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Abstract

The authors use Jarrow and Turnbull’s (1995) reduced-form methodology to model the evolution
of the term structure of interest rates in the United States for different credit classes and different
industries. The authors also estimate a liquidity function for each credit class and industry. Using
data from individual firms, the authors estimate the probability of default under the natural
measure and compare it with the estimated default frequencies produced by KMV.

JEL classification: G12, G13
Bank classification: Financial markets; Market structure and pricing

Résumé

Partant du modéle de forme réduite de Jarrow et Turnbull (1995), les auteurs représentent
I'évolution de la structure par terme des taux d’intérét aux Etats-Unis selon la catégorie de
notation et le secteur d’activité. lls estiment aussi une fonction de liquidité pour chaque catégorie
de notation et secteur concerné. Au moyen d’une mesure naturelle tirée des données d’entreprises
sélectionnées, ils calculent par ailleurs la probabilité de défaillance de chaque entreprise, puis la
comparent a celle estimée a I'aide du modéle KMV.

Classification JEL : G12; G13
Classification de la Banque : Marchés financiers; Structure de marché et fixation des prix



1. Introduction

There has been extensive development in the credit-risk literature since Black and Scholes (1973)
and Merton (1974) published their pioneering works. Two basic approaches have been proposed
to model corporate default risk. The first approach, known as the structural approach, defines
default as occurring either at maturity (Merton 1974) or when the firm's asset value falls below a
pre-specified threshold level (Kim, Ramaswamy, and Sundaresan 1992, Leland 1994, and
Longstaff and Schwartz 1995). This approach has been applied in Merton (1974), Cooper and
Mello (1991), and many other studies. An attractive feature of these models is that they explain
the default time of a company in terms of firm-specific variables. One critical assumption of these
models, however, is that the evolution of firm value follows a diffusion process. Since a diffusion
process does not allow a sudden drop in firm value, the probability of the firm defaulting in the
near termis negligible (Duffie and Lando 2001). Therefore, these models generate near-zero
credit spread for short-term debt, which is strongly rejected by empirical evidence (Jones, Mason,
and Rosenfeld 1984). Alternatively, Zhou (1997) obtains positive short-term credit spreads by
modelling the asset value as a jump-diffusion process. This comes at the cost of tractahility, since
multiple jumps must be allowed to determine the asset value.

The second approach, the reduced-form approach first introduced by Jarrow and Turnbull
(1992, 1995), proposes an exogenous model for the default process and allows for the possibility
of default in the immediate future. This framework has been expanded by Madan and Unal
(1998, 2000), Duffee (1999), Duffie and Singleton (1999), and Hughston and Turnbull (2000). A
major advantage of this approach is that it generates realistic short-term credit spreads. In
addition, the reduced-form models have flexibility in specifying the source of default. Jarrow and
Turnbull (2000) model the default process as a Cox process (Lando 1998) by incorporating two
state variables — the spot rate and an equity index — into the intensity function, and allowing the

market risk (unexpected changes in interest rates and firm values) to affect the default probability.



Since the corporate bond market is not as liquid as the Treasury bond market, Jarrow and
Turnbull (2000) include a convenience yield to account for the liquidity premium. Duffie and
Lando (2001) provide a bridge between the structural and reduced-form approaches by assuming
informational asymmetry.

Jarrow and Turnbull (2000) construct a reduced-form model that incorporates both
default risk and liquidity risk. Numerous studies (e.g., Duffee 1998, and Vassalou and Xing 2004)
have found that default risk is influenced by systematic factors. Jarrow and Turnbull (2000)
assume that the default intensity of a firm depends on two state variables: the instantaneous
interest rate and instantaneous unexpected excess return of an equity index. In addition, default
risk may not be the sole determinant of the credit spread. Jarrow and Turnbull incorporate a
convenient yield as one of the determinants of the credit spread. We describe an empirical
implementation of an extended version of Jarrow and Turnbull’s (2000) mode!. Jarrow and
Turnbull assume that the instantaneous interest rate follows a one-factor Vasicek model.
Empirical studies (Chen and Scott 1993, Pearson and Sun 1994, and Dai and Singleton 2000),
however, have found that at least two factors are needed to explain the movement of the yield
curve of government bonds. In this paper, the instantaneous interest rate is assumed to follow a
two-factor Vasicek model. In addition, the default intensity of a firm depends on the unexpected
one-year excess return of an equity index (the Standard and Poor’s (S& P) 500 Index), because its
instantaneous unexpected excess return is very volatile. Chordia, Sarkar, and Subrahmanyam
(2003) show that common factors drive liquidity in both equity and bond markets. In this paper,
we assume that the liquidity premium depends on a liquidity measure of the bond market, the
yield spread between "on-the-run” and "off-the-run" U.S. 30-year Treasury bonds, and a common
macro-factor, the one-month average volatility of the S& P 500 Index.

The data used for this study are from the Bridge Fixed Income Database that consists of
daily prices and yields to maturity for various fixed-income securities, including the U.S.

government and corporate bonds. We use bond data that is pooled and from individual firms to



estimate the intensity function and the liquidity function of corporate bonds. The pooled data set
groups corporate bonds with a given credit rating and a particular industry. The data set from
individual firms uses corporate bonds with a given firm. The time period covered in the study is
January 1995 to May 2001.

Using pooled data, we find that default risk is related to the two systematic factors. In
addition, the two liquidity proxies seem to capture the existence of liquidity premiumsin
corporate bond prices. Furthermore, the relationship between the default risk of a specific firm
and the two systematic factors is found to be significant. However, the effect of the two liquidity
proxies on the bond prices of a particular firmis not significant.

This paper is organized as follows. Section 2 briefly summarizes the extended version of
Jarrow and Turnbull’s (2000) credit-risk model. Section 3 describes the data-construction
process. The econometric methodology is discussed in section 4. Section 5 provides the
estimation results for the evolution of the term structure curves for each credit class and industry.
It also provides estimation results using data from individual firms. Section 6 offers some

conclusions.

2. The Structure of the Credit-Risk M odel

Consider an economy with the time horizon [0, T ] . The economy is assumed to be
frictionless, with no arbitrage opportunity, but with illiquidities present. Default-free zero-coupon
bonds and risky zero-coupon bonds of all maturities are traded. The default-free bond pays a
dollar with certainty at maturity T, for 0ST <T , withatime t price p(t,T). A firmissues
the risky bond with a promise that it will pay a dollar at maturity, T . The bond is risky because,

if the firm goes bankrupt prior totime T , the promised one dollar may not be paid. Let

represent the first time the firm defaults. The default time is a random variable. Let



1 if <t
0 otherwise

N(t) = 1{|’st} = {
Therandom variable, N(t), isapoint process that indicates whether default occurred prior to
time t. Welet h(t) represent itsintensity process. Thetime t intensity process, h(t)A, gives
the approximate probability of default for this firm over theinterval [t,t +A].

If default occurs, the bondholder will receive a fractional recovery (L(I")) of the market

value of the bond just prior to default. In other words, the bond is worth only a fraction of its pre-
default value when default occurs.

Under the assumption of no arbitrage, standard arbitrage pricing theory (Duffie and
Singleton 1999) implies that there exists an equivalent probability measure (risk-neutral

measure), Q, such that the values of default-free and risky zero-coupon bonds are martingale,

which in turnimplies that

p(t, T) = EL [exp(— LT r (u)duﬂ ,

v(t,T) = Ef{exp(— j tT (r(u) + h(u)L(u))duﬂ,

where r(t) istheinstantaneousinterest rateat t, and r(u) +h(u)L(u) isthe so-called “default-

adjusted discount rate.”

The U.S. government and corporate bonds used in the study are coupon-bearing bonds. A
coupon bond pays coupons of C;, dollarsat time T,, for i =1,2,...,n, where T, =T . Standard

no-arbitrage arguments give the prices of default-free and defaultable coupon bonds as

PLT) =Y G p(.T) M
and  V(t,T) :Zn:civ(t,Ti) , 2



respectively.

Thepricesin expressions (1) and (2) are for coupon bonds traded in a perfectly liquid
market. This may not be a good approximation for U.S. corporate bonds, however, due to
problems of liquidity. Following Jarrow and Turnbull (2000), we introduce a liquidity function,

[(t,T), to accommodate the effect of liquidity risk on risky zero-coupon bonds. The price of an
illiquid risky zero-coupon bond, V' (t,T), is given by
VI, T)=e Dy, T).

Consequently, the price of aniilliquid risky coupon bond, V' (t, T), is given by
VIET)=D eV(LT) =D ey, T)). (3)
i=1 i=1

In this study, we assume that the probability of default for a company depends on two
state variables: the instantaneous interest rate and the unexpected one-year excess return of an
equity index. Next, we describe the stochastic evolution of the default-free spot rate, the

specification of the intensity function, and the specification of the liquidity function.

2.1 Spot rate process

Theinstantaneous spot rate, r(t), isassumed to be an affine function of two unobserved
latent factors, y, (t) and v, (t),

r(t) =wo +w,y, (1) +w, Y, (1), 4
where w, controls the long-term mean of the spot rate, and w; controls the volatility of the latent

variable y,, 1 =1,2. Thelatent factors Y, (t) are assumed to follow Gaussian diffusions,

dy, (1) =, y, (D)t + AW, (1), i =12, ©)



where dW, (t) and dW, (t) are standard Brownian motions under the natural measure, with the
instantaneous correlation coefficient @ . Let A. denote the market price of risk for the latent
variable, y; (t), i =1,2. Under the equivalent martingale measure, Q, thelatent variable v, (t)
follows

dy, (t) = (A -,y (©))dt +dW, (t), i =1,2, (6)
where dWl (t) and dVP\'/2 (t) arestandard Brownian motions under the equivalent martingale

measure, Q, with the instantaneous correlation coefficient, @ .

2.2 Equity index process
Let I(t) denoteamarket index. Under the equivalent martingale measure, Q, it is

assumed that changes in the index are described by

a® _ r(t)dt+o, dw, (t), @)

I (t)
where r(t) isthedefault-free spot rate, 0, isthe volatility of the rate of return of theindex, and
dVV| (t) isastandard Brownian motion under the equivalent martingale measure, Q. The
Brownian motions, dVV| (t) and dVTﬂ (t), have instantaneous correlation coefficients @, 1 =1,2.
Let x(t) =In(1(t) ), sothat
ax(t) = (r(t)- o2 12)dt + o, W, (1) ®)
Let A, denotethe market price of risk of the equity index. Under the natural measure,

X(t) follows
dx(t) = (r(t) + A, 0, — a2 1 2)dt + 7, dW, (1), 9)

where dW, (t) isa standard Brownian motion under the natural measure.



2.3 Intensity function

Theintensity function in this study is assumed to be of the form

h{t) =a, +a,r(t) + BM(t), (10)
where M(t) Ei Itt_ ACW (t) isthe average unexpected accumulative return of the equity index

over the period [t -A t] . If the past average unanticipated return has been negative, it is
hypothesized that the probability of default over the next interval will increase, which implies that
we expect the coefficient [to be negative. In the empirical estimation, wetake A to be one
year. The choice of one year is arbitrary.

Thefractional recovery rate, L(t), isassumed to be constant; that is, L(t) =L .

2.4 Liquidity function
Chordia, Sarkar, and Subrahmanyam (2003) find that common factors drive liquidity in
both stock and bond markets. It is assumed in this study that the liquidity function is of the form
I(t,T) =[ 9,0 +3I,S(t) |(T -t), (11)
where UlM is the one-month average instantaneous volatility of the equity index, and S(t) isthe

current yield spread between the off-the-run and on-the-run 30-year U.S. Treasury bonds. Thisis

ameasure of the lack of liquidity in the Treasury market.

Let 7=T -t and B, (7) :i(l—e'“), i =1,2. Given these specifications, it can be
K.

shown (Duffie and Singleton 1999, and Jarrow and Turnbull 2000) that thetime t price of the
default-free zero-coupon bond in a perfectly liquid market is

AW AW,

(r-B,(1)+722(r-B,(1))

1 K,

Pt T) = exp{ —wWoT =Wy B, (7)Y, (t) — W, B, () y, (1) +



r Yty A T8O, T g gy, (r)ﬂ ’ 12

7k, +K, K, K

where ¢, =1fori=12,and ¢, =¢,, = 9.
If no default has occurred at or prior to time t, the price of therisky zero-coupon bond in
a perfectly liquid market is

vt T) =exp{ ( —a, L = wy(1+a,L))7 - (L+a,L)w, By (1) y; (t) - (L+ &, L)W, B, (7) Y, (1)
1 ¢t ~ 1., 1.5
By ] A 0+ f7T - A

+ A (d+al)w ( A, (1+aL)w, (

r-B,(1))+ r-B,(7))

Ky K,

*Z;ﬂ(lwuwiﬁ{r—i;— Bi(T)+%iFN}/K.

@+ alL)ZWin {r— B, (7) i B, (7)

K +K; K, j

+ (1/2)2;2;¢ij - B (7)B, (r)} (13a)

when 7= A, and

v(t,T) = exp{ ( —a,L —w,(1+ alL))r —(1+a L)wB,(1)y, (t) - 1+ a,L)w,B,(1)y,(t)
_IB%I::“T (S+ A)dVT/| (t) - ,BT%J‘EA” d\/‘\”/I (t) +%,82T3 / A2

+ A (d+al)w ( A, (L+aL)w, (

r-By(7))+ r-B,(7))

1 Ky

+ L al+alw ﬂ%[r(é - B, (r)j +%@:|/Ki

L+al)’ww, {r- B(r), T-B,(®

Ki +K; K, j

+(1/2) 2;2; i ~B,(7)B, (r)}, (13b)

when 7 < A.



2.5 Expected probability of default

Given the estimated intensity function, h(t) , we can infer the probability of default over

a specified horizon, T, under the equivalent martingale measure, Q, as

Pro(r<T)=1- Ef’[exp(— j:” h(u)duﬂ .

If we can estimate the market prices of risk of the underlying state variables, we can also

compute the probability of default over a specified horizon, T , under the natural measure, P, as

PrP(r<T)=1- Etp[exp(— j:” h(u)duﬂ .

With the specification of the intensity function in this study, the probability of default

over atimehorizon, T , under the natural measurewhen T = A, is

Pr(F < T) =1—exp{—(a0 +a,W, +%,8/1| jT

-a B, (MY, 0 -a,w,B, Ny, 0 - A7 [, @+T)aW,

vy ye e { B0, T B0 gy m}
+Z;¢.aiwiﬂ${T(T/2— 2 m)+i‘m}/m , )

where ¢ =1for i =12,and ¢, =¢,, = ¢.

3. Data Description

The Treasury and corporate data used in this study are from the Bridge Fixed I ncome

Database that consists of daily prices and yields to maturity of various fixed-income securities,



including U.S. government and corporate bonds. Debt issues are classified as callable, putable,
convertible, sinkable, and straight. Each debt contract is assignhed an industry and a credit class. In
this study, we use the Standard and Poor’ s credit rating. The time period covered in this study is
January 1995 to May 2001.

Daily prices on seven on-the-run U.S. Treasury bills and bonds that have maturities of 3
months, 6 months, 1 year, 2 years, 5 years, 10 years, and 30 years, respectively, are used to
estimate the parameters in the spot rate process. The data-construction process for the U.S.
government bondsisreferred to in Turnbull, Turetsky, and Yang (2001). In this paper, we
describe the data-construction processes for the U.S. corporate bonds.

We construct two data sets. Thefirst groups corporate bonds with a given credit rating
and in a particular industry. The second uses data from individual firms. We use severa
exclusionary filters to construct the two data sets. First, we exclude all debt issues that contain
embedded options. Thisfilter leaves only straight coupon-bearing bonds. Second, we exclude
bonds that have a very short maturity (less than 6 months) and a very long maturity (longer than
30 years), since the market for them is extremely illiquid. We also exclude long-term discount
bonds (having a maturity longer than one year), and bonds that have monthly or quarterly
coupons, because of the irregularity exhibited in their prices. Thesefilters leave only semi-annual
coupon bonds with a maturity of between 6 months and 30 years. Third, we employe a median-
yield filter of 2.5 per cent to remove debt issues whose yields to maturity are larger or smaller
than the median yield by this percentage, because of probable data-collecting errors.

For the credit class data set, the median yield is calculated every day using bonds issued
by companies in the same industry and credit class. Applying the median-yield filter to those
bonds, we are ableto construct several subsets that contain daily bond prices for different
industries and credit classes. However, there are still too many bonds left in each subset every
day. To reduce computing timein our estimation, we randomly choose as many as 30 bonds

across different maturities per day from each subset to construct the pooled data subsets used in

10



the study. The seven industries chosen in this study are banks, consumer goods, energy,
manufacturing, services, telephone, and transportation. Thefive credit classes chosen are shown
in Table 1. Table 2 shows the average number of bonds per day in each subset.

For the data set from individual firms, the median yield is calculated from the bonds
issued by the same company every day, and the median-yield filter is applied to these bonds.
Because of the data limitation, only two companies are used in the study: General Motors and
Merrill Lynch. Table 2 also shows the average number of bonds per day each year for both
companies.

For the equity market index, we use daily observations on the S& P 500 index, obtained
from Bloomberg. Since we assume that the intensity function depends on the unexpected one-
year excess return of the equity index, the sample period for the S& P 500 index is January 1994

to May 2001.

4. Econometric M ethodology

4.1 Spot interest rate process

The parameters of the interest rate are common to all firms. We use only seven on-the-
run U.S. Treasury securities to estimate the interest rate parameters. The detailed proceduresin
estimating one-, two-, and three-factor Vasicek models are described in Turnbull, Turetsky, and
Yang (2001). In this section, we briefly summarize the estimating procedure for the two-factor
model.

Chen and Scott (1993) and Pearson and Sun (1994) have devel oped a maximum-
likelihood estimator for the parameters that drive the processes of the interest rate. They derive
the likelihood function for the observed bond prices as functions of the unobservable latent

variables. This technique enables them to estimate all the parameters, including the market prices

11



of risk, in their Cox, Ingersoll, and Ross (CIR) models. We implement the same methodol ogy to
estimate the two-factor Vasicek model. Specifically, we assume that the two-factor model exactly
prices two portfolios constructed from the seven on-the-run U.S. treasuries. Thefirst portfolio
consists of on-the-run Treasury bills with maturities of 3 months, 6 months, and 1 year. The
second portfolio consists of on-the-run Treasury bonds with maturities of 2 years, 5 years, 10

years, and 30 years.

Let P(t) and e (t) denote the observed market price and measurement error for

treasury i attimet, i =1,2,...,7. Our assumption implies the following econometric model,

o

=P(LT)+e ()

1 (

S0l

P t’T2)+ eZ(t)

2

>0l

(
P(t,T,)- () - e, (1)
(

3

Ol

P t1T4)+ e4(t)

-

P(t.T) +es(0)

5

-

P(t.T) + & (1)

6

t)
(t)
(t)
% (1)
(t)
(t)
(t)

P =P(t.T,)-e, ) -e 1) - ), (15)

where P(t,T) isthe default-free coupon-bond formula defined in (1), and T, isthe time-to-
maturity of treasury i, 1 =1,2,...,7. Thefirst portfoliois

R +P, ) +PR(t) =Pt T,) + PtT,) + Pt T,), (16)
and the second portfolio

PO+ R0+ R () + P (1) = P T,) + P(.Ts) + P(LTe) + P(LT,). (17)
Thetwo latent variables, y, (t) and Y, (t), arerecovered by simultaneously solving a system of

two non-linear equations, as given by expressions (16) and (17).

12



The unrestricted measurement errors in the two-factor models — see expression (15) —

are assumed to follow AR(1) processes:

et)=pe (t-D+e& (1), (18)
wheretheinnovations &, (t) are assumed to be independently and normally distributed with
mean 4, and variance 7 . The measurement errors are also assumed to be independent of the
latent variables. Let E(t) denotethe vector of the unrestricted measurement errors
(el(t), e, (t).e,(t),e(t), & (t)) . Thelog-likelihood function for a sample of observations on
E(t) fort=t,,t,,...,t  is

InL(E(t,), E(t,)..... E(ty)) =In fo(E@))+ X In f(EC) 1E(.,)),
where f,(E(t,)) isthejoint unconditional density of the unrestricted measurement errors and

2
_ M
1 & (ty) l—ka
1

e 2 oti-pl) . and f(E(ti)lE(ti—l)) is
J2nw? I1- p?)

takestheform f, (E(t,)) =7,

thejoint conditional density of the unrestricted measurement errors and takes the form

1 (e (t) - )~ )
2" o2

f(E@) |E(ty)

| 1
)= [ —=¢
n“,/znmff
Assuming that the latent variables follow stationary processes (i.e., «; >0), wecan

derive the conditional density function of the state variables (yl(s), Y, (s)) given (yl(t), Y, (t)),

s>t, inthetwo-factor Vasicek modd as ajoint normal distribution:

1_ e—Zkl(s—t) ¢(1_ e—(/(1+/(2)(s—t) )
¢ Y. (s) | Y (t) -N e My (1) 2K, K, +K,
—Ko(s-t) ! _ A~ (ki+ky)(s-t) _ A—2K,(smt) ,
Yo(5)) \Y2(t) e y,(t))| pll-e ) 1-e
K1+K2 2K2

13



where k, >0, 1=12.

Letting S in the above expression approach infinite, we can also derive the unconditional

density function of the state variables as a joint normal distribution:

1 ¢
y, (t) _ 0 2K, K, tK,
g(yz(t)j § (0} ¢ 1

K, +K, 2K,

Let Y(t) denotethe vector of the two latent variables (Y, (t), v, (t)) . Thejoint

distribution for a sample of observations on the state variablesfor t =t ,t,,...,t is

Y)Y () Y () = oV @) T, F(YED 1Y (),
and the log-likelihood function is
InL(Y(t), Y(t,).,.... Y(t) = Ing(Y )+ 3 In F(Y(t) 1Y (E)).

Given the assumptions of the latent variables and the measurement errors, we can derive

the log-likelihood function for asample of N observations on the prices of the seven on-the-run

treasuriesat time t, t,,...,t as
log L =InL{P(t,). ¥ (t,)..... V(t,))- 3", In(abs] J, |
+InL(E(t,), E(t,),..., E(ty)), (19)

where Y (t) is the vector of recovered state variables, and J. isthe Jacobian of the

transformation from the state variables and the unrestricted measurement errors to the observed
bond prices.
We apply the maximum-likelihood estimation technique to estimate the parametersin the

interest rate process by maximizing expression (19). After obtaining the estimated parameters, we

14



also recover the daily latent variables, y, (t) and Yy, (t) , and compute the daily instantaneous

interest rate, r(t), from equation (4).

4.2 Equity index process

Using the daily S& P 500 index and the recovered spot rate from the two-factor Vasicek
model, we apply the maximum-likelihood technique to estimate the parameters of the equity
index process as given in expression (7). Under the equivalent martingale measure, Q, the
conditional density function of the logarithm of the equity index x(t +4), given X(t), A >0,
can be approximated as a normal distribution:

FOx(t+A) | x(t) = N(xt) +(rt)-c? /2], o?a).
Thelog-likelihood function for a sample of observations on the equity index for

t=t,t,,....t, is

In L(X(t,), X(ts),- e, X)) = D00 I0 £ O(x(t) [X(E,)-

Given the parameter estimate for the market volatility, o, , and daily spot rates, the daily
dVV| (t) processis computed using the following formula:

AW, (1) = [x(t) - x(t-2) - (rt) o2 1 2)p] 7, .

To estimate the market price of risk of the equity index, we apply the maximum-

likelihood technique to estimate the equity index process as given in expression (8). Under the

natural measure, the conditional density function of theindex x(t +A), given x(t), A >0, can
be approximated as a normal distribution:
F(x(t+0) | x®) = N(xt) +(r(t)-c? 12+ 4,0, )n, o?4).
Thelog-likelihood function for a sample of observations on the equity index for

t=t,t,,....t, is
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N
In L{X(t), X(ts)..... X(ty)) = 22, In £ (x(t) [ x(t0)).
After obtaining the estimated parameters and recovered state variables (yl (1), Yy, (t)) and
dVR\'/I (t) , we compute the simple correlation coefficients between dVR\'/i (t) and dVR\'/I (t) asthe

estimatesfor @, i =1, 2, in therisky zero-coupon bond formula.

4.3 Intensity function and liquidity function
Given the estimated parameters and recovered state variables in the spot rate process and

the equity index process, the remaining task is to estimate the intensity function and liquidity

function of corporate bonds. The parametersin theintensity functionare a,L, a,L,and [.
The parameters in the liquidity function are J, and 9, . First, however, we need to compute the

two liquidity measures, the one-month average volatility of the equity index, UlM , and theyield

spread between on-the-run and off-the-run 30-year Treasury bonds, S(t). At time t, we estimate

0'|M by applying the maximum-likelihood technique described in section 4.2 on past one-month
observations of the equity index. To compute S(t) at time t, wefirst need to choose an off-the-

run 30-year Treasury bond as the candidate, since there are many off-the-run 30-year bonds every
day. Among all available off-the-run 30-year Treasury bonds that have a maturity of at least 28
years, we choose the one that has a coupon rate closest to that of the on-the-run 30-year Treasury
bond. Then we use the difference between the yield-to-maturity of the chosen off-the-run 30-year
bond and that of the on-the-run 30-year bond as the approximation for S(t).

For the estimation of the intensity function and liquidity function of corporate bonds, a
non-linear regression procedure is implemented with the parametersin the state variable
processes and the recovered state variables fixed. To estimate these parameters, we minimize the

summation of the mean-squared percentage pricing error:
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T

Ky
min ZZ(sk’t)z, t=1...,T,and k=1,...K,,

{a,L,aL,0;,05} =1 k=

— 5(t!Tk)_Vl (t!Tk)

where K, isthe number of bondsonday t,and €, = P(LT) . P(t,T,) isthe
v Tk

market price of the risky coupon bond, and V' (t,T,) isthetheoretical pricein our extended

Jarrow and Turnbull (2000) credit-risk mode.

5. Parameter Estimation

5.1 Estimation with pooled cor por ate data

Four different models for the default intensity and liquidity discount are estimated using
the pooled corporate bond data. The models differ regarding the number of state variables and
liquidity measures in the intensity function and liquidity function, respectively. Model 1 has
B =0, =9, =0. Thisisthe casewith one state variable (the spot rate) in the intensity function
and no liquidity discount. Model 2 has two state variables (the spot rate and equity index) and no
liquidity discount with 0, =9J, =0. Model 3 has 0, =0, and Model 4 includes all parameters.
The different models are summarized in Table 3. For each pooled corporate subset, we estimate
all four models. The estimation procedureis as follows.

First, we use daily prices on seven on-the-run U.S. Treasury bills and bonds over the
sample period January 1995 to May 2001, to estimate the parameters in the spot rate process.
The estimation results are reported in Table 4. All of the coefficients are statistically significant,
with the exception of the market price of risk for the second state variable. The recovered daily
latent variables and spot rates are shown in Figures 1 and 2, respectively.

Second, we use the daily S& P 500 index to estimate the parameters in the equity index

process. These parameters are assumed to be constant over the sample period January 1994 to
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May 2001. The estimated results are reported in Table 4, and the recovered unexpected one-year
excess returns of the S& P 500 index are plotted in Figure 3. The estimated coefficients are
statistically significant. The correlation coefficients between the Brownian motions in the spot
rate process and the one in the equity index process are also computed and reported in Table 4.

Third, we compute the two liquidity measures. the one-month average i nstantaneous
volatility of the equity index, ¢, and the yield spread between off-the-run and on-the-run 30-
year U.S. Treasury bonds, S(t). Theresults arereported in Figures 4 and 5, respectively.

Fourth, given the estimated parameters in the state variable processes, recovered state
variables, and constructed liquidity measures, we apply non-linear regressions to estimate the
parametersin the intensity and liquidity functions using the pooled corporate bond data subsets
constructed from bonds issued by companies in the same industry and credit class. The estimation
results arereported in Table 5.

As Longstaff and Schwartz (1995) point out, the static effect of a higher spot rateisto
increase the risk-neutral drift of the firm value process. A higher drift reduces the default
probability. In addition, an increase in the short-term interest rate usually indicates a decreased
risk of an economic recession in the medium term. Therefore, the sign of a, is expected to be
negative. A higher unexpected return of an equity index, on average, increases the value of a firm

and reduces the default probability. Thus, thesign of [ is expected to be negative. The
estimation results support this prediction. The estimates for a,L and [ are negative and

statistically significant across industries and credit classes. In addition, the estimatefor a,L in

general increases in absolute magnitude while the credit rating falls, which suggests that the low-

quality bonds are more sensitive to the spot rate than the high-quality bonds. For Modd 1, the

estimated coefficient a, L is negative across industries. For Model 2, the estimated coefficients
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a, L and [ arealso negative across industries. For Models 3 and 4, the coefficients are generally

statistically significant and have the expected sign.

Thereisno clear trend in the estimates for [ for different credit classes. The results also

show that the estimates for a,L and [ differ across industries, which suggests that the spot rate

and the return of the S& P 500 index have a larger impact on the default probability for some
industries than for others.

The parameter estimates for the two liquidity measures are positive and statistically
significant for most industries and credit classes. The results show that the two liquidity measures

seem to capture the presence of illiquidity in the U.S. corporate bond market.

5.2 Derived credit spreads

After obtaining the parameter estimates in the intensity and liquidity functions, we
estimate the 1-year, 5-year, and 10-year yield spreads between corporate discount bonds and
treasury discount bonds for the manufacturing industry in all four models over the sample period
January 1995 to May 2001. The two liquidity measures in our model account for only afew basis
points in the predicted corporate spreads. Therefore, theresultsin Models 3 and 4 are very similar
to thosein Model 2. Only the time series of the estimated credit yield spreads in Models 1 and 2
arereported in Figures 6 and 7, respectively.

Model 1 produces positive short-, medium-, and long-term credit spreads for all credit
classes over the sample period. The credit spread increases with declining credit quality. Model 2
also produces positive medium- and long-term credit spreads for all credit classes over the sample
period. Sometimes, however, it produces negative short-term credit spreads for high-quality
bonds, because theintensity function in our model specifies that the default probability depends
on the unexpected one-year excess return of an equity index. From the derived risky bond price

formula, we can see that the unexpected one-year excess return has a larger impact on the short-
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termyield than the long-term yield, and its effect declines very quickly when the time-to-maturity
of abond increases. Most corporate bonds used in this study are long-term bonds. Therefore, the

estimatefor [ mainly reflects the effect of the unexpected one-year return of the equity index on

the long-term coupons, and results in negative credit spreads for short-term discount bonds.

Alternative specifications are an interesting topic for future research.

5.3 Estimation with data from individual firms

Theresults described section 5.2 show that the intensity function with two state variables
— the spot rate and the unexpected one-year return of the S& P 500 index — produces negative
short-termyield spreads for the corporate discount bonds over the treasury discount bonds
because of the high volatility in the second state variable. In section 5.4, we will want to compute
the estimated probability of default (EPD) of each company over a one-year horizon and compare
it with that reported by Moody’s KMV. Therefore, we exclude the second state variable, the
unexpected one-year return of the S& P 500 index, from the intensity function when we use the
data fromindividual firms to estimate the intensity and liquidity functions. Three different models

for the default intensity and liquidity discount are estimated using the data from individual firms.

Model 1 has 0, =9, =0. Thisisthe case with one state variable (the spot rate) in the intensity

function and no liquidity discount. Model 2 has one liquidity measure with 0, =0. Model 3

includes all parameters. The different models are summarized in Table 6.

To estimate the intensity function and liquidity function using the data from individual
firms, weimplement arolling forward estimation procedure to accommodate possible structural
changes in our models.

First, we apply aralling forward procedure to estimate the parameters in the spot rate
process. At thefirst trading day of month t, we use the past year of daily treasury data (month

t —12 to month t) to obtain the maximum-likelihood estimates of the parameters in the spot rate
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process. Then, moving forward one month to the first day of month t +1, we estimate these
parameters again using the past year of data (month t —11 to month t +1). Applying this
procedure, we obtain parameter estimates each month from January 1996 to May 2001, for atotal
of 65 months. The average values of the estimated parameters are reported in Table 7. The
recovered latent variables and spot rates from the procedure are recorded.

Second, we apply the one-month rolling forward procedure to estimate the intensity
function and liquidity function using one year of daily data from individual firms. The non-linear
regression described in section 5.2 is implemented to obtain the parameter estimates with data on
two companies: General Motors and Merrill Lynch. Table 8 reports the average values of the
estimated parameters in the three models. The estimatesfor a,L are negative and statistically
significant for both companies, which indicates that a higher spot rate reduces the default

probability for both companies. The estimate of a, L is larger in absolute magnitude for General
Motors than for Merrill Lynch, asis the estimate of the coefficient, a, L . There are differencesin

the magnitude of the liquidity coefficients for the two firms.

5.4 Comparison with Moody’'sKMV

Finally, with the estimated market price of the underlying state variable, we compute the
estimated probability of default of each company over a one-year horizon. In the econometric
estimation, we estimate the product of the hazard function and the loss function. To estimate the
probability of default, we must make some assumptions about the magnitude of the loss function.
For a given avalue of theloss function, the estimated probabilities of default in Models 2 and 3
arevery similar to thosein Model 1. Consequently, we will show the results for only Model 1.

The similarity of the results suggests that the two market liquidity measures constructed in our
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model cannot capture the liquidity discount for the two companies. In other words, the liquidity
discount seems to be firm-specific.

Figure 8 shows the sensitivity of the estimated probability of default to different
assumptions about the magnitude of the loss function. Theresults are quite sensitive to the value
of the loss function. For each firm, we also plot Moody’s KMV estimates of the expected
probability of default, and Moody's credit ratings for the two firms.

The estimated probabilities of default for the two companies follow a very similar
pattern, because in the hazard function only one common state variable, the spot rate, affects the
probability of default. Over the period, the estimated probability of default for General Matorsiis,
in general, larger than that for Merrill Lynch. Thisis consistent with the fact that General Motors
has alower credit rating than Merrill Lynch over the sample period. However, using the KMV
estimates, post-May 2000, the expected probability of default for General Motorsis larger than
that for Merrill Lynch, though the reverse holds for almost three years prior to that date.

Thereis alarge differencein the orders of magnitude between the estimated probability
of default produced by Model 1 and that produced by KMV. Janosi, Jarrow, and Yildirim (2002)
find asimilar difference.

We also compute the simple correlation coefficients between the monthly estimated
probability of default in our model and those reported by KMV over the sample period. For
General Motors, the correlation coefficient is 0.738; for Merrill Lynch, it is0.335. KMV’s
estimateis derived using the equity price of the firm, whereas our model uses the firm-specific

credit spread.
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6. Conclusion

This study has used bond data that is pooled and from individual firms to estimate an
extended version of Jarrow and Turnbull’s (2000) reduced-form credit-risk model that includes
both default risk and liquidity risk. The results have shown that the default probability of afirm
is related to the changes in the spot rate and the return on an equity index. Our model captures the
integration of market risk and credit risk. Thetwo market liquidity measures constructed in our
model seem to capture the presence of illiquidity in the U.S. corporate bond market when pooled
data are used. In addition, the estimation method enables us to estimate the market prices of risk
for the underlying state variables. We are able to infer the expected probability of default under
the natural measure. This has an important practical implication, since it is necessary for arisk
manager to predict the default probability under the natural measure.

Some aspects of the model need to be improved to reduce the pricing errors for corporate
bonds. First, we could include an industry-specific index in the hazard function; second, we could
specify a hazard function that does not permit negative values; and third, we could specify afirm-

specific liquidity function.
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Table 1. Credit Ratings

Thistable reports Moody's and Standard and Poor's credit ratings for corporate bonds. It also
shows the credit ratings used in this study.

Moody’ s ratings S& P ratings Ratings used
I nvestment grade
Aaa AAA
Aal AA+
Aa2 AA Aa2
Aa3 AA-
Al A+
A2 A A2
A3 A-
Baal BBB+
Baa2 BBB Baa2
Baa3 BBB-
Non-investment grade
Bal BB+ Bal
Ba2 BB
Ba3 BB-
Bl B+ Bl
B2 B
B3 B-
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Table 2. Statistics Based on Data from Pooled and Individual Firms

This table reports the average numbers of bonds per day for pooled corporate subsets and
individual firm subsets over the sample period January 1995 to May 2001. The pooled corporate data
subsets are constructed from bondsissued by the companiesin the same industry and credit class. Thetable
has seven industries (banks, consumer goods, energy, manufacturing, services, telephone, and
transportation) and five credit classes (Aa2, A2, Baa2, Bal, and B1). The data subsets from individual
firms are constructed from bonds issued by the same company. There are two subsets for individual firms
inthistable. GM represents General Motors, and MER represents Merrill Lynch.

Banks Cognosoudn;er Energy Manufacturing Services Telephone Transportation
Aa2 21 10 20 12 27 23 8
A2 30 30 30 30 30 30 30
Baa2 22 15 30 30 29 19 30
Bal 9 7 15 21 28 10 6
Bl 4 8 17 25 27 9 5
1995 1996 1997 1998 1999 2000 2001
GM 22 23 23 21 23 22 20
MER 26 56 80 97 108 89 90
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Table 3. Model Description with Pooled Corporate Data

Thistable reports the parameters to be estimated in the intensity function and liquidity function for

t —~
the four models with pooled corporate data. Theintensity function is h(t) = a, +a,r(t) + ’B%I dw (t),
t-A

t -~
where r(t) isthe spot rate and %I dW, (t) isthe unexpected one-year excess return of the S& P 500
t-A

index. Theliquidity functionis I (t,T) = (5,0 + 8,Seor )(T —t) , Where ¢ isthe one-month average
instantaneous volatility of the S& P 500 index, and S, iStheyield spread between the off-the-run and
the on-the-run 30-year U.S. Treasury bonds.

Pooled corporate data

Intensity function

Liquidity function

al B ) 0,
Model 1 Yes
Model 2 Yes Yes
Model 3 Yes Yes Yes
Model 4 Yes Yes Yes Yes
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Table 4. Estimation of the State Variable Processes

This table reports the maximum-likelihood estimates for the parametersin the spot rate and equity
index processes. The spot rate process is a two-factor Vasicek modd, r(t) = w, +wy, (t) + w,y,(t) . vy, (t)
and v,(t) aretwo latent variables, and are assumed to follow a mean-reverting Gaussian diffusion process,
dy () = (- A =y, (t))dt +dW (t), i =1,2. dW(t) and dW,(t) are standard Brownian motions under the
equivalent martingale measure, Q , with the instantaneous correlation coefficient, @ . A, denotes the
market price of risk for the latent variable, vy, (t), i =1,2 . Time-series data of prices on seven on-the-run

U.S. Treasury bills and bonds with maturities of 3 months, 6 months, 1 year, 2 years, 5 years, 10 years, and
30 years are used to estimate the spot rate process. The equity index model is % =r(t)dt + o, dW, ),
where r(t) isthe spot interest rate, and dVT/I (t) isastandard Brownian motion under the equivalent
martingale measure, Q . The market price of risk for the equity index isdenoted by A, , and the

instantaneous correl ation coefficients between dVT/i(t) and dVT/I (t) aredenoted by ¢, i =1,2. Daily

observations on the S& P 500 index are used to estimate the equity index process. The asymptotic standard
errors are reported in parentheses bel ow the estimates. The sample period for the treasury datais January
1995 to May 2001, and the sample period for the S& P 500 index is January 1994 to May 2001.

Spot rate model

W, w, W, Ky K, A A, ¢

0.0476  0.0168  0.0153  0.9262  0.0571  -0.7145  -0.0731  -0.8469
(0.0390)  (0.0004)  (0.0005)  (0.0496)  (0.0029) (0.2618)  (0.1552)  (0.0106)

Equity index model

g, A

0.1711  0.5011
(0.0001)  (0.0023)

Correlation between state variables

@ 2

0.1385  -0.1063
(0.0783)  (0.0632)
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Table 5. Estimation of Intensity Function and Liquidity Function with
Pooled Corporate Data

Thistable reports the non-linear regression estimates for the parametersin the intengity function
and liquidity function with pooled corporate data. There are 43 pooled corporate data sets constructed from
bonds issued by companies in the same industry and credit class. The intensity functionis

~ t ~
h(t) =a, +ar(t) + ﬁ%f dW, (t) , where r(t) is the spot rate and %I dW, (t) isthe unexpected one-
t-A t-A
year excess return of the S&P 500 index. The liquidity function is I (t,T) = (5,0, + 8,Sgn0r )T —1),

where g isthe one-month average instantaneous vol atility of the S& P 500 index, and S,o; istheyield

spread between the off-the-run and the on-the-run 30-year U.S. Treasury bonds. Model 1 has one state
variable — the spot rate — in the intensity function, and no liquidity discount. Moddl 2 has two state
variables — the spot rate and unexpected one-year excess of the S& P 500 index — in theintensity
function, and no liquidity discount. Model 3 has two state variablesin the intensity function and one
liquidity measurein the liquidity function. Model 4 has two state variables in the intensity function and two
liquidity measures in the liquidity function. The asymptotic standard errors are reported in parentheses

bel ow the estimates. The average pricing errorsin the models are reported in the last column. The sample
period is January 1995 to May 2001.

(continued)
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Table 5 (continued)

Banks
Credit Pricing
L L o, o.
class Model % 4 o ! 2 error (%)
Model 1 0.0260 -0.3080 164
(0.0002) | (0.0032)
Model 2 0.0257 -0.2898 -0.0104 156
A2 (0.0002) | (0.0031) | (0.0002)
Model 3 0.0224 -0.2553 -0.0095 0.0067 147
(0.0002) | (0.0036) | (0.0002) | (0.0003)
Model 4 0.0183 -0.2145 -0.0081 0.0047 2.3044 1.45
(0.0003) | (0.0035) | (0.0002) | (0.0003) | (0.0445)
Model 1 0.0325 -0.3991 203
(0.0002) | (0.0034)
Model 2 0.0313 -0.3463 -0.0216 1.9
- (0.0002) | (0.0031) | (0.0002)
Model 3 0.0221 -0.2549 -0.0170 0.0187 1.90
(0.0002) | (0.0034) | (0.0002) | (0.0003)
Model 4 0.0193 -0.2390 -0.0149 0.0146 2.6757 187
(0.0002) | (0.0033) | (0.0002) | (0.0003) | (0.0395)
Model 1 0.0326 -0.3736 210
(0.0002) | (0.0037)
Model 2 0.0335 -0.3603 -0.0188 1.90
B (0.0002) | (0.0035) | (0.0002)
Model 3 0.0285 -0.3088 -0.0169 0.0106 185
(0.0003) | (0.0041) | (0.0003) | (0.0004)
Model 4 0.0253 -0.2877 -0.0147 0.0045 3.5700 181
(0.0003) (0.0038) (0.0002) (0.0004) (0.0492)
Model 1 0.0623 -0.5788 490
(0.0010) | (0.0174)
Model 2 0.0583 -0.4577 -0.0447 403
Bal (0.0010) | (0.0171) | (0.0010)
. -0.41 -0.037 .0232
Model 3 0.0508 0.4196 0.0370 0.023 3.89
(0.0011) | (0.0172) | (0.0011) | (0.0014)
Model 4 0.0484 -0.4465 -0.0318 0.0155 5.1558 3.80
(0.0011) | (0.0165) | (0.0011) | (0.0014) | (0.1665)
Model 1 0.0999 -1.0272 505
(0.0019) | (0.0319)
.091 -0. -0.0414
Model 2 0.0918 0.8339 0.0 466
51 (0.0019) | (0.0326) | (0.0024)
. -0.7952 -0.027 .037
Model 3 0.0805 0.795 0.0275 0.0375 450
(0.0021) | (0.0321) | (0.0026) | (0.0032)
.07 -0.7977 -0.012 .024 A
Model 4 0.0733 0.79 0.0129 0.0249 9.1066 438
(0.0019) | (0.0290) | (0.0024) | (0.0029) | (0.3072)

(continued)
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Table 5 (continued)

Consumer goods

Credit Pricing
L L o o.
class Moael % A o 1 2 error (%)
Model 1 0.0311 -0.3679 311
(0.0003) | (0.0052)
Model 2 0.0289 -0.2990 -0.0343 275
Ag2 (0.0003) | (0.0049) | (0.0006)
Model 3 0.0242 -0.2532 -0.0294 0.0096 264
(0.0003) | (0.0051) | (0.0006) | (0.0004)
Model 4 0.0223 -0.2448 -0.0267 0.0062 1.9457 261
(0.0003) | (0.0048) | (0.0006) | (0.0004) | (0.0492)
Model 1 0.0329 -0.3803 252
(0.0002) | (0.0040)
Model 2 0.0306 -0.3096 -0.0282 218
A2 (0.0002) | (0.0036) | (0.0002)
Model 3 0.0233 -0.2361 -0.0241 0.0149 207
(0.0003) | (0.0039) | (0.0003) | (0.0003)
Model 4 0.0216 -0.2288 -0.0229 0.0124 1.8266 203
(0.0003) | (0.0038) | (0.0002) | (0.0003) | (0.0438)
Model 1 0.0442 -0.5339 3.73
(0.0004) | (0.0074)
Model 2 0.0366 -0.3732 -0.0311 3.35
Baa2 (0.0004) | (0.0075) | (0.0005)
Model 3 0.0308 -0.3245 -0.0267 0.0136 3.20
(0.0005) | (0.0076) | (0.0005) | (0.0006)
Model 4 0.0290 -0.3206 -0.0244 0.0109 2.0932 3.15
(0.0005) | (0.0075) | (0.0005) | (0.0006) | (0.0784)
Model 1 0.0744 -0.6878 6.73
(0.0009) | (0.0151)
Model 2 0.0760 -0.6194 -0.0756 5.66
Bal (0.0009) | (0.0145) | (0.0017)
Model 3 0.0634 -0.5001 -0.0671 0.0243 5.52
(0.0012) | (0.0163) | (0.0018) | (0.0015)
Model 4 0.0581 -0.4756 -0.0594 0.0106 5.8502 5.43
(0.0011) | (0.0152) | (0.0017) | (0.0015) | (0.1650)
Model 1 0.0911 -0.7892 7.45
(0.0012) | (0.0191)
Model 2 0.0908 -0.7360 -0.0346 6.83
B1 (0.0011) | (0.0193) | (0.0017)
Model 3 0.0658 -0.4935 -0.0174 0.0501 6.70
(0.0016) | (0.0221) | (0.0018) | (0.0023)
Model 4 0.0612 -0.4873 -0.0107 0.0338 7.0420 6.62
(0.0015) | (0.0211) | (0.0017) | (0.0022) | (0.2388)
(continued)
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Table 5 (continued)

Energy
Credit Pricing
L L o 1)
class Moael % A o 1 2 error (%)
Model 1 0.0255 -0.2837 205
(0.0003) | (0.0053)
Model 2 0.0270 -0.2806 -0.0170 1.95
Ag2 (0.0003) | (0.0051) | (0.0003)
Model 3 0.0235 -0.2395 -0.0161 0.0065 1.90
(0.0004) | (0.0063) | (0.0003) | (0.0006)
Model 4 0.0209 -0.2242 -0.0144 0.0022 2.4046 1.87
(0.0004) | (0.0062) | (0.0003) | (0.0006) | (0.0610)
Model 1 0.0372 -0.4387 3.92
(0.0002) | (0.0031)
Model 2 0.0350 -0.3499 -0.0476 298
A2 (0.0002) | (0.0027) | (0.0003)
Model 3 0.0318 -0.3186 -0.0447 0.0061 284
(0.0002) | (0.0029) | (0.0003) | (0.0003)
Model 4 0.0291 -0.3039 -0.0416 0.0029 2.3297 278
(0.0002) | (0.0028) | (0.0003) | (0.0003) | (0.0324)
Model 1 0.0407 -0.4740 313
(0.0002) | (0.0041)
Model 2 0.0399 -0.4142 -0.0377 285
Baa2 (0.0002) | (0.0037) | (0.0003)
Model 3 0.0304 -0.3232 -0.0314 0.0193 277
(0.0003) | (0.0040) | (0.0003) | (0.0004)
Model 4 0.0274 -0.3076 -0.0283 0.0143 3.0839 265
(0.0003) | (0.0038) | (0.0003) | (0.0004) | (0.0421)
Model 1 0.0848 -1.0009 5.15
(0.0006) | (0.0090)
Model 2 0.0797 -0.8721 -0.0512 4.66
Bal (0.0005) | (0.0088) | (0.0007)
Model 3 0.0631 -0.7577 -0.0343 0.0417 456
(0.0006) | (0.0087) | (0.0007) | (0.0007)
Model 4 0.0586 -0.7462 -0.0306 0.0339 5.1384 450
(0.0006) | (0.0081) | (0.0007) | (0.0007) | (0.0912)
Model 1 0.0940 -0.9851 5.45
(0.0006) | (0.0095)
Model 2 0.0923 -0.9480 -0.0091 453
B1 (0.0006) | (0.0099) | (0.0007)
Model 3 0.0841 -0.8753 -0.0032 0.0181 4.42
(0.0007) | (0.0105) | (0.0008) | (0.0010)
Model 4 0.0830 -0.8898 -0.0011 0.0123 3.0485 437
(0.0007) | (0.0103) | (0.0008) | (0.0010) | (0.1068)
(continued)
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Table 5 (continued)

Manufacturing

Credit Pricing
L L o o.
class Moael % A o 1 2 error (%)
Model 1 0.0305 -0.3749 351
(0.0003) | (0.0052)
Model 2 0.0287 -0.3105 -0.0339 3.5
Ag2 (0.0003) | (0.0049) | (0.0006)
Model 3 0.0229 -0.2520 -0.0286 0.0115 3.15
(0.0004) | (0.0054) | (0.0006) | (0.0005)
Model 4 0.0209 -0.2435 -0.0251 0.0079 2.2700 3.08
(0.0003) | (0.0052) | (0.0006) | (0.0004) | (0.0585)
Model 1 0.0359 -0.4256 3.20
(0.0002) | (0.0039)
Model 2 0.0345 -0.3565 -0.0397 248
A2 (0.0002) | (0.0035) | (0.0003)
Model 3 0.0295 -0.3061 -0.0363 0.0100 234
(0.0003) | (0.0039) | (0.0003) | (0.0003)
Model 4 0.0273 -0.2943 -0.0341 0.0065 2.2038 293
(0.0003) | (0.0038) | (0.0003) | (0.0003) | (0.0418)
Model 1 0.0435 -0.4862 451
(0.0003) | (0.0051)
Model 2 0.0431 -0.4132 -0.0527 415
Baa2 (0.0003) | (0.0046) | (0.0004)
Model 3 0.0372 -0.3538 -0.0489 0.0117 4.02
(0.0004) | (0.0051) | (0.0004) | (0.0005)
Model 4 0.0339 -0.3331 -0.0454 0.0064 3.0672 3.87
(0.0003) | (0.0050) | (0.0004) | (0.0004) | (0.0569)
Model 1 0.0649 -0.6743 5.31
(0.0004) | (0.0067)
Model 2 0.0620 -0.5885 -0.0355 4.86
Bal (0.0004) | (0.0066) | (0.0005)
Model 3 0.0507 -0.4792 -0.0286 0.0234 4.70
(0.0005) (0.0073) (0.0006) (0.0007)
Model 4 0.0482 -0.4736 -0.0263 0.0167 3.4015 4.59
(0.0005) | (0.0070) | (0.0005) | (0.0007) | (0.0759)
Model 1 0.0827 -0.7198 5.45
(0.0005) | (0.0080)
Model 2 0.0785 -0.5930 -0.0411 453
B1 (0.0005) | (0.0079) | (0.0006)
Model 3 0.0750 -0.5604 -0.0388 0.0074 437
(0.0006) | (0.0086) | (0.0006) | (0.0008)
Model 4 0.0730 -0.5589 -0.0360 0.0020 2.8720 431
(0.0006) | (0.0085) | (0.0006) | (0.0008) | (0.0923)
(continued)




Table 5 (continued)

Services
Credit Pricing
L L o 1)
class Moael % A o 1 2 error (%)
Model 1 0.0274 -0.3239 3.05
(0.0002) | (0.0039)
Model 2 0.0254 -0.2694 -0.0209 278
Ag2 (0.0002) | (0.0039) | (0.0003)
Model 3 0.0220 -0.2395 -0.0180 0.0078 264
(0.0003) | (0.0041) | (0.0003) | (0.0004)
Model 4 0.0212 -0.2370 -0.0167 0.0064 0.8908 257
(0.0003) | (0.0041) | (0.0003) | (0.0004) | (0.0421)
Model 1 0.0352 -0.4097 3.92
(0.0002) | (0.0040)
Model 2 0.0341 -0.3549 -0.0332 208
A2 (0.0002) | (0.0038) | (0.0003)
Model 3 0.0288 -0.3028 -0.0295 0.0111 287
(0.0003) | (0.0042) | (0.0003) | (0.0004)
Model 4 0.0269 -0.2933 -0.0275 0.0076 1.9585 280
(0.0003) | (0.0041) | (0.0003) | (0.0004) | (0.0429)
Model 1 0.0429 -0.4785 477
(0.0003) | (0.0058)
Model 2 0.0410 -0.3799 -0.0519 415
Baa2 (0.0003) | (0.0054) | (0.0005)
Model 3 0.0315 -0.2882 -0.0451 0.0190 3.99
(0.0004) | (0.0059) | (0.0005) | (0.0005)
Model 4 0.0291 -0.2814 -0.0416 0.0133 2.9209 3.87
(0.0004) | (0.0057) | (0.0005) | (0.0005) | (0.0623)
Model 1 0.0431 -0.3657 415
(0.0003) | (0.0050)
Model 2 0.0413 -0.3104 -0.0222 3.88
Bal (0.0003) | (0.0050) | (0.0004)
Model 3 0.0324 -0.2120 -0.0177 0.0158 3.70
(0.0004) | (0.0056) | (0.0005) | (0.0005)
Model 4 0.0301 -0.1981 -0.0154 0.0119 2.3138 3.59
(0.0004) | (0.0055) | (0.0004) | (0.0005) | (0.0637)
Model 1 0.0749 -0.6767 5.45
(0.0004) | (0.0068)
Model 2 0.0712 -0.5656 -0.0360 453
B1 (0.0004) | (0.0067) | (0.0005)
Model 3 0.0682 -0.5353 -0.0343 0.0057 4.47
(0.0005) | (0.0076) | (0.0006) | (0.0007)
Model 4 0.0680 -0.5350 -0.0342 0.0055 0.1311 4.47
(0.0005) | (0.0076) | (0.0006) | (0.0007) | (0.0847)
(continued)
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Table 5 (continued)

Telephone
Credit Pricing
L L o 1)
CIaSS MOdeI 30 al ﬂ 1 2 eror (%)
Model 1 0.0251 -0.3017 253
(0.0002) | (0.0032)
Model 2 0.0301 -0.3230 -0.0406 298
Aa2 (0.0002) | (0.0028) | (0.0004)
Model 3 0.0304 -0.3255 -0.0408 -0.0005 219
(0.0003) | (0.0035) | (0.0004) | (0.0003)
Model 4 0.0287 -0.3154 -0.0377 -0.0032 1.4793 211
(0.0003) | (0.0034) | (0.0004) | (0.0003) | (0.0370)
Model 1 0.0354 -0.4506 282
(0.0002) | (0.0037)
Model 2 0.0334 -0.3638 -0.0399 218
A2 (0.0002) | (0.0032) | (0.0003)
Model 3 0.0271 -0.3036 -0.0355 0.0137 1.97
(0.0002) | (0.0035) | (0.0003) | (0.0003)
Model 4 0.0254 -0.2960 -0.0339 0.0112 1.7968 1.89
(0.0002) | (0.0034) | (0.0003) | (0.0003) | (0.0453)
Model 1 0.0571 -0.6345 3.04
(0.0003) | (0.0049)
Model 2 0.0555 -0.5806 -0.0285 3.65
Baa2 (0.0003) | (0.0049) | (0.0005)
Model 3 0.0450 -0.4800 -0.0194 0.0222 351
(0.0004) | (0.0051) | (0.0005) | (0.0005)
Model 4 0.0444 -0.4784 -0.0186 0.0206 0.8104 3.42
(0.0004) | (0.0051) | (0.0005) | (0.0005) | (0.0499)
Model 1 0.0518 -0.3872 715
(0.0012) | (0.0210)
Model 2 0.0378 -0.0849 -0.0670 5.68
Bal (0.0011) | (0.0200) | (0.0012)
Model 3 0.0413 -0.0808 -0.0728 -0.0145 5.53
(0.0011) | (0.0201) | (0.0013) | (0.0013)
Model 4 0.0411 -0.0972 -0.0720 -0.0147 1.0138 5.43
(0.0011) | (0.0206) | (0.0013) | (0.0013) | (0.1772)
Model 1 0.1146 -1.2552 715
(0.0014) | (0.0234)
Model 2 0.0791 -0.6177 -0.0584 6.83
B1 (0.0015) | (0.0277) | (0.0015)
Model 3 0.0778 -0.6321 -0.0550 0.0085 6.74
(0.0016) | (0.0283) | (0.0017) | (0.0017)
Model 4 0.0763 -0.5655 -0.0572 0.0091 -2.0848 6.65
(0.0016) | (0.0290) | (0.0017) | (0.0017) | (0.2254)
(continued)
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Table 5 (continued)

Transportation

G Jwosa [ [ | e [ s [ & M
Model 1 | 00482 | -0.6288 3.05
(0.0005) | (0.0079)
Model 2 | 00458 | -0.5270 | -0.0554 278
A (0.0004) | (0.0062) | (0.0006)
Model 3 | 00326 | -0.3980 | -0.0419 | 0.0251 264
(0.0005) | (0.0067) | (0.0006) | (0.0007)
Model 4 | 00284 | -0.3642 | -0.0399 | 00207 | 2.9265 957
(0.0005) | (0.0064) | (0.0006) | (0.0006) | (0.0725)
Model 1 | 00272 | -0.3034 3.7
(0.0002) | (0.0038)
Model 2 | 00259 | -0.2447 | -0.0276 208
Ao (0.0002) | (0.0035) | (0.0002)
Model 3 | 00200 | -0.1893 | -0.0241 | 0.0128 087
(0.0003) | (0.0038) | (0.0003) | (0.0004)
Model 4 | 00174 | -0.1769 | -0.0216 | 0.0074 | 2.9916 280
(0.0003) | (0.0036) | (0.0002) | (0.0003) | (0.0413)
Model 1 | 00341 | -0.2017 477
(0.0003) | (0.0050)
Model 2 | 00345 | -0.2161 | -0.0564 415
Baa? (0.0002) | (0.0042) | (0.0004)
Model 3 | 00324 | -0.1945 | -0.0553 | 0.0041 3.99
(0.0003) | (0.0047) | (0.0004) | (0.0004)
Model 4 | 00306 | -0.1873 | -0.0535 | -0.0009 | 2.3007 387
(0.0003) | (0.0046) | (0.0004) | (0.0004) | (0.0529)
Model 1 | 00681 | -0.7695 415
(0.0009) | (0.0147)
Model 2 | 00591 | -0.5519 | -0.0601 3.88
Bal (0.0009) | (0.0150) | (0.0012)
Model 3 | 00445 | -0.4083 | -0.0491 | 0.0292 3.70
(0.0011) | (0.0162) | (0.0013) | (0.0014)
Model 4 | 00359 | -0.3345 | -0.0463 | 0.0200 | 6.2037 350
(0.0011) | (0.0156) | (0.0012) | (0.0013) | (0.1803)
Model 1 | 00877 | -0.6934 545
(0.0014) | (0.0235)
Model 2 | 00786 | -0.4330 | -0.0692 453
B1 (0.0013) | (0.0230) | (0.0017)
Model 3 | 00722 | -0.3725 | -0.0652 | 0.0127 447
(0.0017) | (0.0250) | (0.0019) | (0.0024)
Model 4 | 00721 | -0.3753 | -0.0648 | 00118 | 0.4239 447
(0.0017) | (0.0250) | (0.0019) | (0.0025) | (0.2571)
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Table 6. Model Description with Data from Individual Firms
Thistable reports the parameters to be estimated in the intensity function and liquidity function for
the three models with data from individual firms. Theintensity function is
t ~ t ~
h(t) =a, +ar(t) + ,B%I dW, (t) , where r(t) is the spot rate and %I dW, (t) isthe unexpected one-
t-A t-A
year excess return of the S& P 500 index. The liquidity function is I (t,T) = (5,0, + 8,Sgn0r )T —1),

where g isthe one-month average instantaneous vol atility of the S& P 500 index, and S,,o; istheyield
spread between the off-the-run and the on-the-run 30-year U.S. Treasury bonds.

Data from individual firms

Hazard function Liquidity function
al ) o,
Model 1 Yes
Model 2 Yes Yes
Model 3 Yes Yes Yes

Table 7. Rolling Forward Estimation Results of the Spot Rate Process

Thistable reports the rolling forward maximum-likelihood estimates for the parametersin the spot
rate process. The spot rate process is a two-factor Vasicek modd, r(t) = w, + wy,(t) + w,y,(t) . y,(t) and
y,(t) aretwo latent variables, and are assumed to follow the mean-reverting Gaussian diffusion process,
dy (1) = (- A =,y (t))dt +dW (t), i =1,2. dW(t) and dW,(t) are standard Brownian motions under the
equivalent martingale measure, Q , with the instantaneous correlation coefficient, @ . A, denotes the
market price of risk for the latent variable y, (t), i =1,2 . A one-month rolling forward estimation

procedure isimplemented to estimate the spot rate process. The average values of the parameter estimates
arereported in thistable. The standard errors, computed with 3 Newey-West (1987) lags, are reported in
parentheses below the estimates. The sample period is January 1995 to May 2001.

Spot rate process

w, w, W, K, K, A A, ¢

0.0492  0.0165  0.0148  1.0938  0.0522  -0.5487  -0.0863  -0.8750
(0.0373)  (0.0007)  (0.0008)  (0.0231) (0.0036) (0.2030)  (0.1554)  (0.0090)

38



Table 8. Rolling Forward Estimation Results of Intensity Function and

Liquidity Function with Data from Individual Firms

Thistable reports the non-linear regression estimates for the parametersin the intensity function
and liquidity function with data from individual firms. Two data sets from individual firms are constructed,
from bonds issued by General Motors and Merrill Lynch, respectively. Theintensity function is

h(t) = a, +ar(t) , where r(t) is the spot. The liquidity functionis I(t,T) = (Jlal"" +0,5(T) )T -t),
where g isthe one-month average instantaneous vol atility of the S& P 500 index, and S,o; istheyield

spread between the off-the-run and the on-the-run 30-year U.S. Treasury bonds. Model 1 has one state
variable, the spot rate, in the intensity function, and no liquidity discount. Model 2 has one state variable in
the intengty function and one liquidity measurein the liquidity function. Model 3 has one state variable in
the intensity function and two liquidity measuresin the liquidity function. The standard errors, computed
with 3 Newey-West (1987) lags, arereported in parentheses bel ow the estimates. The average pricing
errorsin the models are reported in the last column. The sample period is January 1995 to May 2001.

General Motors

Pricing error
agL al 1) 0, %)
Model 1 0.0285 -0.2898 112
(0.0007) (0.0117)
Model 2 0.0273 -0.2805 0.0035 1.08
(0.0007) (0.0122) (0.0009)
Model 3 0.0274 -0.2868 0.0024 0.8883 1.05
(0.0008) (0.0134) (0.0009) (0.1525)
Merrill Lynch
Pricing error
apL al o o, %)
Model 1 0.0265 -0.2739 0.97
(0.0005) (0.0080)
Model 2 0.0253 -0.2674 0.0041 0.93
(0.0005) (0.0083) (0.0007)
Model 3 0.0256 -0.2740 0.0026 0.6714 0.92
(0.0006) (0.0090) (0.0007) (0.1134)
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Figure 1. Recovered Two Latent Variablesin the Spot Rate M odel

Thisfigure plots the recovered daily latent variables, y;(t) and y,(t), in the two-factor Vasicek
model. Given the parameter estimatesin the Vasicek model, the two latent variables are recovered by
solving a system of two non-linear equations: P, (t) + P, (t) + Py(t) = P(t,T;) + P(t,T,) + P(t,T,) , and
Py()+ P (t) + Ps (t) + P7 (1) = P(t, Ty) + P(t, T5) + P(t, Tg) + P(t, T;), simultaneously. Ri(t), P,(t) , and
E(t) arethe observed time t prices of U.S. Treasury bills with maturities of 3 months, 6 months, and 1
year, respectively. RB(t), Py(t), Ry (t), and P,(t) arethe observed time t prices of U.S. Treasury bonds
with maturities of 2 years, 5 years, 10 years, and 30 years, respectively. P(CI) isthe default-free coupon
bond formula. The sample period is January 1995 to May 2001.

Latent 1
»»»»» Latent 2
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Figure 2. Recovered Daily I nstantaneous Interest Ratesin the Spot Rate M odel

Thisfigure plotsthe recovered daily instantaneous interest rates in the two-factor Vasicek modd.
Given the estimated parameters and recovered two latent variables, y;(t) and y,(t), the spot rateis

computed by r(t) = w, +w,Y,(t) + w,y,(t) . The sample period is January 1995 to May 2001.

e M
e [t ‘\k
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Figure 3. Unexpected One-Year Excess Returns of the S& P 500 Index (Percentage)

Thisfigure plots the unexpected one-year excess returns of the S& P 500 index. Given the
parameter estimate for the market volatility, o, , and daily spot rates, r (t) , the daily dV\~/I (t) processis

computed using the following formula: dVT/I ®= [x(t) -X(t-4)- (r(t) - a|2 / Z)AJ/ 0, . The unexpected
one-year excess return of the S& P 500 index at time t is approximated by the summation of dV-\'/I (t) inthe
past 250 trading days, Zi?) dVT/I (t-j). Thesampleperiod is January 1994 to May 2001. The reported

time series of the unexpected one-year excess returns of the S& P 500 index startsin January 1995, since
the past one-year data are used to cal cul ate the starting point.
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Figure 4. One-M onth Average I nstantaneous Volatility of the S& P 500 I ndex

Thisfigure plotsthe time series of the maximum-likelihood estimate for the one-month average
instantaneous volatility of the S& P 500 index. At time t , the maximum-likelihood estimation techniqueis
implemented using past one-month data on the S& P 500 index. The sample period is January 1995 to May
2001.

: bl et AN
NI LTI A ad YA
NP WAL i J
OOSW W“FJ ‘\,{MV

Jan- May- Sep- Jan- May- Sep- Jan- May- Sep- Jan- May- Sep- Jan- May- Sep- Jan- May- Sep- Jan- May-
95 95 95 96 96 96 97 97 97 98 98 98 99 99 99 00 00 00 01 01

Figureb. Yield Spread (Percentage) Between Off-the-Run and On-the-Run U.S. 30-
Year Treasury Bonds

This figure plots the difference between the yields to maturity of the off-the-run and on-the-run
U.S. 30-year Treasury bonds. The sample period is January 1995 to May 2001.
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Figure 6. Estimated Credit Yield Spreads (Percentage) for M anufacturing Industry in
Model 1

Given the estimated intensity function in Mode 1, the predicted one-year, five-year, and ten-year credit yield
spreads over the sample period for different credit classes in the manufacturing industry are plotted in the three graphs,
respectively. The sample period is January 1995 to May 2001.
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Figure 6 (continued)

Five-Year Spread
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Figure 6 (continued)

Ten-Year Spread
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Figure 7. Estimated Credit Yield Spreads (Percentage) for M anufacturing Industry in
Model 2

Given the estimated intensity function in Model 2, the predicted one-year, five-year, and ten-year credit yield
spreads over the sample period for different credit classes in the manufacturing industry are plotted in the three graphs,
respectively. The sample period is January 1995 to May 2001.
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Figure 7 (continued)

Five-Year Spread
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Figure 7 (continued)

Ten-Year Spread
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Figure 8. Sensitivity of Estimated Probability of Default (Percentage) to Fractional L oss
Given the estimated intensity function and liquidity function, and the market prices of risk for the sate variables, we

compute the expected probability of default (EDF) in one year for different levels of fractional 1oss using data from two
individual companies. Genera Motors (GM) and Merrill Lynch (MER). The sample period is January 1995 to May 2001.
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10

Figure 8 (continued)

Expected Probability of Default (MER)
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Figure 8 (continued)

Expected Probability of Default (Percentage) with L=0.5
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