N3��2
0A
+N�1 [ee0 + ��0] (25)

and k (c) is an (N � 1) vector with jth element given by kj (c) = � exp (c j�j � �0gj) : The
matrixA in (25) is an (N � 2) � (N � 2) tridiagonal matrix with ajj = 1=3 (for j = 1; :::; N�2)
and aj;j+1 = aj+1;j = 1=6 (j = 1; :::; N � 3); 
 is an (N � 2) � N matrix with three nonzero

elements 
jj = 1; 
j;j+1 = �2; 
j;j+2 = 1 in each row j; e is an (N � 1) vector of ones; and
N is the number of grid points. The �rst penalty component in (24) controls the smoothness

of the estimated density function de�ned by the gj, with smaller values of �2 corresponding

to smoother densities. The second penalty term in (24) penalizes values of gj associated with

grid-points that are relatively far from the mean, with the value of c determining the size of the

penalty. The constant ! 2 (0; 1) weights the two types of penalty. The penalized log-likelihood
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function is then maximized, subject to
PN

i=1 g
j = 1; gj � 0; j = 1; 2; :::; N; to produce ML

estimates of the augmented �. An estimate of the forecast distribution in (3) is subsequently

produced using these estimated parameters.

3 Simulation Experiments

3.1 Alternative State Space Models

The non-parametric �lter is applied to a range of state space models to produce the non-

parametric ML estimates of forecast distributions, p (yT+1jy1:T ), in a simulation setting. The
�rst model considered (in Section 3.1.1) is a state space model in which both the measure-

ment and state equations are linear, with both Gaussian and non-Gaussian measurement errors

entertained for the true DGP. Non-linearity is introduced into the measurement equation in

Section 3.1.2, and strictly positive (non-Gaussian) measurement errors assumed. This form of

model has been used to characterize (amongst other things) the dynamic behaviour in �nancial

trade durations and is known, in that context, as the stochastic conditional duration (SCD)

model; see Bauwens and Veredas (2004) and Strickland, Forbes and Martin (2006). The �nal

model examined (in Section 3.1.3) is non-linear in both the measurement and state equations,

with both Gaussian and non-Gaussian measurement errors considered. We refer to it as the

realized volatility model, as the form of the model lends itself to the empirical investigation of

this observable measure of latent volatility. It is, indeed, the model that underlies the empirical

investigation of S&P500 volatility in Section 4.

3.1.1 Linear Model

The linear model is the mainstay of the state space literature; hence, it is necessary to ascertain

the performance of the non-parametric method in this relatively simple setting, prior to inves-

tigating its performance in more complex non-linear models. The comparator is the estimated

forecast distribution produced via the application of the Kalman �lter to a model in which

the measurement error is assumed to be Gaussian. Clearly, when the Gaussian distributional

assumption does not tally with the true DGP, the Kalman �lter will not produce the correct

forecast distribution. Our interest is in determining the extent to which the non-parametric

method produces more accurate (distributional) forecasts than the misspeci�ed Kalman �lter-

based approach.

The proposed linear state space model has the form,

yt = xt + �t (26)

xt = �+ �xt�1 + �vvt; (27)
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where � = 0:1; � = 0:8, �v = 1:2 and vt s N (0; 1). We entertain three di¤erent distributions for
�t: normal, Student-t and skewed Student-t (see Fernandez and Steel, 1998). The measurement

error is standardized to have a mean of zero and variance equal to one (�t s i:i:d (0; 1)) and the
degrees of freedom parameter is set to 3, implying very fat-tailed non-Gaussian distributions.

The skewness parameter is also set to 3 (a value of 1 corresponding to symmetry), implying a

positively skewed skewed Student-t distribution. For the purpose of integration, the supports

were set �4 to 4 in the Gaussian case, �6 to 6 in the (symmetric) Student-t case and �4 to 8
in the skewed Student-t case.

3.1.2 Non-linear Model: Stochastic Conditional Duration

The SCD speci�cation models a sequence of trade durations and is based on the assumption

that the dynamics in the durations are generated by a stochastic latent variable. Bauwens

and Veredas (2004), for example, interpret the latent variable as one that captures the random

�ow of information into the market that is not directly observed. Denoting by xt the duration

between the trade at time t and the immediately preceding trade, we specify an SCD model

for yt as

yt = ext"t (28)

xt = �+ �xt�1 + �vvt; (29)

where "t is assumed to be an i:i:d: random variable de�ned on a positive support, with mean

(and variance) equal to one. We also assume that � = 0:1; � = 0:9, �v = 0:3 and vt � i:i:d:
N(0; 1); with "t and vt independent for all t:6 Taking logarithms of (28), the measurement

equation is transformed as

ln (yt) = xt + b+ ���t; (30)

where "t = exp (b+ ���t), �t s i:i:d: (0; 1), b = E (ln "t) and �2� = var(ln "t): We adopt three
di¤erent distributions for "t: exponential, Weibull and gamma, with the associated expressions

for b and �2� documented in Johnson et al. (1994). A range of �7 to 3 for �t is used in
implementing the non-parametric approach, due to the negative skewness that results from the

log transformation of "t.

The parametric comparator treats �t as if it were i:i:d: N (0; 1) and uses the Kalman �lter

to produce the forecast density for the log duration. Given that this distributional assumption

for �t is incorrect, the approach based on the Kalman �lter does not produce the correct

6Typically observed durations will exhibit a diurnal regularity that would be removed prior to implementation
of the SCD model. Note also that for the purpose of retaining consistent notation throughout the paper we use
a t subscript on the duration variable in the SCD model to denote sequential observations over time. These
sequential durations are, of course, associated with irregularly spaced trades.
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forecast distribution, and we document the forecast accuracy of this (misspeci�ed) approach in

comparison with that of the non-parametric method.

3.1.3 Non-linear Model: Realized Volatility

As a second example of a non-linear state space speci�cation, and one that is explored in Section

4, we consider the following bivariate jump di¤usion process for the price of a �nancial asset,

Pt, and its stochastic variance, Vt,

dPt
Pt

= �pdt+
p
VtdB

p
t + dJt (31)

dVt = �[�� Vt]dt+ �v
p
VtdB

v
t ; (32)

where dJt = ZtdNt; Zt � N(�z; �
2
z), and P (dNt = 1) = �Jdt and P (dNt = 0) = (1� �J) dt:

Under this speci�cation, random jumps may occur in the asset price, at rate �J , and with a

magnitude determined by a normal distribution. The pair of Brownian increments (dBpt ; dB
v
t )

are allowed to be correlated with a coe¢ cient �. We assume, however, that dBit and dJt are

independent, for i = fp; vg : This model is referenced in the literature as the stochastic volatility
with jumps (SVJ) model (Eraker et al., 2003; Broadie et al., 2007).

Given the variance process in (32), quadratic variation over the horizon t� 1 to t (assumed
to be a day) is de�ned as

QVt�1;t =
Z t

t�1
Vsds+

NtP
t�1<s�t

Z2s :

That is, QVt�1;t is equal to the sum of the integrated variance of the continuous sample path

component of Pt,

Vt�1;t =
Z t

t�1
Vsds; (33)

and the sum of the Nt � Nt�1 squared jumps that occur on day t. Using the notation pti to
denote the ith logarithmic price observed during day t, and rti = pti�pti�1 as the ith transaction
return, it follows (see Barndor¤-Nielsen and Shephard, 2002, and Anderson et al., 2003) that

RVt =
BX

ti2[t�1;t]

r2ti
p! QVt�1;t; (34)

where RVt is referred as realized variance (or, in a slight abuse of terminology, realized volatility)

and B is equal to the number of intraday returns on day t.7

7The result in (34) is the based on the implicit assumption that microstructure noise e¤ects are absent. See
Martin et al. (2009) for a recent summary of modi�cations of (34) that cater for the presence of microstructure
noise in the intraday prices.
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We de�ne the measurement equation as

lnRVt = lnVt + uRVt ; (35)

where the latent volatility evolves according to (32) and uRVt = lnRVt� lnVt is the log realized
volatility error. Based on the assumed DGP above, the error term in (35) will capture the

e¤ects of ignoring the price jump variation contained in lnRVt, the error associated with using

the point in time variance, Vt, as an estimate of the integrated variance in (33), and the error

associated with the use of a �nite value of B: If no adjustment is made to the realized variance

measure to cater for the presence of microstructure noise, the error term will also capture this

omitted e¤ect. The non-parametric method will, in principle, capture the distributional features

of uRVt that arise from all of these factors.8 An Euler approximation of (32) is used to de�ne

the state equation,

Vt = ��+ (1� �)Vt�1 + �v
p
Vt�1vt�1; (36)

where Vt�1 = the point-in-time volatility on day (t� 1) and vt � i:i:d:N(0; 1): The parameter
� is an annualized quantity, matching the annualized magnitude of the point in time volatility,

Vt: The parameter � is treated as a daily quantity, measuring the rate of mean reversion in the

annualized Vt per day.

Using the generic notation of the paper, the model is thus

yt = lnxt + ���t (37)

xt = �+ �xt�1 + �v
p
xt�1vt�1 (38)

where yt = lnRVt, xt = Vt; �� = 0:12; � = 0:005; � = 0:92 and �v = 0:04: We assume that

the state error, vt, follows a truncated normal distribution to ensure that volatility is non-

negative (i.e. xt > 0) in the implementation of the algorithm. The truncation value is time-

varying due to being dependent on the value of the previous state, as re�ected in the inequality,

vt > (��� �xt�1) =�v
p
xt�1: As in the linear model, we entertain three di¤erent distributions

for �t: normal, Student-t and skewed Student-t. The measurement error is standardized to

have a mean of zero and variance equal to one (i.e. �t s i:i:d (0; 1)), and with the same values
assigned to the degrees of freedom and skewness parameters as detailed in Section 3.1.1, and

the same supports adopted for the purpose of integration.

We adopt the extended Kalman �lter (Anderson and Moore, 1979) as an alternative ap-

proach to estimating the forecast distribution. The extended �lter deals with the non-linearity

in the measurement and state equations (via Taylor series approximations) but assumes that

both the measurement and state equation errors are Gaussian.
8We have chosen to de�ne the measurement equation in logarithmic form (for both RVt and Vt) in order to

(approximately) remove the dependence of the deviation of RVt from Vt on the level of Vt: See, for example,
Barndor¤-Nielsen and Shephard (2002).
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3.2 Comparison and Evaluation of Predictive Distributions

Following Geweke and Amisano (2010), a distinction is drawn between the comparison and

evaluation of probabilistic forecasts. Comparing forecasts involves measuring relative perfor-

mance; that is, determining which approach is favoured over the other. Scoring rules are used

in this paper to compare the non-parametric and parametric estimates of the predictive dis-

tributions of the observed variables. Four proper scoring rules are adopted: logarithmic score

(LS), quadratic score (QS), spherical score (SPHS) and the ranked probability score (RPS),

given respectively by

LS = ln p
�
yoT+1jy1:T

�
(39)

QS = 2p
�
yoT+1jy1:T

�
�
Z 1

�1
[p (yT+1jy1:T )]2 dyT+1 (40)

SPHS = p
�
yoT+1jy1:T

�
=

�Z 1

�1
[p (yT+1jy1:T )]2 dyT+1

�1=2
(41)

RPS = �
Z 1

�1

�
P (yT+1jy1:T )� I

�
yoT+1 � yT+1

��2
dyT+1; (42)

where, in our context, the competing density forecasts, denoted generically by p (yT+1jy1:T ), are
produced by applying the non-parametric and (various) parametric methods to the state space

models in Sections 3.1.1 to 3.1.3. As the scoring rule in (42) uses the forecast cumulative density

functions rather than density forecasts, the former are analogously denoted by P (yT+1jy1:T ).
The symbol I(�) in (42) denotes the indicator function that takes a value of one if yoT+1 � yT+1
and zero otherwise, where yoT+1 is ex-post the observed value of yT+1:

9

The LS in (39) is a simple �local�scoring rule, returning a high value if yoT+1 is in the high

density region of p (yT+1jy1:T ) and a low value otherwise. In contrast, the other three rules

depend not only on the ordinate of the predictive density at the realized value of yT+1, but also

on the shape of the entire predictive density. The QS and SPHS - (40) and (41) respectively

- combine a reward for a �well-calibrated�prediction (p
�
yoT+1jy1:T

�
) with an implicit penalty

(
R1
�1 [p (yT+1jy1:T )]

2 dyT+1) for misplaced �sharpness�, or certainty, in the prediction. The RPS

in (42), on the other hand, is sensitive to distance, rewarding the assignment of high predictive

mass near to the realized value of yT+1. (See Gneiting and Raftery, 2007, Gneiting, Balabdaoui

and Raftery, 2007, and Boero, Smith and Wallis, 2011, for recent expositions).

In the spirit of Diebold and Mariano (1995), amongst others, we assess the signi�cance of

the di¤erence between the average scores of the competing estimated predictive distributions by

9The integrals with respect to the continuous random variable yT+1 in (40) to (42) are evaluated numerically.
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appealing to a central limit theorem. Denote SD as the average di¤erence between the scores

of the two competing predictive distributions, associated with a set of M (independently)

replicated one-step ahead forecasts. Under the null hypothesis of no di¤erence in the mean

scores, the standardized test statistic, z = SD=b�SD=pM , has a limiting N(0; 1) distribution,
where b�SD=pM is the estimated standard deviation of SD.

In contrast with the process of comparison, the evaluation of forecasts involves assessing

the performance of a forecasting approach against an absolute standard. For example, the

probability integral transform (PIT) method benchmarks the sequence of cumulative predictive

distributions, produced from a single method and evaluated at ex-post values, against the

distribution of independent and identically distributed uniform random variables that would

result if the data were generated (in truth) by the assumed model. Speci�cally, under the null

hypothesis that the predictive distribution corresponds to the true data generating process, the

PIT, de�ned as the cumulative predictive distribution evaluated at yoT+1;

uT+1 =

Z yoT+1

�1
p (yT+1jy1:T ) dyT+1, (43)

is uniform (0; 1) (Rosenblatt, 1952). Hence, the evaluation of p (�) is performed by assessing
whether or not the probability integral transform overM replications,

�
uiT+1; for i = 1; 2; :::;Mg,

is U (0; 1). Under H0 : uT+1 � i:i:d:U (0; 1), the joint distribution of the relative frequencies of
the uiT+1 is multinomial, and Pearson�s goodness of �t statistic can be used to assess whether

the empirical distribution (of the uiT+1) conforms with this theoretical distribution. As the

Pearson test requires large sample sizes to be reliable (Berkowitz, 2001), we supplement this

test with one based on a quantile transformation of uT+1,

!T+1 = �
�1 (uT+1) ; (44)

where ��1 (�) denotes the inverse of the standard normal distribution function. A likelihood

ratio (LR) test of H0 : !T+1 � i:i:d:N (0; 1), against the alternative that the
�
!iT+1; for

i = 1; 2; :::;Mg have an autoregressive structure of order one, with Gaussian errors, is con-
ducted. To supplement the LR results, the Jarque-Bera normality test is applied. All three

tests have �2 null distributions, with 19, 3 and 2 degrees of freedom respectively. The degrees

of freedom for the Pearson goodness of �t test corresponds to one less than the chosen number

of bins (20) used in the construction of the test statistic.

The PIT-based tests are supplemented here by empirical coverage rates, calculated as the

proportion of instances (over M replications) in which the realized value falls within the 95%

highest predictive density (HPD) interval. If the (estimated) predictive distribution has a cov-

erage rate higher (lower) than the nominal rate, it means that the distribution is too dispersed

19



(concentrated) relative to the true predictive distribution. We also calculate the proportion of

samples with realizations that fall in the lower and upper 5% predictive tails. If the predictive

has a tail coverage rate that is higher (lower) than the nominal rate, it means that extreme

values are being over (under) predicted.

3.3 Simulation Results

All DGPs in the three broad models being investigated (as detailed in Sections (3.1.1), (3.1.2)

and (3.1.3) respectively) were simulated over M = 1000 replications, with T = 1000: For both

the linear and realized volatility (RV) models, N = 11 grid points were used in the support

of the measurement error density, whilst N = 21 was used for the SCD model. All grid

points are evenly spaced.10 The parameter values (other than the density ordinates de�ning the

measurement error in the non-parametric case) are �xed in all simulation exercises and take on

values recorded in the text. Table 1 records the distributional parameter values (if applicable)

for the measurement error in each DGP, and the values of �; c and ! in (24) used to ensure

smoothness of the estimate of the measurement error distribution. Values of the smoothing

parameters were determined by a trial and error process. Other parameters values were chosen

with reference to typical empirical data relevant to the model at hand.11

Tables 2 to 4 record respectively all score, evaluation and coverage results. Results for the

linear model, (26) and (27), the SCD model, (30) and (29) and the RV model, (37) and (38),

are recorded in Panel A, B and C respectively of each table. With reference to Panel A in

Table 2, the scores of the non-parametric estimate of p (yT+1jy1:T ), under the Gaussian DGP,
are seen to be lower overall than those of the parametric forecast, across all four measures.

This is no surprise, given that the Kalman �lter produces the correct forecast distribution

in the linear Gaussian case. However, the di¤erences between the scores are insigni�cant at

the 5% level, indicating that the non-parametric method does very well at recovering the true

forecast distribution. In the Student-t case - in which the Gaussian assumption underlying

the Kalman �lter-based distribution is incorrect - the scores of the non-parametric estimate

of p (yT+1jy1:T ) are higher overall than for the parametric forecast, across all four measures.
Once again, however, the di¤erences are insigni�cant at the 5% level, except for the logarithmic

score, according to which the non-parametric estimate signi�cantly outperforms the misspec-

i�ed parametric alternative. Under the skewed Student-t DGP, the non-parametric estimates

10Some experimentation with di¤erent values of N was conducted, with results being reasonably robust to the
number of grid-points. As the number of grid-points chosen corresponds to the number of unknown probabilities
to be estimated, the computational requirements of the simulation experiment led to the use of values of N that
were not too large.
11All numerical results in this and the following empirical section have been produced using the GAUSS

programming language.
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signi�cantly out-perform the misspeci�ed parametric estimates, for all four scoring measures.

Table 1

Constants, �; c and !, used in the penalized likelihood function in (24), in the simulation
experiments for the linear, SCD and RV models, as detailed in Sections (3.1.1), (3.1.2) and

(3.1.3) respectively.
�t � c !

N(0; 1) 0.5 0.5 0.2
Linear Model Student t(0; 1; � = 3) 4.0 0.5 0.2

Skewed Student t(0; 1; � = 3;  = 3) 6.0 0.05 0.2

Exponential (1; 1) 1.0 1.0 0.4
SCD Model Weibull ( = 1:15; 1) 1.0 1.0 0.4

Gamma (� = 1:23; 1) 1.0 1.0 0.4

N(0; 1) 1.0 0.5 0.2
RV model Student t(0; 1; � = 3) 8.0 0.05 0.4

Skewed Student t(0; 1; � = 3;  = 3) 4.0 0.5 0.2

Panel A of Table 3 records (for the linear model) the test statistics associated with the three

PIT tests described in Section 3.2, namely, the Pearson test for the uniformity of fuiT+1; i =
1; 2; :::;Mg in (43), the LR test of the normality (and independence) of

�
!iT+1; i = 1; 2; :::;Mg

in (44) and the Jarque-Bera test for the normality of
�
!iT+1; i = 1; 2; :::;Mg. For the (con-

ditionally) Gaussian DGP, all test statistics - for both the non-parametric and parametric

estimates - do not reject the null at the 5% level, indicating that both approaches produce ac-

curate predictive distributions for this DGP. In contrast, in the Student-t and skewed Student-t

cases, at least one of the LR and Jarque-Bera tests leads to rejection of the parametric es-

timates, indicating that the predictive distributions produced by the misspeci�ed parametric

approach under these two DGPs are inaccurate. The LR test of the non-parametric estimate

of p (yT+1jy1:T ) in the skewed Student-t case leads to marginal rejection (at the 5% level), but

the other two tests of the non-parametric estimate fail to reject the null hypothesis.
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With reference to Panel A of Table 4, the lower and upper 5% coverage rates for both

forecasting approaches, and under all three DGPs, are seen to be close to the nominal levels,

indicating that both approaches are able to capture the tails of the true predictive distribution

well enough, in the linear case, even under (parametric) misspeci�cation. However, under

misspeci�cation, the parametric estimate has signi�cant (although not �substantial�) under

coverage of the 95% interval.

Table 3

Prediction Evaluation. Pearson, LR and Jarque-Bera �2 test statistics, for the non-parametric
and parametric estimates of p (yT+1jy1:T ) (Panels A and C) and p (ln yT+1j ln y1:T ) (Panel B), for the
respective DGPs. In the table, �� represents statistical signi�cance at the 5% level. The critical values
for the three tests are respectively 30.14, 7.82 and 5.99.

Pearson LR Jarque-Bera

PANEL A: Estimated p (yT+1jy1:T ) for Linear model
NP KF NP KF NP KF

�t s N(0; 1) 13.12 11.88 0.618 0.414 0.826 0.0921
�t s St(0; 1; � = 3) 13.44 11.56 3.228 3.648 3.251 37.619��

�t s SkSt(0; 1; � = 3;  = 3) 12.48 21.40 9.053�� 15.571�� 1.6968 75.781��

PANEL B: Estimated p (ln yT+1j ln y1:T ) for SCD model
NP KF NP KF NP KF

�ts exp (1; 1) 20.68 44.68�� 1.188 0.581 3.077 64.983��

�ts Wb ( = 1:15; 1) 9.96 48.64�� 1.879 0.635 4.409 129.785��

�ts Gamma (� = 1:23; 1) 10.16 31.60�� 3.933 2.554 1.131 77.524��

PANEL C: Estimated p (yT+1jy1:T ) for RV Model
NP KF NP KF NP KF

�t s N(0; 1) 21.28 37.32�� 8.347�� 13.284�� 1.043 36.499��

�t s St(0; 1; � = 3) 24.72 30.04 3.019 5.398 0.983 10.752��

�t s SkSt(0; 1; � = 3;  = 3) 16.40 24.96 3.321 2.847 3.385 39.216��

Considering now the score results for the SCD model, recorded in Panel B of Table 2, all four

scores for the non-parametric estimate of p (ln yT+1j ln y1:T ) are seen to be signi�cantly higher
than the corresponding scores for the parametric estimate, for all three DGPs. With reference

to Panel B of Table 3, across all DGPs the non-parametric estimates of p (ln yT+1j ln y1:T ) are
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Table 4

Prediction Evaluation. Coverage rates (5% and 95%) for the non-parametric and parametric esti-
mates of p (yT+1jy1:T ) (Panels A and C) and p (ln yT+1j ln y1:T ) (Panel B), for the respective DGPs.
In the table, �� represents signi�cant di¤erence from the nominal coverage, at the 5% signi�cance
level.

5% lower tail 5% upper tail 95% HPD

PANEL A: Estimated p (yT+1jy1:T ) for the linear model (Section 3.1.1)
�t: N St SkSt N St SkSt N St SkSt

Kalman �lter 4.8 4.5 5.5 5.0 5.3 6.4 94.9 93.3�� 92.4��

Non-parametric �lter 4.4 4.6 6.1 4.5 5.9 5.8 95.2 94.1 93.5

PANEL B: Estimated p (ln yT+1j ln y1:T ) for the SCD model (Section 3.1.2)
�t: Exp Wb Gamma Exp Wb Gamma Exp Wb Gamma

Kalman �lter 6.0 5.8 6.5 2.7�� 2.8�� 3.3�� 94.9 94.9 95.4
Non-parametric �lter 5.2 4.7 5.1 6.0 6.3 5.9 94.2 94.3 94.7

PANEL C: Estimated p (yT+1jy1:T ) for the RV Model (Section 3.1.3)
�t: N St SkSt N St SkSt N St Skst

Kalman �lter 6.1 5.6 6.0 5.2 3.0�� 3.3�� 93.4 95.6 94.4
Non-parametric �lter 5.3 4.7 5.8 5.5 4.3 4.0 93.8 95.7 95.0

assessed as being correct, as none of the null hypotheses for the three tests is rejected at the

5% level. The (misspeci�ed) parametric estimate, on the hand, is associated with rejection

for all but one of the tests of �t. Whilst none of the 5% (lower tail) and 95% coverage rates

recorded in Panel B of Table 4 (for either forecasting approach) is signi�cantly di¤erent from the

nominal level, the 5% (lower tail) coverage rates for the non-parametric estimate are closer to

the nominal level than those of the parametric alternative, for all three DGPs. In addition, the

5% upper tail of the non-parametric forecast distribution has coverage that is not signi�cantly

di¤erent from the nominal level, whereas the estimate from the Kalman �lter-based approach

signi�cantly underestimates the nominal level.

Finally, all scores (reported in Panel C of Table 2) for the non-parametric estimate of

p (yT+1jy1:T ) in the RV model are higher than those of the parametric estimate, under all

DGPs. Despite the positive values of the relevant test statistics, in the Gaussian case three
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of the non-parametric scores are insigni�cantly higher than those of the corresponding para-

metric alternatives, indicating that the extended Kalman �lter approach works reasonably well

under (correct) assumption of conditional Gaussianity. However, under the Student-t DGP,

the non-parametric estimate is signi�cantly more accurate than the (misspeci�ed) parametric

estimate, according to three of the four scores, and in all four cases under the skewed Student-t

distribution.

The results in Panel C of Table 3 show that, as is the case for the SCD model, there is

an overall tendency for the non-parametric approach to yield more accurate forecasts in the

RV model, according to the tests of �t. Speci�cally, the null hypotheses rejected at the 5%

level in the non-parametric case in only one case out of nine (and marginally at that), whilst

�ve rejections (out of nine cases) occur for the extended Kalman �lter-based alternative. With

reference to Panel C of Table 4, both forecast approaches have similar (and reasonable) coverage

rates, apart from a signi�cant undercoverage in the upper tail on the part of the misspeci�ed

parametric approach, under both the symmetric and (positively) skewed Student-t DGPs.

4 Empirical Illustration

4.1 Preliminary Analysis

In order to illustrate the non-parametric method, we produce and evaluate non-parametric

estimates of the one-step ahead prediction distributions for realized volatility on the S&P500

market index, �tting the model described in (37) and (38). The sample period extends from

2 January 1998 to 29 August 2008, providing a total of 2645 daily observations. All index

data has been supplied by the Securities Industries Research Centre of Asia Paci�c (SIRCA) on

behalf of Reuters, with the raw index data having been cleaned using the methods of Brownlees

and Gallo (2006).12

The time series of the data is plotted in Panel A of Figure 1. As is clear from that �gure,

there are several distinct periods in which volatility is seen to be signi�cantly higher than during

the remaining sample period. The �rst of these periods corresponds to the Asian currency crisis

in 1998, whereby a �nancial crisis gripped much of Asia and raised fears of a worldwide economic

slowdown. Realized volatility also reached high levels at the end of year 2000, following the

burst of the �Dot-com�bubble, and in year 2001 after the September 11th terrorist attacks in

the United States. Year 2002 produced record values of realized volatility caused by a sharp

12The authors would like to acknowledge the excellent research assistance of Chris Tse in producing the
realized variance series. The realized variation measure is based on �xed �ve minute sampling, with a �nearest
price�method used to construct arti�cial returns �ve minutes apart. Subsampling (or averaging) over the day
is also used, in order to mitigate some of the e¤ects of microstructure noise. See Martin et al. (2009) for details
of such computations.
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drop in stock prices, generally viewed as a market correction to over-in�ated prices following a

decade-long �bull�market. Also factoring in the speed of the fall in prices at this time were a

series of large corporate collapses (e.g. Enron and WorldCom), prompting many corporations to

revise earnings statements, and causing a general loss of investor con�dence. The �nal period of

high volatility in our sample corresponds to the year 2008, associated with the �global �nancial

crisis�, triggered by the sub-prime mortgage defaults in the United States. During all of these

periods, the peaks reached by the realized volatility values were between ten and twenty times

larger than the average level over the full sample period. In contrast, there was a relatively long

period of time, from 2003 to mid-2007, during which volatility was relatively stable and low.

Panel B of Figure 1 plots the histogram of log realized volatility, with the distinct skewness

to the right re�ecting the occurrence of the very extreme values of realized volatility itself.13

These empirical characteristics are consistent with the existence of a jump di¤usion model for

the stock prices index, with realized volatility re�ecting both di¤usive and jump variation as

a consequence. In using the non-parametric approach to estimate the forecast distribution for

log realized volatility the aim is to capture the impact of the jump variation in a computational

simple way, rather than modelling price jumps explicitly.

4.2 Empirical results

We divide the S&P500 daily realized volatility data into two subsamples. The �rst subsample

(2 January 1998 to 30 January 2007), containing 2245 observations, is reserved for estima-

tion of the model parameters in (37) and (38), including the unknown ordinates of p(�): The

subsample used for forecast assessment comprises the remaining 400 realized volatility values,

covering the period from 31 January 2007 to 29 August 2008, and as represented by the shaded

area in Panel A of Figure 1. This subsample period corresponds to the early period of the

�nancial crisis, during which defaults on sub-prime mortgages began to impact on the viability

of �nancial institutions and the availability of credit. The out-of-sample density forecasts are

based on (parameter) estimates updated as the estimation window expands with each new daily

observation. N = 21 grid points, equally spaced over the interval from -10 to 10, are used to

represent the support of the measurement error density, p (�). Values of the penalty parameters

used in (24) are � = 4; c = 0:5 and ! = 0:3.14

We estimate the 400 one-step ahead predictive distributions for the level of realized volatility

for the out-of-sample period. For each of the 400 prediction distributions, simulated draws

13A Jarque-Bera test applied to this log realized volatility series rejects the null hypothesis of Gaussianity at
any conventional level of signi�cance.
14Robustness of the results to di¤erent values of N (in a range from 21 to 51) for a �xed set of penalty values,

and robustness of the results to di¤erent sets of penalty values (1� � � 4; 0:01 � c � 0:5; 0:3 � ! � 0:8 ) was
investigated. Di¤erences in the estimated forecast distributions were negligible.
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Figure 2: 95% one-step-ahead prediction intervals and the observed realized volatility, over the 400 day evalua-
tion period (31 January 2007 to 29 August 2008)

of lnRVT+1 (in terms of which the measurement equation is speci�ed) are exponentiated to

produce future values of RVT+1; with these values then used to produce a sequence of 95%

prediction intervals for the evaluation period in Figure 2. The solid line represents the observed

RVt at each point t in the evaluation period, while the dotted lines represent the 2.5% and 97.5%

predictive bounds. The empirical coverage for the evaluation period is 94.0%, insigni�cantly

di¤erent from the nominal level of 95% and providing, thereby, extremely strong support for

the overall accuracy of the non-parametric approach. Support is also provided via the Pearson

test for uniformity of the probability integral transform series, u in (43). However, both the LR

test of the normality (and independence) of
�
!iT+1; i = 1; 2; :::;M

	
in (44) and the Jarque-Bera

test for the normality of
�
!iT+1; i = 1; 2; :::;M

	
in (44) lead to rejection, indicating that some

aspect of the forecast distribution is not being adequately captured. Observation of the shape

of the histogram of u in Figure 3, indicates that too many realizations of volatility fall in the

right tail of the forecast density, relative to the estimate thereof. This suggests that, despite the

overall predictive accuracy evidenced, we are still unable to capture the most extreme values

of volatility that occur on a few occasions during the evaluation period.

28



.02

.03

.04

.05

.06

.07

.08

.09

.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 3: Histogram of the probability integral transform series, u, for the realized volatility model. The
horizontal lines superimposed on the histogram are approximate 95% con�dence intervals for the individual bin
heights under the null that u is i:i:d: U (0; 1) :

4.3 Measuring sampling error

Finally, in the context of producing estimates of forecast distribution that are conditional on

estimates of the �xed parameters, it is of interest to consider the issue of sampling error and

the appropriate measurement thereof. In the spirit of McCabe et al. (2011) the subsampling

approach of Politis, Romano and Wolf (1999) is used to quantify sampling variation in a single

estimated one-step-ahead forecast distribution, for 17th March 2008, a quite high volatility day

during the out-of-sample period. The technique mimicks the conventional prediction interval

for a scalar point forecast, but ensures, at the same time, that the integration to unity property

of the forecast distribution still holds.15 The steps of the procedure are as follows:

1. Obtain T�b+1 subsamples Y1 = (y1; : : : ; yb) ; Y2 = (y2; :::; yb+1); :::; YT�b+1 = (yT�b+1; :::; yT )
from the set of empirical data, y1:T = (y1; y2; :::; yT )

0 :

2. Use the proposed non-parametric ML method to produce an estimate of �, �̂b;t, computed

15In related work, Rodriguez and Ruiz (2009) present a bootstrap-based approach to estimating prediction
intervals in a linear state space setting. Their method uses the Kalman �lter recursions, but eschews the
assumption of Gaussian innovations by using random draws from the empirical distributions of the innovations.
It also factors sampling variation into the prediction intervals, but in a di¤erent way from that proposed by
McCabe et al. (2011) and followed in this paper. See also Pascual, Romo and Ruiz (2001, 2005).
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from Yt, for t = 1; 2; :::; T � b+ 1:

3. Use �̂b;t and the observed values, y1:T , to compute the 1-step ahead forecast distribution

p
�
yT+1jy1:T ; �̂b;t

�
:

4. Calculate (over an arbitrarily �ne grid of values for yT+1) the metric

db;t =
p
T
p�yT+1jy1:T ; �̂b;t�� p�yT+1jy1:T ; �̂�

1
, where p

�
yT+1jy1:T ; �̂

�
is the estimated

forecast distribution based on the empirical data and �̂ is the empirical estimate of �:

5. Find the 95th percentile of fdb;1; : : : ; db;T�b+1g, d0:95b ; and the corresponding distribution

p0:95 (yT+1jy1:T ; �) : Then, relative to the replicated distributions and in terms of the jj:jj1
distance from p

�
yT+1jy1:T ; �̂

�
, the chances of seeing a distribution as or more �extreme�

than p0:95 (yT+1jy1:T ; �) is 5%.

The data-dependent method used to choose the size of the sub-samples, b (see Politis et al.,

1999, Chapter 9) is as follows:

a. For each b 2 fbsmall; : : : ; bbigg carry out Steps 1 to 5 above to compute d0:95b .

b. For each b compute V Ib as the standard deviation of the 2k + 1 consecutive values�
d0:95b�k; : : : ; d

0:95
b+k

	
(for k = 2).

c. Choose b̂ to minimise V Ib.16

Figure 4 shows the 10th, 50th and 95th percentile sub-sampled forecasts, along with the

estimated empirical forecast, for the 17th March 2008. Panel A shows the relevant results

based on a sample size of 505 observations (approximately two trading years) with b̂ = 255.

Panel B shows the results based on 2528 observations, with b̂ = 1300. As is clear, for the

smaller sample size, there is a large amount of uncertainty in the predictive estimate, with that

uncertainty serving to shift probability mass across the support of the predictive distribution.

For example, the predictive distribution at the 50th percentile assigns a larger probability to

extreme values of volatility, than does the actual empirical estimate. On the other hand, the

predictive distribution at the 95th percentile assigns large probabilities to very low values of

volatility. In other words, for the smaller sample size sampling variability has a substantial

impact, serving to alter the qualitative nature of conclusions drawn about future volatility. For

the larger sample size, the subsampled-based sampling distribution of the (estimated) forecast

16We have chosen to use d0:95b as the percentile on which selection of b is based as we are interested, primarily,
in ascertaining the changes in the forecast distributions that may occur at the extreme end of the scale (of the
metric d).
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Figure 4: Plot of the 10th, 50th and 95th percentile bootstrap forecast against the empirical forecast for the
17th March 2008. Panel A shows the bootstrap forecasts estimated from the preceding 505 observations. Panel
B shows the bootstrap forecasts estimated from the preceding 2528 observations.

distribution becomes much more concentrated around the empirical estimate, with the full

suites of distributions leading to qualitatively similar conclusions regarding volatility on the

given day.
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5 Concluding Remarks

We have developed a new method for estimating the full forecast distribution of non-Gaussian

time series variables in the context of a general non-Gaussian, non-linear state space model. A

non-parametric �lter is derived that exploits the functional relationship between the observed

variable and the state and measurement error variables, expressed using Dirac�s �-function. This

representation, along with a simple rectangular integration rule de�ned over the �xed support

of the measurement error, allows the density of the measurement error to be estimated at N grid

points using a penalized likelihood procedure. The approach enables predictive distributions

to be produced with computational ease in any model in which the relationship between the

measure and state is well understood, but the precise distributional form of the measurement

error is unknown. The method is developed in the context of a model for a scalar measurement

and state, as is suitable for many empirical problems, with extension to higher dimensional

problems also feasible, subject to the usual proviso that accompanies a grid-based method.

Using the proposed method, the predictive distributions for the observed and latent vari-

ables are produced for a range of linear and non-linear models, in a simulation setting. The

non-parametric predictive distributions are compared against distributions produced via (mis-

speci�ed) parametric approaches. Results show that the non-parametric method performs sig-

ni�cantly better, overall, than (misspeci�ed) parametric alternatives and is competitive with

correctly speci�ed parametric estimates. The new method is also applied to empirical data on

the S&P500 index, with the non-parametric predictive distribution able to capture important

distributional information about the future value of the realized volatility of the index. A sub-

sampling method is used to highlight the e¤ect that sampling variation can have on predictive

conclusions, in small samples in particular.

We conclude by noting that despite our focus here on the non-parametric setting, our

proposed algorithm is also directly applicable to models in which the measurement error dis-

tribution is speci�ed parametrically. In that particular case, as long as the measurement error

distribution is able to be simulated from and an appropriate transformation between each mea-

surement and its error term is available, then the grid-based method may be replaced by an

approach in which all relevant integrals are evaluated by Monte Carlo simulation, based on

draws from the invariant distribution of the measurement error. The resulting alternative par-

ticle �lter, unnecessary in scalar (or low) dimensional cases such as those explored in this paper,

would be a powerful tool in high-dimensional settings, particularly as it avoids the degeneracy

problems that are a feature of existing simulation-based �ltering algorithms. This is currently

the subject of investigation by the authors.
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