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Abstract

The author proposes a class of exact tests of the null hypothesis of exchangeable forecast

and, hence, of the hypothesis of no difference in the unconditional accuracy of two compet

forecasts. The class includes analogues of the well-known Diebold and Mariano (1995)

parametric and non-parametric test statistics. The forecast errors can be non-normal and

contemporaneously correlated, and general forms of the loss function are admitted. The no

parametric distribution-free property of these new tests makes them robust to the presence

conditional heteroscedasticity, heavy tails, and outliers in the loss-differential series. These

are used with a randomization or “Monte Carlo” resampling technique, which yields an exac

computationally inexpensive inference procedure. Simulations confirm the reliability of the 

test procedure, and its power is found to be comparable with that of the size-corrected para

Diebold-Mariano test. The test procedure is illustrated with an application to the term structu

interest rates. The application shows that exchangeable forecast errors can be found empi

even when comparing forecasts from estimated models.

JEL classification: C12, C22, C52, C53
Bank classification: Econometric and statistical methods

Résumé

L’auteur propose une classe de tests exacts de l’hypothèse nulle d’interchangeabilité des e

de prévision, c’est-à-dire de l’hypothèse voulant que l’exactitude inconditionnelle de

deux prévisions concurrentes n’affiche aucune différence. Cette classe réunit des statistiqu

test analogues à celles des tests paramétriques et non paramétriques bien connus de Dieb

Mariano (1995). Les erreurs de prévision peuvent ne pas suivre une loi normale et être cor

de façon contemporaine. De plus, la fonction de perte peut prendre des formes générales.

caractère non paramétrique de ces nouveaux tests, dont la statistique ne suit aucune loi pré

explique leur robustesse en présence d’hétéroscédasticité conditionnelle, de courbes de fo

plus pointue et de valeurs aberrantes dans la série issue de la comparaison des fonctions d

Les tests s’accompagnent d’une randomisation ou d’un rééchantillonnage à la Monte-Carlo

qui débouche sur une procédure d’induction exacte et peu exigeante sur le plan des calcul

simulations confirment la fiabilité de ce nouveau test, dont la puissance se compare à celle

paramétrique de Diebold et Mariano à niveau corrigé. Appliqué à titre illustratif à la structure

taux d’intérêt, le test montre que les erreurs de prévision peuvent s’avérer interchangeable

empiriquement même lorsqu’on compare des prévisions obtenues à partir de modèles esti

Classification JEL : C12, C22, C52, C53
Classification de la Banque : Méthodes économétriques et statistiques



1. Introduction

An important question that occurs in time-series forecasting is how to formally compare

the quality of competing forecasts. Formal comparisons attempt to assess whether di�er-

ences between competing forecasts are statistically signi�cant or simply due to sampling

variability.

There are four main diÆculties with formal testing: (i) forecast errors are generally

not mean-zero or normally distributed, (ii) multi-step forecasts are serially correlated and

heteroscedastic, (iii) competing forecasts tend to be contemporaneously correlated, and (iv)

the economic loss function may be asymmetric and not correspond to the usual statistical

measures, such as absolute or squared forecast error.

Let f(e1t; e2t)gTt=1 be a bivariate vector time series, where the elements represent com-

peting forecast errors. For example, each of these might be the outcome of forecasts based

on judgments, surveys, smoothing, extrapolation techniques, leading indicators, time-series

models, or any combination of methods. The quality of the forecasts is to be judged ac-

cording to some speci�ed loss function, g(�). Although the loss may depend on both the

outcomes and the forecasts, it is common to assume that the loss function depends only

on the forecast errors. Let dt = g(e1t)� g(e2t) thus denote the loss di�erential. Typically,

the null hypothesis of unconditional equal forecast accuracy is

H
(1)
0 : E[dt] = 0; (1)

which can be interpreted as meaning that the errors associated with the two forecasts

are equally costly, on average. If the null is rejected, a decision-maker would choose the

forecasting method that yields the smallest loss. Given a series, fdtgTt=1, of loss di�erentials,
it is natural to base a test of (1) on the sample mean:

�d =
1

T

TX
t=1

dt: (2)

The Diebold and Mariano (1995) (DM) parametric test is a well-known procedure for

testing the null hypothesis of no di�erence in the accuracy of two competing forecasts. It

is given by

DM =
�dq
V̂ ( �d)

; (3)

where V̂ ( �d) is an estimate of the asymptotic variance of �d. Whenever an optimal forecast
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is produced from a proper information set, the resulting h-step forecast errors will follow a

moving-average (MA) process of order (h�1) of the form et = �0"t+�1"t�1+:::+�h�1"t�h+1.

Therefore, Diebold and Mariano propose estimating the variance using the truncated kernel

with a bandwidth of (h� 1) for h-step forecasts. That estimator is computed as

V̂ ( �d) =
1

T

"
̂0 + 2

h�1X
k=1

̂k

#
; (4)

where ̂k is an estimate of the kth autocovariance of dt, given by

̂k =
1

T

TX
t=k+1

(dt � �d)(dt�k � �d):

If the loss-di�erential series satis�es some regularity assumptions|such as covariance sta-

tionarity, short memory, and the existence of moments|that ensure the applicability of

a central limit theorem, then the DM test statistic has an asymptotic standard normal

distribution under the null hypothesis.

As the simulation experiments in Diebold and Mariano (1995) show, the normal distri-

bution can be a very poor approximation of the DM test's �nite-sample null distribution.

Their results show that the DM test can have the wrong size, rejecting the null too often,

depending on the degree of serial correlation among the forecast errors and the sample

size, T .

Harvey, Leybourne, and Newbold (1997) (HLN) suggest that improved small-sample

properties can be obtained by: (i) making a bias correction to the DM test statistic, and

(ii) comparing the corrected statistic with a Student-t distribution with (T � 1) degrees of

freedom, rather than the standard normal. The corrected statistic is obtained as

HLN-DM =

r
T + 1� 2h+ h(h� 1)=T

T
DM: (5)

Harvey, Leybourne, and Newbold advocate the use of this modi�ed Diebold-Mariano test

procedure, although the use of Student-t critical values can be justi�ed only in the case of

independent and normally distributed loss di�erentials.

Clark (1999) considers the size and power of several tests of equal forecast accuracy,

including variants of the Diebold-Mariano test statistic with di�erent heteroscedasticity

and autocorrelation-consistent (HAC) variance estimators, such as that proposed by Newey

and West (1994), which uses the Bartlett kernel and a data-determined bandwidth. His
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results show that all of the tests su�er size distortions in small samples, with the HLN-DM

test su�ering relatively the least.

This paper proposes new methods to obtain exact tests of the null hypothesis of ex-

changeable forecast errors and, hence, of no di�erence in the accuracy of two competing

forecasts; i.e., if the forecast errors are exchangeable, then there is no di�erence in the

accuracy of two competing forecasts. The proposed methods are based on the fact that

exchangeable forecast errors implies symmetrically distributed loss di�erentials. The ap-

proach then exploits results from the theory of non-parametric statistics that show that

the only tests of symmetry about zero that are valid under suÆciently general distribu-

tional assumptions, allowing for non-normality and possible heteroscedastic observations,

are based on sign statistics conditional on the absolute values of the observations (see

Lehmann and Stein 1949; Pratt and Gibbons 1981, 218; and Dufour 2003). In addition to

the parametric DM test described above, Diebold and Mariano (1995) propose two exact

(non-parametric) tests, one of which also rests on a symmetry assumption for the loss dif-

ferentials. Under the null of exchangeability, the two exact tests that Diebold and Mariano

(1995) propose and the tests proposed here become similar tests of symmetry about zero.

Section 2 presents the exact test procedures. It begins with a review of the two linear

signed rank statistics proposed by Diebold and Mariano (1995). A class of test statistics

is then introduced that includes analogues of the DM parametric and non-parametric

test statistics. General forms of the loss function are admitted, and the forecast errors

can be non-normal and contemporaneously correlated. In fact, the class of test statistics

proposed here, while analogous to the parametric DM test statistic based on (2), retains

the virtues of the non-parametric tests proposed by Diebold and Mariano: their �nite-

sample distributions are easily described, they are robust to departures from Gaussian

conditions, and they are invariant to unknown forms of conditional heteroscedasticity.

Section 3 proposes to use these new tests with a randomization or \Monte Carlo" resam-

pling technique that yields an exact and computationally inexpensive inference procedure.

Section 4 describes the results of a small simulation study as evidence of the �nite-sample

performance of the proposed test procedure. Size comparisons are made with Diebold and

Mariano's (1995) parametric test and with the modi�ed version by Harvey, Leybourne,

and Newbold (1997). The power of the proposed test procedure is then compared with,

and shown to be similar to, Diebold and Mariano's size-corrected parametric test. Section

5 applies the procedure to test the predictions of the theory of the term structure of in-

terest rates for Canada and the United States. The application shows that exchangeable

forecast errors can be found empirically even when comparing forecasts from estimated
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models. Section 6 concludes.

2. Exact Test Procedures

In addition to the DM test in (3), Diebold and Mariano (1995) propose two exact non-

parametric linear signed rank test statistics. Assuming one-step-ahead forecast errors, the

�rst is a classical sign test given by

DMS =
TX
t=1

s(dt); (6)

where s(x) is a sign function equal to 1 when x > 0, and 0 otherwise. The null hypothesis

under test in this case is one of median-zero loss di�erentials; i.e., HS
0 : median(dt) = 0.

That null is not quite the same as the null of no di�erence between median losses; i.e.,

median(g(e1t) � g(e2t)) 6= median(g(e1t)) �median(g(e2t)). Nevertheless, as Diebold and

Mariano state, it has the intuitive and meaningful interpretation that Pr[g(e1t) > g(e2t)] =

Pr[g(e1t) < g(e2t)].

Under HS
0 , the statistic DM

S follows a binomial distribution with number of trials T

and probability of success 1=2, assuming that the loss-di�erential series contains no zeros.

The standardized version, DM�
S = (DMS �E[DMS])=

q
V ar[DMS], where E[DMS] = T=2

and V ar[DMS] = T=4, is approximately standard normal even for relatively small values of

T . If the loss di�erentials are symmetrically distributed about the origin, then the mean,

if it exists, and the median|which always exists|are the same. In that case, (6) becomes

a test of mean-zero loss di�erentials as written in (1).

The second non-parametric test proposed by Diebold and Mariano (1995), a Wilcoxon

signed rank statistic, does indeed require the assumption of symmetrically distributed loss

di�erentials. In the case of one-step-ahead forecast errors, the test statistic is

DMW =
TX
t=1

s(dt)R
+
t ; (7)

where R+
t is the rank of jdtj when jd1j; jd2j; :::; jdT j are placed in ascending order. Assuming

that the loss di�erentials contain no zeros and that there are no ties among their absolute

values, the statistic DMW is distributed like the Wilcoxon variate, the distribution of

which has been tabulated for various values of T ; see Table A.4 in Hollander and Wolfe

(1973) for T � 15. For larger values, the standard normal distribution provides a very
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good approximation of the standardized version DM�
W = (DMW�E[DMW ]=

q
V ar[DMW ],

where E[DMW ] = T (T + 1)=4 and V ar[DMW ] = T (T + 1)(2T + 1)=24.

It is easy to see that one-step-ahead forecasts, if optimal, will be white noise (although

not necessarily Gaussian, and hence not independent). This reects the basic property of

a white-noise series that earlier terms contain no information about later terms. If the

one-step-ahead errors are not white noise, then they will at least be partially forecastable

from past errors. Therefore, the original forecasts could be improved by adding to them

these forecasts of the errors; see Granger and Newbold (1977, 119) and Diebold and Lopez

(1996), among others, for more on the properties of optimal forecasts.

When the forecast horizon is more than just one period, it is well known that optimal

h-steps-ahead forecast errors follow an MA process of order (h � 1). As Diebold and

Mariano suggest, such forms of serial correlation can be handled via Bonferroni bounds

(see also Campbell and Ghysels 1995). Assuming the loss di�erentials to be at most

(h � 1)-dependent, each of the following h vectors of loss di�erentials will be serially

uncorrelated: (d1; d1+h; d1+2h; :::), (d2; d2+h; d2+2h; :::), ..., (dh; d2h; d3h; :::). Therefore, if h

tests are performed, each with individual nominal level �=h, then Bonferroni's inequality

ensures that the induced test|which consists of rejecting the null if any of the individual

tests reject|has an overall level no larger than �.

The procedures proposed here test whether the forecast errors are exchangeable. The

null hypothesis of exchangeability is formally stated as:

H
(2)
0 : (e1t; e2t)

d
= (e2t; e1t); (8)

where
d
= stands for the equality in distribution. Forecast errors are thus deemed \equiva-

lent" under H(2)
0 whenever

Pr[e1t � x1; e2t � x2] = Pr[e2t � x1; e1t � x2];

such that the value of their joint cumulative distribution function is not a�ected by permu-

tations of its arguments. It will be seen shortly that exchangeable forecast errors implies

symetrically distributed loss di�erentials. This fact might explain why, as Diebold and

Mariano note, loss di�erentials often appear to be symmetrically distributed in practice.

Exchangeability thus provides a unifying framework in which (6) and (7) become tests

of the symmetry hypothesis. Moreover, exchangeability of the forecast errors allows the

construction of exact DM-type tests based on (2) that retain the robustness virtues of the

sign test and the Wilcoxon signed rank test proposed by Diebold and Mariano.
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The next result, given in Randles and Wolfe (1979) as Theorem 1.3.7, is useful to

undersand the applications of equal-in-distribution arguments that follow.

Theorem 1. If X
d
= Y and U(�) is a measurable function de�ned on the common support

of X and Y, then U(X)
d
= U(Y):

Consider a pair ("1t; "2t) of random variables that satisfy the exchangeability condition:

("1t; "2t)
d
= ("2t; "1t): (9)

If "1t and "2t are independent and identically distributed (i.i.d.) random variables, then

they are clearly exchangeable|but the converse is not necessarily true. For example, if

"1t and "2t are jointly normal random variables, then they are exchangeable even if the

correlation between them is large (Rao 1973, 196); see Galambos (1982), McCabe (1989),

and Draper et al. (1993) for more on exchangeability.

Let �(L) =
Ph�1

i=0 �iL
i, where L is the lag operator. Applying �(L) and then g(�) to the

elements on both sides of (9) implies, according to Theorem 1, that

(g(e1t); g(e2t))
d
= (g(e2t); g(e1t)); (10)

where eit = �(L)"it, i = 1; 2, represent optimal h-steps-ahead forecast errors; i.e.,

moving averages of exchangeable random variables are themselves exchangeable. Using

Q(X1; X2) = X1 on both sides of (10) further implies that g(e1t)
d
= g(e2t). In that case,

E[g(e1t)] = E[g(e2t)], since random variables with the same distribution also have the

same moments. Therefore, the truth of H
(2)
0 implies that of H

(1)
0 .

Exchangeability of the forecast errors implies that the resulting loss di�erentials are

symmetrically distributed. To see this, �rst note that a random variable X has a distri-

bution that is symmetric if and only if X
d
= �X. De�ning �(X1; X2) = X1 � X2 and

proceeding as above, it is seen that

�(g(e1t); g(e2t))
d
= �(g(e2t); g(e1t));

or

(g(e1t)� g(e2t))
d
= �(g(e1t)� g(e2t));

so that, under H
(2)
0 , the loss di�erentials dt = g(e1t)� g(e2t) have symmetric distributions

even if the forecast errors are contemporaneously correlated.
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Even optimal one-step-ahead forecast errors never need be completely serially inde-

pendent, however, because dependence can always enter through higher moments|as for

example with the conditional-variance dependence of generalized autoregressive condi-

tional heteroscedasticity (GARCH) or stochastic volatility processes|without giving rise

to any conditional-mean predictability. The null hypothesis allows for such forms of depen-

dence in higher even-numbered moments of the loss di�erentials. To see this, suppose that

the loss di�erentials associated with one-step-ahead forecasts are governed by dt = �t�t,

where f�tg is an i.i.d. sequence of random variables drawn from a symmetric distribu-

tion (such as a standard normal or Student-t distribution). Let It = (dt; dt�1; :::), and

suppose that, conditional on It�1, �t and �t are independent. Consider the conditional

distribution of �T given �T�11 , where �t1 = (�1; :::; �t). Since �t are i.i.d. and symmetric,

(�T j�T�11 )
d
= (��T j�T�11 ). It follows that (�T �T j�T�11 )

d
= (��T �T j�T�11 ), which in turn

implies that (�T �T ; �
T�1
1 )

d
= (��T �T ; �T�11 ). This argument can be repeated recursively

to �nd that the unconditional distribution of the loss di�erentials is indeed multivariate

symmetric. The conditional variance need not be �nite or even follow a stationary pro-

cess. In fact, no restrictions are placed on the degree of heterogeneity and dependence of

even-numbered moments about the origin.

The test procedures proposed here are constructed on the basis of the multivariate

symmetry of the loss di�erentials that results under H
(2)
0 . Consider the general case of

optimal h-steps-ahead forecast errors following MA processes of order (h� 1) that satisfy

(10) with associated loss di�erentials dt = g(e1t) � g(e2t) for t = 1; :::; T . Suppose that

T=h is an integer and consider the h vectors each containing T=h elements,

D1 = (d1; d1+h; d1+2h; d1+3h; :::; dT�h+1);

D2 = (d2; d2+h; d2+2h; d2+3h; :::; dT�h+2);
...

Dh = (dh; d2h; d3h; d4h; :::; dT );

(11)

where the elements of Di, i = 1; :::; h, are separated by (h � 1) periods. Let Ti denote

the collection of indices de�ning Di. The multivariate symmetry that results under H
(2)
0

implies that

(di; di+h; :::; dT�h+i)
d
= (�di; di+h; :::; dT�h+i) d

= � � � d
= (�di;�di+h; :::;�dT�h+i); (12)

where all 2T=h such terms appear in this string of equalities in distribution. If covariances

are �nite, then multivariate symmetry implies that E[dtds] = 0, for any dt; ds 2 Di; t 6= s

7



(Randles and Wolfe 1979, Lemma 1.3.28). The existence of any moments, however, need

not be assumed for the validity of the proposed test procedure.

De�ne the sign function:

~s(x) =

8><
>:

1 if x > 0;

�1 if x < 0;

�1 if x = 0;

(13)

where �1 means that the sign is chosen randomly with probability 1=2. When x = 0, a

simple way to implement the sign function is to generate a random variate, say z, from any

continuous symmetric distribution|a standard normal, for example|and then assign the

ratio z=jzj as the sign of x. With this de�nition of the sign function, exact test procedures

can be obtained even when the loss-di�erential series contains zeros; see Pratt and Gibbons

(1981, 160).

Consider then the class of statistics de�ned by

SF (Di) =
X
t2Ti

~s(dt)f(jdtj); (14)

where f(�) is a non-negative non-decreasing function of the absolute values of the loss

di�erentials. The next result is the basic building block for constructing hypothesis tests

that have a non-parametric distribution-free property. This property ensures robustness

against the presence of conditional heteroscedasticity, heavy tails, and outliers in the loss-

di�erential series.

Theorem 2. Under H
(2)
0 , any statistic de�ned by (14) has the property, conditional on

jDij = (jdij; jdi+hj; :::; jdT�h+ij), that
X
t2Ti

~s(dt)f(jdtj) d
=
X
t2Ti

Stf(jdtj);

where Si; Si+h; :::; ST�h+i are mutually independent random variables, such that Pr[St =

1] = Pr[St = �1] = 1=2 for t 2 Ti.

Proof. Given the realizations jDij, multivariate symmetry implies that the 2T=h possible

T=h vectors

(�jdij;�jdi+hj; :::;�jdT�h+ij)
are equally likely, where �jdtj means that jdtj is independently assigned either a positive

8



or negative sign with equal probability. Therefore, conditional on jDij, the 2T=h possible

values of SF (Di) derived from the 2T=h possible sign assignments represented by

SF (�jDij)

are also equally likely. �

Based on Theorem 1, an �=h-level conditional test can be performed as follows. If

large absolute values of the test statistic SF (Di) are more probable under the alternative,

the null hypothesis is rejected when the observed value of jSF (Di)j falls in a set, Ci(�=h),

that contains the 2T=h�=h largest absolute values of the test statistic SF (Di) that can be

obtained from the class of all sign assignments.

Critical regions constructed from the equally likely property established in Theorem 1

are conditional ones; i.e., they depend on jDij, which is obtained once the data have been

observed. Consider the conditional probability of a Type I error for such a test, which

may be written as

E [I(SF (Di) 2 Ci(�=h)) j jDij] � �=h; (15)

where I(�) is the indicator function. By taking expectations on both sides of (15), such a

test is seen to also have level �=h unconditionally.

Consider the Bonferroni decision rule that consists of rejecting H
(2)
0 when it has been

rejected by at least one of the tests based on an SF (Di) statistic. The critical region

corresponding to this decision rule is
Sh

i=1Ci(�=h) and therefore, under H
(2)
0 ,

Pr

"
h[
i=1

SF (Di) 2 Ci(�=h)

#
�

hX
i=1

Pr [SF (Di) 2 Ci(�=h)] � �;

so that the induced test has an overall signi�cance level no larger than �.

Determination of the sets Ci(�=h) by direct counting would be impractical in most

cases. Section 3 illustrates how a Monte Carlo resampling technique can be used to per-

form exact inference without the need to enumerate the entire randomization distribution.

Section 3 also describes how the sample-split approach can be used in conjunction with the

resampling technique to obtain an exact Monte Carlo test without relying on a Bonferroni

rule. The Monte Carlo test is particularly useful whenever h is large and �=h is deemed

to be too small relative to the desired overall signi�cance level.

The class of statistics de�ned by (14) includes classical linear signed rank statistics of
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the form

SR(Di) =
X
t2Ti

0:5(~s(dt) + 1)aT=h( ~R
+
t ); (16)

where the set of scores aT=h(t), t = 1; :::; T=h, satisfy 0 � aT=h(1) � ::: �
aT=h(T=h) with aT=h(T=h) > 0, and ~R+

t is the rank of jdtj when the pairs

(jdij; ui); (jdi+hj; ui+h); :::; (jdT�h+ij; uT�h+i)|with ui being i.i.d. draws from a continuous

uniform distribution|are arranged in lexicographic order:

(jdij; ui) < (jdjj; uj), fjdij < jdjj or (jdij = jdjj and ui < uj)g :

The lexicographic ordering ensures that the ranks used in (16) are well de�ned when two

or more loss di�erentials have the same absolute value.

Note that, conditional on (jdij; ui); (jdi+hj; ui+h); :::; (jdT�h+ij; uT�h+i), the vector of

scores used in (16) is a �xed permutation of (aT=h(1); aT=h(2); :::; aT=h(T=h)). There-

fore, the distribution of any statistic of the form (16), derived under the equally

likely principle in Theorem 1, also holds unconditionally, since it does not depend on

(jdij; ui); (jdi+hj; ui+h); :::; (jdT�h+ij; uT�h+i).

Corollary 2.1 Under H
(2)
0 , any statistic de�ned by (16) has the property that

X
t2Ti

0:5(~s(dt) + 1)aT ( ~R
+
t )

d
=

T=hX
t=1

BtaT=h(t);

where B1; B2; :::; BT=h are mutually independent uniform Bernoulli variables, such that

Pr[Bt = 1] = Pr[Bt = 0] = 1=2 for t = 1; 2; :::; T=h.

Within the class of statistics de�ned by (16), consider the sign statistic, which is

obtained from the constant score function aT=h(t) = 1:

S(Di) =
X
t2Ti

0:5(~s(dt) + 1); (17)

and the Wilcoxon signed rank statistic

W (Di) =
X
t2Ti

0:5(~s(dt) + 1) ~R+
t ; (18)

obtained with aT=h(t) = t. Diebold and Mariano (1995) also propose these two non-

parametric test statistics assuming i.i.d. loss di�erentials. The following result establishes
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that the statistics de�ned in (17) and (18) have the usual distributions under far more

general distributional assumptions.

Corollary 2.2 Under H
(2)
0 :

(i) The statistic S(Di), de�ned by (17), is distributed according to B(T=h; 1=2), a binomial

distribution with number of trials T=h and probability of success 1=2:

(ii) The statistic W (Di), de�ned by (18), is distributed like
PT=h

t=1 tBt.

As stated above, the distribution of the Wilcoxon variate, W (Di), has been tabulated for

various sample sizes and, following standard results described by Randles and Wolfe (1979,

Section 10.2), it can be shown that the standardized linear signed rank statistic,

2
4SR(Di)� 1

2

T=hX
t=1

aT=h(t)

3
5
,vuut1

4

T=hX
t=1

a2T=h(t) ;

has a limiting standard normal distribution.

A clear advantage of the sign and Wilcoxon test statistics is that they can be used by

simply referring to standard statistical tables to �nd appropriate critical values, thereby

avoiding the need for simulations. These non-parametric statistics based on signed ranks,

however, are expected to be less powerful than other members of the class de�ned in (14),

such as
P

dt2Di
~s(dt)jdtj, which exploits all the information contained in the signs and the

absolute values of the loss di�erentials. Section 3 describes how to conduct inference based

on such a test statistic.

3. Monte Carlo Test Procedure

In only a few cases do test statistics de�ned by (14) have perfectly tabulated null distribu-

tions. Examples include the non-parametric linear signed rank test statistics in Corollary

2. This section describes how to �nd the null distribution of any statistic de�ned by (14)

based on its characterization in Theorem 1.

Generation of the entire randomization distribution of a test statistic de�ned by (14),

by a complete enumeration of all possible sign assignments, is computationally prohibitive

for sample sizes typical in applied work. The computational burden of �nding tail proba-

bilities can be reduced by drawing samples from the sign-randomization distribution and

computing the value of (14) each time. The relative frequencies of these values comprise the

simulated sign-randomization distribution. The Monte Carlo procedure of Dwass (1957)

11



provides a simple method to obtain the desired signi�cance level and a precise p-value,

without performing a large number of draws. The construction of such a Monte Carlo test

is illustrated with the absolute value of

MC-DM =
TX
t=1

~s(dt)jdtj; (19)

as a two-sided test of the null hypothesis of exchangeable one-step-ahead forecast errors.

Let jMC-DMBj denote the absolute value of MC-DM computed from the original sam-

ple (d1; d2; :::; dT ), and let jMC-DMbj, b = 1; :::; B � 1, denote those obtained by ran-

domly sampling the sign-randomization distribution; i.e., jMC-DMbj is the absolute value
of MC-DM computed from (�jd1j;�jd2j; :::;�jdT j). Note that the sign-randomization

distribution is discrete, so that ties among the randomly sampled statistics have a non-

zero probability of occurrence. To break ties, draw B variates Ui, i = 1; :::; B, from a

continuous uniform distribution independently of the MC-DMb's and arrange the pairs

(jMC-DM1j; U1); (jMC-DM2j; U2); :::; (jMC-DMBj; UB) according to lexicographic order:

(jMC-DMij; Ui) < (jMC-DMjj; Uj),
[jMC-DMij < jMC-DMjj or (jMC-DMij = jMC-DMjj and Ui < Uj)] :

Let ~RB denote the rank of (jMC-DMBj; UB) in the lexicographic ordering, which is easily

computed as:

~RB = 1+
B�1X
i=1

I(jMC-DMBj > jMC-DMij)+
B�1X
i=1

I(jMC-DMBj = jMC-DMij)�I(UB > Ui) ;

where I(�) is again the indicator function. If �B is an integer, then

Pr
h
~RB � B � �B + 1

i
= �;

such that pB = (B� ~RB +1)=B can be interpreted as a randomized p-value, which can be

used to perform a test with size �.

For a given, possibly small, number of random draws, the Monte Carlo procedure

allows the size of the test to be controlled with exactness. This feature stands in sharp

contrast with bootstrap test procedures, which generally are valid only asymptotically. As

B increases without bound, the inference based on the Monte Carlo procedure becomes

equivalent to that based on the equivalent non-randomized procedure; see Dufour (2000)

and Dufour and Khalaf (2001).
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Consider now the case of h-steps-ahead forecasts governed by an MA(h � 1) process.

Once the associated sample of loss di�erentials has been split into subsamples according

to (11), the Monte Carlo technique can be used to obtain combined inference across sub-

samples without relying on a Bonferroni rule. To that end, consider the following statistic:

MC-DMmax = max
1�i�h

jMC-DM(Di)j;

where MC-DM(Di) is the value of MC-DM computed on the subsample Di, i = 1; :::; h.

Given that the statistics MC-DM(Di) are jointly pivotal, this criterion is statistically

equivalent to choosing the statistic with the smallest two-sided p-value. This type of

criterion is derived from the logical equivalence that the null of equal forecast accuracy is

true if and only if it holds true over each subsample; the null will be rejected if at least

one of the individual tests is signi�cant. The steps of the combined test procedure are:

(i) compute the value of MC-DMmax
B based on the original h subsamples D1; D2; :::; Dh;

(ii) compute MC-DMmax
b = max1�i�h jMC-DM(�Di)j, b = 1; :::; B � 1, where �Di =

f�di;�di+h;�di+2h; :::;�dT�h+ig.
The Monte Carlo p-value of the combined test is given by pB = (B �
~RB + 1)=B, where ~RB now denotes the rank of (MC-DMmax

B ; UB) once the pairs

(MC-DMmax
1 ; U1); (MC-DMmax

2 ; U2); :::; (MC-DMmax
B ; UB) are placed in ascending lexico-

graphic order.

4. Simulation Experiment

The simulation experiment in Diebold and Mariano (1995) reveals that the DM test can

be seriously oversized, especially when the loss di�erentials are serially correlated and

when the sample size is small. Harvey, Leybourne, and Newbold (1997) and Clark (1999)

provide further evidence of this phenomenon. This section reports the results of a small-

scale simulation experiment to compare the relative performance of the test proposed here

with the Diebold and Mariano (1995) original test and with its variant HLN-DM proposed

by Harvey, Leybourne, and Newbold (1997).

The experiment design described herein follows closely the design described in the

studies identi�ed above. The experiment consists of drawing realizations of the bivariate

forecast-error process f(e1t; e2t)gTt=1, with varying degrees of contemporaneous and serial
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correlation. The forecast errors are generated by

 
e1;t

e2;t

!
=

 
1+�Lp
1+�2

0

0 1+�Lp
1+�2

! p
k 0

�
p
1� �2

! 
"1;t

"2;t

!
;

where L is the lag operator, and "i;t, i = 1; 2, t = 0; 1; :::; T , are IIN(0; 1). The null

hypothesis is represented by k = 1, in which case the forecast errors e1t; e2t have equal

variances. Scaling by
p
1 + �2 makes the unconditional variance equal to one under the

null. The MA parameter, �, takes the values 0; 0:5, and 0:9. With this design, setting � = 0

yields one-step-ahead forecast errors, while two-steps-ahead forecast errors are obtained

whenever � 6= 0. Values of the contemporaneous correlation coeÆcient � = 0; 0:5; 0:9;

and sample sizes T = 8; 16; 32; 64 are considered. As in previous studies, a quadratic loss

function is used. The results reported in Tables 1 and 2 are based on 5,000 replications of

each data-generating con�guration; the Monte Carlo tests are implemented with B = 100.

Following Clark (1999), data generated using � = 0 are treated as one-step-ahead

forecasts, and in that case the DM test statistic is evaluated without any lags in its variance

estimate. In their original simulation study, Diebold and Mariano (1995) treat this case as

two-steps-ahead forecasts and use one lag when computing the variance estimate. When

� 6= 0, the data are treated as two-steps-ahead forecasts, as in Diebold and Mariano; the

MC-DMmax test procedure is applied in those cases.

Table 1 evaluates size based on a nominal level of 5 per cent. It is clear from the results

in Table 1 that both the DM test and its variant HLN-DM su�er size distortions in small

samples. For a given sample size, those size distortions are more severe when the forecast

horizon increases and when the forecast errors are contemporaneously correlated. In some

of those cases, the DM test has rejection rates of over 20 per cent, more than four times

the nominal level. As Clark (1999) notes, the tendency of the DM test to overreject as the

forecast horizon increases likely results from the diÆculty in obtaining a precise estimate

of the variance used in the test statistic. In general, greater serial correlation tends to

make that variance estimate more imprecise.

The best performance of the DM and HLN-DM tests occurs in the case of one-step-

ahead serially uncorrelated forecasts. In that case, as expected, the HLN-DM test has

empirical levels that correspond closely to the stated level, although for the smallest sample

size, T = 8, it does appear somewhat conservative. As the sample size increases, the

empirical levels of both DM and HLN-DM tend to the nominal level.

On the other hand, the Monte Carlo Diebold-Mariano test has the stated level. Its

performance is invariant to the sample size, T , and combinations of � and �, since each of
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these features is implicitly accounted for by the Monte Carlo test procedure.

Table 2 compares the empirical power of the DM and Monte Carlo DM test proce-

dures when k = 0:75; 0:5. The power results for the DM test are based on size-corrected

critical values. For each parameter con�guration, size-corrected power is calculated as the

frequency with which the DM test statistic exceeds the empirical critical values in the

corresponding size experiment. Since the HLN-DM test statistic is simply the DM test

statistic multiplied by a constant adjustment factor, these two tests have exactly the same

size-corrected power, and therefore the HLN-DM test is not considered in Table 2.

The overall picture that emerges from Table 2 is one of good power with small dif-

ferences between the size-corrected DM and Monte Carlo DM tests. As expected, power

increases with both � and T .

In the case of one-step-ahead forecasts (� = 0), the DM and MC-DM tests have vir-

tually the same power. In the case of two-steps-ahead forecasts (� 6= 0), the MC-DMmax

test procedure appears slightly less powerful. This is not surprising, given that some in-

formation is lost when the sample is split in two. It is important, however, to emphasize

that the size-corrected DM test is not a feasible test in practice. It is merely used here as

a theoretical benchmark to which the Monte Carlo tests may be compared.

5. Empirical Illustration

The tests of equal forecast accuracy are illustrated with an application to Canadian and

U.S. three-month and six-month treasury bills. According to the theory of the term struc-

ture of interest rates, a longer-term interest rate can be analyzed as a weighted sum of

current and expected future short rates and a constant risk premium. Let r
(3)
t be the

three-month rate and r(6)t be the six-month rate. According to the strict form of the

theory,

r
(6)
t = � + 0:5r

(3)
t + 0:5Etr

(3)
t+1;

where Etr
(3)
t+1 denotes the time-t market forecast of r

(3)
t+1. If expectations are formed eÆ-

ciently, then the overlapping forecast errors,

r
(3)
t+1 � Etr

(3)
t+1 = r

(3)
t+1 � 2r

(6)
t + r

(3)
t + 2�;

should be independent of all information available to the market at time t. Furthermore,

these errors should be serially uncorrelated at lags greater than two when observed at the

monthly frequency.
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Mankiw and Summers (1984) test the expectations theory at the short end of the term

structure with strikingly negative results. Their regression results, along with the more

general ones of Campbell and Shiller (1991), indicate that future rates move in the opposite

direction from that predicted by the theory.

Bekaert, Hodrick, and Marshall (1997) demonstrate that regression-based in-sample

tests of the expectations hypothesis are severely biased in �nite samples. In particular, they

show that the high persistence and heteroscedasticity of short-term interest rates induce

extreme bias and dispersion into the �nite-sample distributions of test statistics. They

conclude that the inference based on the asymptotic distribution of these test statistics is

unreliable.

Campbell and Dufour (1997) propose several variants of signed rank test statistics

to test orthogonality conditions. Those tests have known �nite-sample distributions and

they allow for non-normal and possibly heteroscedastic observations. In contrast to the

usual literature, Campbell and Dufour �nd for Canadian data that the expectations theory

cannot be rejected once their more correct non-parametric inference procedures are used.

Such studies typically test the hypothesis that �1 = 2 and �2 = �1 in regressions of the

form

r
(3)
t+1 = �0 + �1r

(6)
t + �2r

(3)
t + "t+1;

or in reparameterized forms that test the exclusion of the spread (r
(6)
t � r

(3)
t ) as an ex-

planatory right-hand-side variable.

In general, traditional methods assess a predictive model based on its ability to \�t" the

same observations used to estimate the model. Those approaches can be unreliable when

the underlying data-generating process has changed over the observation period. Here, the

goal is to perform out-of-sample tests that can mitigate the e�ects of data heterogeneity

through rolling-window estimation of model parameters. The out-of-sample predictions of

the theory can be tested by comparing the constrained forecast errors,

e1t+1(�̂0t) = r
(3)
t+1 � ~�0t � (2r

(6)
t � r

(3)
t ); (20)

against the unconstrained ones,

e2t+1(�̂0t; �̂1t; �̂2t) = r
(3)
t+1 � �̂0t � (�̂1tr

(6)
t � �̂2tr

(3)
t ); (21)

where the dependence on time-t parameter estimates is made explicit. Note that (20)

allows for a possible time-varying risk premium, while all the parameters appearing in
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(21) can potentially vary over time. The null hypothesis of exchangeable forecast errors

in this case becomes

H
(2)
0 : (e1t( ~�0t�1); e2t(�̂0t�1))

d
= (e2t(�̂0t�1); e1t( ~�0t�1)); (22)

when expressed in terms of time-(t� 1) parameter estimates. If H
(2)
0 is true, then so is

H
(1)
0 : E

h
g(e1t( ~�0t�1))� g(e2t(�̂0t�1; �̂1t�1; �̂2t�1))

i
= 0:

Intuitively, equal forecast accuracy as stated in H(1)
0 asks whether the two forecasting pro-

cedures, which include the choice of estimation method and estimation window, produce

equally accurate forecasts, on average, over a �nite period of time. Giacomini and White

(2003) construct asymptotic tests for the more restrictive hypothesis of conditional pre-

dictive ability, which asks the same question conditionally on time-(t � 1) information.

The DM test can be seen as a particular case of their framework when no conditioning

information is used.

The predictive model used in (20) is nested within the one used in obtaining (21).

With nested models, it is possible that the limiting distribution of the Diebold-Mariano test

statistic could di�er from normality because, under the correctly speci�ed null, the forecast

errors are asymptotically identical and therefore perfectly correlated. McCracken (1999)

and Clark and McCracken (2001) derive the asymptotic (context-speci�c) distributions of

several tests of equal forecast accuracy and encompassing for nested models under several

maintained assumptions. Of crucial importance is the assumption that the data conform to

the restrictions of the nested model. If the alternative is the true model, or if both models

are false, then the forecast errors will not necessarily tend to be perfectly correlated as

the sample size grows without bound. Moreover, when the size of the estimation sample

remains �nite as the size of the prediction sample grows, parameter estimates are prevented

from reaching their probability limits and the Diebold-Mariano test remains asymptotically

valid even for nested models, under some regularity assumptions (Giacomini and White

2003). Essentially, this means that model parameters are estimated using a rolling window

of data, rather than an expanding one. On the other hand, the procedures proposed

here will always yield a valid �nite-sample inference regardless of the choice of estimation

method and estimation window.

The data, presented in the appendix, are monthly treasury bill secondary market rates

for the period covering March 1993 to March 2003, for a total of 121 observations. Model

parameters are estimated by least squares using a rolling window of length 12, 24, 36, 48,
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and 60 months, resulting in out-of-sample loss di�erentials series of length 108, 96, 84, 72,

and 60, respectively, once the �rst lag is allowed for.

As alluded to above, serial correlation is induced by overlapping expectations. The

out-of-sample loss di�erential series are therefore divided into three subsamples taken at

three-month intervals to apply the tests of equal forecast accuracy with the Bonferroni

rule. The subsample errors are treated as one-step-ahead forecast errors when evaluating

the Diebold-Mariano test and the Harvey-Leybourne-Newbold variant. In the case of the

full sample, the errors are three-steps-ahead forecast errors, and those tests are computed

using the truncated kernel with a bandwidth of two. The Monte Carlo tests, MC-DM

for the subsamples and MC-DMmax for the full sample, are implemented following the

procedure described in section 3 with B = 2000.

The results are reported in Tables 3 and 4, where the entries are two-sided p-values

in percentages of the null hypothesis of equal forecast accuracy between the models in

(20) and (21) for Canada and the United States, respectively. Results are reported for

both mean squared errors (MSE) and mean absolute errors (MAE) as mean loss criteria.

Rejections at the conventional 5 per cent level are indicated by an asterisk; the decision

rule for the bounds tests is to reject the null if any of the individual subsample tests rejects

at the 5/3 per cent level.

The most striking result is the contrast between Canada and the United States. While

the out-of-sample predictions of the expectations theory are rejected in some instances in

the case of Canada|depending on which test is considered, and especially the length of

the estimation window|they are never rejected in the case of the United States.

Table 3 shows that the expectations theory �nds more support the shorter the esti-

mation window. The failure of the theory for longer estimation windows is indicative of

a non-constant underlying process generating Canadian interest rates over the sample pe-

riod; see Clements and Hendry (1998) for a related discussion on forecast failure resulting

from structural breaks. In general, the asymptotic tests concur with the exact Monte

Carlo tests, which is a non-rejection of H
(2)
0 as stated in (22). This clearly illustrates that

exchangeable forecast errors can be found empirically even when forecasts from estimated

models are compared.

6. Conclusion

The test procedure developed in this paper tests the null hypothesis of exchangeable fore-

cast errors and, hence, o�ers a solution to the potential over-rejection problem associated
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with standard tests of equal forecast accuracy, such as the parametric Diebold and Mariano

(1995) test.

These exact non-parametric distribution-free tests are based on the independence, un-

der the null hypothesis, of the absolute value of a loss di�erential and its sign meaning

that, given jdtj, the two observation values +jdtj and �jdtj are equally likely. Therefore,

the tests introduced are conditional ones, created after the loss di�erentials d1; d2; :::; dT

have been observed. The associated test procedure has an overall level of �, however, be-

cause the critical region is constructed so that the conditional probability of rejecting the

null, when it is really true, is �. When the absolute values jd1j; jd2j; :::; jdT j are replaced
with some non-negative scores, aT (1); aT (2); :::; aT (T ), that are ordered among themselves

in the same manner as jd1j; jd2j; :::; jdT j, the resulting tests have a critical region that can

be tabulated once and for all. Hence, such a test is no longer a conditional one. The sign

test and the Wilcoxon signed rank test, which are also considered by Diebold and Mariano

(1995), are tests of this type.

To complement the results that established the exactness of the new tests, the results

of a simulation experiment have shown that the inference procedure has respectable power

relative to the parametric Diebold-Mariano test.

A clear advantage of the tests described in this paper is that they are invariant to

deviations from standard assumptions such as those of normality, homoscedasticity, and the

existence of moments required for the validity of many parametric test methods. The non-

parametric distribution-free property of the new tests makes them robust to the presence

of conditional heteroscedasticity, heavy tails, and outliers in the loss-di�erential series.
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Appendix

Table A1. Canadian 3-Month (TB3) and 6-Month (TB6) Treasury Bill Rates

Month TB3 TB6 Month TB3 TB6 Month TB3 TB6

Mar 93 5.35 5.75 Aug 96 4.02 4.32 Jan 00 5.05 5.31

Apr 93 5.36 5.70 Sep 96 3.86 4.13 Feb 00 4.96 5.32

May 93 4.82 5.22 Oct 96 3.17 3.33 Mar 00 5.27 5.55

Jun 93 4.53 4.81 Nov 96 2.73 2.89 Apr 00 5.43 5.75
Jul 93 4.06 4.41 Dec 96 2.85 3.24 May 00 5.67 5.97

Aug 93 4.57 4.75 Jan 97 2.87 3.21 Jun 00 5.53 5.79

Sep 93 4.69 5.11 Feb 97 2.91 3.17 Jul 00 5.61 5.73

Oct 93 4.40 4.59 Mar 97 3.14 3.45 Aug 00 5.58 5.74

Nov 93 4.08 4.33 Apr 97 3.14 3.55 Sep 00 5.56 5.71

Dec 93 3.87 4.04 May 97 2.99 3.39 Oct 00 5.61 5.72

Jan 94 3.63 3.71 Jun 97 2.86 3.19 Nov 00 5.62 5.72

Feb 94 3.84 4.17 Jul 97 3.29 3.62 Dec 00 5.49 5.46

Mar 94 5.47 6.04 Aug 97 3.11 3.68 Jan 01 5.11 5.00

Apr 94 5.86 6.28 Sep 97 2.86 3.49 Feb 01 4.87 4.80

May 94 6.14 6.55 Oct 97 3.59 3.82 Mar 01 4.58 4.52
Jun 94 6.38 7.29 Nov 97 3.67 4.11 Apr 01 4.43 4.40

Jul 94 5.76 6.64 Dec 97 3.99 4.56 May 01 4.34 4.41

Aug 94 5.52 5.79 Jan 98 4.10 4.42 Jun 01 4.30 4.37

Sep 94 5.20 5.69 Feb 98 4.57 4.84 Jul 01 4.07 4.10

Oct 94 5.39 6.04 Mar 98 4.59 4.70 Aug 01 3.80 3.79

Nov 94 5.86 6.52 Apr 98 4.85 4.97 Sep 01 3.05 2.96

Dec 94 7.14 8.12 May 98 4.75 4.97 Oct 01 2.34 2.26

Jan 95 8.10 8.47 Jun 98 4.87 5.04 Nov 01 2.07 2.13

Feb 95 8.11 8.15 Jul 98 4.94 5.13 Dec 01 1.95 1.95

Mar 95 8.29 8.35 Aug 98 4.91 5.25 Jan 02 1.96 2.11

Apr 95 7.87 7.87 Sep 98 4.91 5.03 Feb 02 2.05 2.19
May 95 7.40 7.36 Oct 98 4.71 4.73 Mar 02 2.30 2.68

Jun 95 6.73 6.65 Nov 98 4.78 4.88 Apr 02 2.37 2.68

Jul 95 6.65 6.87 Dec 98 4.66 4.76 May 02 2.60 2.87

Aug 95 6.34 6.62 Jan 99 4.68 4.76 Jun 02 2.70 2.87

Sep 95 6.58 6.80 Feb 99 4.87 4.97 Jul 02 2.81 2.90

Oct 95 7.16 7.21 Mar 99 4.63 4.73 Aug 02 2.96 3.08

Nov 95 5.83 5.87 Apr 99 4.60 4.66 Sep 02 2.83 2.93

Dec 95 5.54 5.64 May 99 4.48 4.71 Oct 02 2.73 2.81

Jan 96 5.12 5.20 Jun 99 4.56 4.77 Nov 02 2.71 2.81

Feb 96 5.21 5.38 Jul 99 4.71 4.82 Dec 02 2.63 2.75

Mar 96 5.02 5.25 Aug 99 4.68 4.87 Jan 03 2.83 2.99
Apr 96 4.78 4.97 Sep 99 4.66 4.87 Feb 03 2.88 3.06

May 96 4.68 4.88 Oct 99 4.87 5.19 Mar 03 3.14 3.34

Jun 96 4.70 4.94 Nov 99 4.73 4.96

Jul 96 4.39 4.75 Dec 99 4.85 5.16
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Table A2. U.S. 3-Month (TB3) and 6-Month (TB6) Treasury Bill Rates

Month TB3 TB6 Month TB3 TB6 Month TB3 TB6

Mar 93 2.95 3.05 Aug 96 5.05 5.13 Jan 00 5.32 5.50

Apr 93 2.87 2.97 Sep 96 5.09 5.24 Feb 00 5.55 5.72

May 93 2.96 3.07 Oct 96 4.99 5.11 Mar 00 5.69 5.85

Jun 93 3.07 3.20 Nov 96 5.03 5.07 Apr 00 5.66 5.81

Jul 93 3.04 3.16 Dec 96 4.91 5.04 May 00 5.79 6.10

Aug 93 3.02 3.14 Jan 97 5.03 5.10 Jun 00 5.69 5.97

Sep 93 2.95 3.06 Feb 97 5.01 5.06 Jul 00 5.96 6.00

Oct 93 3.02 3.12 Mar 97 5.14 5.26 Aug 00 6.09 6.07

Nov 93 3.10 3.26 Apr 97 5.16 5.37 Sep 00 6.00 5.98

Dec 93 3.06 3.23 May 97 5.05 5.30 Oct 00 6.11 6.04

Jan 94 2.98 3.15 Jun 97 4.93 5.13 Nov 00 6.17 6.06
Feb 94 3.25 3.43 Jul 97 5.05 5.12 Dec 00 5.77 5.68

Mar 94 3.50 3.78 Aug 97 5.14 5.19 Jan 01 5.15 4.95

Apr 94 3.68 4.09 Sep 97 4.95 5.09 Feb 01 4.88 4.71

May 94 4.14 4.60 Oct 97 4.97 5.09 Mar 01 4.42 4.28

Jun 94 4.14 4.55 Nov 97 5.14 5.17 Apr 01 3.87 3.85

Jul 94 4.33 4.75 Dec 97 5.16 5.24 May 01 3.62 3.62

Aug 94 4.48 4.88 Jan 98 5.04 5.03 Jun 01 3.49 3.45

Sep 94 4.62 5.04 Feb 98 5.09 5.07 Jul 01 3.51 3.45

Oct 94 4.95 5.39 Mar 98 5.03 5.04 Aug 01 3.36 3.29

Nov 94 5.29 5.72 Apr 98 4.95 5.06 Sep 01 2.64 2.63

Dec 94 5.60 6.21 May 98 5.00 5.14 Oct 01 2.16 2.12
Jan 95 5.71 6.21 Jun 98 4.98 5.12 Nov 01 1.87 1.88

Feb 95 5.77 6.03 Jul 98 4.96 5.03 Dec 01 1.69 1.78

Mar 95 5.73 5.89 Aug 98 4.90 4.95 Jan 02 1.65 1.73

Apr 95 5.65 5.77 Sep 98 4.61 4.63 Feb 02 1.73 1.82

May 95 5.67 5.67 Oct 98 3.96 4.05 Mar 02 1.79 2.01

Jun 95 5.47 5.42 Nov 98 4.41 4.42 Apr 02 1.72 1.93

Jul 95 5.42 5.37 Dec 98 4.39 4.40 May 02 1.73 1.86

Aug 95 5.40 5.41 Jan 99 4.34 4.33 Jun 02 1.70 1.79

Sep 95 5.28 5.30 Feb 99 4.44 4.44 Jul 02 1.68 1.70

Oct 95 5.28 5.32 Mar 99 4.44 4.47 Aug 02 1.62 1.60

Nov 95 5.36 5.27 Apr 99 4.29 4.37 Sep 02 1.63 1.60
Dec 95 5.14 5.13 May 99 4.50 4.56 Oct 02 1.58 1.56

Jan 96 5.00 4.92 Jun 99 4.57 4.82 Nov 02 1.23 1.27

Feb 96 4.83 4.77 Jul 99 4.55 4.58 Dec 02 1.19 1.24

Mar 96 4.96 4.96 Aug 99 4.72 4.87 Jan 03 1.17 1.20

Apr 96 4.95 5.06 Sep 99 4.68 4.88 Feb 03 1.17 1.18

May 96 5.02 5.12 Oct 99 4.86 4.98 Mar 03 1.13 1.13

Jun 96 5.09 5.25 Nov 99 5.07 5.20

Jul 96 5.15 5.30 Dec 99 5.20 5.44
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