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Abstract

The authors use Jarrow and Turnbull’s (1995) reduced-form methodology to model the evolution

of the term structure of interest rates in the United States for different credit classes and different

industries. The authors also estimate a liquidity function for each credit class and industry. Using

data from individual firms, the authors estimate the probability of default under the natural

measure and compare it with the estimated default frequencies produced by KMV.

JEL classification: G12, G13
Bank classification: Financial markets; Market structure and pricing

Résumé

Partant du modèle de forme réduite de Jarrow et Turnbull (1995), les auteurs représentent

l’évolution de la structure par terme des taux d’intérêt aux États-Unis selon la catégorie de

notation et le secteur d’activité. Ils estiment aussi une fonction de liquidité pour chaque catégorie

de notation et secteur concerné. Au moyen d’une mesure naturelle tirée des données d’entreprises

sélectionnées, ils calculent par ailleurs la probabilité de défaillance de chaque entreprise, puis la

comparent à celle estimée à l’aide du modèle KMV.

Classification JEL : G12; G13
Classification de la Banque : Marchés financiers; Structure de marché et fixation des prix
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1. Introduction

There has been extensive development in the credit-risk literature since Black and Scholes (1973)

and Merton (1974) published their pioneering works. Two basic approaches have been proposed

to model corporate default risk. The first approach, known as the structural approach, defines

default as occurring either at maturity (Merton 1974) or when the firm's asset value falls below a

pre-specified threshold level (Kim, Ramaswamy, and Sundaresan 1992, Leland 1994, and

Longstaff and Schwartz 1995). This approach has been applied in Merton (1974), Cooper and

Mello (1991), and many other studies. An attractive feature of these models is that they explain

the default time of a company in terms of firm-specific variables. One critical assumption of these

models, however, is that the evolution of firm value follows a diffusion process. Since a diffusion

process does not allow a sudden drop in firm value, the probability of the firm defaulting in the

near term is negligible (Duffie and Lando 2001). Therefore, these models generate near-zero

credit spread for short-term debt, which is strongly rejected by empirical evidence (Jones, Mason,

and Rosenfeld 1984). Alternatively, Zhou (1997) obtains positive short-term credit spreads by

modelling the asset value as a jump-diffusion process. This comes at the cost of tractability, since

multiple jumps must be allowed to determine the asset value.

The second approach, the reduced-form approach first introduced by Jarrow and Turnbull

(1992, 1995), proposes an exogenous model for the default process and allows for the possibility

of default in the immediate future. This framework has been expanded by Madan and Unal

(1998, 2000), Duffee (1999), Duffie and Singleton (1999), and Hughston and Turnbull (2000). A

major advantage of this approach is that it generates realistic short-term credit spreads. In

addition, the reduced-form models have flexibility in specifying the source of default. Jarrow and

Turnbull (2000) model the default process as a Cox process (Lando 1998) by incorporating two

state variables –– the spot rate and an equity index –– into the intensity function, and allowing the

market risk (unexpected changes in interest rates and firm values) to affect the default probability.
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Since the corporate bond market is not as liquid as the Treasury bond market, Jarrow and

Turnbull (2000) include a convenience yield to account for the liquidity premium. Duffie and

Lando (2001) provide a bridge between the structural and reduced-form approaches by assuming

informational asymmetry.

Jarrow and Turnbull (2000) construct a reduced-form model that incorporates both

default risk and liquidity risk. Numerous studies (e.g., Duffee 1998, and Vassalou and Xing 2004)

have found that default risk is influenced by systematic factors. Jarrow and Turnbull (2000)

assume that the default intensity of a firm depends on two state variables: the instantaneous

interest rate and instantaneous unexpected excess return of an equity index. In addition, default

risk may not be the sole determinant of the credit spread. Jarrow and Turnbull incorporate a

convenient yield as one of the determinants of the credit spread. We describe an empirical

implementation of an extended version of Jarrow and Turnbull’s (2000) model. Jarrow and

Turnbull assume that the instantaneous interest rate follows a one-factor Vasicek model.

Empirical studies (Chen and Scott 1993, Pearson and Sun 1994, and Dai and Singleton 2000),

however, have found that at least two factors are needed to explain the movement of the yield

curve of government bonds. In this paper, the instantaneous interest rate is assumed to follow a

two-factor Vasicek model. In addition, the default intensity of a firm depends on the unexpected

one-year excess return of an equity index (the Standard and Poor’s (S&P) 500 Index), because its

instantaneous unexpected excess return is very volatile. Chordia, Sarkar, and Subrahmanyam

(2003) show that common factors drive liquidity in both equity and bond markets. In this paper,

we assume that the liquidity premium depends on a liquidity measure of the bond market, the

yield spread between "on-the-run" and "off-the-run" U.S. 30-year Treasury bonds, and a common

macro-factor, the one-month average volatility of the S&P 500 Index.

The data used for this study are from the Bridge Fixed Income Database that consists of

daily prices and yields to maturity for various fixed-income securities, including the U.S.

government and corporate bonds. We use bond data that is pooled and from individual firms to



3

estimate the intensity function and the liquidity function of corporate bonds. The pooled data set

groups corporate bonds with a given credit rating and a particular industry. The data set from

individual firms uses corporate bonds with a given firm. The time period covered in the study is

January 1995 to May 2001.

Using pooled data, we find that default risk is related to the two systematic factors. In

addition, the two liquidity proxies seem to capture the existence of liquidity premiums in

corporate bond prices. Furthermore, the relationship between the default risk of a specific firm

and the two systematic factors is found to be significant. However, the effect of the two liquidity

proxies on the bond prices of a particular firm is not significant.

This paper is organized as follows. Section 2 briefly summarizes the extended version of

Jarrow and Turnbull’s (2000) credit-risk model. Section 3 describes the data-construction

process. The econometric methodology is discussed in section 4. Section 5 provides the

estimation results for the evolution of the term structure curves for each credit class and industry.

It also provides estimation results using data from individual firms. Section 6 offers some

conclusions.

2. The Structure of the Credit-Risk Model

Consider an economy with the time horizon ],0[ T . The economy is assumed to be

frictionless, with no arbitrage opportunity, but with illiquidities present. Default-free zero-coupon

bonds and risky zero-coupon bonds of all maturities are traded. The default-free bond pays a

dollar with certainty at maturity T , for TT ≤≤0 , with a time t price ),( Ttp . A firm issues

the risky bond with a promise that it will pay a dollar at maturity, T . The bond is risky because,

if the firm goes bankrupt prior to time T , the promised one dollar may not be paid. Let Γ

represent the first time the firm defaults. The default time is a random variable. Let
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{ }


 ≤Γ

== ≤Γ otherwise

tif
tN t 0

1
1)( .

The random variable, )(tN , is a point process that indicates whether default occurred prior to

time t . We let )(th represent its intensity process. The time t intensity process, ∆)(th , gives

the approximate probability of default for this firm over the interval ],[ ∆+tt .

If default occurs, the bondholder will receive a fractional recovery ( ))(ΓL of the market

value of the bond just prior to default. In other words, the bond is worth only a fraction of its pre-

default value when default occurs.

Under the assumption of no arbitrage, standard arbitrage pricing theory (Duffie and

Singleton 1999) implies that there exists an equivalent probability measure (risk-neutral

measure), Q , such that the values of default-free and risky zero-coupon bonds are martingale,

which in turn implies that




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where )(tr is the instantaneous interest rate at t , and )()()( uLuhur + is the so-called “default-

adjusted discount rate.”

The U.S. government and corporate bonds used in the study are coupon-bearing bonds. A

coupon bond pays coupons of ic dollars at time iT , for ni ,,2,1 K= , where TTn = . Standard

no-arbitrage arguments give the prices of default-free and defaultable coupon bonds as

∑
=

=
n

i
ii TtpcTtP

1

),(),( (1)

and ∑
=

=
n

i
ii TtvcTtV

1

),(),( , (2)
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respectively.

The prices in expressions (1) and (2) are for coupon bonds traded in a perfectly liquid

market. This may not be a good approximation for U.S. corporate bonds, however, due to

problems of liquidity. Following Jarrow and Turnbull (2000), we introduce a liquidity function,

),( Ttl , to accommodate the effect of liquidity risk on risky zero-coupon bonds. The price of an

illiquid risky zero-coupon bond, ),( Ttv l , is given by

),(),( ),( TtveTtv Ttll −= .

Consequently, the price of an illiquid risky coupon bond, ),( TtV l , is given by

∑∑
==

==
n

i
i

Ttl
i

n

i
i

l
i

l TtvecTtvcTtV i

1

),(

1

),(),(),( . (3)

In this study, we assume that the probability of default for a company depends on two

state variables: the instantaneous interest rate and the unexpected one-year excess return of an

equity index. Next, we describe the stochastic evolution of the default-free spot rate, the

specification of the intensity function, and the specification of the liquidity function.

2.1 Spot rate process

The instantaneous spot rate, )(tr , is assumed to be an affine function of two unobserved

latent factors, )(1 ty and )(2 ty ,

)()()( 22110 tywtywwtr ++= , (4)

where 0w controls the long-term mean of the spot rate, and iw controls the volatility of the latent

variable iy , 2,1=i . The latent factors )(tyi are assumed to follow Gaussian diffusions,

)()()( tdWdttytdy iiii +−= κ , 2,1=i , (5)
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where )(1 tdW and )(2 tdW are standard Brownian motions under the natural measure, with the

instantaneous correlation coefficient ϕ . Let iλ denote the market price of risk for the latent

variable, )(tyi , 2,1=i . Under the equivalent martingale measure, Q , the latent variable )(tyi

follows

( ) )(
~

)()( tWddttytdy iiiii +−−= κλ , 2,1=i , (6)

where )(
~

1 tWd and )(
~

2 tWd are standard Brownian motions under the equivalent martingale

measure, Q , with the instantaneous correlation coefficient, ϕ .

2.2 Equity index process

Let )(tI denote a market index. Under the equivalent martingale measure, Q , it is

assumed that changes in the index are described by

)(
~

)(
)(

)(
tWddttr

tI

tdI
IIσ+= , (7)

where )(tr is the default-free spot rate, Iσ is the volatility of the rate of return of the index, and

)(
~

tWd I is a standard Brownian motion under the equivalent martingale measure, Q . The

Brownian motions, )(
~

tWd I and )(
~

tWd i , have instantaneous correlation coefficients iφ , 2,1=i .

Let ( ))(ln)( tItx = , so that

( ) )(
~

2/)()( 2 tWddttrtdx III σσ +−= . (8)

Let Iλ denote the market price of risk of the equity index. Under the natural measure,

)(tx follows

( ) )(2/)()( 2 tdWdttrtdx IIIII σσσλ +−+= , (9)

where )(tdWI is a standard Brownian motion under the natural measure.
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2.3 Intensity function

The intensity function in this study is assumed to be of the form

)()()( 10 tMtraath β++= , (10)

where ∫ −
≡

t

At I tWd
A

tM )(
~1

)( is the average unexpected accumulative return of the equity index

over the period [ ]tAt ,− . If the past average unanticipated return has been negative, it is

hypothesized that the probability of default over the next interval will increase, which implies that

we expect the coefficient β to be negative. In the empirical estimation, we take A to be one

year. The choice of one year is arbitrary.

The fractional recovery rate, )(tL , is assumed to be constant; that is, LtL =)( .

2.4 Liquidity function

Chordia, Sarkar, and Subrahmanyam (2003) find that common factors drive liquidity in

both stock and bond markets. It is assumed in this study that the liquidity function is of the form

)]()([),( 21 tTtSTtl M
I −+= δσδ , (11)

where M
Iσ is the one-month average instantaneous volatility of the equity index, and )( tS is the

current yield spread between the off-the-run and on-the-run 30-year U.S. Treasury bonds. This is

a measure of the lack of liquidity in the Treasury market.

Let tT −=τ and )1(
1

)( τκ

κ
τ ieB

i
i

−−= , 2,1=i . Given these specifications, it can be

shown (Duffie and Singleton 1999, and Jarrow and Turnbull 2000) that the time t price of the

default-free zero-coupon bond in a perfectly liquid market is

{ ( ) ( ))()()()()()(exp),( 2
2

22
1

1

11
2221110 ττ

κ
λττ

κ
λτττ B

w
B

w
tyBwtyBwwTtp −+−+−−−=
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where 1=iiϕ for 2,1=i , and ϕϕϕ == 2112 .

If no default has occurred at or prior to time t , the price of the risky zero-coupon bond in

a perfectly liquid market is
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when A≤τ .
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2.5 Expected probability of default

Given the estimated intensity function, )(th , we can infer the probability of default over

a specified horizon, T , under the equivalent martingale measure, Q , as

( ) 











−−=≤Γ ∫

+Tt

t

Q
t

Q duuhET )(exp1Pr .

If we can estimate the market prices of risk of the underlying state variables, we can also

compute the probability of default over a specified horizon, T , under the natural measure, P , as

( ) 











−−=≤Γ ∫

+Tt

t

P
t

P duuhET )(exp1Pr .

With the specification of the intensity function in this study, the probability of default

over a time horizon, T , under the natural measure when AT = , is
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where 1=iiϕ for 2,1=i , and ϕϕϕ == 1212 .

3. Data Description

The Treasury and corporate data used in this study are from the Bridge Fixed Income

Database that consists of daily prices and yields to maturity of various fixed-income securities,
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including U.S. government and corporate bonds. Debt issues are classified as callable, putable,

convertible, sinkable, and straight. Each debt contract is assigned an industry and a credit class. In

this study, we use the Standard and Poor’s credit rating. The time period covered in this study is

January 1995 to May 2001.

Daily prices on seven on-the-run U.S. Treasury bills and bonds that have maturities of 3

months, 6 months, 1 year, 2 years, 5 years, 10 years, and 30 years, respectively, are used to

estimate the parameters in the spot rate process. The data-construction process for the U.S.

government bonds is referred to in Turnbull, Turetsky, and Yang (2001). In this paper, we

describe the data-construction processes for the U.S. corporate bonds.

We construct two data sets. The first groups corporate bonds with a given credit rating

and in a particular industry. The second uses data from individual firms. We use several

exclusionary filters to construct the two data sets. First, we exclude all debt issues that contain

embedded options. This filter leaves only straight coupon-bearing bonds. Second, we exclude

bonds that have a very short maturity (less than 6 months) and a very long maturity (longer than

30 years), since the market for them is extremely illiquid. We also exclude long-term discount

bonds (having a maturity longer than one year), and bonds that have monthly or quarterly

coupons, because of the irregularity exhibited in their prices. These filters leave only semi-annual

coupon bonds with a maturity of between 6 months and 30 years. Third, we employe a median-

yield filter of 2.5 per cent to remove debt issues whose yields to maturity are larger or smaller

than the median yield by this percentage, because of probable data-collecting errors.

For the credit class data set, the median yield is calculated every day using bonds issued

by companies in the same industry and credit class. Applying the median-yield filter to those

bonds, we are able to construct several subsets that contain daily bond prices for different

industries and credit classes. However, there are still too many bonds left in each subset every

day. To reduce computing time in our estimation, we randomly choose as many as 30 bonds

across different maturities per day from each subset to construct the pooled data subsets used in
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the study. The seven industries chosen in this study are banks, consumer goods, energy,

manufacturing, services, telephone, and transportation. The five credit classes chosen are shown

in Table 1. Table 2 shows the average number of bonds per day in each subset.

For the data set from individual firms, the median yield is calculated from the bonds

issued by the same company every day, and the median-yield filter is applied to these bonds.

Because of the data limitation, only two companies are used in the study: General Motors and

Merrill Lynch. Table 2 also shows the average number of bonds per day each year for both

companies.

For the equity market index, we use daily observations on the S&P 500 index, obtained

from Bloomberg. Since we assume that the intensity function depends on the unexpected one-

year excess return of the equity index, the sample period for the S&P 500 index is January 1994

to May 2001.

4. Econometric Methodology

4.1 Spot interest rate process

The parameters of the interest rate are common to all firms. We use only seven on-the-

run U.S. Treasury securities to estimate the interest rate parameters. The detailed procedures in

estimating one-, two-, and three-factor Vasicek models are described in Turnbull, Turetsky, and

Yang (2001). In this section, we briefly summarize the estimating procedure for the two-factor

model.

Chen and Scott (1993) and Pearson and Sun (1994) have developed a maximum-

likelihood estimator for the parameters that drive the processes of the interest rate. They derive

the likelihood function for the observed bond prices as functions of the unobservable latent

variables. This technique enables them to estimate all the parameters, including the market prices
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of risk, in their Cox, Ingersoll, and Ross (CIR) models. We implement the same methodology to

estimate the two-factor Vasicek model. Specifically, we assume that the two-factor model exactly

prices two portfolios constructed from the seven on-the-run U.S. treasuries. The first portfolio

consists of on-the-run Treasury bills with maturities of 3 months, 6 months, and 1 year. The

second portfolio consists of on-the-run Treasury bonds with maturities of 2 years, 5 years, 10

years, and 30 years.

Let )(tPi and )(tei denote the observed market price and measurement error for

treasury i at time t , .7,,2,1 K=i Our assumption implies the following econometric model,

( ) )(,)( 111 teTtPtP +=

( ) )(,)( 222 teTtPtP +=

( ) )()(,)( 2133 teteTtPtP −−=

( ) )(,)( 444 teTtPtP +=

( ) )(,)( 555 teTtPtP +=

( ) )(,)( 666 teTtPtP +=

( ) )()()(,)( 65477 teteteTtPtP −−−= , (15)

where ),( TtP is the default-free coupon-bond formula defined in (1), and iT is the time-to-

maturity of treasury i , 7,,2,1 K=i . The first portfolio is

),(),(),()()()( 321321 TtPTtPTtPtPtPtP ++=++ , (16)

and the second portfolio

),(),(),(),()()()()( 76547654 TtPTtPTtPTtPtPtPtPtP +++=+++ . (17)

The two latent variables, )(1 ty and )(2 ty , are recovered by simultaneously solving a system of

two non-linear equations, as given by expressions (16) and (17).
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The unrestricted measurement errors in the two-factor models –– see expression (15) ––

are assumed to follow )1(AR processes:

)()1()( ttete kkkk ερ +−= , (18)

where the innovations )(tkε are assumed to be independently and normally distributed with

mean kµ and variance 2
kσ . The measurement errors are also assumed to be independent of the

latent variables. Let )(tE denote the vector of the unrestricted measurement errors

( ))(),(),(),(),( 65421 tetetetete . The log-likelihood function for a sample of observations on

)(tE for Ntttt ,,, 21 K= is

( ) ( ) ( )∑ = −+= N

i iiN tEtEftEftEtEtEL
2 11021 )(|)(ln)(ln)(,),(),(ln K ,

where ( ))( 10 tEf is the joint unconditional density of the unrestricted measurement errors and

takes the form ( ) ∏ =
−
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Assuming that the latent variables follow stationary processes (i.e., 0>iκ ), we can

derive the conditional density function of the state variables ( ))(),( 21 sysy given ( ))(),( 21 tyty ,

ts > , in the two-factor Vasicek model as a joint normal distribution:
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where 0>iκ , 2,1=i .

Letting s in the above expression approach infinite, we can also derive the unconditional

density function of the state variables as a joint normal distribution:
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Let )(tY denote the vector of the two latent variables ))(),(( 21 tyty . The joint

distribution for a sample of observations on the state variables for Ntttt ,,, 21 K= is

( ) ( ) ( )∏ = −⋅=
N

i iiN tYtYftYgtYtYtYf
2 1121 )(|)()()(,),(),( K ,

and the log-likelihood function is

( ) ( ) ( )∑ = −+= N

i iiN tYtYftYgtYtYtYL
2 1121 )(|)(ln)(ln)(,),(),(ln K .

Given the assumptions of the latent variables and the measurement errors, we can derive

the log-likelihood function for a sample of N observations on the prices of the seven on-the-run

treasuries at time Nttt ,...,, 21 as

( ) ( )∑ =
−= N

i iN JabstYtYtYLL
121 ||ln)(ˆ,),(ˆ),(ˆlnlog K

( ))(,),(),(ln 21 NtEtEtEL K+ , (19)

where )(ˆ tY is the vector of recovered state variables, and iJ is the Jacobian of the

transformation from the state variables and the unrestricted measurement errors to the observed

bond prices.

We apply the maximum-likelihood estimation technique to estimate the parameters in the

interest rate process by maximizing expression (19). After obtaining the estimated parameters, we
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also recover the daily latent variables, )(1 ty and )(2 ty , and compute the daily instantaneous

interest rate, )(tr , from equation (4).

4.2 Equity index process

Using the daily S&P 500 index and the recovered spot rate from the two-factor Vasicek

model, we apply the maximum-likelihood technique to estimate the parameters of the equity

index process as given in expression (7). Under the equivalent martingale measure, Q , the

conditional density function of the logarithm of the equity index )( ∆+tx , given )(tx , 0>∆ ,

can be approximated as a normal distribution:

( )( )∆∆−+=∆+ 22 ,2/)()())(|)(( II
Q trtxNtxtxf σσ .

The log-likelihood function for a sample of observations on the equity index for

Ntttt ,,, 21 K= is

( ) ( )∑ = −= N

i ii
Q

N txtxftxtxtxL
2 132 )(|)(ln)(,),(),(ln K .

Given the parameter estimate for the market volatility, Iσ , and daily spot rates, the daily

)(
~

tWd I process is computed using the following formula:

( )[ ] III trtxtxtWd σσ /2/)()()()(
~ 2 ∆−−∆−−= .

To estimate the market price of risk of the equity index, we apply the maximum-

likelihood technique to estimate the equity index process as given in expression (8). Under the

natural measure, the conditional density function of the index )( ∆+tx , given )(tx , 0>∆ , can

be approximated as a normal distribution:

( )( )∆∆+−+=∆+ 22 ,2/)()())(|)(( IIIItrtxNtxtxf σσλσ .

The log-likelihood function for a sample of observations on the equity index for

Ntttt ,,, 21 K= is
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( ) ( )∑ = −= N

i iiN txtxftxtxtxL
2 132 )(|)(ln)(,),(),(ln K .

After obtaining the estimated parameters and recovered state variables ( ))(),( 21 tyty and

)(
~

tWd I , we compute the simple correlation coefficients between )(
~

tWd i and )(
~

tWd I as the

estimates for iφ , 2,1=i , in the risky zero-coupon bond formula.

4.3 Intensity function and liquidity function

Given the estimated parameters and recovered state variables in the spot rate process and

the equity index process, the remaining task is to estimate the intensity function and liquidity

function of corporate bonds. The parameters in the intensity function are La0 , La1 , and β .

The parameters in the liquidity function are 1δ and 2δ . First, however, we need to compute the

two liquidity measures, the one-month average volatility of the equity index, M
Iσ , and the yield

spread between on-the-run and off-the-run 30-year Treasury bonds, )(tS . At time t , we estimate

M
Iσ by applying the maximum-likelihood technique described in section 4.2 on past one-month

observations of the equity index. To compute )( tS at time t , we first need to choose an off-the-

run 30-year Treasury bond as the candidate, since there are many off-the-run 30-year bonds every

day. Among all available off-the-run 30-year Treasury bonds that have a maturity of at least 28

years, we choose the one that has a coupon rate closest to that of the on-the-run 30-year Treasury

bond. Then we use the difference between the yield-to-maturity of the chosen off-the-run 30-year

bond and that of the on-the-run 30-year bond as the approximation for )( tS .

For the estimation of the intensity function and liquidity function of corporate bonds, a

non-linear regression procedure is implemented with the parameters in the state variable

processes and the recovered state variables fixed. To estimate these parameters, we minimize the

summation of the mean-squared percentage pricing error:
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where tK is the number of bonds on day t , and
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),(),(
,

k

k
l

k
tk

TtP

TtVTtP −
=ε . ),( kTtP is the

market price of the risky coupon bond, and ),( k
l TtV is the theoretical price in our extended

Jarrow and Turnbull (2000) credit-risk model.

5. Parameter Estimation

5.1 Estimation with pooled corporate data

Four different models for the default intensity and liquidity discount are estimated using

the pooled corporate bond data. The models differ regarding the number of state variables and

liquidity measures in the intensity function and liquidity function, respectively. Model 1 has

021 === δδβ . This is the case with one state variable (the spot rate) in the intensity function

and no liquidity discount. Model 2 has two state variables (the spot rate and equity index) and no

liquidity discount with 021 == δδ . Model 3 has 02 =δ , and Model 4 includes all parameters.

The different models are summarized in Table 3. For each pooled corporate subset, we estimate

all four models. The estimation procedure is as follows.

First, we use daily prices on seven on-the-run U.S. Treasury bills and bonds over the

sample period January 1995 to May 2001, to estimate the parameters in the spot rate process.

The estimation results are reported in Table 4. All of the coefficients are statistically significant,

with the exception of the market price of risk for the second state variable. The recovered daily

latent variables and spot rates are shown in Figures 1 and 2, respectively.

Second, we use the daily S&P 500 index to estimate the parameters in the equity index

process. These parameters are assumed to be constant over the sample period January 1994 to
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May 2001. The estimated results are reported in Table 4, and the recovered unexpected one-year

excess returns of the S&P 500 index are plotted in Figure 3. The estimated coefficients are

statistically significant. The correlation coefficients between the Brownian motions in the spot

rate process and the one in the equity index process are also computed and reported in Table 4.

Third, we compute the two liquidity measures: the one-month average instantaneous

volatility of the equity index, M
Iσ , and the yield spread between off-the-run and on-the-run 30-

year U.S. Treasury bonds, )(tS . The results are reported in Figures 4 and 5, respectively.

Fourth, given the estimated parameters in the state variable processes, recovered state

variables, and constructed liquidity measures, we apply non-linear regressions to estimate the

parameters in the intensity and liquidity functions using the pooled corporate bond data subsets

constructed from bonds issued by companies in the same industry and credit class. The estimation

results are reported in Table 5.

As Longstaff and Schwartz (1995) point out, the static effect of a higher spot rate is to

increase the risk-neutral drift of the firm value process. A higher drift reduces the default

probability. In addition, an increase in the short-term interest rate usually indicates a decreased

risk of an economic recession in the medium term. Therefore, the sign of 1a is expected to be

negative. A higher unexpected return of an equity index, on average, increases the value of a firm

and reduces the default probability. Thus, the sign of β is expected to be negative. The

estimation results support this prediction. The estimates for La1 and β are negative and

statistically significant across industries and credit classes. In addition, the estimate for La1 in

general increases in absolute magnitude while the credit rating falls, which suggests that the low-

quality bonds are more sensitive to the spot rate than the high-quality bonds. For Model 1, the

estimated coefficient La1 is negative across industries. For Model 2, the estimated coefficients
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La1 and β are also negative across industries. For Models 3 and 4, the coefficients are generally

statistically significant and have the expected sign.

There is no clear trend in the estimates for β for different credit classes. The results also

show that the estimates for La1 and β differ across industries, which suggests that the spot rate

and the return of the S&P 500 index have a larger impact on the default probability for some

industries than for others.

The parameter estimates for the two liquidity measures are positive and statistically

significant for most industries and credit classes. The results show that the two liquidity measures

seem to capture the presence of illiquidity in the U.S. corporate bond market.

5.2 Derived credit spreads

After obtaining the parameter estimates in the intensity and liquidity functions, we

estimate the 1-year, 5-year, and 10-year yield spreads between corporate discount bonds and

treasury discount bonds for the manufacturing industry in all four models over the sample period

January 1995 to May 2001. The two liquidity measures in our model account for only a few basis

points in the predicted corporate spreads. Therefore, the results in Models 3 and 4 are very similar

to those in Model 2. Only the time series of the estimated credit yield spreads in Models 1 and 2

are reported in Figures 6 and 7, respectively.

Model 1 produces positive short-, medium-, and long-term credit spreads for all credit

classes over the sample period. The credit spread increases with declining credit quality. Model 2

also produces positive medium- and long-term credit spreads for all credit classes over the sample

period. Sometimes, however, it produces negative short-term credit spreads for high-quality

bonds, because the intensity function in our model specifies that the default probability depends

on the unexpected one-year excess return of an equity index. From the derived risky bond price

formula, we can see that the unexpected one-year excess return has a larger impact on the short-
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term yield than the long-term yield, and its effect declines very quickly when the time-to-maturity

of a bond increases. Most corporate bonds used in this study are long-term bonds. Therefore, the

estimate for β mainly reflects the effect of the unexpected one-year return of the equity index on

the long-term coupons, and results in negative credit spreads for short-term discount bonds.

Alternative specifications are an interesting topic for future research.

5.3 Estimation with data from individual firms

The results described section 5.2 show that the intensity function with two state variables

–– the spot rate and the unexpected one-year return of the S&P 500 index –– produces negative

short-term yield spreads for the corporate discount bonds over the treasury discount bonds

because of the high volatility in the second state variable. In section 5.4, we will want to compute

the estimated probability of default (EPD) of each company over a one-year horizon and compare

it with that reported by Moody’s KMV. Therefore, we exclude the second state variable, the

unexpected one-year return of the S&P 500 index, from the intensity function when we use the

data from individual firms to estimate the intensity and liquidity functions. Three different models

for the default intensity and liquidity discount are estimated using the data from individual firms.

Model 1 has 021 ==δδ . This is the case with one state variable (the spot rate) in the intensity

function and no liquidity discount. Model 2 has one liquidity measure with 02 =δ . Model 3

includes all parameters. The different models are summarized in Table 6.

To estimate the intensity function and liquidity function using the data from individual

firms, we implement a rolling forward estimation procedure to accommodate possible structural

changes in our models.

First, we apply a rolling forward procedure to estimate the parameters in the spot rate

process. At the first trading day of month t , we use the past year of daily treasury data (month

12−t to month t ) to obtain the maximum-likelihood estimates of the parameters in the spot rate
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process. Then, moving forward one month to the first day of month 1+t , we estimate these

parameters again using the past year of data (month 11−t to month 1+t ). Applying this

procedure, we obtain parameter estimates each month from January 1996 to May 2001, for a total

of 65 months. The average values of the estimated parameters are reported in Table 7. The

recovered latent variables and spot rates from the procedure are recorded.

Second, we apply the one-month rolling forward procedure to estimate the intensity

function and liquidity function using one year of daily data from individual firms. The non-linear

regression described in section 5.2 is implemented to obtain the parameter estimates with data on

two companies: General Motors and Merrill Lynch. Table 8 reports the average values of the

estimated parameters in the three models. The estimates for La1 are negative and statistically

significant for both companies, which indicates that a higher spot rate reduces the default

probability for both companies. The estimate of La1 is larger in absolute magnitude for General

Motors than for Merrill Lynch, as is the estimate of the coefficient, La0 . There are differences in

the magnitude of the liquidity coefficients for the two firms.

5.4 Comparison with Moody’s KMV

Finally, with the estimated market price of the underlying state variable, we compute the

estimated probability of default of each company over a one-year horizon. In the econometric

estimation, we estimate the product of the hazard function and the loss function. To estimate the

probability of default, we must make some assumptions about the magnitude of the loss function.

For a given a value of the loss function, the estimated probabilities of default in Models 2 and 3

are very similar to those in Model 1. Consequently, we will show the results for only Model 1.

The similarity of the results suggests that the two market liquidity measures constructed in our
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model cannot capture the liquidity discount for the two companies. In other words, the liquidity

discount seems to be firm-specific.

Figure 8 shows the sensitivity of the estimated probability of default to different

assumptions about the magnitude of the loss function. The results are quite sensitive to the value

of the loss function. For each firm, we also plot Moody’s KMV estimates of the expected

probability of default, and Moody's credit ratings for the two firms.

The estimated probabilities of default for the two companies follow a very similar

pattern, because in the hazard function only one common state variable, the spot rate, affects the

probability of default. Over the period, the estimated probability of default for General Motors is,

in general, larger than that for Merrill Lynch. This is consistent with the fact that General Motors

has a lower credit rating than Merrill Lynch over the sample period. However, using the KMV

estimates, post-May 2000, the expected probability of default for General Motors is larger than

that for Merrill Lynch, though the reverse holds for almost three years prior to that date.

There is a large difference in the orders of magnitude between the estimated probability

of default produced by Model 1 and that produced by KMV. Janosi, Jarrow, and Yildirim (2002)

find a similar difference.

We also compute the simple correlation coefficients between the monthly estimated

probability of default in our model and those reported by KMV over the sample period. For

General Motors, the correlation coefficient is 0.738; for Merrill Lynch, it is 0.335. KMV’s

estimate is derived using the equity price of the firm, whereas our model uses the firm-specific

credit spread.
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6. Conclusion

This study has used bond data that is pooled and from individual firms to estimate an

extended version of Jarrow and Turnbull’s (2000) reduced-form credit-risk model that includes

both default risk and liquidity risk. The results have shown that the default probability of a firm

is related to the changes in the spot rate and the return on an equity index. Our model captures the

integration of market risk and credit risk. The two market liquidity measures constructed in our

model seem to capture the presence of illiquidity in the U.S. corporate bond market when pooled

data are used. In addition, the estimation method enables us to estimate the market prices of risk

for the underlying state variables. We are able to infer the expected probability of default under

the natural measure. This has an important practical implication, since it is necessary for a risk

manager to predict the default probability under the natural measure.

Some aspects of the model need to be improved to reduce the pricing errors for corporate

bonds. First, we could include an industry-specific index in the hazard function; second, we could

specify a hazard function that does not permit negative values; and third, we could specify a firm-

specific liquidity function.
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Table 1. Credit Ratings

This table reports Moody's and Standard and Poor's credit ratings for corporate bonds. It also
shows the credit ratings used in this study.

Moody’s ratings S&P ratings Ratings used

Investment grade

Aaa AAA
Aa1 AA+
Aa2 AA Aa2
Aa3 AA-
A1 A+
A2 A A2
A3 A-

Baa1 BBB+
Baa2 BBB Baa2
Baa3 BBB-

Non-investment grade

Ba1 BB+ Ba1
Ba2 BB
Ba3 BB-
B1 B+ B1
B2 B
B3 B-
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Table 2. Statistics Based on Data from Pooled and Individual Firms

This table reports the average numbers of bonds per day for pooled corporate subsets and
individual firm subsets over the sample period January 1995 to May 2001. The pooled corporate data
subsets are constructed from bonds issued by the companies in the same industry and credit class. The table
has seven industries (banks, consumer goods, energy, manufacturing, services, telephone, and
transportation) and five credit classes (Aa2, A2, Baa2, Ba1, and B1). The data subsets from individual
firms are constructed from bonds issued by the same company. There are two subsets for individual firms
in this table. GM represents General Motors, and MER represents Merrill Lynch.

Banks Consumer
goods Energy Manufacturing Services Telephone Transportation

Aa2 21 10 20 12 27 23 8

A2 30 30 30 30 30 30 30

Baa2 22 15 30 30 29 19 30

Ba1 9 7 15 21 28 10 6

B1 4 8 17 25 27 9 5

1995 1996 1997 1998 1999 2000 2001

GM 22 23 23 21 23 22 20

MER 26 56 80 97 108 89 90
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Table 3. Model Description with Pooled Corporate Data

This table reports the parameters to be estimated in the intensity function and liquidity function for

the four models with pooled corporate data. The intensity function is ∫ −
++=

t

At
I tWd

A
traath )(

~1
)()( 10 β ,

where )(tr is the spot rate and ∫ −

t

At
I tWd

A
)(

~1
is the unexpected one-year excess return of the S&P 500

index. The liquidity function is ))((),( 21 tTSTtl OnOff
M
I −+= δσδ , where M

Iσ is the one-month average

instantaneous volatility of the S&P 500 index, and OnOffS is the yield spread between the off-the-run and

the on-the-run 30-year U.S. Treasury bonds.

Pooled corporate data

Intensity function Liquidity function

La1 β 1δ 2δ

Model 1 Yes

Model 2 Yes Yes

Model 3 Yes Yes Yes

Model 4 Yes Yes Yes Yes
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Table 4. Estimation of the State Variable Processes

This table reports the maximum-likelihood estimates for the parameters in the spot rate and equity
index processes. The spot rate process is a two-factor Vasicek model, )()()( 22110 tywtywwtr ++= . )(1 ty

and )(2 ty are two latent variables, and are assumed to follow a mean-reverting Gaussian diffusion process,

( ) )(
~

)()( tWddttytdy iiiii +−−= κλ , 2,1=i . )(
~

1 tWd and )(
~

2 tWd are standard Brownian motions under the

equivalent martingale measure, Q , with the instantaneous correlation coefficient, ϕ . iλ denotes the

market price of risk for the latent variable, )(tyi , 2,1=i . Time-series data of prices on seven on-the-run
U.S. Treasury bills and bonds with maturities of 3 months, 6 months, 1 year, 2 years, 5 years, 10 years, and

30 years are used to estimate the spot rate process. The equity index model is )(
~

)(
)(

)(
tWddttr

tI

tdI
IIσ+= ,

where )(tr is the spot interest rate, and )(
~

tWd I is a standard Brownian motion under the equivalent

martingale measure, Q . The market price of risk for the equity index is denoted by Iλ , and the

instantaneous correlation coefficients between )(
~

tWd i and )(
~

tWd I are denoted by iφ , .2,1=i Daily
observations on the S&P 500 index are used to estimate the equity index process. The asymptotic standard
errors are reported in parentheses below the estimates. The sample period for the treasury data is January
1995 to May 2001, and the sample period for the S&P 500 index is January 1994 to May 2001.

Spot rate model

0w 1w 2w 1κ 2κ 1λ 2λ ϕ

0.0476 0.0168 0.0153 0.9262 0.0571 -0.7145 -0.0731 -0.8469

(0.0390) (0.0004) (0.0005) (0.0496) (0.0029) (0.2618) (0.1552) (0.0106)

Equity index model

Iσ Iλ

0.1711 0.5011

(0.0001) (0.0023)

Correlation between state variables

1φ 2φ

0.1385 -0.1063

(0.0783) (0.0632)



30

Table 5. Estimation of Intensity Function and Liquidity Function with
Pooled Corporate Data

This table reports the non-linear regression estimates for the parameters in the intensity function
and liquidity function with pooled corporate data. There are 43 pooled corporate data sets constructed from
bonds issued by companies in the same industry and credit class. The intensity function is

∫ −
++=

t

At
I tWd

A
traath )(

~1
)()( 10 β , where )(tr is the spot rate and ∫ −

t

At
I tWd

A
)(

~1
is the unexpected one-

year excess return of the S&P 500 index. The liquidity function is ))((),( 21 tTSTtl OnOff
M
I −+= δσδ ,

where M
Iσ is the one-month average instantaneous volatility of the S&P 500 index, and OnOffS is the yield

spread between the off-the-run and the on-the-run 30-year U.S. Treasury bonds. Model 1 has one state
variable –– the spot rate –– in the intensity function, and no liquidity discount. Model 2 has two state
variables –– the spot rate and unexpected one-year excess of the S&P 500 index –– in the intensity
function, and no liquidity discount. Model 3 has two state variables in the intensity function and one
liquidity measure in the liquidity function. Model 4 has two state variables in the intensity function and two
liquidity measures in the liquidity function. The asymptotic standard errors are reported in parentheses
below the estimates. The average pricing errors in the models are reported in the last column. The sample
period is January 1995 to May 2001.

(continued)
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Table 5 (continued)

Banks
Credit
class Model La0 La1 β 1δ 2δ Pricing

error (%)
0.0260 -0.3080

Model 1
(0.0002) (0.0032)

1.64

0.0257 -0.2898 -0.0104
Model 2

(0.0002) (0.0031) (0.0002)
1.56

0.0224 -0.2553 -0.0095 0.0067
Model 3

(0.0002) (0.0036) (0.0002) (0.0003)
1.47

0.0183 -0.2145 -0.0081 0.0047 2.3044

Aa2

Model 4
(0.0003) (0.0035) (0.0002) (0.0003) (0.0445)

1.45

0.0325 -0.3991
Model 1

(0.0002) (0.0034)
2.03

0.0313 -0.3463 -0.0216
Model 2

(0.0002) (0.0031) (0.0002)
1.96

0.0221 -0.2549 -0.0170 0.0187
Model 3

(0.0002) (0.0034) (0.0002) (0.0003)
1.90

0.0193 -0.2390 -0.0149 0.0146 2.6757

A2

Model 4
(0.0002) (0.0033) (0.0002) (0.0003) (0.0395)

1.87

0.0326 -0.3736
Model 1

(0.0002) (0.0037)
2.10

0.0335 -0.3603 -0.0188
Model 2

(0.0002) (0.0035) (0.0002)
1.90

0.0285 -0.3088 -0.0169 0.0106
Model 3

(0.0003) (0.0041) (0.0003) (0.0004)
1.85

0.0253 -0.2877 -0.0147 0.0045 3.5700

Baa2

Model 4
(0.0003) (0.0038) (0.0002) (0.0004) (0.0492)

1.81

0.0623 -0.5788
Model 1

(0.0010) (0.0174)
4.90

0.0583 -0.4577 -0.0447
Model 2

(0.0010) (0.0171) (0.0010)
4.03

0.0508 -0.4196 -0.0370 0.0232
Model 3

(0.0011) (0.0172) (0.0011) (0.0014)
3.89

0.0484 -0.4465 -0.0318 0.0155 5.1558

Ba1

Model 4
(0.0011) (0.0165) (0.0011) (0.0014) (0.1665)

3.80

0.0999 -1.0272
Model 1

(0.0019) (0.0319)
5.95

0.0918 -0.8339 -0.0414
Model 2

(0.0019) (0.0326) (0.0024)
4.66

0.0805 -0.7952 -0.0275 0.0375
Model 3

(0.0021) (0.0321) (0.0026) (0.0032)
4.50

0.0733 -0.7977 -0.0129 0.0249 9.1066

B1

Model 4
(0.0019) (0.0290) (0.0024) (0.0029) (0.3072)

4.38

(continued)
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Table 5 (continued)

Consumer goods
Credit
class Model La0 La1 β 1δ 2δ Pricing

error (%)

0.0311 -0.3679Model 1
(0.0003) (0.0052)

3.11

0.0289 -0.2990 -0.0343Model 2
(0.0003) (0.0049) (0.0006)

2.75

0.0242 -0.2532 -0.0294 0.0096Model 3
(0.0003) (0.0051) (0.0006) (0.0004)

2.64

0.0223 -0.2448 -0.0267 0.0062 1.9457

Aa2

Model 4
(0.0003) (0.0048) (0.0006) (0.0004) (0.0492)

2.61

0.0329 -0.3803Model 1
(0.0002) (0.0040)

2.52

0.0306 -0.3096 -0.0282Model 2
(0.0002) (0.0036) (0.0002)

2.18

0.0233 -0.2361 -0.0241 0.0149Model 3
(0.0003) (0.0039) (0.0003) (0.0003)

2.07

0.0216 -0.2288 -0.0229 0.0124 1.8266

A2

Model 4
(0.0003) (0.0038) (0.0002) (0.0003) (0.0438)

2.03

0.0442 -0.5339Model 1
(0.0004) (0.0074)

3.73

0.0366 -0.3732 -0.0311Model 2
(0.0004) (0.0075) (0.0005)

3.35

0.0308 -0.3245 -0.0267 0.0136Model 3
(0.0005) (0.0076) (0.0005) (0.0006)

3.20

0.0290 -0.3206 -0.0244 0.0109 2.0932

Baa2

Model 4
(0.0005) (0.0075) (0.0005) (0.0006) (0.0784)

3.15

0.0744 -0.6878Model 1
(0.0009) (0.0151)

6.73

0.0760 -0.6194 -0.0756Model 2
(0.0009) (0.0145) (0.0017)

5.66

0.0634 -0.5001 -0.0671 0.0243Model 3
(0.0012) (0.0163) (0.0018) (0.0015)

5.52

0.0581 -0.4756 -0.0594 0.0106 5.8502

Ba1

Model 4
(0.0011) (0.0152) (0.0017) (0.0015) (0.1650)

5.43

0.0911 -0.7892Model 1
(0.0012) (0.0191)

7.45

0.0908 -0.7360 -0.0346Model 2
(0.0011) (0.0193) (0.0017)

6.83

0.0658 -0.4935 -0.0174 0.0501Model 3
(0.0016) (0.0221) (0.0018) (0.0023)

6.70

0.0612 -0.4873 -0.0107 0.0338 7.0420

B1

Model 4
(0.0015) (0.0211) (0.0017) (0.0022) (0.2388)

6.62

(continued)
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Table 5 (continued)

Energy
Credit
class Model La0 La1 β 1δ 2δ Pricing

error (%)

0.0255 -0.2837Model 1
(0.0003) (0.0053)

2.05

0.0270 -0.2806 -0.0170Model 2
(0.0003) (0.0051) (0.0003)

1.95

0.0235 -0.2395 -0.0161 0.0065Model 3
(0.0004) (0.0063) (0.0003) (0.0006)

1.90

0.0209 -0.2242 -0.0144 0.0022 2.4046

Aa2

Model 4
(0.0004) (0.0062) (0.0003) (0.0006) (0.0610)

1.87

0.0372 -0.4387Model 1
(0.0002) (0.0031)

3.22

0.0350 -0.3499 -0.0476Model 2
(0.0002) (0.0027) (0.0003)

2.98

0.0318 -0.3186 -0.0447 0.0061Model 3
(0.0002) (0.0029) (0.0003) (0.0003)

2.84

0.0291 -0.3039 -0.0416 0.0029 2.3297

A2

Model 4
(0.0002) (0.0028) (0.0003) (0.0003) (0.0324)

2.78

0.0407 -0.4740Model 1
(0.0002) (0.0041)

3.13

0.0399 -0.4142 -0.0377Model 2
(0.0002) (0.0037) (0.0003)

2.85

0.0304 -0.3232 -0.0314 0.0193Model 3
(0.0003) (0.0040) (0.0003) (0.0004)

2.77

0.0274 -0.3076 -0.0283 0.0143 3.0839

Baa2

Model 4
(0.0003) (0.0038) (0.0003) (0.0004) (0.0421)

2.65

0.0848 -1.0009Model 1
(0.0006) (0.0090)

5.15

0.0797 -0.8721 -0.0512Model 2
(0.0005) (0.0088) (0.0007)

4.66

0.0631 -0.7577 -0.0343 0.0417Model 3
(0.0006) (0.0087) (0.0007) (0.0007)

4.56

0.0586 -0.7462 -0.0306 0.0339 5.1384

Ba1

Model 4
(0.0006) (0.0081) (0.0007) (0.0007) (0.0912)

4.50

0.0940 -0.9851Model 1
(0.0006) (0.0095)

5.45

0.0923 -0.9480 -0.0091Model 2
(0.0006) (0.0099) (0.0007)

4.53

0.0841 -0.8753 -0.0032 0.0181Model 3
(0.0007) (0.0105) (0.0008) (0.0010)

4.42

0.0830 -0.8898 -0.0011 0.0123 3.0485

B1

Model 4
(0.0007) (0.0103) (0.0008) (0.0010) (0.1068)

4.37

(continued)
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Table 5 (continued)

Manufacturing
Credit
class Model La0 La1 β 1δ 2δ Pricing

error (%)

0.0305 -0.3749Model 1
(0.0003) (0.0052)

3.51

0.0287 -0.3105 -0.0339Model 2
(0.0003) (0.0049) (0.0006)

3.25

0.0229 -0.2520 -0.0286 0.0115Model 3
(0.0004) (0.0054) (0.0006) (0.0005)

3.15

0.0209 -0.2435 -0.0251 0.0079 2.2700

Aa2

Model 4
(0.0003) (0.0052) (0.0006) (0.0004) (0.0585)

3.08

0.0359 -0.4256Model 1
(0.0002) (0.0039)

3.20

0.0345 -0.3565 -0.0397Model 2
(0.0002) (0.0035) (0.0003)

2.48

0.0295 -0.3061 -0.0363 0.0100Model 3
(0.0003) (0.0039) (0.0003) (0.0003)

2.34

0.0273 -0.2943 -0.0341 0.0065 2.2038

A2

Model 4
(0.0003) (0.0038) (0.0003) (0.0003) (0.0418)

2.23

0.0435 -0.4862Model 1
(0.0003) (0.0051)

4.51

0.0431 -0.4132 -0.0527Model 2
(0.0003) (0.0046) (0.0004)

4.15

0.0372 -0.3538 -0.0489 0.0117Model 3
(0.0004) (0.0051) (0.0004) (0.0005)

4.02

0.0339 -0.3331 -0.0454 0.0064 3.0672

Baa2

Model 4
(0.0003) (0.0050) (0.0004) (0.0004) (0.0569)

3.87

0.0649 -0.6743Model 1
(0.0004) (0.0067)

5.31

0.0620 -0.5885 -0.0355Model 2
(0.0004) (0.0066) (0.0005)

4.86

0.0507 -0.4792 -0.0286 0.0234Model 3
(0.0005) (0.0073) (0.0006) (0.0007)

4.70

0.0482 -0.4736 -0.0263 0.0167 3.4015

Ba1

Model 4
(0.0005) (0.0070) (0.0005) (0.0007) (0.0759)

4.59

0.0827 -0.7198Model 1
(0.0005) (0.0080)

5.45

0.0785 -0.5930 -0.0411Model 2
(0.0005) (0.0079) (0.0006)

4.53

0.0750 -0.5604 -0.0388 0.0074Model 3
(0.0006) (0.0086) (0.0006) (0.0008)

4.37

0.0730 -0.5589 -0.0360 0.0020 2.8720

B1

Model 4
(0.0006) (0.0085) (0.0006) (0.0008) (0.0923)

4.31

(continued)
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Table 5 (continued)

Services
Credit
class Model La0 La1 β 1δ 2δ Pricing

error (%)

0.0274 -0.3239Model 1
(0.0002) (0.0039)

3.05

0.0254 -0.2694 -0.0209Model 2
(0.0002) (0.0039) (0.0003)

2.78

0.0220 -0.2395 -0.0180 0.0078Model 3
(0.0003) (0.0041) (0.0003) (0.0004)

2.64

0.0212 -0.2370 -0.0167 0.0064 0.8908

Aa2

Model 4
(0.0003) (0.0041) (0.0003) (0.0004) (0.0421)

2.57

0.0352 -0.4097Model 1
(0.0002) (0.0040)

3.22

0.0341 -0.3549 -0.0332Model 2
(0.0002) (0.0038) (0.0003)

2.98

0.0288 -0.3028 -0.0295 0.0111Model 3
(0.0003) (0.0042) (0.0003) (0.0004)

2.87

0.0269 -0.2933 -0.0275 0.0076 1.9585

A2

Model 4
(0.0003) (0.0041) (0.0003) (0.0004) (0.0429)

2.80

0.0429 -0.4785Model 1
(0.0003) (0.0058)

4.77

0.0410 -0.3799 -0.0519Model 2
(0.0003) (0.0054) (0.0005)

4.15

0.0315 -0.2882 -0.0451 0.0190Model 3
(0.0004) (0.0059) (0.0005) (0.0005)

3.99

0.0291 -0.2814 -0.0416 0.0133 2.9209

Baa2

Model 4
(0.0004) (0.0057) (0.0005) (0.0005) (0.0623)

3.87

0.0431 -0.3657Model 1
(0.0003) (0.0050)

4.15

0.0413 -0.3104 -0.0222Model 2
(0.0003) (0.0050) (0.0004)

3.88

0.0324 -0.2120 -0.0177 0.0158Model 3
(0.0004) (0.0056) (0.0005) (0.0005)

3.70

0.0301 -0.1981 -0.0154 0.0119 2.3138

Ba1

Model 4
(0.0004) (0.0055) (0.0004) (0.0005) (0.0637)

3.59

0.0749 -0.6767Model 1
(0.0004) (0.0068)

5.45

0.0712 -0.5656 -0.0360Model 2
(0.0004) (0.0067) (0.0005)

4.53

0.0682 -0.5353 -0.0343 0.0057Model 3
(0.0005) (0.0076) (0.0006) (0.0007)

4.47

0.0680 -0.5350 -0.0342 0.0055 0.1311

B1

Model 4
(0.0005) (0.0076) (0.0006) (0.0007) (0.0847)

4.47

(continued)
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Table 5 (continued)

Telephone
Credit
class Model La0 La1 β 1δ 2δ Pricing

error (%)

0.0251 -0.3017Model 1
(0.0002) (0.0032)

2.53

0.0301 -0.3230 -0.0406Model 2
(0.0002) (0.0028) (0.0004)

2.28

0.0304 -0.3255 -0.0408 -0.0005Model 3
(0.0003) (0.0035) (0.0004) (0.0003)

2.19

0.0287 -0.3154 -0.0377 -0.0032 1.4793

Aa2

Model 4
(0.0003) (0.0034) (0.0004) (0.0003) (0.0370)

2.11

0.0354 -0.4506Model 1
(0.0002) (0.0037)

2.82

0.0334 -0.3638 -0.0399Model 2
(0.0002) (0.0032) (0.0003)

2.18

0.0271 -0.3036 -0.0355 0.0137Model 3
(0.0002) (0.0035) (0.0003) (0.0003)

1.97

0.0254 -0.2960 -0.0339 0.0112 1.7968

A2

Model 4
(0.0002) (0.0034) (0.0003) (0.0003) (0.0453)

1.89

0.0571 -0.6345Model 1
(0.0003) (0.0049)

3.94

0.0555 -0.5806 -0.0285Model 2
(0.0003) (0.0049) (0.0005)

3.65

0.0450 -0.4800 -0.0194 0.0222Model 3
(0.0004) (0.0051) (0.0005) (0.0005)

3.51

0.0444 -0.4784 -0.0186 0.0206 0.8104

Baa2

Model 4
(0.0004) (0.0051) (0.0005) (0.0005) (0.0499)

3.42

0.0518 -0.3872Model 1
(0.0012) (0.0210)

7.15

0.0378 -0.0849 -0.0670Model 2
(0.0011) (0.0200) (0.0012)

5.68

0.0413 -0.0808 -0.0728 -0.0145Model 3
(0.0011) (0.0201) (0.0013) (0.0013)

5.53

0.0411 -0.0972 -0.0720 -0.0147 1.0138

Ba1

Model 4
(0.0011) (0.0206) (0.0013) (0.0013) (0.1772)

5.43

0.1146 -1.2552Model 1
(0.0014) (0.0234)

7.15

0.0791 -0.6177 -0.0584Model 2
(0.0015) (0.0277) (0.0015)

6.83

0.0778 -0.6321 -0.0550 0.0085Model 3
(0.0016) (0.0283) (0.0017) (0.0017)

6.74

0.0763 -0.5655 -0.0572 0.0091 -2.0848

B1

Model 4
(0.0016) (0.0290) (0.0017) (0.0017) (0.2254)

6.65

(continued)



37

Table 5 (continued)

Transportation
Credit
class Model La0 La1 β 1δ 2δ Pricing

error (%)

0.0482 -0.6288Model 1
(0.0005) (0.0079)

3.05

0.0458 -0.5270 -0.0554Model 2
(0.0004) (0.0062) (0.0006)

2.78

0.0326 -0.3980 -0.0419 0.0251Model 3
(0.0005) (0.0067) (0.0006) (0.0007)

2.64

0.0284 -0.3642 -0.0399 0.0207 2.9265

Aa2

Model 4
(0.0005) (0.0064) (0.0006) (0.0006) (0.0725)

2.57

0.0272 -0.3034Model 1
(0.0002) (0.0038)

3.22

0.0259 -0.2447 -0.0276Model 2
(0.0002) (0.0035) (0.0002)

2.98

0.0200 -0.1893 -0.0241 0.0128Model 3
(0.0003) (0.0038) (0.0003) (0.0004)

2.87

0.0174 -0.1769 -0.0216 0.0074 2.9916

A2

Model 4
(0.0003) (0.0036) (0.0002) (0.0003) (0.0413)

2.80

0.0341 -0.2917Model 1
(0.0003) (0.0050)

4.77

0.0345 -0.2161 -0.0564Model 2
(0.0002) (0.0042) (0.0004)

4.15

0.0324 -0.1945 -0.0553 0.0041Model 3
(0.0003) (0.0047) (0.0004) (0.0004)

3.99

0.0306 -0.1873 -0.0535 -0.0009 2.3007

Baa2

Model 4
(0.0003) (0.0046) (0.0004) (0.0004) (0.0529)

3.87

0.0681 -0.7695Model 1
(0.0009) (0.0147)

4.15

0.0591 -0.5519 -0.0601Model 2
(0.0009) (0.0150) (0.0012)

3.88

0.0445 -0.4083 -0.0491 0.0292Model 3
(0.0011) (0.0162) (0.0013) (0.0014)

3.70

0.0359 -0.3345 -0.0463 0.0200 6.2037

Ba1

Model 4
(0.0011) (0.0156) (0.0012) (0.0013) (0.1803)

3.59

0.0877 -0.6934Model 1
(0.0014) (0.0235)

5.45

0.0786 -0.4330 -0.0692Model 2
(0.0013) (0.0230) (0.0017)

4.53

0.0722 -0.3725 -0.0652 0.0127Model 3
(0.0017) (0.0250) (0.0019) (0.0024)

4.47

0.0721 -0.3753 -0.0648 0.0118 0.4239

B1

Model 4
(0.0017) (0.0250) (0.0019) (0.0025) (0.2571)

4.47
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Table 6. Model Description with Data from Individual Firms

This table reports the parameters to be estimated in the intensity function and liquidity function for
the three models with data from individual firms. The intensity function is

∫ −
++=

t

At
I tWd

A
traath )(

~1
)()( 10 β , where )(tr is the spot rate and ∫ −

t

At
I tWd

A
)(

~1
is the unexpected one-

year excess return of the S&P 500 index. The liquidity function is ))((),( 21 tTSTtl OnOff
M
I −+= δσδ ,

where M
Iσ is the one-month average instantaneous volatility of the S&P 500 index, and OnOffS is the yield

spread between the off-the-run and the on-the-run 30-year U.S. Treasury bonds.

Data from individual firms

Hazard function Liquidity function

La1 1δ 2δ

Model 1 Yes

Model 2 Yes Yes

Model 3 Yes Yes Yes

Table 7. Rolling Forward Estimation Results of the Spot Rate Process

This table reports the rolling forward maximum-likelihood estimates for the parameters in the spot
rate process. The spot rate process is a two-factor Vasicek model, )()()( 22110 tywtywwtr ++= . )(1 ty and

)(2 ty are two latent variables, and are assumed to follow the mean-reverting Gaussian diffusion process,

( ) )(
~

)()( tWddttytdy iiiii +−−= κλ , 2,1=i . )(
~

1 tWd and )(
~

2 tWd are standard Brownian motions under the

equivalent martingale measure, Q , with the instantaneous correlation coefficient,ϕ . iλ denotes the

market price of risk for the latent variable )(tyi , 2,1=i . A one-month rolling forward estimation
procedure is implemented to estimate the spot rate process. The average values of the parameter estimates
are reported in this table. The standard errors, computed with 3 Newey-West (1987) lags, are reported in
parentheses below the estimates. The sample period is January 1995 to May 2001.

Spot rate process

0w 1w 2w 1κ 2κ 1λ 2λ ϕ

0.0492 0.0165 0.0148 1.0938 0.0522 -0.5487 -0.0863 -0.8750

(0.0373) (0.0007) (0.0008) (0.0231) (0.0036) (0.2030) (0.1554) (0.0090)
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Table 8. Rolling Forward Estimation Results of Intensity Function and
Liquidity Function with Data from Individual Firms

This table reports the non-linear regression estimates for the parameters in the intensity function
and liquidity function with data from individual firms. Two data sets from individual firms are constructed,
from bonds issued by General Motors and Merrill Lynch, respectively. The intensity function is

)()( 10 traath += , where )(tr is the spot. The liquidity function is ))()((),( 21 tTTSTtl M
I −+= δσδ ,

where M
Iσ is the one-month average instantaneous volatility of the S&P 500 index, and OnOffS is the yield

spread between the off-the-run and the on-the-run 30-year U.S. Treasury bonds. Model 1 has one state
variable, the spot rate, in the intensity function, and no liquidity discount. Model 2 has one state variable in
the intensity function and one liquidity measure in the liquidity function. Model 3 has one state variable in
the intensity function and two liquidity measures in the liquidity function. The standard errors, computed
with 3 Newey-West (1987) lags, are reported in parentheses below the estimates. The average pricing
errors in the models are reported in the last column. The sample period is January 1995 to May 2001.

General Motors

La0 La1 1δ 2δ
Pricing error

(%)

0.0285 -0.2898
Model 1

(0.0007) (0.0117)
1.12

0.0273 -0.2805 0.0035
Model 2

(0.0007) (0.0122) (0.0009)
1.08

0.0274 -0.2868 0.0024 0.8883
Model 3

(0.0008) (0.0134) (0.0009) (0.1525)
1.05

Merrill Lynch

La0 La1 1δ 2δ
Pricing error

(%)

0.0265 -0.2739
Model 1

(0.0005) (0.0080)
0.97

0.0253 -0.2674 0.0041
Model 2

(0.0005) (0.0083) (0.0007)
0.93

0.0256 -0.2740 0.0026 0.6714
Model 3

(0.0006) (0.0090) (0.0007) (0.1134)
0.92
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Figure 1. Recovered Two Latent Variables in the Spot Rate Model

This figure plots the recovered daily latent variables, )(1 ty and )(2 ty , in the two-factor Vasicek
model. Given the parameter estimates in the Vasicek model, the two latent variables are recovered by
solving a system of two non-linear equations: ),(),(),()()()( 321321 TtPTtPTtPtPtPtP ++=++ , and

),,(),(),(),()()()()( 76547654 TtPTtPTtPTtPtPtPtPtP +++=+++ simultaneously. )(1 tP , )(2 tP , and

)(3 tP are the observed time t prices of U.S. Treasury bills with maturities of 3 months, 6 months, and 1

year, respectively. )(1 tP , )(2 tP , )(3 tP , and )(4 tP are the observed time t prices of U.S. Treasury bonds

with maturities of 2 years, 5 years, 10 years, and 30 years, respectively. ),( ⋅⋅P is the default-free coupon
bond formula. The sample period is January 1995 to May 2001.

Figure 2. Recovered Daily Instantaneous Interest Rates in the Spot Rate Model

This figure plots the recovered daily instantaneous interest rates in the two-factor Vasicek model.
Given the estimated parameters and recovered two latent variables, )(1 ty and )(2 ty , the spot rate is

computed by )()()( 22110 tywtywwtr ++= . The sample period is January 1995 to May 2001.
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Figure 3. Unexpected One-Year Excess Returns of the S&P 500 Index (Percentage)

This figure plots the unexpected one-year excess returns of the S&P 500 index. Given the

parameter estimate for the market volatility, Iσ , and daily spot rates, )(tr , the daily )(
~

tWd I process is

computed using the following formula: ( )[ ] III trtxtxtWd σσ /2/)()()()(
~ 2 ∆−−∆−−= . The unexpected

one-year excess return of the S&P 500 index at time t is approximated by the summation of )(
~

tWd I in the

past 250 trading days, ∑ =
−

250

0
)(

~
j I jtWd . The sample period is January 1994 to May 2001. The reported

time series of the unexpected one-year excess returns of the S&P 500 index starts in January 1995, since
the past one-year data are used to calculate the starting point.
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Figure 4. One-Month Average Instantaneous Volatility of the S&P 500 Index

This figure plots the time series of the maximum-likelihood estimate for the one-month average
instantaneous volatility of the S&P 500 index. At time t , the maximum-likelihood estimation technique is
implemented using past one-month data on the S&P 500 index. The sample period is January 1995 to May
2001.

Figure 5. Yield Spread (Percentage) Between Off-the-Run and On-the-Run U.S. 30-
Year Treasury Bonds

This figure plots the difference between the yields to maturity of the off-the-run and on-the-run
U.S. 30-year Treasury bonds. The sample period is January 1995 to May 2001.
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Figure 6. Estimated Credit Yield Spreads (Percentage) for Manufacturing Industry in
Model 1

Given the estimated intensity function in Model 1, the predicted one-year, five-year, and ten-year credit yield
spreads over the sample period for different credit classes in the manufacturing industry are plotted in the three graphs,
respectively. The sample period is January 1995 to May 2001.
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Figure 6 (continued)

(continued)

Five-Year Spread
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Figure 6 (continued)

Ten-Year Spread
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Figure 7. Estimated Credit Yield Spreads (Percentage) for Manufacturing Industry in
Model 2

Given the estimated intensity function in Model 2, the predicted one-year, five-year, and ten-year credit yield
spreads over the sample period for different credit classes in the manufacturing industry are plotted in the three graphs,
respectively. The sample period is January 1995 to May 2001.
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Figure 7 (continued)

(continued)
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Figure 7 (continued)

Ten-Year Spread
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Figure 8. Sensitivity of Estimated Probability of Default (Percentage) to Fractional Loss

Given the estimated intensity function and liquidity function, and the market prices of risk for the state variables, we
compute the expected probability of default (EDF) in one year for different levels of fractional loss using data from two
individual companies: General Motors (GM) and Merrill Lynch (MER). The sample period is January 1995 to May 2001.
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Figure 8 (continued)

(continued)
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Figure 8 (continued)

Expected Probability of Default (Percentage) w ith L=0.5

-1

0

1

2

3

4

5

6

7

Jan-96 May-96 Sep-96 Jan-97 May-97 Sep-97 Jan-98 May-98 Sep-98 Jan-99 May-99 Sep-99 Jan-00 May-00 Sep-00 Jan-01 May-01

G M_Model 1

MER_Model 1

G M_KM V

MER_KMV

A3 (GM)

A1
(MER)

Aa3 (MER)

A2 (G M)



Bank of Canada Working Papers
Documents de travail de la Banque du Canada

Working papers are generally published in the language of the author, with an abstract in both official
languages.Les documents de travail sont publiés généralement dans la langue utilisée par les auteurs; ils sont
cependant précédés d’un résumé bilingue.

Copies and a complete list of working papers are available from:
Pour obtenir des exemplaires et une liste complète des documents de travail, prière de s’adresser à:

Publications Distribution, Bank of Canada Diffusion des publications, Banque du Canada
234 Wellington Street, Ottawa, Ontario  K1A 0G9 234, rue Wellington, Ottawa (Ontario) K1A 0G9
E-mail: publications@bankofcanada.ca  Adresse électronique : publications@banqueducanada.ca
Web site: http://www.bankofcanada.ca Site Web : http://www.banqueducanada.ca

2004
2004-44 The Transmission of World Shocks to

Emerging-Market Countries: An Empirical Analysis B. Desroches

2004-43 Real Return Bonds, Inflation Expectations,
and the Break-Even Inflation Rate I. Christensen, F. Dion, and C. Reid

2004-42 International Equity Flows and Returns: A
Quantitative Equilibrium Approach R. Albuquerque, G. Bauer, and M. Schneider

2004-41 Characterization of the Dynamic Effects of Fiscal
Shocks in a Small Open Economy N. Rebei

2004-40 Prévision et analyse de la production manufacturière
au Canada : comparaison de modèles linéaires et
non linéaires F. Demers

2004-39 A Forecasting Model for Inventory Investments
in Canada M. Chacra and M. Kichian

2004-38 Finance Constraints and Inventory Investment:
Empirical Tests with Panel Data R. Cunningham

2004-37 The Implications of Transmission and Information
Lags for the Stabilization Bias and Optimal Delegation J.-P. Lam and F. Pelgrin

2004-36 Optimal Taylor Rules in an Estimated Model of
a Small Open Economy S. Ambler, A. Dib, and N. Rebei

2004-35 The U.S. New Keynesian Phillips Curve: An
Empirical Assessment A. Guay and F. Pelgrin

2004-34 Market Valuation and Risk Assessment of
Canadian Banks Y. Liu, E. Papakirykos, and M. Yuan

2004-33 Counterfeiting: A Canadian Perspective J. Chant

2004-32 Investment, Private Information, and Social Learning: A
Case Study of the Semiconductor Industry R. Cunningham

2004-31 The New Keynesian Hybrid Phillips Curve: An Assessment
of Competing Specifications for the United States D. Dupuis




