Working Paper 2004-36 / Document de travail 2004-36

Optimal Taylor Rules in an Estimated Model of a Small Open Economy

by

Steve Ambler, Ali Dib, and Nooman Rebei

Bank of Canada Working Paper 2004-36

September 2004

Optimal Taylor Rules in an Estimated Model of a Small Open Economy

by

Steve Ambler, 1 Ali Dib, 2 and Nooman Rebei 3

¹CIRPEE Université du Québec à Montréal C.P. 8888 Succ. Centre-Ville Montréal, QC, Canada H3C 3P8 ambler.steven@uqam.ca

²International Department

³Research Department

Bank of Canada

Ottawa, Ontario, Canada K1A 0G9

adib@bankofcanada.ca

nrebei@bankofcanada.ca

The views expressed in this paper are those of the authors. No responsibility for them should be attributed to the Bank of Canada.

Contents

		edgementsiv Résumév
1.	Intro	oduction
2.	The	Model
	2.1	Households
	2.2	Goods production
	2.3	Monetary authority
	2.4	The government
	2.5	Equilibrium
	2.6	New Keynesian Phillips curves
3.	Mod	lel Solution and Parameter Estimation
	3.1	Parameter estimates
4.	Opti	mal Monetary Policy
	4.1	Level effect versus stabilization effect
	4.2	Transition costs
5.	Cone	clusions
Refe	rence	s21
Tabl	es	24
Figu	res	27
App	endix	A: Data and Data Sources
App	endix	B: Equilibrium Conditions

Acknowledgements

We thank Tiff Macklem for encouraging us to undertake this project, and Don Coletti, Oleksiy Kryvtsov, Césaire Meh, Kevin Moran, Eva Ortega, Thomas Sargent, Christopher Sims, Gregor Smith, Raphael Solomon, Pedro Teles, Carolyn Wilkins, Alex Wolman, Michael Woodford, and participants at seminars at the American Economics Association, the Bank of Canada, the Canadian Economics Association, the North American Summer Meetings of the Econometric Society, the Society for Computational Economics, and the Université du Québec à Montréal for comments on an earlier draft.

Abstract

The authors compute welfare-maximizing Taylor rules in a dynamic general-equilibrium model of a small open economy. The model includes three types of nominal rigidities (domestic-goods prices, imported-goods prices, and wages) and eight different structural shocks. The authors estimate the model's structural parameters by maximum likelihood using Canadian and U.S. data, and use a second-order approximation of the model to measure the welfare effects of different Taylor rules. By estimating the model, the authors can compare welfare levels with that attainable under the Taylor rule estimated for their sample period. They find that the welfare gains from moving to the optimal Taylor rule are larger than those obtained by previous researchers.

JEL classification: F2, F31, F33

Bank classification: Economic models; Exchange rates; Inflation targets

Résumé

Les auteurs se servent d'un modèle dynamique d'équilibre général décrivant une petite économie ouverte pour calculer les coefficients de la règle de Taylor qui maximisent le bien-être. Le modèle englobe trois types de rigidités nominales (les prix des biens produits au pays, ceux des biens importés et les salaires sont fixés à l'avance) et huit chocs structurels différents. Les auteurs estiment les paramètres structurels du modèle en appliquant la méthode du maximum de vraisemblance aux données canadiennes et américaines et font appel à une approximation d'ordre 2 du modèle pour mesurer les effets de différentes règles de Taylor sur le bien-être. Les auteurs peuvent ainsi comparer les niveaux de bien-être à celui qu'ils obtiennent avec la règle de Taylor estimée sur la période observée. Ils constatent que les gains de bien-être découlant de l'adoption d'une règle de Taylor optimale sont supérieurs à ceux décrits par les chercheurs précédents.

Classification JEL: F2, F31, F33

Classification de la Banque : Modèles économiques; Taux de change; Cibles en matière

d'inflation

1. Introduction

A large literature analyzes optimal monetary policy in the context of the New Open-Economy Macroeconomics (NOEM), a class of open-economy dynamic general-equilibrium (DGE) models with explicit microfoundations, nominal rigidities, and imperfect competition. Galí and Monacelli (1999) show, using a model with instantaneous pass-through of exchange rate changes to domestic prices, that optimal monetary policy is identical in open and closed economies and involves stabilizing the overall price level, without regard to exchange rate fluctuations. Corsetti and Pesenti (2001) show that, with slow pass-through, this is no longer the case: it is optimal for the central bank to minimize a consumer price index (CPI)-weighted average of markups charged in the domestic market by domestic and foreign producers. Much of this literature uses highly stylized models with analytical solutions. Recently, more fully developed models have been used. Smets and Wouters (2002) show that optimal monetary policy with sticky domestic-goods prices and imported-goods prices involves minimizing a weighted average of domestic and import price inflation.

In this paper, we analyze optimal monetary policy (within a class of simple monetary rules) in a NOEM model of a small open economy with three types of nominal rigidities: wages and both domestic and imported goods prices are set in advance by monopolistically competitive agents. The model also incorporates eight different types of structural shocks. We estimate the model's structural parameters with Canadian and U.S. data using maximum likelihood via the Kalman filter. We then use the model to compute welfare-maximizing Taylor rules, in order to set domestic short-term interest rates. For these computations, we use a second-order approximation around the model's deterministic steady state. This methodology captures the effect of the Taylor rule coefficients on the stochastic means of consumption, leisure, and real balances, as well as on their variances. Recent studies, such as by Kim and Kim (2003), show that solving models using first-order approximations can lead to misleading welfare comparisons.

Our main results can be summarized as follows. Our estimates for most of the model's parameters are precise. They are compatible with other small open-economy models in the NOEM literature, such as by Bergin (2003) and Dib (2003). The optimal Taylor rule involves responding more strongly to fluctuations in GDP than the Bank of Canada has done historically, and less strongly to fluctuations in money-supply growth. The gains from optimal monetary policy are quite substantial: the gain in welfare is equivalent to a permanent increase of 1.40 per cent in the level of consumption compared with the level of welfare under the historical (estimated) values of the Taylor rule coefficients. The optimal Taylor rule places the economy very close to a region in parameter space that implies local inde-

¹The NOEM literature, spawned by the pioneering work of Obstfeld and Rogoff (1995), has been successful in explaining phenomena such as high real exchange rate volatility and the strong impact of monetary policy shocks on real exchange rates. See Sarno (2001), Lane (2001), and Bowman and Doyle (2003) for recent surveys.

terminacy. Placing restrictions on the Taylor rule coefficients to move the economy further away from the region of local indeterminacy results in a smaller welfare gain.

Our results differ from those in the existing literature in three main respects. First, our estimate of the welfare gain from optimal monetary policy is larger than in other recent papers that analyze optimal monetary policy in small open economies (for example, Kollmann 2002 and Smets and Wouters 2002).

Second, we show that most of the welfare gains from optimized monetary policy come from its effects on the average levels of the arguments of the utility function, rather than from its effects on their second moments. This underscores the importance of using higher-order approximations to solve the model. If the model is solved using a first-order approximation, measured welfare gains by construction can be obtained only by reducing the size of the fluctuations of variables around their steady-state means. This explains why many previous studies have found very small potential benefits from optimal monetary policy.

Third, since we estimate the model's structural parameters, we can compare welfare under the optimal Taylor rule with welfare under the historical (estimated) values of the Taylor rule coefficients. Previous studies have compared welfare under optimal Taylor rules with welfare in the deterministic steady state. The deterministic steady state has the advantage of being invariant to the monetary policy rule and to the variance-covariance matrix of shocks. On the other hand, the deterministic steady-state levels of consumption, leisure, and real balances can be quite different from the average values around which these variables fluctuate, because shocks can affect the stochastic means of the economy's endogenous variables.² Measuring welfare gains against the deterministic steady state means using a state in which the economy rarely, if ever, finds itself as a benchmark.

The rest of this paper is organized as follows. In section 2, we present the model. In section 3, we discuss the estimation strategy used to attribute values to the model's structural parameters and the parameter estimates themselves. We discuss the calculation of the optimal Taylor rule and report our results concerning the benefits of optimal monetary policy in section 4. Section 5 offers some conclusions. Our data sources are summarized in Appendix A. Appendix B summarizes the model's equilibrium conditions.

2. The Model

The economy faces fixed prices on world markets for imported goods. Its domestic output, however, is an imperfect substitute for foreign goods, so that it faces a downward-sloping demand curve for its output on world markets. It also faces an upward-sloping supply curve for funds on international capital markets.

²This phenomenon is obscured when using a first-order approximation to solve the model. With a first-order approximation, the model's endogenous variables are, on average, equal to their deterministic steady-state values.

Different labour types are associated with particular households that act as monopolistic competitors in the labour market. Differentiated intermediate goods are produced by monopolistically competitive domestic firms that use labour and a final composite good as inputs. Differentiated intermediate goods are also imported by monopolistically competitive importers. Domestic and imported intermediate goods are aggregated by competitive firms to form a composite domestic and a composite imported good. Some of the composite domestic good is exported. The remainder is combined with the composite imported good to form the final good. As in McCallum and Nelson (1999, 2001), imports enter the production process rather than being consumed directly.³ The final good is used for consumption, government consumption, and as an input into the production of domestic intermediate goods.

There are, therefore, three sources of monopoly distortion and nominal rigidities: house-holds set wages in advance, and both importers and producers of domestic intermediate goods set prices in advance. Following Calvo (1983), price- and wage-setters maintain constant prices and wages unless they receive a signal to revise them, which arrives at the beginning of each period with a constant probability. This makes aggregation simple, allows us to easily vary the average duration of the nominal rigidities, and allows us to estimate the length of the nominal rigidities and other structural parameters of the model.

2.1 Households

There is a continuum of different households on the unit interval, indexed by j. The jth household's preferences are given by:

$$U_0(j) = E_0 \sum_{t=0}^{\infty} \beta^t u \left(C_t(j), \frac{M_t(j)}{P_t}, h_t(j) \right),$$
 (1)

where β is the discount factor, E_0 is the conditional-expectations operator, $C_t(j)$ is consumption, $M_t(j)$ denotes nominal money balances held at the end of the period, P_t is the price level, and $h_t(j)$ denotes hours worked by the household. The single-period utility function is:

$$u(\cdot) = \frac{\gamma}{\gamma - 1} \log \left(C_t(j)^{\frac{\gamma - 1}{\gamma}} + b_t^{\frac{1}{\gamma}} \left(\frac{M_t(j)}{P_t} \right)^{\frac{\gamma - 1}{\gamma}} \right) + \eta \log \left(1 - h_t(j) \right), \tag{2}$$

where γ and η are positive parameters. Total time available to the household in the period is normalized to one. This functional form of the period utility function leads to a conventional money-demand equation in which the short-term nominal interest rate is the opportunity cost of holding money, $-\gamma$ is the interest elasticity of money demand, and consumption

³Bergin (2003) and Kollmann (2002) develop models that are similar in this respect.

is the scale variable. The b_t term is a shock to money demand. It follows the first-order autoregressive process, given by:

$$\log(b_t) = (1 - \rho_b)\log(b) + \rho_b\log(b_{t-1}) + \varepsilon_{bt},\tag{3}$$

with $0 < \rho_b < 1$ and where the serially uncorrelated shock, ε_{bt} , is normally distributed with zero mean and standard deviation σ_b . The household's budget constraint is given by:

$$P_t C_t(j) + M_t(j) + \frac{D_t^g(j)}{R_t} + \frac{e_t B_t^*(j)}{\kappa_t R_t^*} = (1 - \tau_t) W_t(j) h_t(j, \cdot) + M_{t-1}(j) + D_{t-1}^g(j) + e_t B_{t-1}^*(j) + T_t + D_t,$$

$$(4)$$

where $W_t(j)$ is the nominal wage rate set by the household. Labour income is taxed at an average marginal tax rate, τ_t . B_t^* and D_t^g are foreign-currency and domestic-currency bonds purchased in t, and e_t is the nominal exchange rate. Domestic-currency bonds are used by the government to finance its deficit. R_t and R_t^* denote, respectively, the gross nominal domestic and foreign interest rates between t and t+1; κ_t is a risk premium that reflects departures from uncovered interest parity. The household also receives nominal profits, $D_t = D_t^d + D_t^m$, from domestic producers and importers of intermediate goods, and T_t is nominal lump-sum transfers from the government. The risk premium depends on the ratio of net foreign assets to domestic output:

$$\log(\kappa_t) = \varphi \left[\exp\left(\frac{e_t B_t^*}{P_t^d Y_t}\right) - 1 \right], \tag{5}$$

where P_t^d is the GDP deflator or domestic-output price index. The risk premium ensures that the model has a unique steady state. If domestic and foreign interest rates are equal, the time paths of domestic consumption and wealth follow random walks.⁴

The foreign nominal interest rate, R_t^* , evolves according to the following stochastic process:

$$\log(R_t^*) = (1 - \rho_{R^*})\log(R^*) + \rho_{R^*}\log(R_{t-1}^*) + \varepsilon_{R^*t}, \tag{6}$$

with $0 < \rho_{R^*} < 1$ and where the serially uncorrelated shock, ε_{R^*t} , is normally distributed with zero mean and standard deviation σ_{R^*} .

Households also face a no-Ponzi-game restriction:

$$\lim_{T \to \infty} \left(\prod_{t=0}^{T} \frac{1}{\kappa_t R_t^*} \right) B_T^*(j) = 0.$$

⁴For an early discussion of this problem, see Giavazzi and Wyplosz (1984). Our risk-premium equation is similar to the one used by Senhadji (1997). For alternative ways of ensuring that stationary paths exist for consumption in small open-economy models, see Schmitt-Grohé and Uribe (2003).

Household j chooses $C_t(j)$, $M_t(j)$, $D_t^g(j)$, and $B_t^*(j)$ (and $W_t(j)$ if it is allowed to change its wage), to maximize the expected discounted sum of its utility flows, subject to three relationships: the budget constraint (equation (4)), intermediate firms' demand for their labour type, and a transversality condition on their holdings of assets. Aggregate labour is given by:

$$h_t = \left(\int_0^1 h_t(j)^{\frac{\sigma-1}{\sigma}} dj\right)^{\frac{\sigma}{\sigma-1}},\tag{7}$$

where σ is the elasticity of substitution between different labour skills. This implies the following conditional demand for labour of type j:

$$h_t(j) = \left(\frac{W_t(j)}{W_t}\right)^{-\sigma} h_t,$$

where h_t is aggregate employment. W_t is an exact average wage index, given by:

$$W_t = \left(\int_0^1 W_t(j)^{1-\sigma} dj\right)^{\frac{1}{1-\sigma}}.$$

The household's first-order conditions are:

$$\frac{C_t(j)^{\frac{-1}{\gamma}}}{C_t(j)^{\frac{\gamma-1}{\gamma}} + b_t^{\frac{1}{\gamma}} \left(\frac{M_t(j)}{P_t}\right)^{\frac{\gamma-1}{\gamma}}} = \Lambda_t(j) \frac{P_t}{P_t^d},\tag{8}$$

$$\frac{b_t^{\frac{1}{\gamma}} \left(\frac{M_t(j)}{P_t}\right)^{\frac{-1}{\gamma}} \left(\frac{P_t^d}{P_t}\right)}{C_t(j)^{\frac{\gamma-1}{\gamma}} + b_t^{\frac{1}{\gamma}} \left(\frac{M_t(j)}{P_t}\right)^{\frac{\gamma-1}{\gamma}}} = \Lambda_t(j) - \beta E_t \left[\frac{P_t^d}{P_{t+1}^d} \Lambda_{t+1}(j)\right], \tag{9}$$

$$\frac{\Lambda_t(j)}{R_t} = \beta E_t \left[\frac{P_t^d}{P_{t+1}^d} \Lambda_{t+1}(j) \right], \tag{10}$$

$$\frac{\Lambda_t(j)}{\kappa_t R_t^*} = \beta E_t \left[\frac{P_t^d}{P_{t+1}^d} \frac{e_{t+1}}{e_t} \Lambda_{t+1}(j) \right], \tag{11}$$

where $\Lambda_t(j)$ is the Lagrange multiplier associated with the time t budget constraint. With probability $(1 - d_w)$, the household is allowed to set its wage. The first-order condition is:

$$\tilde{W}_{t}(j) = \left(\frac{\sigma}{\sigma - 1}\right) \frac{E_{t} \sum_{l=0}^{\infty} (\beta d_{w})^{l} \frac{\eta h_{t+l}(j)}{1 - h_{t+l}(j)}}{E_{t} \sum_{l=0}^{\infty} (\beta d_{w})^{l} (1 - \tau_{t+l}) h_{t+l}(j) \Lambda_{t+l}(j) / P_{t+l}^{d}}.$$
(12)

This first-order condition gives a New Keynesian Phillips curve for wage inflation (see section 2.6). The wage index evolves over time according to:

$$W_t = \left[d_w(W_{t-1})^{1-\sigma} + (1 - d_w)(\tilde{W}_t)^{1-\sigma} \right]^{\frac{1}{1-\sigma}}, \tag{13}$$

where \tilde{W}_t is the average wage of those workers who revise their wage at time t.

2.2 Goods production

2.2.1 Domestic intermediate goods

Firms have identical production functions, given by:

$$Y_t(i) = X_t(i)^{\phi} (A_t h_t(\cdot, i))^{1-\phi}, \quad \phi \in (0, 1),$$
 (14)

where $h_t(\cdot, i)$ is the quantity of the aggregate labour input employed by firm i and $X_t(i)$ is the quantity of the final composite good used by firm i.⁵ A_t is an aggregate technology shock that follows the stochastic process, given by:

$$\log(A_t) = (1 - \rho_A)\log(A) + \rho_A\log(A_{t-1}) + \varepsilon_{At},\tag{15}$$

where ε_{At} is a normally distributed, serially uncorrelated shock with zero mean and standard deviation σ_A . The firm chooses $X_t(i)$ and $h_t(\cdot, i)$ to maximize its stock market value. When allowed to do so (with probability $(1-d_p)$ each period), it also chooses the price of its output, $\tilde{P}_t^d(i)$. It solves:

$$\max_{\{X_t(i), h_t(\cdot, i), \tilde{P}_t^d(i)\}} E_t \left[\sum_{l=0}^{\infty} \left(\beta d_p\right)^l \left(\frac{\Lambda_{t+l}}{\Lambda_t}\right) \frac{D_{t+l}^d(i)}{P_{t+l}^d} \right], \tag{16}$$

where Λ_t is the marginal utility of wealth for a representative household, and

$$D_{t+l}^{d}(i) \equiv \tilde{P}_{t}^{d}(i)Y_{t+l}(i) - W_{t+l}h_{t+l}(\cdot, i) - P_{t+l}X_{t+l}(i),$$

where P_t is the price of the final output good, Z_t . The maximization is subject to the firm's production function and to the derived demand for the firm's output (discussed in section 2.2.3), given by:

$$Y_{t+l}(i) = \left(\frac{\tilde{P}_t^d(i)}{P_{t+l}^d}\right)^{-\theta} Y_{t+l},\tag{17}$$

⁵We include $X_t(i)$ in the production of domestic intermediate goods for two reasons. First, without $X_t(i)$, the response of the real wage to demand shocks is too highly countercyclical. Second, as shown in similar models by McCallum and Nelson (1999, 2001), the presence of intermediates in the production function for domestic goods affects the correlation between the nominal exchange rate and domestic inflation.

where P_t^d is the exact price index of the composite domestic good. The elasticity of the derived demand for the firm's output is $-\theta$. The first-order conditions are:

$$\frac{W_t}{P_t^d} = \xi_t(i)(1 - \phi) \frac{Y_t(i)}{h_t(\cdot, i)},$$
(18)

$$\frac{P_t}{P_t^d} = \xi_t(i)\phi \frac{Y_t(i)}{X_t(i)},\tag{19}$$

$$\tilde{P}_t^d(i) = \left(\frac{\theta}{\theta - 1}\right) \frac{E_t \sum_{l=0}^{\infty} (\beta d_p)^l \left(\frac{\Lambda_{t+l}}{\Lambda_t}\right) \xi_{t+l}(i) Y_{t+l}(i)}{E_t \sum_{l=0}^{\infty} (\beta d_p)^l \left(\frac{\Lambda_{t+l}}{\Lambda_t}\right) Y_{t+l}(i) / P_{t+l}^d},\tag{20}$$

where $\xi_t(i)$ is the Lagrange multiplier associated with the production-function constraint. It measures the firm's real marginal cost. The first-order condition with respect to the firm's price relates the price to the expected future price of final output and to expected future real marginal costs. It can be used to derive a New Keynesian Phillips curve relationship for the rate of change of domestic output prices (see section 2.6).

2.2.2 Imported intermediate goods

The economy imports a continuum of foreign intermediate goods on the unit interval. There is monopolistic competition in the market for imported intermediates, which are imperfect substitutes for each other in the production of the composite imported good, Y_t^m , produced by a representative competitive firm. When allowed to do so (with probability $(1-d_m)$ each period), the importer of good i sets the price, $\tilde{P}_t^m(i)$, to maximize its weighted expected profits. It solves:

$$\max_{\{\tilde{P}_t^m(i)\}} E_t \left[\sum_{l=0}^{\infty} (\beta d_m)^l \left(\frac{\Lambda_{t+l}}{\Lambda_t} \right) \frac{D_{t+l}^m(i)}{P_{t+l}^d} \right], \tag{21}$$

where:

$$D_{t+l}^{m}(i) = \left(\tilde{P}_{t}^{m}(i) - e_{t+l}P_{t+l}^{*}\right) \left(\frac{\tilde{P}_{t}^{m}(i)}{P_{t+l}^{m}}\right)^{-\vartheta} Y_{t+l}^{m}.$$
 (22)

For convenience, we assume that the price in foreign currency of all imported intermediates is P_t^* , which is also equal to the foreign price level. The elasticity of the derived demand for the imported good, i, is $-\vartheta$. The first-order condition is:

$$\tilde{P}_{t}^{m}(i) = \left(\frac{\vartheta}{\vartheta - 1}\right) \frac{E_{t} \sum_{l=0}^{\infty} (\beta d_{m})^{l} \left(\frac{\Lambda_{t+l}}{\Lambda_{t}}\right) Y_{t+l}^{m}(i) e_{t+l} P_{t+l}^{*} / P_{t+l}^{d}}{E_{t} \sum_{l=0}^{\infty} (\beta d_{m})^{l} \left(\frac{\Lambda_{t+l}}{\Lambda_{t}}\right) Y_{t+l}^{m}(i) / P_{t+l}^{d}}.$$
(23)

This equation can be used to derive a New Keynesian Phillips curve relationship for the rate of change of intermediate input prices (see section 2.6).

2.2.3 Composite goods

The composite domestic good, Y_t , is produced using a constant elasticity of substitution (CES) technology with a continuum of domestic intermediate goods, $Y_t(i)$, as inputs:

$$Y_t = \left(\int_0^1 Y_t(i)^{\frac{\theta-1}{\theta}} di\right)^{\frac{\theta}{\theta-1}}.$$
 (24)

It is produced by a representative competitive firm that solves:

$$\max_{\{Y_t(i)\}} P_t^d Y_t - \int_0^1 P_t^d(i) Y_t(i) di, \tag{25}$$

subject to the production function (24). The first-order conditions yield the derived demand functions for the domestic intermediate goods given by (17). The exact price index for the composite domestic good is:

$$P_t^d = \left(\int_0^1 P_t^d(i)^{1-\theta} di\right)^{\frac{1}{1-\theta}}.$$
 (26)

This price index corresponds to a producer price index (PPI) for the economy. The price level obeys the following law of motion:

$$P_t^d = \left[d_p (P_{t-1}^d)^{1-\theta} + (1 - d_p) (\tilde{P}_t^d)^{1-\theta} \right]^{\frac{1}{1-\theta}}, \tag{27}$$

where \tilde{P}_t^d is the price index derived by aggregating over all firms that change their price at time t.

Composite domestic output, Y_t , is divided between domestic use, Y_t^d , and exports, Y_t^x . Foreign demand for domestic exports is⁶:

$$Y_t^x = \alpha_x \left(\frac{P_t^d}{e_t P_t^*}\right)^{-\varsigma} Y_t^*, \tag{28}$$

where Y_t^* is foreign output.⁷ The elasticity of demand for domestic output is $-\varsigma$, and $\alpha_x > 0$ is a parameter that determines the fraction of domestic exports in foreign spending. Domestic exports form an insignificant fraction of foreign expenditures, and have a negligible weight in the foreign price index.

⁶This condition can be derived from a foreign importing firm that combines non-perfectly substitutable imported goods.

⁷To ensure the existence of a balanced growth path for the economy, we assume that foreign output grows at the same trend rate as domestic output.

The foreign variables P_t^* and Y_t^* are both exogenous and, when made stationary, evolve according to

$$\log(P_t^*/P_{t-1}^*) = (1 - \rho_{\pi^*})\log(\pi^*) + \rho_{\pi^*}\log(P_{t-1}^*/P_{t-2}^*) + \varepsilon_{\pi^*t},\tag{29}$$

and

$$\log Y_t^* = (1 - \rho_{v^*}) \log(Y^*) + \rho_{v^*} \log(Y_{t-1}^*) + \varepsilon_{v^*t}, \tag{30}$$

where π^* is steady-state foreign inflation, and ε_{π^*t} and ε_{y^*t} are zero-mean, serially uncorrelated shocks with standard errors σ_{π^*} and σ_{y^*} , respectively.

The composite imported good, Y_t^m , is produced using a CES technology with a continuum of imported intermediate goods, $Y_t^m(i)$, as inputs:

$$Y_t^m \le \left(\int_0^1 (Y_t^m(i))^{\frac{\vartheta - 1}{\vartheta}} di \right)^{\frac{\vartheta}{\vartheta - 1}}. \tag{31}$$

It is produced by a representative competitive firm. The firm's profit maximization gives the derived demand function for intermediate imported good j as:

$$Y_t^m(i) = \left(\frac{P_t^m(i)}{P_t^m}\right)^{-\vartheta} Y_t^m. \tag{32}$$

The exact price index for the composite imported goods is given by:

$$P_t^m = \left(\int_0^1 P_t^m(i)^{1-\vartheta} di \right)^{\frac{1}{1-\vartheta}}.$$
 (33)

The price index obeys the following law of motion:

$$P_t^m = \left[d_m (P_{t-1}^m)^{1-\vartheta} + (1 - d_m) (\tilde{P}_t^m)^{1-\vartheta} \right]^{\frac{1}{1-\vartheta}}, \tag{34}$$

where \tilde{P}_t^m is a price index derived by aggregating over all importers that change their price in time t.

2.2.4 Final goods

The final good, Z_t , is produced by a competitive firm that uses Y_t^d and Y_t^m as inputs subject to the following CES technology:

$$Z_{t} = \left[\alpha_{d}^{\frac{1}{\nu}}(Y_{t}^{d})^{\frac{\nu-1}{\nu}} + \alpha_{m}^{\frac{1}{\nu}}(Y_{t}^{m})^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}},$$
(35)

where $\alpha_d > 0$, $\alpha_m > 0$, $\nu > 0$, and $\alpha_d + \alpha_m = 1$. The final good, Z_t , is used for domestic consumption, C_t , as inputs to produce domestic intermediate goods, X_t , and government purchases, G_t . The final good is produced by a competitive firm that solves:

$$\max_{\{Y_t^d, Y_t^m\}} P_t Z_t - P_t^d Y_t^d - P_t^m Y_t^m, \tag{36}$$

subject to the production function (35). Profit maximization entails:

$$Y_t^d = \alpha_d \left(\frac{P_t^d}{P_t}\right)^{-\nu} Z_t, \tag{37}$$

and

$$Y_t^m = \alpha_m \left(\frac{P_t^m}{P_t}\right)^{-\nu} Z_t. \tag{38}$$

The final-good price, P_t , which corresponds to the CPI, is given by:

$$P_t = \left[\alpha_d(P_t^d)^{1-\nu} + \alpha_m(P_t^m)^{1-\nu}\right]^{1/(1-\nu)}.$$
(39)

2.3 Monetary authority

In our model – following Taylor (1993), Dib (2003), and Ireland (2003), among others – the central bank manages the short-term nominal interest rate, R_t , in response to fluctuations in CPI inflation ($\pi_t = P_t/P_{t-1}$), money growth ($\mu_t = M_t/M_{t-1}$), and output (Y_t). The interest rate reaction function of the central bank is given by:

$$\log(R_t/R) = \varrho_\pi \log(\pi_t/\pi) + \varrho_\mu \log(\mu_t/\mu) + \varrho_y \log(Y_t/Y) + \varepsilon_{Rt}, \tag{40}$$

where π , μ , and Y are the steady-state values of π_t , μ_t , and Y_t ; R is the steady-state value of the gross nominal interest rate; and ε_{Rt} is a zero-mean, serially uncorrelated monetary policy shock with standard deviation σ_R . The error term arises from the fact that the central bank can control short-term interest rates only indirectly by setting the Bank Rate. The error term thus reflects developments in money and financial markets that are not explicitly captured by our model.

Money growth is included as an argument in the Taylor rule because of the inclusion of money-demand shocks in our model. They turn out to be important empirically and account for a significant fraction of fluctuations in output and inflation. If the central bank reacted only to inflation, money-demand shocks could be exacerbated by the bank's behaviour, since a positive money-demand shock would lead to a decrease in inflation, a reduction in short-term interest rates, and thereby to an endogenous increase in money demand. The inclusion of CPI inflation rather than PPI inflation is motivated by the fact that the Bank of Canada

does in fact target CPI inflation; also, reacting to CPI inflation allows for an indirect channel for reacting to exchange rate movements, since exchange rate fluctuations may be passed through much more quickly to the CPI than to the PPI.⁸

2.4 The government

The government's budget constraint is given by:

$$P_t G_t + T_t + D_{t-1}^g = \tau_t W_t h_t + M_t - M_{t-1} + \frac{D_t^g}{R_t}.$$
 (41)

The left side of (41) represents the uses of government revenue: goods purchases, transfers, and debt repayments. The right side includes tax revenues, money creation, and newly issued debt. The government also faces a no-Ponzi constraint that implies that the present value of government expenditures equals the present value of tax revenue plus the initial stock of public debt, D_0^g .

Because households have infinite horizons, there is Ricardian equivalence in the following sense: given the tax rate on labour income, a change in the mix between lump-sum taxes and borrowing does not affect the economy's equilibrium. We can simplify the budget constraint without loss of generality to:

$$P_t G_t + T_t = \tau_t W_t h_t + M_t - M_{t-1}. (42)$$

This implies that D_t^g is zero in each period. Government spending and the tax rate are determined by:

$$\log(G_t) = (1 - \rho_g)\log(G) + \rho_g\log(G_{t-1}) + \varepsilon_{gt}, \tag{43}$$

and

$$\log(\tau_t) = (1 - \rho_\tau)\log(\tau) + \rho_\tau \log(\tau_{t-1}) + \varepsilon_{\tau t}. \tag{44}$$

Given these stochastic processes, and that the nominal money stock is determined by money demand once the nominal interest rate is set, lump-sum taxes are determined residually to balance the government's budget.

2.5 Equilibrium

There are two different stochastic trends in the model. The first is in the foreign price level, and arises from the specification of the stochastic process for P_t^* in terms of rates of change in equation (29). The second is in the price of domestic output and all other domestic nominal variables, and arises from the fact that the monetary authority adjusts the domestic nominal interest rate as a function of inflation rather than the price level, according to equation (40).

⁸Ambler, Dib, and Rebei (2003) present evidence that this is indeed the case for Canada.

Solving the model involves using stationary transformations of variables with unit roots. We use the following transformations: $p_t \equiv P_t/P_t^d$, $m_t \equiv M_t/P_t$, $p_t^m \equiv P_t^m/P_t^d$, $\tilde{p}_t^d \equiv \tilde{P}_t^d/P_t^d$, $\pi_t \equiv P_t/P_{t-1}$, $\pi_t^d \equiv P_t^d/P_{t-1}^d$, $w_t \equiv W_t/P_t^d$, $\pi_t^* \equiv P_t^*/P_{t-1}^*$, $b_t^* \equiv B_t^*/P_t^*$, and $s_t \equiv e_t P_t^*/P_t^d$. Appendix B provides the complete system of equations in stationary variables that characterize the model's equilibrium.

2.6 New Keynesian Phillips curves

The price- and wage-setting equations cannot be used directly to simulate the model, since they involve infinite summations. By linearizing these equations around the steady-state values of the variables, and assuming zero inflation in the steady state, we obtain three New Keynesian Phillips curves relationships that determine the rates of inflation of locally produced intermediate goods, imported intermediates, and the nominal-wage index. Defining $\pi_t^m \equiv P_t^m/P_{t-1}^m$, and $\pi_t^w \equiv W_t/W_{t-1}$, we get:

$$\hat{\pi}_t^d = \beta \hat{\pi}_{t+1}^d + \frac{(1 - \beta d_p)(1 - d_p)}{d_p} \hat{\xi}_t, \tag{45}$$

$$\hat{\pi}_t^m = \beta \hat{\pi}_{t+1}^m + \frac{(1 - \beta d_m)(1 - d_m)}{d_m} \hat{s}_t, \tag{46}$$

and

$$\hat{\pi}_t^w = \beta \hat{\pi}_{t+1}^w \cdot \left[\left(\frac{h}{1-h} \right) \hat{h}_t - \hat{\Lambda}_t + \left(\frac{\tau}{1-\tau} \right) \hat{\tau}_t - \hat{w}_t \right], \tag{47}$$

where hats over variables denote deviations from steady-state values. The New Keynesian Phillips curve for domestic output inflation is the same as in Galí and Gertler (1999). It relates inflation to expected future inflation and to the real marginal cost of output. The equation for import-price inflation is analogous with real marginal cost captured by the real exchange rate. The wage-inflation equation is also analogous. The term in square brackets measures the marginal rate of substitution (the real marginal cost to workers of their work effort) minus the real wage. The household's first-order condition for the nominal wage can be interpreted as a markup over the average marginal cost of work effort over the life of the wage contract.

3. Model Solution and Parameter Estimation

To estimate the model's parameters, we use a linear approximation around its steady state, but for welfare analysis we use a higher-order approximation using the Dynare program (Juillard 2002). Blanchard and Kahn's (1980) algorithm is used to solve the linearized model. It leads to a state-space representation, with transition equations for the model's

predetermined endogenous state variables and observation equations relating those states to observable macroeconomic aggregates. The model's forward-looking or jump-state variables are eliminated from the state transition equations by Blanchard and Kahn's solution procedure. In the notation of Ireland (2004), we have:

$$\mathbf{s_t} = A\mathbf{s_{t-1}} + B\varepsilon_t,\tag{48}$$

The model is completed by the following set of observation equations that relate the model's state variables to observable endogenous variables:

$$\mathbf{f_t} = C\mathbf{s_t}.\tag{49}$$

The column vector $\mathbf{s_{t-1}}$ contains the predetermined endogenous state variables of the model:

$$\mathbf{s_{t-1}}' \equiv [b_{t-1}, A_{t-1}, G_{t-1}, \tau_{t-1}, R_{t-1}^*, \pi_{t-1}^*, Y_{t-1}^*, w_{t-1}, p_{t-1}^m, m_{t-1}, b_{t-1}^*],$$

with all variables made stationary and measured in proportional deviations from their steady-state values. With eight structural shocks in the model, we include a vector of eight observation equations to avoid the stochastic singularity problem discussed by Ingram, Kocherlakota, and Savin (1994). This problem stems from the fact that, with more than eight observation equations, there would be exact or deterministic relationships among certain combinations of the model's endogenous variables. If these relationships did not hold exactly in the data, estimation by the maximum-likelihood procedure would break down. We include the five state variables that are directly observable, as well as consumption, CPI inflation, and the domestic interest rate:

$$\mathbf{f_t}' \equiv [C_t \,,\, \pi_t \,,\, R_t \,,\, G_t \,,\, \tau_t \,,\, R_t^* \,,\, \pi_t^* \,,\, Y_t^*],$$

with all variables measured in proportional deviations from their steady-state values.

The Kalman filter is used to write down the model's log-likelihood function given its state-space representation.⁹ The same estimation method is used by Dib (2003) and Ireland (2003). The parameters are then estimated by maximizing the log-likelihood function over the sample period from 1981Q3 to 2002Q4.

3.1 Parameter estimates

Table 1 summarizes our parameter estimates. Not counting constants in the stochastic processes for the model's forcing variables, the model has 36 structural parameters. Of these, we are unable to estimate six, because they are poorly identified. These parameters are assigned calibrated values.

⁹See Hamilton (1994, chapter 13) or Ireland (2004) for detailed descriptions.

The subjective discount rate, β , is given a standard value, which implies an annual real interest rate of 4 per cent in the steady state. The weight on leisure in the utility function, η , is calibrated so that the representative household spends about one-third of its total time working in the steady state. The α_x parameter is a normalization that ensures that the current account is balanced in the long run. The demand elasticities, σ , θ , and ϑ , influence the stochastic properties of the model in a very indirect way. After linearization, they no longer appear in the three New Keynesian Phillips curve equations. By influencing the size of the markups over marginal cost, they do influence the steady-state levels of the domestic production of intermediate goods, imported intermediate goods, and employment. Because certain coefficients in the linearized model depend on the steady-state levels of endogenous variables, the moments predicted by the model are related to these parameters. Unfortunately, the influence is so weak that it is impossible to estimate them precisely. The θ and ϑ parameters give the elasticity of substitution across different types of intermediate goods in the production of the composite domestic good and the composite imported good. Setting $\theta = \vartheta = 8$ gives a steady-state markup of 14 per cent, which agrees well with estimates in the empirical literature of between 10 per cent and 20 per cent (see, for example, Basu 1995). The σ parameter gives the elasticity of substitution across different labour types in the production of individual domestic intermediate goods. The value $\sigma = 6$ corresponds to estimates from microdata in Griffin (1992).¹⁰

Of the estimated parameters in Table 1, most have small standard errors and are highly significant. In particular, the nominal rigidity parameters are highly significant. They are of plausible magnitude, and within the range of values in previous empirical studies and calibrated general-equilibrium models. The estimate of d_p implies that the prices of domestic intermediate goods remain fixed for, on average, 1.78 quarters. The other prices are revised less often, on average, but are still well within the range of plausibility. Import prices remain fixed for slightly more than two quarters, on average. Nominal wages remain fixed for 5.37 quarters, on average.

The estimated values of the Taylor rule imply, since the sum of ϱ_{π} and ϱ_{μ} is greater than unity, that the long-run level of the inflation rate is determinate and the model is saddlepoint stable, with a unique dynamic solution in response to shocks. The value of ϱ_{y} suggests that, during the sample period, the Bank of Canada intervened only weakly if at all to fluctuations in real output.¹¹

The stochastic processes for the model's forcing variables are highly persistent. Except for $\rho_{\pi^*} = 0.2054$ and $\rho_{\tau} = 0.4320$, the estimated AR(1) parameters are greater than 0.64. The

 $^{^{10}}$ It also agrees with the value estimated in Ambler, Guay, and Phaneuf (2003) using aggregate time-series data. They succeed in estimating the value of the equivalent parameter in their model by calibrating the equivalent of the d_w parameter.

¹¹We also allow monetary policy to respond to real exchange rate fluctuations in some of our estimations. The coefficient is very small in magnitude and insignificant. We do not allow for regime shifts when estimating the Taylor rule coefficients.

standard deviations of the innovations to the processes vary widely in magnitude, ranging from 0.0016 in the case of foreign interest rate shocks to 0.0718 in the case of money-demand shocks. The volatility of foreign shocks is smaller than that of domestic shocks, which suggests the relative importance of domestic shocks for business cycle fluctuations in the Canadian economy.

Figure 1 shows the fitted and (within sample) predicted values of several of the model's time series (with error terms in the observation equations set equal to zero). For the series that are used to construct the model's likelihood function, the fit is quite good. The model does have difficulty tracking the nominal and real exchange rate series, even within sample. This is not surprising, given the generally poor performance of structural exchange rate models and the fact that the real and nominal exchange rates were not included among the observable variables used to construct the likelihood function.

4. Optimal Monetary Policy

Given the estimated and calibrated values of the model's structural parameters, we optimized over the three coefficients of the Taylor rule to find the values that maximize unconditional welfare. The maximization problem can be written as follows:

$$\max_{\varrho_{\pi},\varrho_{\mu},\varrho_{y}} E\left\{u\left(C_{t},m_{t},h_{t}\right)\right\}. \tag{50}$$

The solution amounts to maximizing welfare in the steady state.¹² It ignores any costs involved in the transition between the initial stochastic steady state with estimated values of the Taylor rule coefficients and the new stochastic steady state with optimized Taylor rule coefficients.

It has been known for some time that, for the purposes of welfare evaluation in DGE models, first-order approximations of their equilibrium conditions may not be adequate.¹³ Kim and Kim (2003) provide a simple example of a model in which welfare appears higher under autarky than under complete markets, because of the inaccuracy of the linearization method.¹⁴ To avoid this problem, we compute the welfare-maximizing Taylor rules, using the Dynare program. Dynare calculates a second-order approximation of the model around its deterministic steady state. We use the program to calculate the theoretical first and second

¹²It has become standard practice to abstract from welfare gains and losses that result from changes in real money balances. Because we find empirically that money-demand shocks explain a substantial fraction of output fluctuations, we do not shut down the effects of money-demand shocks on the model.

¹³Woodford (2001, chapter 6) describes a series of conditions under which first-order approximations of the policy functions in DGE models are adequate for evaluating social welfare. The conditions do not hold here: the main condition that fails is that, because of distortions that result from monopolistic competition, the deterministic steady state of the model has an allocation of resources that is not Pareto optimal.

¹⁴See Kim et al. (2003) for a more general discussion.

moments of the model's endogenous variables, including period utility. Table 2 reports our main results. The second column of the table reproduces the historical (estimated) values of the Taylor rule coefficients from Table 1 to facilitate comparison with their optimized values. The third column shows the optimized Taylor rule coefficients. The fourth column shows the Taylor rule coefficients for an inflation stabilization scenario in which the central bank pays attention only to inflation and strongly resists fluctuations in the inflation rate around its long-run average value.

We measure the welfare gain associated with a particular monetary policy by means of the compensating variation. This measures the percentage change in consumption given the equilibrium with the historical values of the Taylor rule coefficients that would give households the same unconditional expected utility as in the aforementioned scenario. The compensating variation is defined as follows:

$$E\left\{u\left(C_{t}(1+\zeta), m_{t}, h_{t}\right)\right\} = E\left\{u\left(C_{t}^{*}, m_{t}^{*}, h_{t}^{*}\right)\right\},\tag{51}$$

where variables that do not have asterisks are under the historical values of the Taylor rule coefficients, and variables that do have asterisks are under the proposed Taylor rule coefficients. The fourth row of Table 2 reports the compensating variations associated with the optimal Taylor rule and the anti-inflation scenario.

The results are striking. The compensating variation for the optimal Taylor rule is quite large. Consumption in each period would have to increase by 1.40 per cent in the model with the historical values of the Taylor rule coefficients for agents to be as well off as with the optimal coefficients. This is larger than the welfare gain calculated by Kollmann (2002). Before comparing our welfare gain with Kollmann's, it is important to note that he measures his welfare gains with respect to the level of welfare in the deterministic steady state, in which the variance of each shock is set equal to zero, rather than with respect to the stochastic steady state with historical values of the Taylor rule coefficients, as we do. 15 His compensating variation is 0.39 per cent. Note from Table 3 that, in our model, the deterministic steady state gives a welfare improvement over the stochastic steady state with the historical Taylor rule coefficients. The size of the compensating variation is 0.37 per cent. The welfare gain in our model compared with the deterministic steady state is therefore equal to 1.02 per cent in terms of compensating variation, just over two and one half times the increase in Kollmann's model. Even when the monetary policy has inflation stabilization as its exclusive focus, there is a substantial welfare gain compared with the stochastic steady state with the historical values of the Taylor rule coefficients: the compensating variation is equal to 0.73 per cent.

Compared with the historical values of the Taylor rule coefficients, monetary policy with the optimal Taylor rule responds more strongly to fluctuations in inflation and output, and

¹⁵Kollmann calibrates, rather than estimates, his model. Therefore, he has no estimated historical values of the Taylor rule coefficients with which to measure welfare.

less strongly to fluctuations in the growth of nominal balances. Despite these differences, the coefficients of the optimized Taylor rule are quite close to the corresponding historical values, which suggests that the measured welfare gains may be sensitive to small variations in the Taylor rule coefficients. This is confirmed by a detailed analysis of the shape of the welfare function in the space of the Taylor rule coefficients.

Figure 2 shows the shape of the welfare function in the ρ_{π}/ρ_{y} plane, holding constant the value of ρ_{μ} at its optimal level of zero. The level of period utility in the neighbourhood of the optimum takes the form of a tall, narrow peak. The location of the peak depends on the values of the model's structural parameters. Even if our model is correctly specified, small errors in our point estimates due to sampling uncertainty may mean that the level of period utility is in the surrounding plain, rather than at or near the peak. In addition, the peak is quite close to the region of parameter values in which the model is locally indeterminate. Local indeterminacy occurs when the number of stable roots of the linearized model is greater than the number of predetermined variables. In this case, there are an infinite number of dynamic paths that converge to the model's deterministic steady state, starting in the immediate neighbourhood of that steady state, and sunspot equilibria are a possibility. Roughly speaking, the model is locally indeterminate when

$$\varrho_{\pi} + \varrho_{\mu} - \varrho_{y} \leq 1.0.$$

Schmitt-Grohé and Uribe (2004) restrict the policy rules they consider to yield a locally unique equilibrium within a radius of 0.15 around the optimized coefficients. They note (p. 20) that "welfare computations near a bifurcation point may be inaccurate." Restricting the coefficients of the Taylor rule so that

$$\varrho_{\pi} + \varrho_{\mu} - \varrho_{y} \ge 1.15$$

leads to the welfare contours shown in Figure 3. For small values of ϱ_{μ} (less than two), welfare is increasing in the value of ϱ_{π} , but is less than the optimal level of welfare attainable without imposing this additional restriction.

4.1 Level effect versus stabilization effect

Because the model is solved using a second-order approximation of its equilibrium conditions around the deterministic steady-state levels of its variables, both the variances of shocks and the monetary policy rule (which influences how the shocks are transmitted to the economy) can affect the **means** of the endogenous variables of the economy. Table 3 shows the average levels of various endogenous variables, and the standard deviations of the same variables, for the deterministic steady state and for the same monetary policy scenarios as reported in Table 2.

It is also possible to summarize the extent to which the gains in welfare come from the effects of the change in policy regarding the levels of consumption, leisure, and real balances versus changes in the volatility of these variables. We can approximate the difference between welfare under optimal policy and the estimated values of the Taylor rule coefficients as follows:

$$E(u(z_t^*)) - E(u(z_t))$$

$$\approx u(z) + u_z E(\hat{z}_t^*) + \frac{1}{2} E(\hat{z}_t^*)' u_{zz}(\hat{z}_t^*) - u(z) - u_z E(\hat{z}_t) - \frac{1}{2} E(\hat{z}_t)' u_{zz}(\hat{z}_t),$$

where $z_t \equiv (C_t, m_t, h_t)$ is the vector of arguments of the utility function, z is the value of these arguments in the deterministic steady state, and variables with hats measure deviations from their levels in the deterministic steady state. This implies:

$$E(u(z_t^*)) = E(u(z_t)) + u_z E(\hat{z}_t^* - \hat{z}_t) + \frac{1}{2} E(\hat{z}_t^* - \hat{z}_t)' u_{zz} (\hat{z}_t^* - \hat{z}_t).$$

This allows us to decompose the gains in welfare from optimal monetary policy into a level effect and a stabilization effect. We define the level effect as:

$$E\{u(C_t(1+\zeta_L), m_t, h_t)\} = Eu(z_t) + u_z E(\hat{z}_t^* - \hat{z}_t),$$

and we define the stabilization effect as:

$$E\left\{u\left(C_{t}(1+\zeta_{S}), m_{t}, h_{t}\right)\right\} = Eu\left(z_{t}\right) + \frac{1}{2}E\left(\hat{z}_{t}^{*} - \hat{z}_{t}\right)'u_{zz}\left(\hat{z}_{t}^{*} - \hat{z}_{t}\right). \tag{52}$$

The last two rows of Table 3 show the results. The overall effect in all cases is such that, approximately:

$$(1+\zeta) \approx (1+\zeta_L)(1+\zeta_S). \tag{53}$$

The most important result is that the welfare gain from optimizing the Taylor rule coefficients comes from the level effect. In fact, period utility becomes more volatile with the optimal Taylor rule coefficients than with their historical values. Hours worked are slightly more volatile, consumption is slightly less volatile, and real balances are much more volatile under the optimal Taylor rule. This implies that the welfare gain due to the stabilization effect is actually negative. From the top three rows of Table 3, it is clear that much of the level effect comes from an increase in real money balances. The increase in the average level of consumption from the initial stochastic steady state is 0.87 per cent, whereas the level effect component of the compensating variation is over 2 per cent. Since hours worked increase slightly, the component of the compensating variation due to the increase in the average level of real balances is well over 1 per cent. As discussed in subsection 4.2, this suggests that misleading results could be obtained by neglecting the effects on welfare of the transition from the initial steady state to the final steady state of the model.

4.2 Transition costs

By maximizing unconditional welfare, we are implicitly maximizing welfare in the stochastic steady state. The welfare comparison ignores the possibility of losses in welfare on the transition path from one steady state to another. The possibility is potentially acute for open economies. Welfare in the new steady state with optimal policy may be higher because a higher level of net foreign assets allows individuals to enjoy a higher level of consumption. Acquiring the additional foreign assets, however, implies a lower level of consumption in the short run. The short-term loss may even swamp the long-term gain if individuals are sufficiently impatient and if this impatience is reflected in the social welfare function.

In our model, much of the increase in welfare comes from an increase in the level of real money balances. Table 3 shows that average consumption increases slightly, average hours worked increase slightly (which implies a small loss in welfare), and there is a substantial increase in real money balances. For a small open economy, the costs of acquiring these additional real assets differ, of course, from the costs of increasing the level of net foreign assets. An increase in real balances can arise from a fall in the overall price level, without a direct sacrifice of consumption in the short run. To analyze the impact on welfare of the transition to the final steady state, we conduct the following Monte Carlo experiment with 1000 replications. For each replication, we draw new values of the model's shocks from a multivariate normal distribution, and of the model's structural parameters given our point estimates and the estimated variance-covariance matrix of the model's shocks. We then simulate the model's response to the shocks, having starting values for its predetermined state variables equal to their means in the stochastic steady state with the historical values of the Taylor rule coefficients.

Figure 4 shows the results. Period utility is measured on the vertical axis. The dotted lines indicate the average level of period utility under the historical Taylor rule and under the optimized Taylor rule. The solid line shows the average of period utility across the 1000 different replications, with 90 per cent confidence bands around this mean response given by the dashed lines. The graph indicates clearly that no short-term costs are associated with moving to the optimal monetary policy. Welfare increases even in the period immediately after the implementation of the new monetary policy.

5. Conclusions

We have shown that it is feasible to construct a fully developed NOEM model of a small open economy such as Canada, to estimate almost all of its parameters using maximum-likelihood techniques, and to use the model to analyze optimal monetary policy by calculating the values of the Taylor rule coefficients that maximize unconditional welfare. The time is perhaps not far off when central banks themselves will integrate the use of such models into

the formulation of their monetary policy.

Our results show that it is possible to improve welfare substantially by getting the coefficients of a modified Taylor rule right. The welfare increase is equivalent to a permanent 1.40 per cent increase in the level of consumption between the stochastic steady states with the estimated values of the Taylor rule coefficients and their optimal values. The welfare function, however, is very steep in the neighbourhood of the optimum, and the location of the maximum is sensitive to the structural values of the model. Small errors in parameter estimates will, in general, lead to a much lower level of welfare. In addition, the optimal Taylor rule coefficients put the model quite close to the region of local indeterminacy. If the Taylor rule coefficients are restricted to place the economy further away from the region of local indeterminacy, the welfare gains from optimal policy decrease substantially.

Much work remains to be done. We need to incorporate capital into the model, so that it can better reproduce the persistence of some of the main macroeconomic aggregates. We need to do more work on the difference between policies that maximize conditional versus unconditional welfare. We need to work on deriving the truly optimal feedback rule and to evaluate the welfare loss from using a Taylor rule that is necessarily an **approximation** of the fully optimal rule. We need to analyze the problem of time consistency. Finally, we need to examine whether the result that welfare gains are extremely sensitive to the coefficients of the optimal policy rule and to the structural parameters of the model is robust to different types of models.

References

Ambler, S., A. Dib, and N. Rebei. 2003. "Nominal Rigidities and Exchange Rate Pass-Through in a Structural Model of a Small Open Economy." Bank of Canada Working Paper No. 2003-29.

Ambler, S., A. Guay, and L. Phaneuf. 2003. "Labor Market Imperfections and the Dynamics of Postwar Business Cycles." CIRPÉE, Université du Québec à Montréal. Draft.

Basu, S. 1995. "Intermediate Goods and Business Cycles: Implications for Productivity and Welfare." American Economic Review 85: 512-31.

Bergin, P. 2003. "Putting the 'New Open Economy Macroeconomics' to a Test." *Journal of International Economics* 60: 3-34.

Blanchard, O. and C. Kahn. 1980. "The Solution of Linear Difference Models under Rational Expectations." *Econometrica* 48: 1305-11.

Bowman, D. and B. Doyle. 2003. "New Keynesian, Open-Economy Models and Their Implications for Monetary Policy." In *Price Adjustment and Monetary Policy*, 247-85 Proceedings of a conference held by the Bank of Canada, November 2002. Ottawa: Bank of Canada.

Calvo, G. 1983. "Staggered Prices in a Utility-Maximizing Framework." *Journal of Monetary Economics* 12: 383-98.

Corsetti, G. and P. Pesenti. 2001. "International Dimensions of Optimal Monetary Policy." National Bureau of Economic Research Working Paper No. 8230.

Dib, A. 2003. "Monetary Policy in Estimated Models of Small Open and Closed Economies." Bank of Canada Working Paper No. 2003–27.

Galí, J. and M. Gertler. 1999. "Inflation Dynamics: A Structural Econometric Analysis." *Journal of Monetary Economics* 44: 195-222.

Galí, J. and T. Monacelli. 1999. "Optimal Monetary Policy and Exchange Rate Variability in a Small Open Economy." Boston College. Draft.

Giavazzi, F. and C. Wyplosz. 1984. "The Real Exchange Rate, the Current Account, and the Speed of Adjustment." In *Exchange Rate Theory and Practice*, edited by J. Bilson and R.C. Marston. Chicago: University of Chicago Press.

Griffin, P. 1992. "The Impact of Affirmative Action on Labor Demand: A Test of Some Implications of the Le Chatelier Principle." Review of Economics and Statistics 74: 251-60.

Hamilton, J.D. 1994. *Time Series Analysis*. Princeton: Princeton University Press.

Ingram, B.F., N.R. Kocherlakota, and N.E. Savin. 1994. "Explaining Business Cycles: A Multiple-Shock Approach." *Journal of Monetary Economics* 34: 415-28.

Ireland, P.N. 2003. "Endogenous Money or Sticky Prices." *Journal of Monetary Economics* 50: 1623-48.

———. 2004. "A Method of Taking Models to the Data." *Journal of Economic Dynamics and Control* 28: 1205-26.

Jones, J. 2002. "Has Fiscal Policy Helped Stabilize the Postwar U.S. Economy?" *Journal of Monetary Economics* 49: 709-46.

Juillard, M. 2002. "Dynare." CEPREMAP. Draft.

Kim, J. and S. Kim. 2003. "Spurious Welfare Reversals in International Business Cycle Models." *Journal of International Economics* 60: 471-500.

Kim, J., S. Kim, E. Schaumberg, and C.A. Sims. 2003. "Calculating and Using Second Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models." Princeton University. Draft.

Kollmann, R. 2002. "Monetary Policy Rules in the Open Economy: Effects on Welfare and Business Cycles." *Journal of Monetary Economics* 49: 989-1015.

Lane, P. 2001. "The New Open Economy Macroeconomics: A Survey." *Journal of International Economics* 54: 235-66.

McCallum, B. and E. Nelson. 1999. "Nominal Income Targeting in an Open-Economy Optimizing Model." *Journal of Monetary Economics* 43: 553-78.

———. 2001. "Monetary Policy for an Open Economy: An Alternative Framework with Optimizing Agents and Sticky Prices." Oxford Review of Economic Policy 16: 74-91.

Mendoza, E., A. Razin, and L. Tezar. 1994. "Effective Tax Rates in Macroeconomics: Cross-Country Estimates of Tax Rates on Factor Incomes and Consumption." *Journal of Monetary Economics* 34: 297-323.

Obstfeld, M. and K. Rogoff. 1995. "Exchange Rate Dynamics Redux." *Journal of Political Economy* 103: 624-60.

Sarno, L. 2001. "Toward a New Paradigm in Open Economy Modeling: Where Do We Stand?" Federal Reserve Bank of St. Louis Review (May-June): 21-36.

Schmitt-Grohé, S. and M. Uribe. 2003. "Closing Small Open Economy Models." *Journal of International Economics* 61: 163-85.

———. 2004. "Optimal Simple and Implementable Monetary and Fiscal Rules." National Bureau of Economic Research Working Paper No. 10253.

Senhadji, A. 1997. "Sources of Debt Accumulation in a Small Open Economy." International Monetary Fund Working Paper No. 97/146.

Smets, F. and R. Wouters. 2002. "Openness, Imperfect Exchange Rate Pass-Through and Monetary Policy." *Journal of Monetary Economics* 49: 947-81.

Taylor, J.B. 1993. "Discretion versus Policy Rules in Practice." Carnegie-Rochester Conference Series on Public Policy 39: 195-214.

Woodford, M. 2001. "Inflation Stabilization and Welfare." Contributions to Macroeconomics Volume 2.

Table 1: Parameter Estimates

Parameter	Value	Standard deviation	t-stat	<i>p</i> -value	
Stochastic processes	Stochastic processes				
$ ho_A$	0.8797	0.0258	34.10	0.00	
$ ho_b$	0.6450	0.0453	14.24	0.00	
$ ho_g$	0.7919	0.0663	11.94	0.00	
$ ho_ au$	0.4320	0.0961	4.50	0.00	
$ ho_{R^*}$	0.8973	0.0200	44.87	0.00	
$ ho_{y^*}$	0.8280	0.0412	20.10	0.00	
$ ho_{\pi^*}$	0.2054	0.0951	2.16	0.03	
σ_A	0.0204	0.0017	12.00	0.00	
σ_b	0.0718	0.0046	15.61	0.00	
σ_g	0.0072	0.0006	12.00	0.00	
$\sigma_{ au}$	0.0251	0.0019	13.21	0.00	
σ_{R^*}	0.0016	0.0001	16.00	0.00	
σ_{y^*}	0.0066	0.0005	13.20	0.00	
σ_{π^*}	0.0018	0.0002	9.00	0.00	
σ_R	0.0109	0.0009	12.11	0.00	
b	0.3532	0.0402	8.79	0.00	
Nominal rigidity					
d_w	0.8257	0.0491	16.82	0.00	
d_p	0.4398	0.0479	9.18	0.00	
d_m	0.5508	0.0275	20.03	0.00	
Interest rate rule					
$arrho_{\pi}$	1.0223	0.0863	11.85	0.00	
$arrho_{\mu}$	0.6567	0.0745	8.81	0.00	
ϱ_y	-0.0147	0.0498	-0.30	0.76	
Foreign supply/demand					
$lpha_x$	0.074	Calibrated			
arphi	-0.0204	0.0311	-0.66	0.51	
ς	0.5962	0.0288	20.70	0.00	
Production					
u †	0.5962	0.0288	20.70	0.00	
$lpha_d$	0.6406	0.0616	10.40	0.00	
ϕ	0.3788	0.0333	11.38	0.00	
σ	6.00	Calibrated			
heta	8.00	Calibrated			
ϑ	8.00	Calibrated			
Preferences					
γ	0.3561	0.0354	10.06	0.00	
eta	0.99	Calibrated			
η	1.35	Calibrated			

† — ν was constrained to equal ς

 ${\bf Table\ 2:\ Optimized\ Taylor\ Rule\ Coefficients}$

	Historical	Base case	Inflation
			stabilization
ϱ_{π}	1.0223	1.2000	30.0000
$arrho_{\mu}$	0.6567	0.0000	
$arrho_y$	-0.0147	0.2000	
$\overrightarrow{\text{CV}}^*$		1.3976	0.7322

^{*:} Compensating variation in per cent

26

Table 3: Average Values and Standard Deviations

	Deterministic	Initial stochastic	Optimal stochastic	Inflation	
	steady state	steady state	steady state	stabilization	
		Averages			
Consumption	0.0805	0.0804	0.0811	0.0812	
Hours worked	0.3230	0.3238	0.3254	0.3265	
Real balances	0.1374	0.1392	0.2478	0.2335	
Period utility	-3.0572	-3.0608	-3.0472	-3.0537	
	S	Standard deviations			
Consumption		0.0025	0.0023	0.0059	
Hours worked		0.0092	0.0098	0.0147	
Real balances		0.0080	0.0764	0.0856	
Period utility		0.0367	0.0495	0.0614	
Compensating variations					
$\mathrm{CV}\dagger$	0.3716	_	1.3976	0.7322	
Level effect	0.2876		2.1865	1.8932	
Stabilization effect	0.0843		-0.7718	-1.1404	

†: Compensating variation in per cent

Figure 1: Fitted and Actual Values

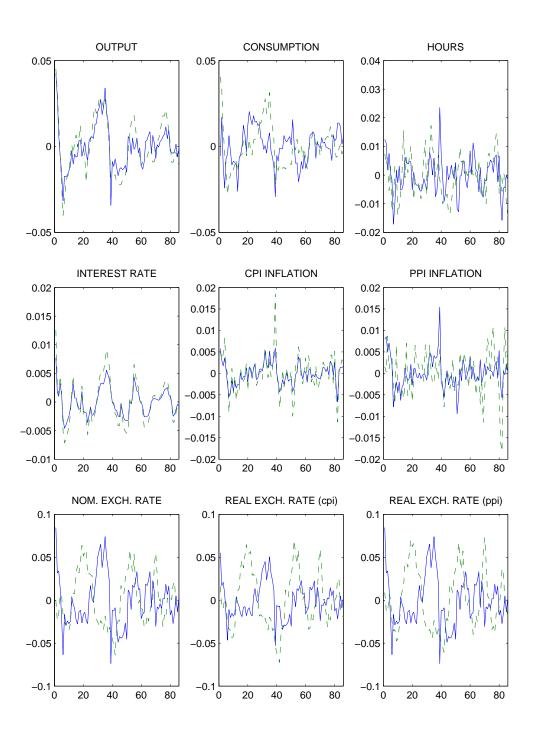


Figure 2: Objective Function with $\varrho_{\mu}=0.0$

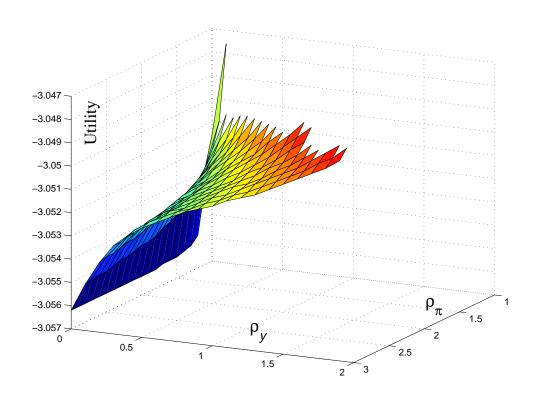


Figure 3: Objective Function with $\varrho_{\pi} + \varrho_{\mu} - \varrho_{y} \ge 1.15$

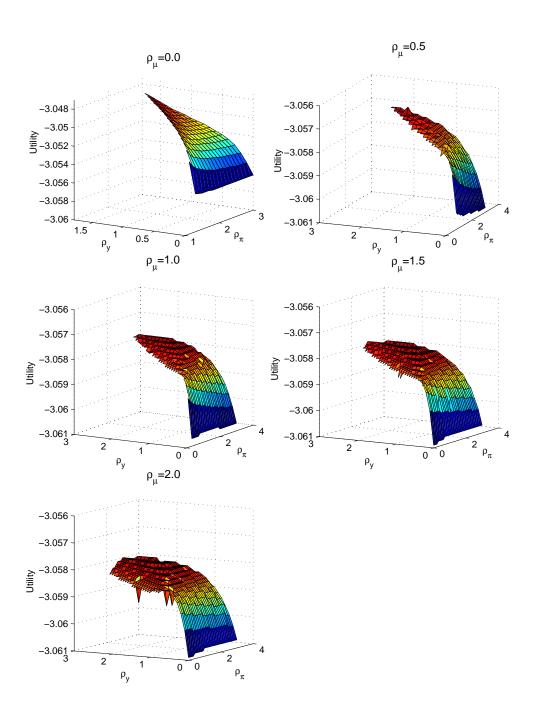
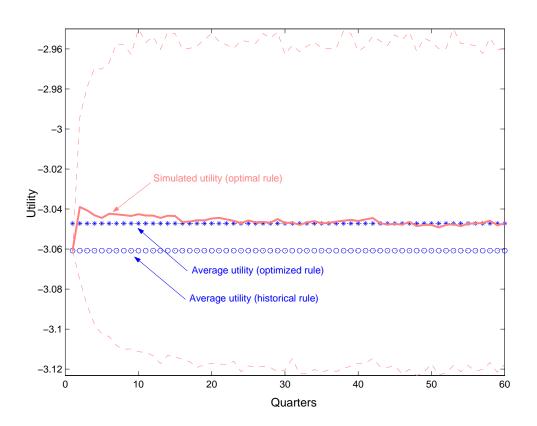


Figure 4: Fitted and Actual Values



Appendix A: Data and Data Sources

Our data set is available upon request. The data are from Canada and the United States and are quarterly from 1981Q3 to 2002Q4. The Canadian data are from *Bank of Canada Banking and Financial Statistics*, a monthly publication by the Bank of Canada. Series numbers are indicated in brackets and correspond to CANSIM databank numbers.

- Consumption, C_t , is measured by real personal spending on non-durable goods and services in 1997 dollars (non-durables [v1992047] + services [v1992119]).
- The CPI inflation rate, π_t , is measured by changes in the consumer price index, P_t [v18702611].
- The short-term nominal interest rate, R_t , is measured by the yield on Canadian three-month treasury bills [v122531].
- Government spending, G_t , is measured by government expenditures on goods and services (total domestic demand [v1992068] total personal expenditures [v1992115] construction [v1992053 + v1992055] machinery and equipment investment [v1992056]).
- The labour tax rate, τ_t , is measured by the effective labour tax rate (calculated following the methodology of Jones 2002; and Mendoza, Razin, and Tezar 1994).
- The series in per-capita terms are obtained by dividing each series by the Canadian civilian population aged 15 and over (civilian labour force [v2062810]/labour force participation [v2062816]).

The U.S. data are from the Federal Reserve Bank of St. Louis, with the series numbers in brackets. The world series are approximated by some of the U.S. series.

- World output, Y_t^* , is real U.S. GDP per capita in 1996 dollars [GDPC96] divided by the U.S. civilian non-institutional population [CNP16OV].
- The world nominal interest rate, R_t^* , is measured by the rate on U.S. three-month Treasury bills [TB3MS].
- The world inflation rate, π_t^* , is measured by changes in the U.S. GDP implicit price deflator, P_t^* [GDPDEF].

Appendix B: Equilibrium Conditions

The following system of equations defines the economy's equilibrium:

$$\frac{C_t^{\frac{-1}{\gamma}}}{C_t^{\frac{\gamma-1}{\gamma}} + b_t^{\frac{1}{\gamma}} m_t^{\frac{\gamma-1}{\gamma}}} = \Lambda_t p_t;$$
(B.54)

$$\frac{b_t^{\frac{1}{\gamma}} m_t^{\frac{-1}{\gamma}}}{C_t^{\frac{\gamma-1}{\gamma}} + b_t^{\frac{1}{\gamma}} m_t^{\frac{\gamma-1}{\gamma}}} = \Lambda_t p_t \left(1 - \frac{1}{R_t} \right); \tag{B.55}$$

$$\frac{R_t}{\kappa_t R_t^*} = E_t \left[\frac{s_{t+1} \pi_{t+1}^d}{s_t \pi_{t+1}^*} \right]; \tag{B.56}$$

$$\frac{\Lambda_t}{R_t} = \beta E_t \left[\frac{\Lambda_{t+1}}{\pi_{t+1}^d} \right]; \tag{B.57}$$

$$\tilde{w}_{t} = \left(\frac{\sigma}{\sigma - 1}\right) \frac{E_{t} \sum_{l=0}^{\infty} (\beta d_{w})^{l} \eta h_{t+l} / (1 - h_{t+l})}{E_{t} \sum_{l=0}^{\infty} (\beta d_{w})^{l} (1 - \tau_{t+l}) \Lambda_{t+l} h_{t+l} \prod_{k=1}^{l} (\pi_{t+k}^{d})^{-1}};$$
(B.58)

$$w_t^{1-\sigma} = d_w \left(\frac{w_{t-1}}{\pi_t^d}\right)^{1-\sigma} + (1 - d_w)\tilde{w}_t^{1-\sigma};$$
 (B.59)

$$Y_t = A_t X_t^{\phi} h_t^{1-\phi}; \tag{B.60}$$

$$w_t = (1 - \phi)\xi_t \frac{Y_t}{h_t};\tag{B.61}$$

$$p_t = \phi \xi_t \frac{Y_t}{X_t}; \tag{B.62}$$

$$\tilde{p}_{t}^{d} = \left(\frac{\theta}{\theta - 1}\right) \frac{E_{t} \sum_{l=0}^{\infty} (\beta d_{p})^{l} \Lambda_{t+l} Y_{t+l} \xi_{t+l}}{E_{t} \sum_{l=0}^{\infty} (\beta d_{p})^{l} \Lambda_{t+l} Y_{t+l} \prod_{k=1}^{l} (\pi_{t+k}^{d})^{-1}};$$
(B.63)

$$1 = d_p \left(\frac{1}{\pi_t^d}\right)^{(1-\theta)} + (1 - d_p)(\tilde{p}_t^d)^{(1-\theta)};$$
 (B.64)

$$\tilde{p}_{t}^{m} = \left(\frac{\vartheta}{\vartheta - 1}\right) \frac{E_{t} \sum_{l=0}^{\infty} (\beta d_{m})^{l} \Lambda_{t+l} Y_{t+l}^{m} s_{t+l}}{E_{t} \sum_{l=0}^{\infty} (\beta d_{m})^{l} \Lambda_{t+l} Y_{t+l}^{m} \prod_{k=1}^{l} (\pi_{t+k}^{d})^{-1}};$$
(B.65)

$$(p_t^m)^{(1-\vartheta)} = d_m \left(\frac{p_{t-1}^m}{\pi_t^d}\right)^{(1-\vartheta)} + (1 - d_m) (\tilde{p}_{mt})^{(1-\vartheta)};$$
(B.66)

$$(p_t)^{(1-\nu)} = \alpha_d + \alpha_m (p_t^m)^{(1-\nu)}; (B.67)$$

$$Z_t = C_t + X_t + G_t; (B.68)$$

$$Y_t = Y_t^x + Y_t^d; (B.69)$$

$$Y_t^x = \alpha_x s_t^{\varsigma} Y_t^*; \tag{B.70}$$

$$Y_t^d = \alpha_d \left(\frac{1}{p_t}\right)^{-\nu} Z_t; \tag{B.71}$$

$$Y_t^m = \alpha_m \left(\frac{p_{mt}}{p_t}\right)^{-\nu} Z_t; \tag{B.72}$$

$$\frac{b_t^*}{\kappa_t R_t^*} - \frac{b_{t-1}^*}{\pi_t^*} = \frac{Y_t^x}{s_t} - Y_t^m;$$
(B.73)

$$\log(\kappa_t) = \varphi \left[\exp\left(\frac{s_t b_t^*}{Y_t}\right) - 1 \right]; \tag{B.74}$$

$$\log(R_t/R) = \varrho_\pi \log(\pi_t/\pi) + \varrho_\mu \log(\mu_t/\mu) + \varrho_y \log(Y_t/Y) + \varepsilon_{Rt};$$
 (B.75)

$$\pi_t = \frac{m_{t-1}}{m_t} \mu_t; \tag{B.76}$$

$$\log(A_t) = (1 - \rho_A)\log(A) + \rho_A\log(A_{t-1}) + \varepsilon_{At};$$
(B.77)

$$\log(b_t) = (1 - \rho_b)\log(b) + \rho_b\log(b_{t-1}) + \varepsilon_{bt}; \tag{B.78}$$

$$\log(G_t) = (1 - \rho_g)\log(G) + \rho_g\log(G_{t-1}) + \varepsilon_{gt}; \tag{B.79}$$

$$\log(\tau_t) = (1 - \rho_\tau)\log(\tau) + \rho_\tau \log(\tau_{t-1}) + \varepsilon_{\tau t}; \tag{B.80}$$

$$\log(R_t^*) = (1 - \rho_{R^*}) \log(R^*) + \rho_{R^*} \log(R_{t-1}^*) + \varepsilon_{R^*t};$$
(B.81)

$$\log(\pi_t^*) = (1 - \rho_{\pi^*})\log(\pi^*) + \rho_{\pi^*}\log(\pi_{t-1}^*) + \varepsilon_{\pi^*t};$$
(B.82)

$$\log Y_t^* = (1 - \rho_{y^*}) \log(Y^*) + \rho_{y^*} \log(Y_{t-1}^*) + \varepsilon_{y^*t}.$$
(B.83)

Equation (B.20) gives the trade balance of the economy.

Bank of Canada Working Papers Documents de travail de la Banque du Canada

Working papers are generally published in the language of the author, with an abstract in both official languages. Les documents de travail sont publiés généralement dans la langue utilisée par les auteurs; ils sont cependant précédés d'un résumé bilingue.

2004

2004-35	The U.S. New Keynesian Phillips Curve: An Empirical Assessment	A. Guay and F. Pelgrin
2004-34	Market Valuation and Risk Assessment of Canadian Banks	Y. Liu, E. Papakirykos, and M. Yuan
2004-33	Counterfeiting: A Canadian Perspective	J. Chant
2004-32	Investment, Private Information, and Social Learning: A Case Study of the Semiconductor Industry	R. Cunningham
2004-31	The New Keynesian Hybrid Phillips Curve: An Assessment of Competing Specifications for the United States	D. Dupuis
2004-30	The New Basel Capital Accord and the Cyclical Behaviour of Bank Capital	M. Illing and G. Paulin
2004-29	Uninsurable Investment Risks	C. Meh and V. Quadrini
2004-28	Monetary and Fiscal Policies in Canada: Some Interesting Principles for EMU?	V. Traclet
2004-27	Financial Market Imperfection, Overinvestment, and Speculative Precaution	C. Calmès
2004-26	Regulatory Changes and Financial Structure: The Case of Canada	C. Calmès
2004-25	Money Demand and Economic Uncertainty	J. Atta-Mensah
2004-24	Competition in Banking: A Review of the Literature	C.A. Northcott
2004-23	Convergence of Government Bond Yields in the Euro Zone: The Role of Policy Harmonization	D. Côté and C. Graham
2004-22	Financial Conditions Indexes for Canada	C. Gauthier, C. Graham, and Y. Liu
2004-21	Exchange Rate Pass-Through and the Inflation Environment in Industrialized Countries: An Empirical Investigation	J. Bailliu and E. Fujii
2004-20	Commodity-Linked Bonds: A Potential Means for Less-Developed Countries to Raise Foreign Capital	J. Atta-Mensah

Copies and a complete list of working papers are available from:

Pour obtenir des exemplaires et une liste complète des documents de travail, prière de s'adresser à :

Publications Distribution, Bank of Canada 234 Wellington Street, Ottawa, Ontario K1A 0G9 E-mail: publications@bankofcanada.ca Web site: http://www.bankofcanada.ca Diffusion des publications, Banque du Canada 234, rue Wellington, Ottawa (Ontario) K1A 0G9 Adresse électronique : publications@banqueducanada.ca Site Web : http://www.banqueducanada.ca