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1. Introduction 

Environmental problems are often caused by more than one agent. An illustrative 

example is that of several firms who share a hazardous waste site which may adversely 

affect neighboring communities. Under the polluter-pays-principle, those who pollute 

are financially responsible for any damages. \Ve ask how polluting agents should 

divide the costs associated with such damages. The problem is complicated by the 

fact. that. no:mnally, it is not possible to identify the individual contribution of each 

agent to overaJl damagt:s. In the homogeneous case, firms engage in the same type 

of damage-causing activity and ,overall damages depend on the aggregate level of 

acti,'ity. Thus, although ,ye cannot identify the individual contributions to overall 

damages. we can identify the individual contributions to aggregate activity. \Ve can 

then use thE' comparison of levels of activity as a means of determining the respective 

cost assig,11ments. However, when firms engage in different types of damage-causing 

arti"ities - the 11.(( erogeneous case - even such indirect comparisons are no longer 

feasible. 

In tllis paper, ,ye propose a specific procedure, the Linear Damage Equivalent 

Mechanism (LDE), to solve the cost-sharing problem in heterogeneous cases. \Ve now 

discuss b;:-iefiy hc.\\' it works. 

Imagine t,,'o firms that, as a result of their productive processes, cause pollution. In 

the simplest case. damages are a linear function of their output levels yl and y2, that is, 

DL (yl: li) = plyl + p2!/, where pi > 0 represents the marginal contribution of output 

yi to damages. In this case, we think all would agree that the obvious apportionment 

of damages is that in which each agent pays its individual contribution, i.e., piyi. This 

solution is fair: on what basis should one agent pay part of the contribution of the 

other? Moreover, as the production of one agent does not affect the cost assignment of 
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the ot.her agent, it leads firms to produce the efficient output levels. 1 In consequence, 

this division of damages leads to an obvious distribution of total surplus (total benefits 

from production minus resulting damages), namely that in which each agent receives 

its private bem~fits from production and pays its individual contribution to damages. 

Consider now a more general situation in which it is not possible to separate that 

part. of o\rerall damages for which each agent is responsible. Suppose, however, that the 

total surplus is equal to that which would have occurred under some, possibly fictitious, 

linear damage technology. Then, having agreed how to distribute the surplus in the 

lineal' context, 'H' might deem such a distribution appropriate here as well. The LDE 

consist is of identifying an appropriate reference linear technology and guarantying each 

agent the individual surplus it ,vould obtain in the linear case. This permits us to 

obtain the respective cost assignments of actual damages. 

This vrocedure is based on an original idea suggested by ~las-Colell (1980) in the 

context of a one invut-one output- production mode12 , which was later referred to 

as t.lie Cons/ant Rc-funiS Equimlent Mechanism (CRE) in Ivloulin (1987). It consists 

of selecting an efficient allocation for an arbitrary production function such that the 

same utility vector is achieved under some, possibly fictitious, constant returns to 

scale technology.a Several papers (l\Joulin (1987, 1990a, 1990b), Moulin and Roemer 

(1989) and Fleurbaey and ~faniquet (1994» offer alternative characterizations of this 

first-be:;;t E'olutioI'. on axiomatic grounds. 

Vnlike the CRE, the LDE is defined not only along the efficient frontier but for 

the entire feasible set. That is, with each list of feasible outputs, we associate a 

I ::\ote that t his solution to the sharing problem (i.e., each agent paying its own contribution) is 
"alid not only for the linear case but for every damage function separable in both outputs, that is, 
for eycry case in which we can perfectly identify the contribution of each injurer to damages. 

2This model refers to the problem in which agents contribute some homogeneous input (say 
labor) 1.0 jointly produce a single output which is then to be divided among them. The homogeneity 
is reflected in the fact that input contributions enter additively in the production function. 

3To be precise, the CRE was originally defined as a surplus-sharing mechanism. However, the 
coot-sharing problem and t.he surplus sharing problem are reciprocal; the former refers to allocating 
the costs a.:;sociated with gi"en outputs and the latter to allocating the benefits associated with given 
inputs. Consequently. the same mechanism can be easily adapted to both. 
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reference linear damage technology which will enable us to identify the corresponding 

assignment of nctnal damages. Consequently, we can consider the strategic behavior 

of the agents under the mechanism. 

In this paper. we study two types of properties of the LDE: its axiomatic properties 

(i.e., those v;hich pertain in general) and its strategic properties (i.e., those which 

pertain in equilibrium). Regarding the former, we establish that the LDE satisfies 

various equity and/or monotonicity properties which have appeared in the cost-sharing 

literature. In addition, the LDE is scale invariant, that is, the cost assignments are 

immune to arbitrary rescaling of the units. 4 

Concerning the strategic properties, suppose firms know the LDE 'will be employed 

to apportion the damages. Then, the mechanism induces a game where each firm 

chooses its output l€Yel. \Ve establish that the induced game has an unambiguous 

noncooperative prediction, a unique Nash equilibrium which is also strong (that is, 

robust to coalitional deviations as ' ... ·ell). !\Ioreover, the equilibrium is efficient. This 

result constitutes a clear advantage with respect to the previous literature in which the 

CRE allocation \';as required to be efficient by definition. \Ve instead obtain efficiency 

as a result of the strategic behavior by firms. 

Two nowl features of our study are the following. First, we find that under the 

LDE there ma~' Le circumstances under which one agent is subsidized by the remain

ing agents. This result is in sharp contrast with the existing cost-sharing literature, 

in which there is no allowance for subsidies. However, as agents share costs, it is 

conceivable that an otherwise profitable firm might be persuaded to restrict its output 

level thus generating a positive pecuniary externality for the remaining agents. If it 

were to do so, it would warrant compensation for its forgone profits. 

Second, in heterogeneous cases, the direct comparison of levels of activity has no 

obvious meaning. Consequently, we propose two measures that capture the relevance 

4In our opinion. this is an important property for heterogeneous problems because, in principle, 
the choice of units of account of different outputs may seem arbitrary, as outputs are of a different 
nature. 
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of each firm in the problem as a whole: the relative damage impact and the relative 

profitability, which evaluate the effect on damages and benefits, respectively, of an in

crease in one output relative to that of another. \Ve demonstrate that the LDE induces 

firms to react appropriately: it induces a urm to produce less when it oecomes more 

harmful (that is, \\'hen its relative damage impact increases), and to produce more 

when it becomes more profitable (that is, when its relative profitability increases). 

I\ote that the LDE is defined under a complete information structure, i.e., the reg

ulator is assumed to know both agents' benefit functions and the damage technology. 

\Vithin this context. we have found a cost-sharing mechanism that is efficient, budget

balanced (i.e .. costs are exactly covered) and which induces a game "Tith a unique non

cooperati\'e equilibrium. Alternatively, Green, Kohlberg and Laffont (1976) showed 

that, in situatiuns in which the regulator knows the damage function but does not have 

perfect information about the benefit functions of the agents, there is no cost-sharing 

mechanism "'hich satis·fies the three above mentioned properties. Consequently, this 

delimits the trade-off between performance and information. 

To contrast the LDE \\Tith other known cost-sharing mechanisms, we distinguish 

between methods for the homogeneous and for the heterogeneous cases. In the homo

geneous casE', two prominent cost-sharing methods have been analyzed, both from an 

axiomatic and a strategic perspectiye: Average Cost Pricing (ACP) and Serial Cost 

Sharing (SCS) C~loulin and Shenker (1992, 1994)). ACP charges the average cost of 

aggregate production per unit of output, and SCS allocates the incremental costs of 

production eyenly among those firms that produce such units.5 These methods are 

characterized by different strategic properties, both of which are satisfied by the LDE. 

On the one hand, ACP is immune to manipulations by coalitions in the case in which 

°For example, if production levels are yl $ y2 $ ... $ yn, the cost that would result if the n agents 
were each to produce yl is dh'ided equally among them; the incremental cost when agent 1 produces 
yl and tIle remaining agents were each to produce y2 is divided equally among agents 2 through n; 
and so 011. 
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output is freely transferable among agents, while SCS is not.6 On the other hand, the 

strategic game'induced by SCS has a unique noncooperative equilibrium (a Nash equi

librium which is also strong) for every profile of convex preferences, provided agents 

cannot freely transfer output among themselves; ACP does not satisfy this property. 7 

110reover, equilibrium outcomes under either SCS or ACP are generally inefficient. 

In t.he heterogeneous case, there are only interesting strategic results for the discrete 

case (where output is indivisible). Moulin (1996) proposes the family of Incremen

tal Cost Sharing Methods (ICS).8 Such methods are characterized, under increasing 

marginal C08tS and supermodular costs, by the property that they induce a game with 

a unique noncooperative equilibrium. However, they are not scale invariant. 

In the continuous heterogeneous case, there are three main cost-sharing mecha

nisms: Shoplcy-Shllbik Cost Sharing (Shapley (1953), Shubik (1962)), Aumann-Shapley 

Pricing (BiIlera and Heath (1982), Tauman (1988)) and an extension of Serial Cost 

Sharing for the heterogeneous case (Friedman and 1Ioulin (1995)). The first two do 

not have nice strategic properties. \Vith respect to the latter, its strategic properties 

haw not yet been explured; however, it does not satisfy scale invariance. Generally, 

all these cost-sharing mechanisms for the heterogeneous case are inefficient. 

To our knmdedge, no existing cost-sharing mechanism for the heterogeneous case 

(either in the complete or in the incomplete information context) satisfies the strategic 

and effici0nQ' properties of the LDE. Moreover, those methods that have nice strategic 

properties fail to satisfy scale invariance. Consequently, for the complete information 

case considered here, the LDE provides an attractive method for allocating environ-

ment al costs among heterogeneous sources. 

Gender SCS, if output were freely transferable, the members of any coalition of agents would find 
it profitable to "announce'" their average production levels. 

71n generaL the game induced by ACP may not have a Nash equilibrium, or it may have multiple 
Nash equilibria. 

8If production lew·ls are (yl, y2, ... , yn), 1CS consist of constructing a sequence of 2:i yi elements, 
where agent i appears exactly yi times, and each unit is aIlocated to the corresponding agent, while 
it pays tIle marginal cost. 
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The remainder paper is organized as follO'ws. In the next section, we present the 

model and basic definitions. In Section 3, we define the Linear Damage Equivalent 

!vlechanism. In Section 4, we study its axiomatic properties, and in Section 5, we in

vestigate it.s strategic and efficiency properties. In Section 6, we discuss the possibility 

of situations in 'which one agent might be subsidized by the remaining agents. Section 

7 contains several comparative statics results. \\le conclude in Section 8. 

2. The Environmental Cost-Sharing Problem 

\Ve consider an industrial area composed of n firms, each producing a single output 

yi E R+ , i = 1, 2, ... , n. The production process generates benefits for t.he firms repre

sented by the functions Bi : 1R.+ ----t 1R.+, i = 1,2, ... , n, 'where Bi is twice continuously 

differentiable, strictl~· increasing, strictly concave and such that Bi (0) = 0.9 \Ve 

denot e thE' ~,et ()f all such functions by R 

As Cl Ly-prOQl:ct of their production activities, the firms jointly generate envi

ronmental damages measured by the function D : 1R.~ ----t 1R.+, where D IS twice 

continuousl~· differentiable, strictly increasing, convex and such that D (0) - o. 1IJ) 

denotes the set of such functions. 

""e assume that for any y=(y\y2, ... ,y71) E 1R.~, the n agents are financially 

respunsible for the resulting damages D (y). Then, if 4J = (cl}, ... , <p71) E 1R.71 represents 

the as::.ignment of damages, the indi11idual surplus for firm i is defined by Si (yi, <pi) = 
]3i (y") - <;i. 

Definition 2.1. A feasible allocation is a vector f = (y, 4J) E 1R.~ x 1R.n such that 

L~~l qi = D (y). Hre represent the set of feasible allocations by F. 

9\Ve use superscripts to denote agents. For functions of one variable, such as B i , we use the prime 
notatioll t.o denote derinltive5. For functions of several variables, we use subscripts to denote partial 
derh·atives. 
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Definition 2.2. A Par-eto efficient allocation is a vector f E F such that there does 

not exist f E F with si (i/, ~i) ~ Si (yi, </i) for every i, and with strict inequality for 

some i. P denotes the set of Pare to efficient allocations. 

Let § (y) dench€' the total surplus generated by y E IR.~, i.e., § (y) - L~l Bi (yi) -

D (y). Under our assumptions, § (y) has a unique global maximum y* E IR.~. There

fore, P can be expressed as follows: 

p = {(y*,<jJ) E IR.~ X IR.n I ~<pi = D(y*)} (2.1) 

Assllming an interif)r solution, P is characterized by the following conditions: 

n 

L cjJi = D (y*) 
i=1 

(2.2) 

i.e., by unique le\'els cl output (yh, .... yTl*) such that marginal benefits equal marginal 

damages LIl' earh i, and b~' any assignment of the resulting damages.1O 

l-ntil now, \\-e have defined the assignment of damages <jJ for a given y. However, we 

,,-ish to determinf:' a rule to apportion damages resulting from any feasible y. Formally, 

Definition 2.3. A sharing mechanism is a mapping <jJ : IR~ --t IR.n, v .. -here <jJ (y) 

= (91 (y). 412 (y) ... , q'>71 (y)), such that L~=l <pi (y) = D (y). Let <P be the set of all 

sharing mechan isms. 

As in Kranich (1994), we assume that the sharing mechanism is imposed exoge

neously and agents take it as given. Each sharing mechanism induces a game among 

IOIf we do not allo\\- for bankrupcty, which is the case of the Linear Damage Equivalent Mechanism 
described in Section 3, the cost assignments have both an upper and a lower bound. On the one 
hand, the indh'idual surplus for agent i is nonnegative, that is, Bi (yi*) - <pi ~ O. On the other 
hand. the indi"idual surplus for agent i can not be higher than total surplus, i.e., Bi (yi*) - <pi 5 
L;=1 Bj (y.i*) - D(y*). Therefore, we have D(y*) - L#iBi (yi*) 5 <pi 5 Bi (yi*) , for all i. 
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the agents, in the sense that agent i's choice a~ects agent j's payoff and vice versa. 

Formally, for every cl> E tI>, there exists an associated game f'" = {N, 1R~, h, p} , where 

N = {I, 2, ... , n} is the set of players; R+ is the set of strategies for each player; h is 

the outcome function, i.e., h: R~ --7 F, such that hi (y) = (yi,</i (y)) for each i; and 

p is the payoff function, i.e., p : R~ --7 Rn, such that pi (y) = Bi (yi) - <pi (y) , for 

each i. 

Before presenting the game-theoretic solution concepts we will concentrate on, 

we introduce the following notation. Let S denote any coalition of players, that is 

S ~ lV,S =I 0, and let yS E R~ be a feasible production plan for S, i.e., yS = (yi)iES. 

(y I ys) E m.~~ stands for the vector with ith component yi, for every i E S, and jth 

component Dj, for every j ~ s. \Ve abbreviate (y I y{i}) by (y I yi) . 

Definition 2.4. A Nash equilibrium of r'" is a ,rector y E R~ such that pi (y) > 

pi (y I y'i) , for all yi E TIt+, i = 1, ... , n. A Nash equilibrium allocation is the outcome 

resulting from a Sash equilibrium ofr<t>, that is, h (y) = (y,(/> (y)). 

Definition 2.5. A slrvng equilibrium of r<t> is a vector y E R~ such that there does 

not exist Et coalition 5 ~ N, S =I 0, and a deviation yS E R~ for S, such that, for all 

i E 8, 1/ (y I y8) > pi (y) . A strong equilibrium allocation is the outcome resulting 

from a strol1geqlliJiurium ofr"', that is, hey) = (Y,4>(Y)). 

3. The Linear Damage Equivalent Mechanism 

Consider the simple case in which the damage function is linear. Thus, suppose 

DL (y) = plyl + p2y2 + ... + pnyn, where pi > 0 is the marginal contribution of output 

yi to damages. Observe that we can always factor each pi into a common component 

p > 0 and an idiosyncratic component "l > 0, such that pi = p"'l, for all i. Therefore, 

v,;e can write DL (y) = P (,ylyl + 'Y2y2 + ... + 'Ynyn). 

The standard solution to the sharing problem in the linear case is for each agent 

to pay its individual contribution to overall damages. Each agent would then obtain 
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his maximum individual surplus in the following way: 

(3.1) 

Note that, appl;-ing the envelope theorem in (3.1), we obtain (if (p-yi) = -iY (P')'i) < 

0, where il (p'yi) :::: argmaxyiEIR+ {Bi (yi) - p'/yi} , and a ill (P,i) = -ii' (P,i) > o. 
That is~ maximum individual surplus in the linear case is strictly decreasing and con

vex in Jr/. 
Consider now a general nonlinear technology D E lIJ). Here the solution to the 

sharing problem is no longer obvious. Suppose y E IR.~ is given and imagine that 

actual surplus § (y) could be achieved by a linear technology D L , in which agents 

obtain individual surpluses as in (3.1). 

Each "/ in the linear technology would reflect some idiosyncratic feature of output 

i ,\-ith respect to the nonlinear technology. \Ve would suggest that an appropriate 

measure of the~e features would be in terms of their marginal contributions to damages 

evaluated at the efficient output leyels. In this way, the linear technology would be 

such that ,;;. = Di (y*). for all i. Kow, to determine the common component p, we 

use the assumption that the total surplus is the same under both the linear and the 

nonlinear pn:,blems. That is, we identify p (y) implicitly by: 

(3.2) 

Observe that. for a fixed y, the right hand side of (3.2) is a nonnegative scalar. 

110reover. "i. is strictly positive for all i, and thus the left hand side is a strictly de

creasing function of p, asymptotic to both the vertical and horizontal axes. Therefore, 

we obtain a mapping p : IR.~ ----+ IR.+ such that for each y EIR.~, P (y) ;::: 0 solves (3.2) . 

(Note that in the homogeneous case, the idiosyncratic components are equal, i.e., 

"i* = "j*. for all i and j. Thus, we can embed these in the common part and simply 

find pH (y) = P (y) ')!i* rather than p (y)). 
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\\Te thus haye two parallel problems that give rise to the same surplus. In the linear 

case, we agree 'that the standard distribution of total surplus is the appropriate one. 

Therefore, in the nonlinear case, we might deem this distribution appropriate as well. 

Then. under the LDE, the cost assignments are A{Y) = (,.V (y), ... ,>.n (y)) such that: 

(3.3) 

i.e., those t.hat ensure the same individual surpluses as in the reference linear case. 

Note that, by (3.2) and (3.3), the resulting cost assignments exactly cover damages, 

that is, 2:7.=1"V (y) = D (y). 

Definition 3.1. For any y E 1R.~, the Linear Damage Equivalent ~Mechanism assigns 

the ,'ector (y,.x (y)), where .x (y) is given by (3.1), (3.2) and (3.3), 

Remark 1. I\Tote that, if Bi had a fixed component (for instance, a fixed cost of 

production), that fact irould not affect the LDE allocation, since by (3.1) and (3.2) , it 

would cancel. Therefore, for simplicity, we have considered Bi (0) = 0, 'which should 

not be seen as Cl restricti,-e assumption. This means, by (3.1) , that (J'i (p,i*) ~ 0, for 

alli=l,2 .... ,lI. 

In Figure 1: we represent. the LDE allocation for the case of two agents and homo

geneous output. On the horizontal axis, we represent individual production yi as well 

as aggregate production (yl + y2). On the vertical axis, we represent total damages 

D (yl + y2) as ,,'ell as indiyidual cost assignments Ai (yl ,y2). The figure also includes 

iso-individual surplus curves for each agent. Each iso-individual surplus curve (that is, 

the set of points (yi, q'i) for which individual surplus is constant) is strictly increasing 

and concaVe in yij individual surplus increases to the southeast. ll 

Let fi and y2 be the actual levels produced by agents 1 and 2, respectively. These 

generate total damages D (yl + fl) to be divided among the agents. The LDE identi-
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fies the linear damage technology (or pH) such that it is possible to obtain the same 

total surplus as t.he actual one generated by y = (y1, y2).12 This is represented by 

pH (y) (yl + y2). For agent i, il is the optimal response with respect to the linear 

technology, where damages are divided according to the standard solution. This gen

erates maximum indiyidual surplus a i (pH (y)) . Then, the LDE allocates damages in 

such a ",ay that, for agent i, (yi, Ai (y)) lies on the same iso-individual surplus curve, 

a i (pH (y)) . That is, the LDE allocation guarantees each agent the same individual 

surplus it wuuld obtain if the damage technology were linear and damages were divided 

according to the standard solution. 13 

4. Axiomat.ic Properties of the LDE 

In this section, we consider yarious axiomatic properties of cost-sharing mechanisms 

proposed in the literature, and we compare the performance of the LDE 'with that of 

other methods. 

Speciflcall:v. "'e consider the following axioms: 

Axiom 1. <P I~ <I> sat isHes weak indi1,id'Ual rationalit.y (WIR) if, for all y E R~, yi = 0 

implies 1/ (y) S; U. 

Before presenting the next axiom, we introduce the following notation. Assume v,"e 

change the unit~ uf account of the outputs according to y = {3.y _ (f3lyl , f3'ly2, ... , f3n yn) , 

where Y E lR~ are now the releyant quantities. Denote by <pp the corresponding cost 

assignments in the transformed problem, where Bi (yi) = Bi (yi j f3i) for all i, and 

D (y) = D (y //3), where yjf3 = (yl j (31, ... , ynj (3n). 

lZRecall t.hat the reference linear technology in the homogeneous case is simply DL (y) = 
pH (y) (yl + yZ) . 

l3~ote that for clarity, we have omitted the aggregate benefit curve. However, since individual 
surplus is t he same at both fji and fji, clearly aggregate surplus at yl + y2 relative to D (yl + y2) is 
the same as that at fjl + fi relative to pH (y) (yl + y2) . 
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Axiom 2. 4> E ~ tlatisfies scale invariance (SI) if, for every f3 E IR~+, cp (y) -

4>13 (y/f3), l~'here 51 = f3. y. 

Axiom 3. 4> E ~ satisfies dem.and mono tonicity (DA1) if <p~ (y) > 0, for every i = 

1,2, ... , n. 

In the next axiom, and again in Lemma A.4, we denote by 4>D the assignment of 

costs under the damage technology D. 

• 
Axiom 4. cp E <I> satii:>-fies technological m.onot.onicity (TM) if, for all D, iJ E lIJ), 

iJ (y) ~ D (y) fur all y E IR~ implies cPb (y) ~ cPb (y), for all i. 

Xext, we define the s/.and alone surplus of agent i as the maximum surplus it would 

obtain if it ,,'ere the only agent cq.using damages, that is, 7I~ . .4. = maXyiElR+ § (0 I yi) . 

Axiom 5. <P E <I> satisfies stand alone upper bound (SAUB) if si (yi,cPi (y)) ::; 711 . .4., 

for all i = 1, 2, .... 11. 

Intuiti\'el? \VIR states that if an agent produces nothing, then it should not be 

charged a positive amount. This axiom differs from the standard indwidual mtionality 

axiom. in which an agent ,,·ho produces nothing pays nothing. However, as mentioned 

in the Introduct ion. "'e allow for the possibility of subsidies due to the pecuniary 

externalities amcmg firms. This is discussed at length in the next section. 

SI ll1eans that the unit of account in which a given output is measured should not 

matter, that. is. a change in the units should not affect the assignment of costs. 

D~I states that, as the output level increases, the corresponding cost assignment 

should also increase. 

According to T\I, if the damage technology worsens such that actual damages are 

higher for all y E 1R~ (for example, as a result of improved detection techniques), then 

all agents should incur an increase in their respective cost assignments. Consequently, 

no agent should be better-off after this technological change. The opposite result 

occurs if damages are affected by a positive shock. 
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Finally, SAtTB states that no agent included in the sharing problem should gain 

while the others lose as a result of the damage technology being convex. That is, 

all agents should suffer the consequences of the decreasing returns, or the individual 

surpluses should not exceed those they would obtain on their own. 

The performance of the LDE vis-a.-vis the above axioms is summarized in the 

follO\\'ing: 

Theorem 4.1. In general, the LDE satisfies "VIR, SI and DA1. For the homogeneous 

case, it also satisfies TAJ and SAUB. 

The proof is left to t he appendix. 

SI is an appealing property, especially for heterogeneous problems, where, in princi

ple, it is difficult to compare one output with another. SI says that arbitrary relabeling 

or rescaling of ,'ariables should not affect the allocation of costs. The Shapley-Shubik 

and Aumann-Shapley mechanisms satisfy this property. Howeyer, the Serial Cost 

)'lechanism for the heterogeneous case (Friedman and Moulin(1995)'s proposal for the 

diyisible case) does not. In the discrete case, the Incremental Cost Sharing 11echa

nisms (~I(lulin (1996)) also fail to satisfy SI. 

D:.I is important bc"th in terms of equity and incentives. \Vith respect to the 

latter, it plays a key role: if it were not satisfied, individuals could find it profitable 

to artificially raise their output levels in order to pay less. Aumann-Shapley Pricing 

does not satisfy this property. 

In the homogeneous case, Average Cost Pricing also satisfies TM. However, this 

property is not. satisfied by either the Serial Cost or the Shapley-Shubik mechanisms. 

\\re no\\' turn our attention to the strategic and efficiency properties of the LDE. 
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5. Strategic Analysis of the LDE 

In this section, we establish that the Nash equilibrium of the game induced by the 

LDE is unique and it is also strong. We also prove that the equilibrium is efficient. 

\Ye begin with t.he following lemma: 

Lemma 5.1. The mapping p : R~ - R+ has a unique global minimum at y*; also 

Pii > 0 for all i = 1, 2, ... , n. 

Proof. Observe tha1:, by (3.1) and (3.2), P and total surplus § are inversely related, 

since cri! < 0 and ~/* > 0, for all i = 1,2, ... , n. As § has a unique global maximum at 

y*, this will correspond to the unique minimum of p. This proves the first part of the 

statement. 

To prove t.he second parL we apply the implicit function theorem in (3.2) to 

obtain:].! 

Differentiating expression (5.1) with respect to yi we obtain, for all i: 

Pii (y) -

as desired. III 

(Dii (y) - Bill (yi)) (L~=l 'yk*il (p (y) "t"'* )) 
(L~=l "/"*fl (p (y) ,).",*))2 

(5.1) 

Therefore, p is strictly convex in each component. In fact, p is V-shaped in yi, for 

all i, with a unique minimum characterized by the condition B i
! (yi) = Di (y I yi) . We 

also have obtained that the unique global minimum of P occurs at y*. 
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Xext, we present the main result of this section. 

Theorem 5.2. Tlle game induced by the LDE has a unique Nash equilibrium that is 

also strong. Alorem'er, the corresponding equilibrium allocation is Pareto-efficient. 

Proof. Note that each agent's best response is determined by solving the following 

problem: 

(5.3) 

which, by (3.3), is equi"alent to: 

max cri (p (y) "/*) , i = 1,2, ... , n 
y1 EB:~ 

(5.4) 

As ail < 0 and ~/* > 0, for all i = 1,2, ... , n, problem (5.4) reduces to 

mLn p(y), i = 1,2, ... ,n 
y'EL<;~_ 

(5.5) 

Then, by L<?mma 5.1, we obtain that the unique Nash equilibrium of the game is 

y., i.e., the unique H'ctor that maximizes total surplus §. Thus, the 1\'ash equilibrium 

all()cation is Pareto-efficient. 

To prove that y. is robust to coalitional deviations as 'well, note that, as y. -

arg maxy.,:;~ § (y) , we have: 

(5.6) 

and, as total surplus and p are inversely related, we obtain: 

(5.7) 

This implies: 

(5.8) 
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. . 

That. is, no coalition of agents will find it profitable to deviate from the equilibrium 

strategy. Therefore, the Nash equilibrium is also strong .• 

As agents' individual surpluses are higher as the associated p is lower, each agent's 

optimal strat.egy consists of announcing a level of output that minimizes the associated 

p, giwn the other agent.s' choices. Since all agents have the same incentives, y. (the 

unique minimizer of p) is the unique Nash equilibrium of the game, and it is robust 

to coalitional deviations. 

As described in the Introduction, in the case of homogeneous outputs, Serial Cost 

Sharing satisfies this strategic property, but with the restriction of nontransferability 

of uutP1.lt. If transfers were permitted, any coalition of agents would find it profitable, 

under SCS, to artificially average their output levels. This kind of manipulation can 

not ocrur under the LDE. as shown in (5.6), (5.7) and (5.8). In the case of het

erogeneous indi"ifiLle outputs, the strategic property is satisfied by the family of 

Incremental Cust Sharing !-.iechanisms under the assumption of increasing marginal 

costs and supermudular costs, that is, Dii > 0 and Dij > 0, respectively. As of yet, 

there are no such strategic results for the case of heterogeneous real-valued output. 

In gl~neral. neit her SCS nor ICS are efficient. 

6. Subsidi€~s under the LDE 

In this section, \\·e investigate the possibility of situations in which, under the LDE, 

one agent might be subsidized by the remaining agents, that is, in which one agent 

contributes a negative quantity while the remaining agents pay more than total dam

ages. First, we show that this is possible for cases in which the production level of the 

subsidized agent is sufficiently small. \Ve then characterize, for the two-agent case, 

the feasiLle production levels in which one agent is subsidized by the other.15 

15This result is ext.endable to the n-agent case. \Ve de\'e]ope the case of n=2 for reasons of 
simplicity. 
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Proposition 6.1. For (y I Oi) E R~ such that § (y I Oi) > 0, if E il (0) > P (y I Oi) 'l*, 

then Ai (y I Si).< 0 for E > ° sufficiently small. 

Proof. Consider (y I Oi) E R~, such that § (y I Oi) > O. By (3.2), this implies 

p (y I Oi) > 0, as "),i* > O. If Bil (0) > P (y I Oi) ,i*, by (3.1) we have (Ii (p (y I Oi) ,i*) > 

0, which implies Ai (y I Oi) < 0. By the continuity of Ai, we obtain Ai (y I ei) < 0 for e 

sufficiently small. • 

This result means that it is possible that agent i is subsidized by the remain

ing agents if its production leyel is positive but sufficiently small. This can happen 

because. as seen in (3.1), the determination of individual surpluses under the LDE 

depends crucially on p. As such, it is possible that all agents in conjunction (agent 

i producing s and agents j =1= i producing yi) obtain a large surplus and, therefore, 

generate a small p whi,:-h implies high indiyidual surpluses. This is in part due to 

the small amount }>roduced by agent i, who would obtain larger private benefits by 

}>roducing a larger amount. Therefore, by producing very little, agent i is generat-

ing a po:::itive pecuniar:v externality for the remaining agents, and, in turn, receives 

compensation. 

::\ote that the LDE is budget-balanced. Therefore, as long as Ai (y I ei) < ° for 

some i, the remaining agents pay more than total damages, that is L#i Ai (y I ei) > 

D (y i Si). 

As a consequence of Proposition 6.1, we can now characterize the set. of output lev

els for YI'hich a particular agent receives a subsidy from the remaining agents. Consider 

the following example: 

Example 6.2. A.ssumE there are two agents with benefit functions Ei (yi) = (yi)1/2 , 

i = 1,2, and damages D (y) = (yl + y2)2. Under the LDE, the associated linear econ

omy is pH (y) (yI + y2), and individual surpluses are (Ii (pH (y)) = 4pJ(y) ' i = 1,2. 

Therefure, a,pplying (3,2) , w'e have pH (y) = [ 1 1/2 211/2 1 2 2]' Let Y>.i=O denote 
. 2 (y) +(y) -(y +y ) 

the set of output vecturs at 'which agent i pays nothing. By (3.3) , this set is charac-
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( 1)1/2 (2)1/2 (1 2)2 } Y - Y + y +y =0 (6.1) 

(6.2) 

In Figure 2 H"e represent (6.1) and (6.2). These identify the two regions, I and Il, 

in which ,V < 0 and A2 < 0, respectively. Outside these regions, both agents pay 

posith-e amounts .. Note that in the example, the efficient output levels are yi* = 0.25, 

i=1,2.0 

For the 2-agE'nt case. ,,"e can generalize the result obtained in Example 6.2. For a 

graphiC' plesentation, see Figure 3. Stated formally:16 

Proposition 6.3. For n=2, the LDE identiEes two disjoint sets of feasible output 

'"ectors in ,\"hich A] < ° and A2 < 0, respecti,re1.v. 

Proof. First, obserYe that (0,0) belongs to both Y>.I=O and Y>.2=O. 

Differentiating ,\] (y) = 0, we have: 

(6.3) 

First, we compute the effect of a variation in yi on Ai, j =1= i. From (5.1) and 

appendix equation (A.3), 'we obtain: 

1
6For the n-agent case, it. is possible that more than one agent is subsidized by the remaining 

agents. However: by hudget-balancedness, it can not be the case that all agents are subsidized at the 
same time. 
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~o"" from (AA), (6.3) and (6.4) , 'we have: 

(6.5) 

Observe that (6.5) is positive at (0,0) as we have assumed an interior efficient 

solution. Also, there exists a point yE Y,\l=O such t.hat (6.5) is 00; for y E Y,\l=O such 

that, y2 ~ y2, (6.5) is negative; and there exists a unique point (0, fP) , fP =f. 0, that 

belongs to Y,\l=O' Observe that, at (0, f/), total surplus is O. 

Doing the same for ),2 (y) = 0, we obtain: 

dy'l ,,2*il (p (y) ,,2*)(Dl (y) - Bl! (yl)) 
dyl }'>.2=O = - ~ihfP (p (y) ,h) B21 (y2) + ,,2*jj2 (p (y) ,2*) D2 (y) 

(6.6) 

Analogously, (6.6) is positive at (0,0); there exists f) E Y,\2=O such that (6.6) is 

equal to 0: and fur y E Y,\2=O such t.hat yl ~ f)l, (6.6) is negative. Also, there exists a 

unique ]Joint (JjI. 0) E rA2=0, fi =f. 0, that belongs to Y,\2=O, where total surplus is O. 

From (6.5) 2.nci (6.6). it is easy to see that, at (0,0), we have: 

(6.7) 

~Ioreover, r},l =0 and Y,\2==O intersect only at (0,0). Othenvise, damages would not 

be covered. 

Considering D~I, we obtain the desired result .• 

At this stage, a natural question to ask is whether subsidies can occur in equilib

rium? In Example 6.2, the equilibrium is y* = (0.25,0.25) , overall damages are 0.25 

and the respective cost. assignments are A = (0.125,0.125). Therefore, both agents 
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pay posit.ive amounts. 

However, one could imagine a situation in which the production activity of one 

of the agents were much more harmful than that of the remaining agents. In that 

case: the efficient solntlon may be for that agent to produce a small amount, or even 

to produce nothing. And: in order to provide the necessary inducement for that 

agent, it might require compensation from the remaining agents. By Theorem 5.2, no 

one (individual or coalition) would find it profitable to deviate from the equilibrium 

strategy. 

Thus far. we have not found an example which illustrates the presence of subsidies 

in equilibrium under of the LDE. This remains an open question. 

7. Equilibriunl Analysis. Some Comparative Statics. 

In this section, we introduce two concepts of special importance for the case of het

erogen,=()us outputs: the:, notions of relative dam,age impact and relative profitability. 

These evaluate the effect on overall damages and benefits, respectively, of an increase 

in one output relative t<.) that of another, measured in terms of elasticities; they cap

ture the rE'lE'vance of each firm in the problem as a ,\·hole. \Ve use these notions to 

inYestigat.e ho,,, the ~a~;h equilibrium of the LDE responds to changes in the impact 

of a producer on damages or to changes in the profitability of firms. 

First, if the relatiw· damage impact of a particular output increases, the LDE 

unambiguously induces the respective firm to produce less, as the production of this 

output has become more harmful. Moreover, for a particular class of problems, we 

find that the corresponding cost assignment decreases in order to induce the firm to 

produce less. 

Alternatively, when the relative profitability of a firm increases, the LDE induces 

that firm to produce more since, as it is now more profitable, it can generate a larger 

surplus for society. 

To define these formally, let CD. (y) be the elasticity of overall damages with respect 
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to yi, that is, [Di (y) = Di (y) D~~) . Analogously, let [Si (y) be the elasticity of overall 

benefits with respect to yi, that is, [Si (y) = Bit (yi) 2:n Y~i( i)' 
]=1 Y 

Definition 7.1. The relative damage impact of firm j with respect to firm i, j =I i, 

is gi,'en by: 

RDI .. ( ) = [Dj (y) = Dj (y) yj 
J,t Y [Di (y) Di (y) yi 

(7.1) 

For instance, RDIj,i (y) = k means that, at y, the impact on D of a one percent 

increase in yj is k times greater than that of a one percent increase in yi. 

Definition 7.2. The relative profitability of firm j with respect to firm i, j =I i, is 

gh'en by: 

(7.2) 

Thus: RPj ,., (y) = m means that, at y, the impact on overall benefits caused by 

a one percent increase in yj is m times greater than that caused by a one percent 

increase in yi. 

To demomtrate that 'when the relatiye damage impact of one output increases, the 

LDE induces the respectiye firm to produce less, we first consider the case of n = 2 

in which 13 i E x\ and D (y) = D (yl + o.y2) , 0. > 1. Observe that the relative damage 

impact of firm 2 \,-ith respect to firm 1 is RDI2,r(y) = ~, Y E IR~. 

Restricting attention to the equilibrium behayior of the firms, the elasticity of 

output i in equilibrium with respect to 0. is given by the following: 

(7.3) 

\Ye now investigate how the equilibrium of the game induced by the LDE responds 

to changes in 0.. 

Proposition 7.3. For Bi E lB, i = 1,2, and D (y) = D (yl + ay2), a > 1, the Nash 

equilibrium of the game induced by the LDE, namely (yt. (a) ,y2. (0.)) , is such that 
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dy2"(c<) dill "(a) . dylo(a) ( 
. do. < O . • UOre01'er, . do = 0 If and only jf [yio(O) = -1, and . do > 0 resp. 

<O} if and onl.'" if EY;'(Q) < -1 (resp. > -I). 

Proofo B:v Theorem 5.2, the equilibrium of the game induced by the LDE is charac

terized by the efficiency conditions: I7 

Bl! (yI) D' (yI + ay2) 

B21 (y2) _ aD' (yI + ay2) 

(7.4) 

(7.5) 

From (7.4) and (7.5), we have B21 (y2) = aBl1 (yI) , from which we can obtain 

I (' 2) I h BII 0 d B211 0 Y = go:, y ,sue 1 t. d go = - o.BIII > an gy2 = aBIII > . 

Suostituting '!-I I = g (a, y2) in (7.5), we have B21 (y2) = aD' (g (a, y2) + ay2) . 

This identifies :'/" (et) implicitly. Differentiating this expression with respect to a, 

,ye obt ain: 18 

Xow, su\.)stitming 1/* (a) in yI = 9 (a, y2), we have yh (a) = 9 (0:, y2* (a)), and 

differentiating this ,,"jth res}Ject to 0: we obtain: 

dyh (et) 

do: 
_ D" (yI + o:y2) [B211 ( 2) 2 B21 ( 2)] 

BIll (Y") (B2" (y2) - aD" (yI + o:y2) (gy2 + o:)J Y Y + y 

(7.7) 

,,"here sign (d!l~·.;n») = 8ign (B2" (y2) y2 + B21 (y2)), evaluated in equilibrium. 

By (7.3) and (7.6) , and considering also the expressions of go: and gy2, we have the 

liRccell that wc assume an interior efficient solution composed of unique efficient output levels. 
18Expressions (7.G), (7.7) , (7.8) and (7.9) are evaluated in equilibrium. We suppress notation of * 

for reasons of clarity. 
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follm,-ing: 

0; D' (y1 + O;y2) + QD" (y1 + O;y2) (gQ + y2) 
-y2 13211 (y2) _ QD" (y1 + O;y2) (gy2 + 0;) 

1 B21 (y2) BIll (y1) + 0;2 D" (y1 + O;y2) BIll (y1) y2 _ D" (y1 + O;y2) B21 (y2) 
- y2 B'211 (y2) Bl/! (y1) _ D" (y1 + Qy2) B211 (y2) _ 0;2 D" (y1 + O;y2) BIll (y1) 

< 0 

(7.8) 

and b~· imposing £y2-(n) = -1, we obtain the condition 

again e\'aluated in equilibrium. This condition is satisfied if and only if B211 (y2) y2 + 
B21 (,1/) = 0, as El!! (yl) - D" (y1 + ay2) < O. 

Thus, by (7.7) . the condition B211 (y2) y2 + B21 (y2) = 0 is equiyalent to dY~dQ) = 0, 

,,-hieh is the desired result. 

From (7.7) and (7.8) . it easy to see that, by imposing Ey2«Q) < -1 and E y2«Q) > -1, 

we obtain. respectiyel~', B211 (l) y2 + B21 (y2) > 0 and B211 (y2) y2 + B21 (y2) < 0, which 
dl/l-IQ\ dY].(Q) 

are equiyalent to ~d > 0 and . d < O. as desired .• n Q' 

Intuitively, on the one hand, as 0; increases both marginal damages increase, lead

ing to a reduction of both yI. and y2* (see (7.4) and (7.5)). On the other hand, 

comparatively: marginal damages for firm 2 increase more than those for firm 1, which 

leads to a decrease of y2. and an increase of yI.. 

Adding up both effects, we see that y2* decreases. The total effect on yh depends 

on which effect is stronger, as they move in opposite directions. For instance, if the 

total effect on y1. is such that dY~;Q) < 0, this means that as et increases, y2* decreases, 
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but the product ny2* increases, that is, a one percent variation in Q leads to less than 

a one percent Variation in y2*, v.'hich is the case of It'y 2 0 (0:) I < 1. The opposite happens 
d'llo (er) when' - > O. 

do: 

'Ve have estabUshed that, as Q increases, y2* decreases. But., could it be the 

case that, although firm 2 is now more harmful, it ends up paying less in the nev,' 

equilibrimn? 

Proof. Diff~rentiating ,\2 (y* (0:)), we obtain: 

,,-here .A~ is 0 in equJibrium (by (6.4)). 

From (3.2) and (3.(1) , "'€I have: 19 

From (A.1), evaluated in equilibrium, we obtain: 

Thus, adding up (7.11) and (7.12), and considering t'y2o(0:), we have: 

19The reference linear damage function for D (yl + o:y2) is simply pH (y) (yl + o:y2) . 
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. . 

from which we obt ain that ~: (y* (Cl:)) < 0 if and only if 

(7.14) 

• 
"Then Q increases, 'we observe two effects on the cost assignment of firm 2. On the 

one hand, an increase in Cl: - a deterioration of the technology - leads to an increase 

in ).2 , as firm 2 is nm\' more harmful. This is the puniti1'e effect, expressed in (7.11). 

On the other hand. by Proposition 7.3, an increase in Cl: leads to a decrease in y2 in 

the new equilibrium, and by D}'1, a decrease in ).2. This is the DM effect (7.12). 

:\"ote that, as 0: increases, the total change in damages is 

(7.15) 

The first term of the right hand side of (7.15) is negative for the system, in the 

sense that. as 0 increases, D also increases and, therefore, total surplus decreases. Due 

to the nonsel>arability of damages, both firms are responsible for such an increment 

in damages in pl'Opvrtivns yl!~y2 and yl~t/~y2' respectively. But, as damages increase 

becuuse firm 2 is now more harmful, there is a compensation from firm 2 to firm l. 

Thus, the punitiye cost for firm 2 (expressed in (7.11)) has these two components, i.e., 

the l>ropvrtion of incremental damages paid by firm 2 and the transfer to firm 1. 

The other two components of the right hand side of (7.15) reflect the individual 

effort in reducing (increasing) D, which is positive (negative) for the system. The last 

component corresponds to the D1-1 effect of firm 2 (see (7.12)). 

Thus, (7.1-1) means that, if this individual effort in reducing D outweighs the puni

tive cost imposed on firm 2, then firm 2 imposes a net positive effect on total damages, 

which is reflected by a reduction in his respective cost assignment. 

Now, we consider a general D E 11)), Recall the definition ofrelative damage impact 
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in (7.1). Let k (y) = ~~~~~. Note that a change in RDI2,I (y) is of the same sign as 

a change in k (y). Therefore, we can st.udy the sign of the effect of an increase in 

the relative damage impact of firm 2 as a change in D E lIJ) to D E lIJ), such that 

k (y) 2 k (y), for all y ER!. 

Theorem 7.5. If the relative damage impact offirm 2 with respect to firm 1 increases 

for all y E R~, then y2. will be lo .... rer in the equilibrium of the game induced by the 

LDE. 

Proof. As Lefore. by Theorem 5.2, the equilibrium of the game induced by the LDE 

is charadE'rized Ly the efficiency conditions: .' . 

DI (yI, y2) 

_ D2(yI,y2) 

Fru!':1 (7.16): ,ye ha\"e a relationship yI = 9 (y2) such that 

From (7.16) and (7.17), and considering yI = 9 (y2) , we obtain y2* from: 

and, from (7.19) : ,,'e obtain yh = 9 (y2*). 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

The effect of n shift in k (yI, y2) on y2* is going to depend upon the slopes of 
B'2I(~2) 

B1/(9(1I~» and k (g (y2) , y2) . 

'Ye first differentiate B~/2;ir:)) with respect to y2 to obtain: 
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B211 BlI (BlII - Du) - B21 BlII D12 

(BlI)2 (BlII - Du) 

which is strictly negative if D12 > Oj otherwise, the sign is ambiguous. 

Now differentiate k (g (y2) ,y2) with respect to y2 to obtain: 

Dl (BIll D22 - DUD22 + (D12)2) - D2BlII D12 

(Dl)2 (BlII - Du) 

which is strictl~' positive when Dl2 < 0 and has ambiguous sign otherwise. 

(7.20) 

(7.21) 

To prove that y2 ,yill be Imver in the new equilibrium when k 0 increases, it is 

suffirient to ensure that. in equilibrium, the slope of ~~: is always less than the slope 

of k. Therefore. we claim that: 

(7.22) 

To establish (7.22). suppose, to the contrary, d~2 (k (y2*)) :::; d~2 (B~~~J~::)) . Then, 

by (7.20) and (7.21), and considering also the efficiency conditions (7.16) and (7.17), 

BIll - Du (7.23) 

evaluated in equilibrium. 

?-.Iultiplying both sides of (7.23) by BIll - Du < 0, dividing both sides by Dl and 
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considering (7.16), (7.17) and (7.19) , we obtain: 

(7.24) 

However. the left hand side of (7.24) is strictly negative (as Bl is strictly concave 

and D is convex) and the right hand side is strictly positive, which is a contradiction. 

Therefore~ (7.22) holds, and consequently, when k increases, y2 will be lower in the 

new equilibrium .• 

Kow, we ask what happens in the new equilibrium when the relative profitability 

of firm 2 increases. Analogously to the relative damage impact, we can study the 

change of relatin' profitability directly from a change in ~~:, as they have the same 

sign. 

Theorem 7.6. If the reiati"e profitability of firm 2 with respect to firm 1 increases 

for all y E IR~. then y2. will be higher in the equilibrium of the game induced by the 

LDE. 

'Ye omit the proof as it is similar to that of Theorem 7.5. 

To :mnm1arize. we haw established that, in general, when the relative damage 

impact of one output versus another increases, the LDE induces the respective firm 

to produce less. For a particular class of problems, we find that the cost imposed on 

the now more harmful firm decreases, in order to provide the necessary inducement 

for that firm to produce less. 

Alternatively, "'hen the relative profitability of one output with respect to another 

increases, the LDE unambiguosly induces the respective firm to produce more. 
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8. Concluding Comments 

In this paper, we have proposed a mechanism to share costs when outputs are hetero

geneous, namely the LDE. It consists of finding an appropriate reference linear damage 

technology in which it is possible to achieve the same total surplus as in the nonlinear 

problem. Once identified, the total surplus is then divided so as to guarantee each 

agent the indiyidual surplus it would obtain if the problem were linear. When imposed 

exogenously, the LDE induces a game among the agents since each agent's choice of 

production le,'d affects the remaining agents' payoffs. This game has a unique Nash 

equilibrium that is also robust to coalitional deviations. The equilibrium is: moreover, 

the unique vector of outputs that maximizes total surplus. 

The LDE satisfies seyeral interesting axiomatic properties as well. In general, it 

satisfies ,\-eak individual rationality, scale invariance and demand monotonicity. In the 

homvgeneous case, it also satisfies technological monotonicity and stand alone upper 

bound. This weaker version of individual rationality has not appeared in the literature. 

Although, as we mentioned, in light of the externality generated by restricting one's 

output leveL it seems natural in this context. 

:\"ext, we introduced the concepts of relative damage impact and relative prof

itability, two measures of the relevance of each firm in the problem as a whole, and 

we showed that the LDE induces firms to react appropriately in response to changes 

in these measures. That is, if the relative damage impact of a firm increases, the LDE 

induces the firm to produce less; and if the relative profitability of a firm increases, 

the LDE induces it to produce more. 

\Yith respect to the cost- or surplus-sharing literature, we have shO'wn that the 

LDE performs as well as or better than existing methods, First, both the LDE and 

the Constant Returns Equivalent Mechanism (CRE) are defined under complete infor-

30 



mation, but the LDE is applicable to the heterogeneous case, while the CRE pertains 

only to the hoil10geneous case. 1\,10reover, the LDE is defined for all feasible alloca

tions, whereas t.he eRE is defined only along the efficient frontier. As we discussed, 

we obtain efficienc:y 2.5 a result of the strategic interaction among firms rather than as 

an assumption. 

Second, the LDE shares the nice strategic properties of Serial Cost Sharing (SCS) 

and Incremental Cost Sharing Mechanisms (IeS), but again it applies to the hetero

geneous and continuous case. SCS is defined only for the homogeneous case, and ICS 

applies only to the discrete case. There are no previous results for the heterogeneous, 

continuous case. Also, these mechanisms fail to satisfy efficiency and scale inyariance. 

The main limitation of the LDE is that it requires complete information of the 

damage technolog:v and the ben~fit functions of the agents. Concerning the latter, 

,yhen information is incomplete, we can not identify ,i*, the idiosyncratic components 

CJf the referencE' linear tf:'chnology. 

Seyeral issues remain unresolved. First, in Section 6, we have shm,'n that subsidies 

can occur under the LDE; howeyer, we have not been able to construct an example 

in which subsidies occur in equilibrium. This remains an open question. Second, it is 

unknown whether any of the existing axiomatic characterizations of the CRE can be 

generalized to the LDE. in the heterogeneous case. In addition, there is the question 

whether some subset of the properties satisfied by the LDE fully characterize it. 

An interesting extension of the model 'would be to allow the n firms to produce 

a finite number of heterogeneous outputs. One would consider that each firm pro

duces m goods, "'here yil.: represents the quantity of output k produced by firm i. 

Damages would be a nonlinear function of the aggregate production amounts, that 

is D (yI, y2, ... , ym), where yk = 2:?::1 yik, k = 1,2, ... , m. The problem is interesting 

because it combines aspects of homogeneity as well as heterogeneity of the outputs. 

Concerning the informational requirements of the mechanism, if the damage tech-
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nology ,,'ere known but not the benefit functions, we could still use some measure of 

the relevance (01' the impact) of a particular heterogeneous output on damages. The 

notion of relative damage impact of a firm, introduced in Section 7, captures this 

relevance at a particular vector of outputs. An advantage of using this concept is that 

it is immune to the units of account. A first question to address is which vector of 

output levels should we use as a benchmark to compute the relative damage impacts. 

Once solved~ a second question is whether this measure of the relative damage impact 

can be used as an indirect tool to determine the respective cost assignments. 

But overalL the question of whether it is possible to modify the LDE for use in 

incomplete information environments remains open. 
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Appendix 

Proof of Theorem -1.1. \Ve separate the parts of the theorem into several lemmas. 

Lemma A.I. The LDE sat.isfies WIR. 

Proof. Consider (y I Oi) E IR~, such that § (y I Oi) ;::: O. 

By (:3.1) and the assumption Bi (0) = 0, we have ai (p(y I Oi) I,i*) ;::: O. Taking (3.3) 

into account, \\"e have c-- i (p (y I Oi) I,i*) = Bi (0) - Ai (y I Oi) ;::: 0, and as Bi (0) = 0, 

Ai (y I 01
) :::; 0 follu\\'s .• 

Lemma A.2. Tlw LDE satisfies SI. 

Proof. The LDE as::ociates with the nonlinear technology D a linear technology 

DL (y) = P (/,hyJ + ,),2'y2 + ... + ,,!'l1*yl1) , where "'/* = Di (y*) and y* is the vector 

of efficient outp"cltS" Individual surpluses are given by maxyi {Bi (yi) - p"/*yi}, i = 
1. 2, ""'. 12, a:: expressed in (3.1). 

Consider nU\\' a rescaling of variables f3 E IR~+, such that y = f3. y, and y E IR~ 

are no'," the relevant variables. The new efficient levels y* are obtained by solving the 

problem maxy.;:~: {L~~l Bi U//(3i) - D (y /J3)}, yielding r/* = (3iyi*, for all i. Observe 

that, for each y E IR.~~, the total surplus is the same under both the original and the 

transformed problems. \Ve claim that the distribution of surplus is also the same. 

The scale factors for the associated linear function in the transformed problem are 

the following: 

-i* D (-*/f3) 1 D ( *) 1 "l* ')' = i Y (3i= i Y (3i= (3i (A.I) 

The reference linear damage function for the transformed problem is DL (y) = 

P (i,l.y) -I- ... + ;yn*:!t), which, by (A.I), is equivalent to DL (y) = p(')'h(})+ ... + 
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As total surplus is the same under both the original and the transformed problems, 

we obtain, by (3.2) , that p (y) = p (y). Thus, we have: 

(A.2) 

Therefore. the individual surplus for each agent in the transformed problem is the 

same as that of the original problem, as desired .• 

Lemma A.3. ThE' LDE satisfies D11. 

Proof. From (3.3), v;e have, for all i = 1,2, ... , n, and all y E lR~ : 

(A.3) 

Differentiating (A.3) '\'ith respect to yi, and considering (5.1), we obtain: 

• 
In the following two lemmas, we restrict our attention to the homogeneous case. 

Let y = :L~=1 yi, and denote by ~H the set of functions D : lR+ --7 lR+, where D is 

strictly increasing and convex. 

Lemma A.4. The LDE satisfies TM on the domain ~H. 
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Proof. Consider D, b E llJ)H, such that b (y) ~ D (y), where y = L~I Vi. This im

plies that §v (yJ ~ §D (y) for all y E IR~. The reference linear technology in the homo

geneous case is DL (y) = pH (Lyi). Therefore, by (3.2) , we have pZ (y) ~ pg (y) for 

aU y E 1R~; and by (3.1), we then obtain ab (pZ (y)) ~ o-b (pg (y)) for ,i = 1,2, ... , n. 

Applying (3.3), it follows that Ab (y) ~ Ab (y), for all y E IR~, i = 1,2, ... , n .• 

Lemma A.5. The LDE satisfies SAUB on the domain llJ)H. 

Proof. First note that 7r1,A, ;::: Bi (yi) - D (Vi), for all i. The reference linear 

technolugy in the homogeneous case is DL (y) = pH (LVi) . Therefore, it is sufficient 

to shm\- that a i (pH (y)) ~ Bi (yi) - D (yi). By (3.1) , we have (Ji (pH (y)) ;::: Bi (yi)_ 

pH (y) yi. 'Ye clc.im: 

(A.5) 

To proye (A.5), note that, by (3.1) and (3.2), we have: 

~(Ji (pH (y)) _ ~Bi (Vi) _ D (~Vi) ;::: ~Bi (Vi) _ pH (y) (VI + ... + Vll) 
(A.6) 

from \\·hich we obtain 
D (VI + ... + Vn) H ( ) 

VI -t- + 11 ~ P V ... V 
(A.7) 

B,Y the cOl1Yexit,Y ot D, and as Vi _< "'. vi,we have D(yi) < D(yl+ ... +yn) d ~. yt yl+ ... +yn , an , 

therefore, (A.5) holds .• 
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Figure 1. The LDE allocation for the homogeneous case. 
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Figure 2. Subsidy regions under the LDE in Example 6.2. 
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Figure 3. Subsidy regions under the LDE: the general 2-agent case. 
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