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Abstract 
 
The paper develops a mathematical programming model for assessing the impact of 
Environmental Policy instruments on French winegrowing farm’s adoption of pesticides-
saving technologies. We model choices with regards to investment in precision farming and 
plant protection practices, in a multi-periodic framework with sequential decision, integrating 
uncertainty on fungal disease pressure and imperfect information on equipment performance. 
We focus on recursive models maximizing a Utility function. These models are applied on a 
representative sample of 534 winegrowers from the French Farm Accountancy Data Network 
(FADN). As expected, both ecotaxes and green subsidies make precision farming equipment 
more profitable, but the investment rate remains however low and concentrated on basic 
systems. One explanation is grower’s financial constraint in a context of market crisis and 
farm indebtedness. Shortcomings and further development of the models are discussed. 
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1 Introduction 

The European Pesticides Framework Directive (2009/128/EC) makes it mandatory for all Member 
States to establish national action plans, involving all the relevant stakeholders in the process and 
creating the necessary conditions for implementing integrated pest management that will become 
mandatory as of 2014. Moreover, protection of the environment could be enhanced by the use of 
precision farming technology aiming at reducing pesticides loss in the environment, such as low spray 
drift equipment, variable rate dosing, remote sensing and information technology (IT).  

The advantages of new technologies in precision viticulture and particularly for spraying have been 
extensively studied in international agricultural engineering research (Arnó et al., 2009; Lamb et al., 
2004; Llorens et al., 2010; Tisseire et al., 2007). For example, French engineering research teams have 
recently completed field-oriented studies on precision spraying within the AWARE (De Rudnicki et al. 
2009, 2010; Ruelle and De Rudnicki 2009), OPTIDOSE (Davy and Heinzlé, 2009) and OPTIPULVE 
projects (Heinzlé and Florent, 2010).  

In assessing sustainable farming technology, capital budgeting studies concentrate on farm size and 
profitability thresholds, whereas economics reveal how important are farmer individual characteristics, 
training, risk and uncertainty (Adrian et al., 2005; Greiner et al, 2009; Marra et al., 2003). Risk may be 
linked to the new technology as the new equipment may not have the expected maximum 
effectiveness, its performance being distributed around an average value. Uncertainty is mainly related 
to lack of farmers’ information that could not make probabilities without references. Moreover, 
training plays a great role in adopting new technology as without skills farmer could not fully benefit 
from this new technology (Sunding and Zilberman, 2001; Zilberman et al., 1997). 

Furthermore, plant protection management requires decision to be made at times when the outcomes 
or implication of application decisions will not be known (Rae, 1994). This problem can be then stated 
in term of Decision Theory involving specification of possible actions, states of nature probabilities 
and utility function to maximize considering the farmers rational decision making. Moreover, the 
methodology of economic optimization is the more relevant for analysis of investment and practices 
changes because of the possibility it offers decision makers to substitute alternative strategies (Hazell 
and Norton, 1986).  

Mathematical programming models are widely used since they are able to capture the core decision-
making processes and have the unique ability to link economic elements with ecological and 
biophysical elements (Buysse et al., 2007). We assume here that the farmer has got all the information 
needed for deciding to invest or not and that skills are immediate without any additional costs although 
real performance of the equipment is considered to be unknown before the purchase.  

Many studies can be found in engineering literature on precision farming (PF) but only very few 
studies have examined the costs of investing in PF in comparison with the benefits expected (Godwin 
et al., 2003; Tozer 2009). No study has addressed so far the assessment of cost and benefits of PF 
applied to spraying equipment or has explored means for promoting such equipment. Few studies have 
questioned the winegrape sector (Fernandez-Cornejo, 1998; Ugaglia et al. 2008). The objective of this 
study is then first to propose a modelling framework for assessing farmers choice in PF equipment and 
plant protection strategies. We analyse then the effects of canonical Environmental Policy instruments 
such as taxes and green technology targeted subsidies for promoting the adoption of such equipments.    
 

2 Model formulation 

To assess investment decision in precision spraying equipment, we developed a Discrete Stochastic 
Programming (DSP) model (Aplan and Hauer, 1993; Birge and Louveaux, 1997). Stochastic models 
are appropriate when data evolve over time and decisions need to be made prior to observing the entire 
data stream.  
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Since Rae’s seminal papers (Rae, 1971a, 1971b), DSP has been widely use in the field of agricultural 
economics, especially to model farmer’s responses to climatic uncertainty (Cortignani, 2010; Jacquet 
and Pluvinage, 1997; Kingwell et al., 1993; Maatman et al., 2002). 

Following Birge and Louveaux (1997), the problem is:  
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Where y is the second stage decision vector (vector of second stage variables corresponding to choice 
made after the random event), turning then to the deterministic equivalent program: 
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For vineyard plant protection (mainly fungal diseases), the farmer has to choose between different 
protection strategies or decision rules (Léger et al., 2007). Furthermore, he has the opportunity to 
invest in PF systems equipment allowing a better spraying and a reduction of pesticides application 
rate. We retained two levels of plant protection strategy (s0, s1) corresponding to the two main levels 
identified by the winegrowing experts consulted. Strategy s0 represents systematic applications 
allowing permanent vineyard protection against pests and diseases, while s1 corresponds to reasoned 
spraying applications following broad regional indicators and some field monitoring. We did not 
consider “integrated winegrape production” or organic farming. The first strategy was dropped 
because differences with s1 concern mainly weed control and because of the difficulty to identify 
specific costs, practices such as leaf or cluster thinning being also used to address wine organoleptic 
quality. We dropped organic farming too because of the lack of reliable information and limited 
surveys on practices and production costs. We could stress that in 2006, when a national survey has 
been carried out, 90% of the vineyard was under strategy s0 or s1, s1 being by far the dominant strategy 
(Agreste, 2006) with 76% of the plots.  

For PF equipment, the grower has different options (See table 2 and Appendix 3). Investment can be 
made either with borrowing either cash, respectively named I1 and I2.  

Decision maker has then to choose between 22 decision alternatives (Figure 1). Problem is then to find 
a model that allows foreseeing what will be the choice of the farmer for his plant protection strategy 
and how he will react to random parameters by choosing the objective function to maximize.  
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Figure 1 - Set of possible solutions for activity 
analysis 

 Figure 2 - scenarios pertaining to infection 
pressure 

 
 

2.1 Random events  

We decide to take interest in three random parameters: infection pressure (ip), farm cash balances (Cb) 
and equipment performance (perf). We name sc_ip, sc_Cb, sc_perf, the scenarios linked respectively 
to these three parameters. The disease pressure of the current year is the combination of the inoculum 
status of downy/powdery mildews and botrytis and of weather conditions. When a year with a low 
pressure occurs only little damage can be noticed on plots where no fungicide has been sprayed. 
Conversely, when pressure is high, the entire yield can be destroyed in the absence of applications. We 
limit the levels of pressure at three with high (h), average (av) and low (l) levels. Although 
probabilities may be conditional on the outcomes of the random pressure of previous stages, we assign 
equal probabilities to outcomes because of the present lack of reliable information on pressures for 
long time periods. The percentage of pesticides saving obtained with the new equipment is supposed 
to be unknown by the farmer when purchasing the equipment. We assume that the performance of the 
PF system follows a distribution that we formalize in three classes marked out by the first and third 
quartiles. Therefore low and high level have a probability of 25% and average level a probability of 
50%. These references come from French engineering research institutes trials on precision spraying 
equipment and information technology (Davy and Heinzlé, 2009; De Rudnicki et al. 2009, 2010; 
Ruelle and De Rudnicki 2009; Heinzlé and Florent, 2010). Moreover, we consider that performance 
level remains the same between the years of the equipment use period. Third random parameter is 
related to the payoffs stream of the year (that we approximate by the turn-over) and includes all 
random events that do not relate to plant protection. This part can be connected to weather conditions 
(hail, sunshine …), to others factors influencing the quality of the grapes or to market conditions 
(fluctuation of wine prices, etc.).  

For taking into account all random events, we distinguish scenarios pertaining to the infection pressure 
and scenarios pertaining to the income balance. Scenarios for the probabilistic analysis are detailed in 
figure 2 for infection pressure and are similar for the income balance. Number of scenarios increase 
exponentially with the number of years.  
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If r represents the events and n the number of years, we have then:  
1

2 3 11 ...
1

n
n rr r r r

r

+ −
+ + + + + =

−
 scenarios. We note Ysc the income linked with a random event sc=(sc_Cb, 

sc_ip, perf).   

 

2.2 Expected income model 

First modelling aims at maximizing the sum of the expected payoffs of the farmer on several years. We 
use then the Expected value of random events equivalent to the expected value of the farm income as 
the recourse problem is a simple linear function. For the value function, we use the Audsley and 
Wheeler (1978) procedure to calculate the annual cost of PF equipment using actual cash flows 
(Audsley and Wheeler, 1978; Musser et al., 1988). We decide to differentiate the number of years the 
equipment is owned/used and the term of the loan if the equipment is purchased by borrowing (Ford 
and Musser 1994). In order to better represent financial capacity of farms for investing in PF, we 
added additional constraints representing credit rationing. For deciding if the farm can get a loan or 
not, we consider last farm income minus minimal household consumption and liabilities. Thus only 
positive revenue could have access to loan or buy cash saving then on loan cost, interests and 
commissions. Details of the model are given in Appendix 1. 
 

2.3 Utility Function 

For assessing the number of farms that should have always interest in investing in PF equipment and 
/or apply the strategy s1 whatever the state of nature, we model the worst and best of cases maximizing 
the Income variable allowing then to bound the problem. All the random events do not have to be 
calculated. We choose the worst and the best solution for each income, infection pressure or equipment 
performance. For the worst of cases it comes down/amounts to maximize income Y such that   

scY Y sc≤ ∀  with sc: scenario and for the best of cases by maximizing the income variable such 
that { }scsc

Max Y . This non linear form can be written in the following: 
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B
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∈
∑  With M an upper bound on the difference between the minimum and the maximum incomes. 

Farmer’s preferences among alternative farm plans are based on the expected income E[Y] and 
associated income variance V[Y] (Hazell and Norton, 1986). When the utility function is of the 
exponential form 1 Ye β−− and Y normally distributed then 

[ ] [ ] [ ]1( )
2

E U Y E Y V Yβ= − ⋅  

Because of a scale problem with the variance, we focus on the deviation standard and calculate it on 
all the final scenarios on N years. We use then the following Utility function: 

[ ]

2
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sc sc

Max Y p

Y E Y
StdDev Y Y sc
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⎧
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⎪ = − ∀⎩
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  With psc= probability of scenario 

 

Calculation of the objective function is very long as we have for the 3 infection pressure levels, 243 
scenarios on five years and 3125 scenarios for five levels of cash balance leading to 243*3125*3 = 
2,278,125 scenarios.  
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2.4 Financial constraints 

The economic situation of grapegrowers seriously limits new investments. Since the early 2000’s, the 
French wine chain has been facing a market crisis. Expert’s reports assert that this crisis is structural 
rather than conjunctural, pointing a declining domestic market, the growing competition from USA 
and the Southern hemisphere in export markets, and a slow adaptation of French growers (Hannin et 
al., 2010; Heijbroek, 2007). Many growers only stay in business with off-farm income or by using 
European partial vine pulling subsidies. FADN data shows that 14% of growers had a negative average 
operating profit over the 2002-2006 period, 51% had at least one year with negative operating profit 
during that five years period. Contrary to previous crisis that where specific to Southern France, the 
new crisis has been affecting nearly all French regions, even iconic places like Bordeaux or Burgundy. 
Financial constraints are another problem for growers. They are explained by credit rationing coming 
from asymmetric information between small enterprises and their lenders (Maurel and Viviani, 2010). 
They are often important in agriculture (Barry and Robison, 2001). When capital markets do not 
operate perfectly, that is when banks base their lending decisions on available collateral or financial 
ratios rather than projected profitability, farmers are likely to face credit constraints and their 
investment will be sensitive to cash flow (Benjamin and Phimister, 2002). In their crop allocation or 
technological choice, farmers may therefore prefer regular incomes over irregular ones (Bocquého and 
Jacquet, 2010). Empirical studies show that French banks do use financial ratios such as debt to equity 
ratio for credit access to winegrape growers (Cadot, 2008). Following farm decision literature, we 
implemented cash balance and liquidity constraints (Bocquého and Jacquet, 2010; Louhichi et al. 
2004; Ridier and Jacquet, 2002).  
 

2.5 Multi-period modelling 

In the Expected income model, decision is made on a one year-basis. In order to model the evolution 
of the equipment with time, we developed a recursive and a dynamic multi period model. In the new 
models we take into account the variation of the levels of subsidies and the variable costs which were 
constant in the first models. Only the recursive model and its outcomes are presented further. It 
founded out indeed that the dynamic model needed much longer time for resolution than the recursive 
model and outcomes were similar.  

We repeat each year and during n consecutive years, the farmer decision formalized by the Expected 
income model presented. In order to know which decision will be made the year n, we should consider 
factors of the preceding year such as the farm cash balance, disease pressure and investment or not in 
PF equipment and the percentage of recycling Plant Protection Product (PPP). Financial constraints 
change as well throughout the years because of the cash balance changes (see 2.5). For resolution we 
chose to enumerate the set of solutions that changes as the years go by depending of the choices that 
have been made previously.  

We use the following algorithm: 

Loop for N years 

Computation of capBore and capCashe 

Solution of models (expected income, Worst, Best, Mean-Std deviation) 

Computation of To (turn over) and predY (preceding farm revenue)  

Change of sets of possible solutions 

End of loop 

Models have been developed with GAMS and solver CPLEX10. GAMS (General Algebraic 
Modelling System) is a modelling system for mathematical programming problems (Brooke et al, 
1988) consisting of a language compiler and a set of integrated solvers.  
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3 Data 

For simulations, we used different data on winegrowing farms and plant protection practices. Source 
and description of data are detailed in table 1. Farm economic and financial information comes from 
the Panel Data of the French Farm Accountancy Data Network (FADN)1. In our sample of 534 
winegrowers followed between 2002 and 2006, there is a strong inter-firm and interregional 
heterogeneity. For example, the size of vineyard goes from 0.8 to 148.8 hectares (mean: 20.8; σ: 17.4). 
The average 5 years turn-over goes from 7,270 to 1,993,337 € (mean: 208,747; σ: 215,279).  

Data on pesticides could not be used as FADN does not report physical information and even don’t 
differentiate expenditures by active substance or Plant Protection Products category (herbicides, 
fungicides, insecticides). Therefore, real application rate and commercial products are extracted from 
the Winegrape cultural practices survey conducted by the Ministry for Agriculture and Fisheries on 
5216 vine plots in 2006. We aggregated information at the local scale, with 23 wine places such as 
Médoc, Libournais, Côtes and Entre-deux-mers in the Bordeaux region. Within these areas, growers 
face similar pests and climatic environment and have comparable production systems (grape varietals, 
vine density, yield, trellising system …). We calculated the average application rate by area, allowing 
then to apply different kind of taxes on pesticides, either on commercial products either on active 
substances. We also used the Input costs in Viticulture and Oenology data base2. We discriminate the 
herbicides from the other pesticides, as herbicides are applied with different equipment than those used 
for canopy spraying and therefore not concerned with application rate reduction. The simulated 
average pesticides cost is 414 €.ha-1 (82 € for herbicides and 331 € for fungicides and insecticides), 
ranging from 129 to 825 €.ha-1. 

 

Table 1: Data description.  
Data type Scale Source Data base description 
Farm 
economic 
and financial 
data 
 

Individual. Panel 
Data of 534 French 
wine grape farms 
over a 5 years 
period. 

Farm Accountancy Data Network. 
Quality wine, Wine other than 
quality. French Ministry of 
Agriculture (Agreste, 2002-2006).  
 

Vine and other crops area, 
production, turn over, labour, 
costs, land and buildings, stocks, 
circulating capital, debts, grants 
and subsidies. 
 

Fungicides 
application 
 
 
 

Local. 2006 survey 
of 5216 vine plots 
in the main 
winegrowing 
regions. 

Winegrape cultural practices 
survey. French Ministry of 
Agriculture (Agreste, 2006).  

Vine density, yield, cultural 
practices, use of herbicides, 
fungicides and insecticides 
(Frequency, date of application,  
PPE name and dose) 

PPP prices 
 

National. Reported 
prices.  

Input costs in Viticulture and 
Oenology 35th edition and 
following (Bonet et al., 2006). 

Plant Protection Products, unit 
costs, active substance., official 
application rate  

 

To assess investment, we considered five precision spraying systems named A, B+, B, B- and C. 
(Table 2). Appendix 3 provides a brief description of these PF systems. Choice D refers to the no-
investment in PF, the farmer keeping his equipment used presently. The systems are taken from 
commercially available packages and costs data come from Cemagref Montpellier. Because of the 
range of market purchase prices for this PF equipment, the median of the price range was used. 
Fungicides savings data comes from field trials recently conducted by the French Institute of Vine 
(Davy and Heinzlé, 2009; Heinzlé and Florent, 2010) and Cemagref Montpellier (De Rudnicki et al. 
2009, 2010; Ruelle and De Rudnicki 2009). 

 

 

                                                 
1 FADN http://ec.europa.eu/agriculture/rica/index_en.cfm. 
2 The data file has been compiled by INRA Montpellier during a previous study (Mezière and al., 2009) and 
kindly provided to us. 
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Table 2: Technical references for Precision spraying systems. 

Low Med High
C: basic 3500 5% 10% 20%
B-: tunnel sprayer 10000 5% 15% 30%
B: tactical control 20000 10% 24% 41%
B+: spatial control 35000 15% 32% 51%
A: embedded control 67500 28% 44% 61%

System* Purchasing 
price (€)

Fungicides savings (%)

* See details in Appendix 3. 
Sources: Costs data: Cemagref Montpellier. Fungicides savings: field trials 
of French Institute of Vine and Cemagref Montpellier. 

 
Excepted for Plant Protection Products, information on plant protection strategies is scarce particularly 
on incidental expenses with strategy s1. With a reasoning strategy for application, farmers reduce 
application rates, especially the years with low fungal diseases pressure. Neither this information on 
reduction rate nor probabilities values for the infection pressure is available to date. We consider 
nevertheless constant additional expenses of 100 €.ha-1 for strategy s1 corresponding to information 
procurement, training and extension services. Similarly, we chose to adjust the application rates 
depending of the level of downy/powdery mildews and botrytis (Table 3). 

 
Table 3:  Pesticides rate adjustment according to fungal diseases pressure. 
Strategy s0 s0 s0 s1 s1 s1

Diseases pressure Low Med High Low Med High

Application rate (1=ref.) 1.2 1.2 1.2 0.8 1 1.2   

 

Comparison of models 

Results concerning strategies from the Expected income, Worst of cases and Best of cases models are 
presented in table 4. From the sample used in this study, analysis has been extrapolated to all the 
vineyard farms of France using the weighting provided by the FADN. As we could expect, with worst 
and best of cases functions, optimal strategies are respectively s1 and s0 for all the farms. With the 
average and Mean-Standard deviation functions, all the farms except one chose the s1 strategy. This 
result underestimates very likely the reality of farms plant protection strategies. From the Winegrape 
cultural practices survey (Agreste, 2006), we know indeed that s0 strategy which is mainly represented 
in the Champagne region represents though 14% of the group of farms. 

 
Table 4: Models outcomes on the strategy choice. 

model Worst (safety first) Best (optimistic)
strategy S0 S1 S0 S1 S0 S1

sample 1 533 534 534 1 533
population 64 24026 24090 24090 64 24026
percentage 0,3 99,7 100 100 0,3 99,7

Expected income Mean-STD Utility

 
 
Table 5: Models outcomes on the investment decision. 
model
strategy D C D C D C B- D C
sample 473 61 523 11 422 107 5 476 58
population 22064 2026 23752 338 20153 3789 149 22166 1924
percentage 91,6 8,4 98,6 1,4 83,7 15,7 0,6 92 8

Expected income Worst (safety first) Mean-STD UtilityBest (optimistic)
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4 Assessment of Environmental Policy instruments  

To foster reduction of the use of pesticides amongst vineyard growers, we intend to study the impact 
of canonical Environmental Policy instruments based on ecotaxes and “green” subsidies. Models are 
used to first assess the effect of taxes which by increasing pesticides application costs make then 
investment in PF equipment economically more interesting. Since 1996, Denmark has a differentiated 
levy on pesticides (Hoevenagel et al., 1999). The percentage of tax is nowadays 54% of the retail price 
for insecticides, and 54% for herbicides and fungicides. The non-point source pollution tax set by the 
French Water Law and collected on pesticides sellers by regional Water agencies since 2008 is based 
on four categories of actives substances, depending of the environmental impact: in 2010, the levy is 
5.1 €.Kg-1 for category I (Toxic, very toxic, carcinogenic, mutagenic or toxic for reproduction), 2.0 € 
for category II (Harmful for the environment), 0.9 € for category III (Mineral substances harmful for 
the environment) and 0.0 for category IV (Other active substances). Only results with the French water 
law tax are presented here.  

Computation with data from input costs and winegrape survey shows that the actual tax pressure on 
French winegrowers is low, 4% on average, or 18 €.ha-1 for a PPP spending of 432 €.ha-1. To change 
behaviour, tax should be much higher. In the DSP simulation, we set up six different levels of Water 
law tax: t0: no tax; t1: actual tax; t2: t1*3; t3: t1*10; t4: t1*30; t5: t1*100.. 

Subsidy to investment in pesticides saving technology is another incentive to encourage PPP 
reduction. Since 2007, a French governmental program supports 40% of investment cost, with a 
ceiling of 30000 € by farm. We simulate six different levels of support: sb0 (no subsidy), sb1 (40% of 
investment cost, with 30000 € ceiling), sb2 (60%), sb3 (80%), sb4 (40% with 60000€ ceiling), sb5 
(40% with 100000 € ceiling). 

Effects of taxes and green investment subsidies with the Mean-STD Utility model are presented in 
Appendix 2 and summarized in figures 3 and 4. More results could be found in Souville (2010). 
Without public incentive, only the basic system C is profitable for a significant number of 
winegrowers, more than 10% of the sample (Figure 3, t0). As expected, the number of farms investing 
in PF technology increases with the level of taxes. Nevertheless, amongst the five systems appraised, 
the basic system C remains by large the most widely adopted. The other systems remain generally too 
expensive for winegrowers, even with a relatively hard tax pressure (note that the B- system is never 
chosen). 

There is a serious concern about the social acceptability of higher taxes. Last, we can notice from tax 
t5, the reversal of the trend because of increasing financial constraints: the highest the level of taxes is, 
the most active they are; however, if fiscal pressure raises too much, shortage of profits constraints 
investment.  

With green investment subsidies (Figure 4), there is no more taking on farmer’s income and therefore 
no activation of credit access constraint. We see that increasing the rate of subvention (sb2, sb3) is 
more effective that the subsidy base (sb4, sb5). However such program is supported by public 
founding and leads to a suboptimal level of PPP use (Baumol and Oates, 1988). A tax scheme with 
compensation would be another more efficient instrument. 
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Figure 3. Results of an increase in French Water law tax (differentiation by toxicity). 
Legend: t0: no tax; t1: actual tax; t2: t1x3; t3: t1x10; t4: t1x30; t5: t1x100. 
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Figure 4. Results of a green investment subsidy. Legend: sb0 (no support), sb1 (40% of 
investment cost, with 30000 € ceiling), sb2 (60%), sb3 (80%), sb4 (40% with 60000€ ceiling), sb5 
(40% with 100000 € ceiling). 
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5 Conclusion  

In order to assess the potential adoption of pesticides-saving technologies by French winegrowing 
farms, we elaborated a Discrete Stochastic Programming model and conducted microsimulations on 
FADN and plant protection practices data. The main result is that only the basic precision spraying 
systems available will be adopted by a significant number of winegrowers, even with strong 
governmental incentives. French farms are generally too small for high-tech systems that need larger 
vine acreage to spread investment costs. These systems are probably more suitable for agricultural 
subcontractors or for larger US, Australian or South African estates. Moreover, with taxes on 
pesticides, liquidity constraints on farms are increased; however, the cash balance and credit 
constraints could be further formulated more smoothly than it is presently. Another way of modelling 
improvement is to better represent bio-economic relationships; levels of fungal disease pressure used 
in DSP modelling are extremely simplified with three levels with same probabilities whatever the 
geographic area; furthermore these events are translated by a determinist modulation of quantities. 
These limits to models developed so far will be anyhow further overcome with additional 
epidemiologic data. The next step of the work will be then to integrate chronological series on fungus 
disease pressure and grape yield response with data from regional fields network. 

 
 
 
 



 13

References 
 
Adrian, A. M., Norwood, S. H. and Mask, P. L. (2005). "Producers' perceptions and attitudes toward 
precision agriculture technologies." Computers and Electronics in Agriculture 48(3): 256-271. 

Agreste (2002-2006). FADN database. Paris: French Ministry for Agriculture and Fisheries. 

Agreste (2006). Winegrape cultural practices database. Paris: French Ministry for Agriculture and 
Fisheries. 

Aplan, J. and Hauer, G. (1993). Discrete stochastic programming: concepts, examples and a review of 
empirical applications. St. Paul, MN: University of Minnesota. 

Arnó, J., Martínez-Casasnovas, J. A., Ribes-Dasi, M. and Ros, J. R. (2009 ). "Review. Precision 
Viticulture. Research topics, challenges and opportunities in site-specific vineyard management." 
Spanish Journal of Agricultural Research 7(4): 779-790. 

Audsley, E. and Wheeler, J. (1978). "The Annual Cost of Machinery Calculated Using Actual Cash 
Flows." Journal of Agricultural Engineering Research 23: 189-201. 

Barry, P. J. and Robison, L. J. (2001). "Agricultural finance: Credit, credit constraints, and 
consequences." In L. G. Bruce and C. R. Gordon (eds.), Handbook of Agricultural Economics pp. 513-
571): Elsevier. 

Baumol, W. J. and Oates, W. E. (1988). The Theory of Environmental Policy. Cambridge: Cambridge 
University Press. 

Benjamin, C. and Phimister, E. (2002). "Does Capital Market Structure Affect Farm Investment? A 
Comparison Using French and British Farm-Level Panel Data." American Journal of Agricultural 
Economics 84(4): 1115-1129. 

Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Programming. Dordrecht: Springer. 

Bocquého, G. and Jacquet, F. (2010). "The adoption of switchgrass and miscanthus by farmers: Impact 
of liquidity constraints and risk preferences." Energy Policy 38(5): 2598-2607. 

Bonet, E., Caboulet, D. and Guisset, M. (2006). Input costs in Viticulture and Oenology, 35th edition: 
ITV and CA Roussillon. 

Bonicelli, B., Naud, O., Rousset, S., Sinfort, C., De Rudnicki, V., Lescot, J. M., Ruelle, B., Scheyer, 
L. and Cotteux, E. (2010). "The challenge for precision spraying." AgEng 2010 Clermont-Ferrand 
(FR). 

Brooke, A., Kendrick D., Meeraus A., (1988). GAMS: A User's Guide. The Scientific Press, South. 
San Francisco, CA, 1988. 

Buysse, J., van Huylenbroeck, G. and Lauwers, L. (2007). "Normative, positive and econometric 
mathematical programming as tools for incorporation of multifunctionality in agricultural policy 
modelling." Agriculture, Ecosystems, and Environment 120(1): 70-81. 

Cadot, J. (2008). Asymétrie d'information dans la relation banque-entreprise : proposition d'un modèle 
adaptatif; le cas de l'installation en viticulture [Information asymmetry in the bank-firm relationship : 
an adaptive model ; the case of vineyard entrepreneurship]. PhD Thesis. Université Montpellier 2. 

Cortignani, R., Dono, G., Doro, L., Ledda, L. and Mazzapicchio, G. (2010). "An evaluation of the 
economic impact of Climate Change through a three-stages Discrete Stochastic Programming model." 
120th EAAE Seminar : External Costs of Farming Activities. Chania, Greece. 

Davy, A. and Heinzlé, Y. (2009). "Controlled reduction of doses of agricultural pesticides." Progrès 
Agricole et Viticole 126(19): 435-440  

De Rudnicki, V., Ruelle, B., Douchin, M. and Bellon Maurel, V. (2009). "Embedded ICT technology 
on sprayers in order to reduce water pollution; the Aware project", FRUTIC 09, 8th Fruit Nut and 
Vegetable Production Engineering Symposium. Concepcion, CHL. 



 14

De Rudnicki, V., Ruelle, B. and Scheyer, L. (2010). "NICT: New Tools to Control Phytochemical 
Treatments and Traceability" In S. Delrot, H. Medrano, E. Or, L. Bavaresco and S. Grando (eds.), 
Methodologies and Results in Grapevine Research pp. 259-275). Dordrecht: Springer. 

Fernandez-Cornejo, J. (1998). "Environmental and economic consequences of technology adoption : 
IPM in viticulture." Agricultural Economics 18: 145-155. 

Ford, S. A. and Musser, W. N. (1994). "The Lease-Purchase Decision for Agricultural Assets." 
American Journal of Agricultural Economics 76(2): 277-285. 

Godwin, R. J., Richards, T. E., Wood, G. A., Welsh, J. P. and Knight, S. M. (2003). "An Economic 
Analysis of the Potential for Precision Farming in UK Cereal Production." Biosystems Engineering 
84(4): 533-545. 

Hannin, H., Couderc, J.-P., D'Hauteville, F. and Montaigne, E. (2010). La vigne et le vin. Mutations 
économiques en France et dans le monde. Paris : La Documentation Française. 

Greiner, R., Patterson, L. and Miller, O. (2009). "Motivations, risk perceptions and adoption of 
conservation practices by farmers." Agricultural systems 99(2-3): 86-104. 

Hazell, P. B. and Norton, R. D. (1986). Mathematical Programming for Economic Analysis in 
Agriculture, chapter 5 : Risk in the farm model. New York: Macmillan Publishing Company. 

Heijbroek, A. (2007). Changing competitiveness in the wine industry - France. Amsterdam: Rabobank 
International. 

Heinzlé, Y. C., Sébastien, Jean-Noël, P., Nathan, W., Philippe, C. and Florent, B. (2010). "Optipulvé, 
la précision d'application pour optimiser les doses: Compte-rendu de sept années d'expérimentation en 
vignes étroites." Phytoma, la défense des végétaux 638: 36-42. 

Hoevenagel, R., Van Noort, E. and De Kok, R. (1999). Study on a European Union wide regulatory 
framework for levies on pesticides. Report commissioned by European Commission / DG XI. 
Zoetermeer. 

Jacquet, F. and Pluvinage, J. (1997). "Climatic uncertainty and farm policy: A discrete stochastic 
programming model for cereal-livestock farms in Algeria." Agricultural Systems 53(4): 387-407. 

Kingwell, R. S., Pannell, D. J. and Robinson, S. D. (1993). "Tactical responses to seasonal conditions 
in whole-farm planning in Western Australia." Agricultural Economics 8(3): 211-226. 

Lamb, D., Bramley, R. and Hall, A. (2004). "Precision Viticulture - An Australian perspective." Acta 
Horticulturae 640: 15-25. 

Léger, B., Cartolaro, P., Delière, L., Delbac, L., Clerjeau, M. and Naud, O. (2007). "An expert based 
crop protection decision strategy against grapevine’s powdery and downy mildews epidemics: Part 1) 
formalization." Meeting of the IOBC/WPRS Working Group «Integrated Control in Viticulture». 
Marsala, Sicily. 

Llorens, J., Gil, E., Llop, J. and Escolà, A. (2010). "Variable rate dosing in precision viticulture: Use 
of electronic devices to improve application efficiency." Crop Protection 29(3): 239-248. 

Louhichi, K., Véronique, A. and Grimaud, P. (2004). "A dynamic model to analyse the bio-technical 
and socio-economic interactions in dairy farming systems at Reunion Island." Animal Research 53: 
363-382. 

Maatman, A., Schweigman, C., Ruijs, A. and Vlerk, M. H. v. d. (2002). "Modeling Farmers' Response 
to Uncertain Rainfall in Burkina Faso: A Stochastic Programming Approach." Operations Research 
50(3): 399-414. 

Marra, M., Pannell, D. J. and Abadi Ghadim, A. (2003). "The economics of risk, uncertainty and 
learning in the adoption of new agricultural technologies: where are we on the learning curve?" 
Agricultural systems 75(2-3): 215-234. 



 15

Maurel, C. and Viviani, J.-L. (2010). "Export performance and financial constraint in French wine 
SMEs." 5th International Academy of Wine Business Research Conference. Auckland (NZ). 

Mezière, D., Gary, C., Barbier, J. M., Rio, P., Bernos, L., Clément, C., Constant, N., Delière, L., 
Forget, D., Grosman, J., Molot, B., Sauvage, D. and Sentenac, G. (2009). Ecophyto R&D, vers des 
systèmes de culture économes en produits phytosanitaires. Tome III, analyse comparative de différents 
systèmes en viticulture. Paris: MEEDDAT-MAP-INRA. 

Musser, W. N., Tew, B. V. and White, F. C. (1986). "Choice of Depreciation Methods for Farm 
Firms." American Journal of Agricultural Economics 68(4): 980-989. 

Rae, A. N. (1971). "An Empirical Application and Evaluation of Discrete Stochastic Programming in 
Farm Management." American Journal of Agricultural Economics 53(4): 625-638. 

Rae, A. N. (1971). "Stochastic Programming, Utility, and Sequential Decision Problems in Farm 
Management." American Journal of Agricultural Economics 53(3): 448-460. 

Rae, A. N. (1994). Agricultural Management Economics: Activity Analysis and Decision Making. 
CABI Publishing. 

Ridier, A. and Jacquet, F. (2002). "Decoupling Direct Payments and the Dynamics of Decisions under 
Price Risk in Cattle Farms." Journal of Agricultural Economics 53(3): 549-565. 

Ruelle, B. and De Rudnicki, V. (2009). AWARE : A Water Assessment to Respect the Environment - 
Final report. LIFE projet technical report. Montpellier: CEMAGREF/ UMR ITAP. 

Souville, G. (2010). Pulvérisation de précision en viticulture : modélisation en programmation 
stochastique discrète des choix d’investissement et de stratégie de protection phytosanitaire [Precision 
spraying in viticulture - Discrete stochastic programming for choosing investment and strategies for 
plant protection treatments]. Master Thesis. Université Bordeaux 1. 

Sunding, D. and Zilberman, D. (2001). "The agricultural innovation process: Research and technology 
adoption in a changing agricultural sector." In L. G. Bruce and C. R. Gordon (eds.), Handbook of 
Agricultural Economics pp. 207-261): Elsevier. 

Tisseyre, B., Ojeda, H. and Taylor, J. (2007). "New technologies and methodologies for site-specific 
viticulture." International Journal of wine and vine research 41(2): 63-76. 

Tozer, P. R. (2009). "Uncertainty and investment in precision agriculture – Is it worth the money?" 
Agricultural Systems 100: 80-87. 

Ugaglia, A., Del’Homme, B. and Filippi, M. (2008). "Determinants of pesticides reduction in grape 
growing farms." DIME International Conference “Innovation, sustainabilty and policy”. GREThA 
Université Montesquieu, Bordeaux IV, France. 

Villalba, D., Ripoll, G., Ruiz, R. and Bernués, A. (2010). "Long-term stochastic simulation of 
mountain beef cattle herds under diverse management strategies." Agricultural systems 103: 210-220. 

 
 



 16

Appendix 1. Expected Income Model 
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Index  

s: strategies, e : type of equipment, n : years 
 
Variables 

Bs= 1 if strategy s is chosen 
      = 0 else. 

I1e or I2e equal 1 if farmer invests in equipment e. I1e= 1 if equipment is bought without 
borrowing I2e=1 if investment with borrowing 
Ie : Sum of I1e and I2e  

,s e s eBI B I= ×   
 
Constraints 

(1) Only one strategy is chosen.  
(2) Only one investment maximum could be made 
(3) Enables calculation of variable Ie.  
(4) and (5) enable multiplication between Bs and Ie  . 

 
Data  
area   the size of the farm. 
Cpp   the costs of Plant Protection Products used with strategy 1 for a year with average infection 
pressure. 
vCss ,fCss  correspond to the sum of other costs related to one strategy  (like e.g. observation costs, ) with  

respectively one element varying according to the concerned area and another constant 
element . 

Crepe  repair and maintenance costs for equipment e   
Cpure  initial purchase cost for equipment e   
Re  reimbursement cost of the loan made for purchasing equipment e. 
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   Discount rate where g is the inflation rate and r is the interest rate  
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Random data 
To   the turnover of the farm for year n 
recs  the percentage of PPP savings (or loss avoided)  
coefRs   the percentage of the reference Plant Protection Product which is applied according to the 
strategy  
 
 

Additional Constraints (6) and (7) 

If equipment is bought with a loan (6) 

( )2 6I capBor                        e  e e

0 if  predY-minHc-R <0ecapBor   e 1 else 
  

≤ ∀

⎧⎪
= ⎨
⎪⎩

 

With 
predY last farm income minus minimum Household consumption and liabilities (minHc). Thus 
only positive revenue could have access to loan or buy cash saving then on loan cost, interests 
and commissions. 

 

 

If equipment is bought cash (7) 

( )1                              e 7

0 if  0  

1 else                    

e e

e e

I capCash

capCash CB Cpur

≤ ∀

= − <⎧
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CB: Cash Balance = To- Cpp –Cs (other costs of the strategy)  
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Appendix 2. Details of model outcomes for taxes and subsidies 
 

 
Table A1. Model outcomes with the Mean-STD model and French Water law taxes  

Taxes D C B B+ A s0 s1
t0 sample 476 58 1 533
t0 population 22166 1924 64 24026
t0 percentage 92 8 0,3 99,7
t1 sample 472 62 1 533
t1 population 22041 2049 64 24026
t1 percentage 91,5 8,5 0,3 99,7
t2 sample 461 73 1 533
t2 population 21673 2418 64 24026
t2 percentage 90 10 0,3 99,7
t3 sample 436 95 3 534
t3 population 20691 3322 77 24090
t3 percentage 85,9 13,8 0,3 100
t4 sample 396 131 6 1 534
t4 population 18972 4888 198 32 24090
t4 percentage 78,8 20,3 0,8 0,1 100
t5 sample 406 114 10 3 1 534
t5 population 19473 4131 370 84 32 24090
t5 percentage 80,8 17,1 1,5 0,3 0,1 100  

 
 
 
Table A2. Model outcomes with the Mean-STD model and Green investment subsidies 

Subsidies D C B s0 s1
sb0 sample 476 58 1 533
sb0 population 22166 1924 64 24026
sb0 percentage 92 8 0,3 99,7
sb1 sample 425 107 2 1 533
sb1 population 20260 3785 45 64 24026
sb1 percentage 84,1 15,7 0,2 0,3 99,7
sb2 sample 388 139 7 1 533
sb2 population 18780 5098 212 64 24026
sb2 percentage 78 21,2 0,9 0,3 99,7
sb3 sample 319 204 11 1 533
sb3 population 15953 7799 338 64 24026
sb3 percentage 66,2 32,4 1,4 0,3 99,7
sb4 sample 425 107 2 1 533
sb4 population 20260 3785 45 64 24026
sb4 percentage 84,1 15,7 0,2 0,3 99,7
sb5 sample 425 107 2 1 533
sb5 population 20260 3785 45 64 24026
sb5 percentage 84,1 15,7 0,2 0,3 99,7
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Appendix 3. Technical references for Precision spraying systems 

 
  D C B-  B B+ A 

  No precision  Price 
(€) Basic  Price 

(€) 
Tunnel 
sprayer 

 Price 
(€)  Tactical 

control 
 Price 

(€) Spatial control  Price 
(€) 

Embedded 
control 

  Price 
(€) 

Equipment Sprayer Pneumatic     
4 rows 7 km/h 

10000 Pneumatic    
4 rows 7 km/h

10000 Side/side     
4 rows 5 km/h

15000  Side/side     
4 rows 5 km/h

20000 Side/side      
4 rows 5 km/h 

30000 Side/side      
5 rows 7 km/h 

40000 

 Pesticides 
injection 

No  No  Yes   Yes  Yes  Direct injection  
3 tanks 

15000 

 Equipment   10000  10000  15000   20000  30000  55000 

               

Information 
Technology 

Meteorological 
station 

No  Fixed 500 On 
traceability 

system 

1000  On 
traceability 

system 

1000 On traceability 
system 

1000 Fixed + mobile 2000 

 Recommendation 
map 

No  No  No   No  No  Yes  500 

 LAI/NDVI 
measurement 

No  No  No   Pocket 
Sensor 

3000 Pocket Sensor 3000 On-machine 
sensor 

5000 

 Canopy geometry 
measurement 

No  No  No   Pocket 
Sensor 

1000 Pocket Sensor 1000 On-machine 
sensor 

5000 

 Record keeping / 
Traceability   

Manual  Basic 3000 Basic 3000  Basic 3000 Traceability on  
tractor  

5000 Traceability on 
harvest 
machine 

5000 

 Data processing 
software 

No  No  Plot 1000  Plot 2000 GIS 5000 GIS 5000 

 IT (€)  0  3500  5000   10000  15000  22500 

Spray 
System 

Purchase price 
(€) 

 10000    13500    20000     30000    45000    77500 

 Δ with No PF  0    3500    10000     20000    35000    67500 

Fungicides 
savings (%) 

Low-Med-High 0  5 10 20  5 15 30   10 24 41  15 32 51  28 44 61  

Sources: Cemagref Montpellier and French Institute of Vine. 


