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Abstract

In this paper we provide a price characterization of e�cient con-

sumption bundles in multiperiod economies with market frictions. Ef-

�cient consumption bundles are those that are chosen by at least one

rational agent with monotonic state-independent and risk-averse pref-

erences and a given future endowment. Frictions include dynamic mar-

ket incompleteness, proportional transaction costs, short selling costs,
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borrowing costs, taxes, and others. We characterize the ine�ciency

cost of a trading strategy - the di�erence between the investment it re-

quires and the largest amount required by any rational agent to obtain

the same utility level - and we propose a measure of portfolio perfor-

mance based on it. We also show that the arbitrage bounds on a con-

tingent claim to consumption cannot be tightened based on e�ciency

arguments without restricting preferences or endowments. We exam-

ine the e�ciency of common investment strategies in economies with

borrowing costs due to asymmetric information, short selling costs,

or bid-ask spreads. We �nd that market frictions generally change

and typically shrink the set of e�cient investment strategies, shifting

investors away from well-diversi�ed strategies into low cost ones, and

for large frictions into no trading at all. Hence we observe strategies

that become ine�cient with market frictions, as well as strategies that

are rationalized by market frictions.
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1. Introduction

In this paper we characterize e�cient contingent claims to future con-
sumption (consumption bundles) in multiperiod economies with uncertainty,
taking a wide range of market frictions into account,1 such as dynamic market
incompleteness, proportional transaction costs, short sales costs and restric-
tions, borrowing costs and constraints, taxes, and potentially other imperfec-
tions. An e�cient consumption bundle is de�ned as an optimal choice for at
least one agent with Von Neumann-Morgenstern preferences and a concave,
strictly increasing utility function. If a consumption bundle is ine�cient, we
compute the lower bound on its e�ciency loss across agents with di�erent
preferences but given future endowment: this gives a measure of ine�ciency
that does not rely on a speci�c utility function. It also allows us to de�ne a
measure of portfolio performance. We also show that the arbitrage bounds
on a contingent claim cannot be tightened based on e�ciency arguments
without restricting preferences or endowments. We apply these results to
commonly used trading and hedging strategies, and we provide examples of
e�cient strategies that become ine�cient in the presence of market frictions,
as well as examples of ine�cient strategies that are rationalized by market
frictions. Indeed, market frictions generally change and tend to shrink the
set of e�cient strategies, shifting investors away from diversi�ed investment
strategies into low cost strategies, and for large frictions into no trading at
all.

In economies without any market imperfections, Dybvig (1988a) pro-
vides a useful characterization of e�cient consumption bundles, based on
the unique positive linear pricing rule (i.e. Arrow-Debreu price vector) that
prices traded securities in the absence of arbitrage.2 A consumption bundle
is e�cient if and only if it provides at least as much consumption in cheaper
states of the world, i.e. in states of the world with lower Arrow-Debreu
prices. A new model is then developed, the payo� distribution pricing model

1
There is already a substantial related literature that studies optimal portfolio and consumption problems

with market frictions. Among others, Constantinides (1986), Davis and Norman (1990), Du�e and Sun (1990)

and Dumas and Luciano (1991) for the bid-ask spread case, and Cvitanic and Karatzas (1993), He and Pearson

(1991), and Tuckman and Vila (1992) for the short sales constraints case. However these studies take preferences

as given and derive optimal solutions: they do not provide a characterization of the set of optimal solutions when

preferences belong to a general class. Pelsser and Vorst (1996) performs some simulations to study the e�ciency

of portfolio strategies under transaction costs.
2
Dybvig and Ross (1982) and Peleg and Yaari (1975) also treat the incomplete market case.
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(PDPM), and the size of the ine�ciency of a consumption bundle is mea-
sured by the di�erence between its market price (or the investment required
to replicate it) and the price of the cheapest consumption bundle with the
same distribution - called its \distributional price". Therefore a consumption
bundle is e�cient if and only if its market price is equal to its \ distributional
price". This leads to a measure of portfolio performance based on the PDPM
which, unlike previous performance measures based on mean-variance anal-
ysis, avoids making unrealistic assumptions about preferences and/or the
distribution of returns. In Dybvig (1988b) the PDPM is used to analyze
trading strategies that are commonly used by practitioners, such as stop-loss
or lock-in strategies and rolled-over portfolio insurance. It is found, under
a reasonable parametrization of securities returns, that these strategies have
an ine�ciency cost of the order of 0:5% per year, a substantial amount.

In order to obtain a price characterization of e�cient consumption bun-
dles, we �rst characterize the opportunity set of available returns in arbitrage-
free economies with market frictions in terms of linear pricing rules. It is well-
known that in arbitrage-free frictionless economies with complete markets
there exists a unique positive linear pricing rule that prices any contingent
claim and the opportunity set of available consumption is a hyperplane (see
for instance Cox and Ross [1976], Harrison and Kreps [1979], Harrison and
Pliska [1979], Du�e and Huang [1986], and Back and Pliska [1990]). In this
case, the shadow prices at the optimum - the intertemporal marginal rates of
substitution - are the same for all agents. On the other hand, in economies
with market frictions the pricing rule is generally not linear. However, for
a wide range of market imperfections including dynamic market incomplete-
ness, short selling costs and constraints, borrowing costs and constraints,
and proportional transaction costs it can be shown that the pricing rule is
sublinear3 (i.e. positively homogeneous and subadditive) and that the oppor-
tunity set of available consumption is a convex cone (see Jouini and Kallal
[1995a and 1995b and 1999]). This means that in such economies the pricing
rule is the maximum of a family of underlying linear pricing rules, which
can be interpreted as the di�erent implicit shadow prices - the intertemporal
marginal rates of substitution - for di�erent potential agents. For instance,
in incomplete markets each underlying linear pricing rule corresponds to a

3
A pricing rule � is sublinear if �(�x)=��(x) and �(x+y)��(x)+�(y); for all comsumption vectors x and

y and all positive real number �:
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martingale4 measure of the price processes of traded securities normalized
by a numeraire, and is associated to a possible \�ctitious" completion of
the initial market (as de�ned by Karatzas et al. [1991]). In economies with
bid-ask spreads, the set of underlying linear pricing rules is the set of mar-
tingale measures of all the processes that lie between the normalized bid and
ask price processes of traded securities and that can be transformed into a
martingale (see Jouini and Kallal [1995a]). In economies with short sales
constraints, it is the set of probability measures that transform the normal-
ized price processes of traded securities into supermartingales. Economies
where short selling and borrowing are possible but costly, can be analyzed
in similar terms and are consistent with our approach (see Jouini and Kallal
[1995b]). However, economies where there are higher charges for odd lots,
or other �xed transaction costs, do not fall in this framework (indeed, the
positive homogeneity of the pricing rule is violated).

This description of the opportunity set of available returns in economies
with market frictions enables us to characterize e�cient consumption bun-
dles. If we denote by � the sublinear pricing rule and by K the set of
underlying pricing rules E; we have �(c) = maxfE(c) : E 2 Kg; and a
contingent claim c is e�cient if and only if it provides at least as much net
consumption in \cheaper" states of the world. However \cheaper" is not de-
�ned with respect to the sublinear pricing rule � but with respect to one of
the positive underlying linear pricing rules E in K that \prices" c; i.e. that
satis�es �(c) = E(c): It also allows us to compute the size of the ine�ciency
of a contingent claim, i.e. the di�erence between the investment it requires
and the largest amount needed by any rational agent, with a given future
endowment, to get the same utility level. We show that it is equal to the
di�erence between the investment it requires and the minimum investment
necessary to obtain a claim with the same distribution or a convex combi-
nation of such claims (the \utility price"). Even though the \utility price"
coincides with the \distributional price" in the frictionless case, in general it
is strictly smaller: this is because, due to the frictions, some distributions of
consumption are ine�cient. However, we show that the \utility price" of a
consumption bundle is the largest of its \distributional prices" in the under-
lying frictionless economies. We also show that the largest amount needed by

4
A martingale is a process that is constant on average. A supermartingale is a process that is nonincreasing

on average. A submartingale is a process that is nondecreasing on average.
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any rational agent with any future endowment to get the same utility level
as with c is equal to the arbitrage bound �(c): Hence arbitrage bounds cannot
be tightened based on e�ciency arguments without restricting preferences or
endowments. Also, in frictionless complete markets, hedging and investment
decisions can be separated into two distinct stages: duplicate the liability
to be hedged and invest optimally the remaining funds. In the presence of
market frictions, however, hedging and investment decisions are intimately
related and cannot be separated. Although perfect hedging (duplication) is
not always optimal, we �nd that strategies that minimize the cost of obtain-
ing a payo� at least equal to a given liability have a zero ine�ciency cost.
These results allow us to de�ne a measure of portfolio performance that does
not rely on mean-variance analysis (and avoids the problems associated with
it: see Dybvig [1988 a] and Dybvig and Ross [1985]), taking market frictions
into account. A correct measure of portfolio performance must trade o� the
additional frictional costs of alternative investment strategies against their
incremental bene�t from diversi�cation. Market frictions generally change
and typically shrink the set of e�cient strategies, shifting investors away
from well-diversi�ed investment strategies into low cost strategies, and when
frictions are large enough into no trading at all. We also apply these results to
economies with market frictions such as di�erent borrowing and lending rates
due to asymmetries of information, short selling costs and bid-ask spreads,
and we evaluate the ine�ciency of investment strategies commonly followed
by practitioners. We observe trading strategies that become ine�cient as
bid-ask spreads are introduced. We also show that high borrowing costs,
especially if they increase with leverage, can rationalize strategies such as
stop-loss that are ine�cient in frictionless markets.

The remainder of the paper is organized as follows. In section 2 we provide
a price characterization of e�cient consumption bundles and a preference-
free characterization of their ine�ciency cost (which leads to a measure of
portfolio performance), and we investigate tightening the arbitrage bounds.
In section 3 we apply the results of section 2 to evaluate numerically the
impact of some market imperfections on the e�ciency of commonly used
trading strategies. All proofs are in the appendix.

2. E�cient trading strategies

2.1 The economy
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We consider a multiperiod economy with a �nite number of dates and n
equiprobable states of the world where investors have some initial wealth w0

and some uncertain future endowment x in Rn; and maximize their expected
utility of future consumption that occurs at the �nal date T: We denote by �
the pricing rule, i.e. agents have to pay �(c) units of initial wealth in order to
obtain a consumption bundle c = (c1; : : : ; cn) that gives the right to ci units
of consumption at the �nal date T in each state of the world i = 1; : : : ; n:
We shall make the following:

Assumption 2.1 :

(i) The pricing rule � is sublinear, i.e. �(�x) = ��(x) and �(x + y) �
�(x) + �(y); for all x; y 2 Rn and all nonnegative real number �:

(ii) The pricing rule � is arbitrage free, i.e. �(c) > 0 for any nonzero
consumption bundle c = (c1; : : : ; cn) such that ci � 0 for all states of the
world i = 1; : : : ; n:

(iii) The pricing rule � satis�es �(1) = ��(�1) = 1:

(iv) The pricing rule � is nondecreasing, i.e. �(x) � �(y), for all (x; y) 2 Rn

such that x � y.

Part (i) means that the price of a consumption bundle is proportional to
the quantity purchased and that it is less expensive to purchase a portfolio of
consumption bundles than to purchase each consumption bundle separately.
Note that this implies that �(c) � ��(�c) for any consumption bundle c
(indeed �(0) = �(c � c) � �(c) + �(�c) and �(0) = 0), i.e. the price at
which c can be bought is larger than or equal to the price at which it can be
sold. Part (ii) means that there are no arbitrage opportunities, i.e. no free
consumption bundles that are nonnegative in every state of the world and
strictly positive in at least one. This is a minimum requirement for any model.
Part (iii) means that the riskless asset can be bought and sold without any
frictions and that the riskless rate is equal to zero. This assumption can be
made with little loss of generality: indeed, it amounts to the normalization of
all consumption bundles and their prices by a numeraire, e.g. a consumption
bundle that is strictly positive in every state of the world and that can be
bought and sold without any frictions. Note that in an economy with riskless

7



and risky assets, it is not necessary to take the riskless asset as a numeraire
and we can normalize by a risky asset as far as it is strictly positive in all
the states of the world. If that risky asset can be bought and sold without
any frictions, assumption (iii) is then satis�ed and di�erent borrowing and
lending rates can be taken into account in this framework (see Jouini and
Kallal (1995b)). Part (iv) is, for instance, satis�ed by an equilibrium pricing
rule. Indeed, no rational agent will accept to pay more for less.

In multiperiod economies where in order to transfer wealth from the ini-
tial date to the future agents can trade a �nite number of securities, then �(c)
is the minimum cost of obtaining a payo� equal to (or larger than) the con-
tingent claim c in all states of the world. Note that in this case ��(�c) and
�(c) can also be interpreted as arbitrage bounds on the price of c : indeed,
investors would not pay more than �(c) for c; and would not sell it for less
than ��(�c); since in both cases a better outcome can be reached through
securities trading. If markets are complete and frictionless then � is linear.
On the other hand, if markets are dynamically incomplete, if borrowing is
restricted or the borrowing rate is larger than the lending rate, if short selling
securities is restricted or costly, or if there are bid-ask spreads (i.e. propor-
tional transaction costs) then � is sublinear as in Assumption 2.1 (see Jouini
and Kallal [1995a and 1995b]). This sublinear representation of the pricing
rule is in fact the reduced form of multiperiod models encompassing a larger
class of market frictions that includes taxes (see Chen [1992]) and various
portfolio constraints, but excludes higher charges for odd lots or other �xed
transaction costs. We also have

Proposition 2.1 : For any pricing rule satisfying Assumption 2.1 there
exists a closed convex set K of \underlying" linear pricing rules or \risk-
neutral" probability measures E = (e1; : : : ; en); with e1 + : : : + en = 1; that
are nonnegative, i.e. ei � 0 for i = 1; : : : ; n; and where at least one element
E� of K is strictly positive,5 i.e. e�i > 0 for i = 1; : : : ; n; such that �(c) =
maxfE(c) : E 2 Kg for all c 2 Rn: A linear pricing rule E 2 K \prices" c
if it satis�es �(c) = E(c):

If markets are complete and frictionless then the set of underlying linear
pricing rule K contains a unique element, and hence the set of feasible con-
sumption fc 2 Rn : �(c) � w0g is a hyperplane and the shadow price vector
at the optimum - the vector of intertemporal marginal rates of substitution

5
It also means that K is the closure of the set of its strictly positive elements.
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- is the same for all potential agents. On the other hand, if the markets
are incomplete and/or there are frictions such that the pricing rule � is only
sublinear as in Assumption 2.1, then the set of underlying linear pricing
rule K contains more than one element, and the set of feasible consumption
fc 2 Rn : �(c) � w0g is only a convex cone.6 In this case, there are di�er-
ent implicit shadow prices - the underlying linear pricing rules - for di�erent
potential agents. We now review four cases of multiperiod economies with
frictions such that the pricing rule is sublinear and satis�es Assumption 2.1.

Case 1 (Incomplete Markets) : If markets are dynamically incomplete
then the set of underlying linear pricing rules K is the set of martingale
measures of the traded securities normalized price processes (see Jouini and
Kallal [1995a], as well as Karatzas et al. [1991] and He and Pearson [1991]
for the concept of \least favorable �ctitious completion").

Case 2 (Bid-Ask spreads, i.e Proportional Transaction Costs) : If
the traded securities can be bought at a price (the ask) that is potentially
higher than the price (the bid) at which they can be sold, then the set of
underlying linear pricing rules K is the set of martingale measures of any
price process between the normalized bid and ask price processes (see Jouini
and Kallal [1995a]).

Case 3 (Short Sales Constraints and Short Selling Costs) : If
agents are subject to short sales constraints, i.e. if securities cannot be held
in negative quantities, then the set of underlying linear pricing rules K is
the set of supermartingale measures of the traded securities normalized price
processes. The case where short sales are not completely restricted but costly
can be treated analogously by introducing shadow securities that cannot be
held in positive quantities and have a higher expected return. (see Jouini and
Kallal [1995b], as well as Dybvig and Ross [1986] for the two-period case).

Case 4 (Di�erent Borrowing and Lending Rates) : If agents can bor-
row and lend at possibly di�erent rates, net of default risk (e.g. if asymme-
tries of information prevent good borrowers from di�erentiating themselves
from bad ones), then the set of underlying linear pricing rules K is equal
to the set of martingale measures of the traded securities normalized price
processes, where the normalizing numeraire is any instantaneously riskless
asset with a rate of return between the borrowing and the lending rate (see

6
A set C is a convex cone if x+y2C and �x2C for all x;y2C and all nonnegative number �:
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Jouini and Kallal [1995b]).

Note that in cases 2, 3, and 4 markets might be dynamically complete
and we still have more than one underlying linear pricing rule, i.e. di�erent
implicit shadow prices for di�erent potential agents. Moreover, we shall make

Assumption 2.2 : All the states of the world are equiprobable7 and agents
have preferences of the Von Neumann-Morgenstern type: they maximize ex-
pected utility, and have a concave strictly increasing utility function. This
means that agents prefer more to less, are risk-averse, and only care about
the distribution of consumption.8

2.2 E�cient consumption bundles

A contingent claim (and hence the minimum cost trading strategy that
leads to it) is e�cient if there exists a rational agent for which it is an optimal
choice, given his uncertain future endowment. This future endowment -
which can be the result of the investor having written a contract contingent
on the state of the world, or the result of earnings derived from human capital
- is taken as given in this analysis. More formally, we propose

De�nition 2.1 : A contingent claim c� 2 Rn is (resp. strictly) e�cient,
given an uncertain future endowment x 2 Rn; if there exists an initial wealth
w0 and a utility function u 2 U (resp. Usc), where U (resp. Usc) denotes the
set of weakly (resp. strictly) concave and strictly increasing Von Neumann-
Morgenstern preferences, such that c� solves maxfu(c+ x) : �(c) � w0g:

This is the same de�nition as in the frictionless case except that the
budget constraint is in terms of the sublinear pricing rule �; which is the
maximum of a family of nonnegative linear pricing rules. Hence, the budget
constraint �(c) � w0 is a collection of linear budget constraints E(c) � w0;
for all E in K: Also, since agents have strictly increasing preferences, an
e�cient contingent claim c� makes the budget constraint binding and the
initial wealth w0 for which it is an optimal choice must be equal to �(c�):

Also, in frictionless complete markets the optimal consumption problem
maxfu(c + x) : �(c) � w0g can be separated in two steps9: �rst hedge the

7
Most results go through unchanged if states of the world are not assumed to be equiprobable, except that

state prices must be normalized by actual probabilities in all statements. Also, if we view the �nite model as an

approximation for continuous distributions this assumption can be made without loss of generality.
8
We exclude state-dependent preferences (although we allow uncertain future endowments).

9
Indeed the problem maxfu(c+x):�(c)�w0g can be written maxfu(~c):�(~c�x)�w0g; where ~c denotes net
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uncertain future endowment x; which provides an amount �(x); and then
solve for the optimal net consumption bundle ~c subject to the budget con-
straint �(~c) � w0+�(x): Hence, changing the uncertain future endowment is
equivalent to changing the initial wealth. This means that the set of optimal
net consumption bundles is una�ected by the presence of an uncertain future
endowment, and that any trading strategy can be rationalized by assuming a
particular uncertain future endowment. This is no longer true in the presence
of market frictions, where we have

Theorem 2.1 : Given an uncertain future endowment x = (x1; : : : ; xn) 2
Rn; a contingent claim c� = (c�1; : : : ; c

�
n) 2 Rn is (resp. strictly) e�cient if

and only if there exists E� = (e�1; : : : ; e
�
n) 2 K; the set of underlying linear

pricing rules, such that
(i) E� prices c�; i.e. E�(c�) = �(c�);
(ii) c� + x is in (resp. strict) reverse order of E�; i.e. c�i + xi > c�j + xj

implies e�i � e�j for all i; j = 1; : : : ; n (resp. c�i + xi > c�j + xj implies e
�
i < e�j

for all i; j = 1; : : : ; n).

This says that a contingent claim is e�cient if and only if it gives the
right to at least as much net consumption in \cheaper" - according to a
positive linear pricing rule that prices it - states of the world. If there are no
market frictions there exists a unique linear pricing rule and we �nd that a
consumption bundle is e�cient if and only if it entitles to at least as much
net consumption in \cheaper" - according to the unique linear pricing rule
- states of the world, i.e. if it is the cheapest consumption bundle with its
distribution (Dybvig [1988a]).

Roughly speaking, this characterization follows from the �rst-order con-
ditions: marginal utilities of consumption must be proportional to the linear
pricing rule corresponding to one of the binding linear budget constraints.
From the assumption that agents are risk-averse, marginal utilities are de-
creasing, which implies that net consumption must be higher in cheaper
(according to the binding linear pricing rule) states of the world. The di�-
culty, however, is that we are dealing with a continuum of constraints. This
Theorem generalizes the price characterizations obtained by Peleg and Yaari
(1975) and by Dybvig and Ross (1982) in the incomplete markets case.10

consumption, and since � is linear in this case it is equivalent to maxfu(~c):�(~c)�w0+�(x)g:
10
Even though the formulation of Peleg and Yaari (1975) is more general than the incomplete markets case,

it does not explicitly or implicitly include our framework with market frictions.
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At this point we are able to appreciate the impact of market frictions
on the e�ciency of a contingent claim c�: Market frictions enlarge the set
of underlying linear pricing rules from a single one to a continuum. This
makes it easier to satisfy part (ii), i.e. �nd a linear pricing rule that is
in reverse order of the net consumption bundle c� + x: However, it makes it
harder to satisfy part (i), i.e. this linear pricing rule must price c�: Therefore,
market frictions do not always make ine�cient strategies become e�cient or
e�cient strategies become ine�cient: both situations can happen. Indeed,
as market frictions increase investors move away from trading strategies that
are optimally diversi�ed over time - but have higher costs - towards strategies
that have lower costs but are less than optimally diversi�ed, and if costs are
higher than any potential diversi�cation bene�ts the set of e�cient trading
strategies shrinks to not trading at all (see section 3).

For instance, from Theorem 2.1 we see that the strategy that consists
in hedging the uncertain future endowment x by duplicating the contingent
claim �x is not necessarily e�cient. Indeed, there might not even be any
strictly positive measure in K that prices it.11 However, we have

Remark 2.1 : Given an uncertain future endowment x 2 Rn; duplicating
the contingent claim �x is an e�cient strategy if and only if there exists
E 2 K; the set of underlying linear pricing rules, that is strictly positive
and prices �x; i.e. is such that �(�x) = E(�x): In particular, this will be
the case when frictions are su�ciently small so that all the underlying linear
pricing rules in K are strictly positive.

2.3 Ine�ciency size

If a contingent claim is found to be ine�cient we would like to evaluate
the size of its ine�ciency, i.e. have a measure of how far it is from being
optimal. We propose the following

De�nition 2.2 : The \ine�ciency cost" of a contingent claim c� 2 Rn;
given an uncertain future endowment x 2 Rn; is the di�erence �(c�)�Vx(c�);

11
This is the case, for instance, whenever there exists a contingent claim �~x that strictly dominates �x but

is cheaper to duplicate than �x (see Bensaid et al. [1992] for examples of this situation with options). In this

case, it is clear that duplicating the claim �x is not optimal, and that if a pricing rule E prices �x; and if �~x

minimizes the cost of dominating �x; we have E(�x)=�(�x)=�(�~x) and hence E(�~x)=E(�x); which implies

that E cannot be strictly positive since �~x strictly dominates �x:
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where
Vx(c

�) = sup
u2U

fmin
c
f�(c) : u(c+ x) � u(c� + x)gg

denotes the \utility price" of c�:

Indeed, Vx(c
�) is the largest amount that is required by rational agents

with an uncertain future endowment x in order to get the same utility level
as with the consumption bundle c�: Hence, �(c�)� Vx(c

�); which is equal to
inf
u2U

f�(c�) � min
c
f�(c) : u(c + x) � u(c� + x)gg; is the smallest discrepancy,

across all rational agents with future endowment x; between the cost of ob-
taining c� and the price at which it would be an optimal choice. Also, we
have �(c�) � Vx(c

�); i.e. our measure of ine�ciency is always nonnegative.
Moreover, if c� is e�cient then Vx(c

�) = �(c�) and our measure of ine�ciency
is equal to zero. Also note that this measure of ine�ciency does not depend
on the choice of a speci�c utility function.

In dynamically complete frictionless markets the utility price of a con-
tingent claim coincides with the minimum cost of achieving the same distri-
bution of consumption (see Dybvig [1988a]), and e�ciency is equivalent to
cost minimization of achieving a distribution of consumption. Even though
e�ciency always implies cost minimization, the converse in not true in im-
perfect markets (see the Example in the appendix). Hence, in looking for a
cost characterization of our measure of ine�ciency we shall consider the set of
consumption bundles that are equal to (or larger than) a convex combination
of consumption bundles with a given distribution. We then have

Lemma : For every consumption bundle ~c 2 Rn we have

fc : u(c) � u(~c); 8u 2 U (resp.Usc)g
= f convex hull of the bundles distributed as ~cg+Rn

+:

Note that this is a new alternative characterization of second-order stochas-
tic dominance (see Rothschild and Stiglitz [1970] for other characterizations).
This allows us to prove

Theorem 2.2 : Given an uncertain future endowment x 2 Rn; for every
contingent claim c� 2 Rn the utility price of c�; satis�es 12

12
Note that it implies that our utility price coincides with the utility price de�ned with respect to the smaller

class of strictly increasing and strictly concave Von Neumann-Morgenstern preferences Usc: This means that the

utility price is somewhat robust to changes in the class of preferences that is considered.
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(i)Vx(c
�) = minf�(~c � x ) : ~c is a conv. comb. of bundles distributed as c� + xg

= minf�(c) : u(c + x ) � u(c� + x ) for all u 2 U (resp. Usc)g
(ii) Vx(c

�) = maxfPx(c�; E) : E 2 Kg;
where

Px(c
�; E) = minfE (~c � x ) : ~c is distributed as c� + xg

= P0(c
� + x; E)� E(x)

is the utility price of c� in the frictionless economy de�ned by the linear
pricing rule E; and K is the set of underlying linear pricing rules associated
to �: Hence,

maxE2KP0(c
� + x; E)� �(x) � Vx(c

�) � maxE2KP0(c
� + x; E) + �(�x)

(iii) Vx(c
�) = maxfR 10 F�1

c�+x(y)F
�1
E (1� y)dy � E(x) : E 2 Kg;

where K is the set of underlying linear pricing rules associated to �; F~c(z)
is the probability that the random variable ~c is less than or equal to z (and
similarly for FE), and F�1(y) = minfz : F (z) � yg for all y 2 (0; 1) is the
inverse of the cumulative distribution function F:

Part (i) says that the utility price Vx(c
�) of the contingent claim c� is

equal to the cost of the cheapest claim that leads to a net consumption bundle
distributed as c�+x or that is a convex combination of consumption bundles
distributed as c�+x: Note that this implies that given a future endowment x;
Vx(c

�) only depends on the distribution of net consumption c�+x: It also says
that Vx(c

�) is equal to the cost of the cheapest contingent claim that makes
every rational agent at least as happy as with the net consumption bundle
c� + x: Note that in the frictionless case, because the pricing rule � is linear,
the minimum minf�(~c�x) : ~c is a convex combination of bundles distributed
as c�+xg is attained for a consumption bundle that has the same distribution
as c�+x: Hence the utility price coincides with the minimum cost of achieving
a given distribution of net consumption. In imperfect markets though, this
minimum is only attained for convex combinations of consumption bundles
that have the same distribution as c� + x:

Part (ii) is analogous to Proposition 2.1 which says that �(c�) is the
largest of the prices of c� for the underlying linear pricing rules in K : Vx(c

�)
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is the largest of the utility prices of c� in the underlying frictionless economies.
Moreover, if there is no uncertain future endowment (i.e. if x = 0), V0(c

�)
is the largest of the distributional prices of c� in the underlying frictionless
economies. This implies13 that if we can �nd a consumption bundle ~c with
the same distribution as c�+x and that is in reverse order of a linear pricing
rule ~E in K that prices ~c� x; then the utility price of c� is equal to Vx(c

�) =
�(~c� x) = ~E(~c� x):

Note that unlike in frictionless markets, in the presence of market frictions
it can happen that even though a claim is not e�cient, its ine�ciency cost is
nonetheless equal to zero. However, as can readily be seen from the de�nition,
the fact that a contingent claim has a zero ine�ciency cost implies that it
is arbitrarily close from being an optimal choice for some rational agents.
Moreover, we have the following price characterization:

Theorem 2.3 : Given an uncertain future endowment x 2 Rn; the ine�-
ciency cost �(c�) � Vx(c

�) of a contingent claim c� = (c�1; : : : ; c
�
n) 2 Rn; is

equal to zero if and only if there exists E� = (e�1; : : : ; e
�
n) 2 K; such that

(i) E� prices c�; i.e. E�(c�) = �(c�);

(ii) c�+ x is in reverse order of E�; i.e. c�i + xi > c�j + xj implies e
�
i � e�j for

all i; j = 1; : : : ; n:

Note that this is almost the characterization of e�cient contingent claims
obtained in Theorem 2.1, except that the linear pricing rule E� does not need
to be strictly positive.14 For instance, we have

Remark 2.2 : Given an uncertain future endowment x 2 Rn; the minimum
cost strategies that dominate �x have a zero ine�cient cost.

13
Indeed, by Theorem 2.2 (ii) we have Vx(c

�)�Px(c
�; ~E)=P0(c

�+x; ~E)� ~E(x)= ~E(~c)� ~E(x)= ~E(~c�x)=�(~c�x)

and by Theorem 2.2 (i) we have Vx(c
�)��(~c�x):

14
If the set of underlying linear pricing rules K has a �nite number of extreme points (which is the case in

most models with a �nite number of periods and states of the world, and all the examples in this paper), we also

have that a contingent claim c�2Rn is strictly e�cient if and only if it is the unique solution of minf�(c):c+

x is at least equal to a convex combination of claims distributed as c�+xg: The assumption is needed to avoid

situations where marginal rates of substitution are required to be unbounded at the optimum. One could expand

the set of utility functions to lexicographic or hyperreal-valued utility functions, as in Blume et al. (1991a and

1991b), which allow in�nite marginal rates of substitution. We are grateful to an anonymous referee for this

point.
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This means that as extreme as it may seem in some speci�c cases15 dom-
inating the uncertain future endowment, while minimizing the cost of doing
so, cannot be ruled out on e�ciency grounds only: it is a well-diversi�ed
strategy (albeit one may rule out the preferences that \rationalize" it).

2.4 Arbitage bounds and utility bounds
As a consequence of Theorem 2.3 we also have

Corollary 2.1 : For every contingent claim c� 2 Rn; we have

maxfVx(c�) : x 2 Rng = �(c�):

This means that even though for a given uncertain future endowment x
the \utility upper bound" Vx(c

�) might be strictly lower than the arbitrage
upper bound �(c�) and the \utility lower bound" �Vx(�c�) might be strictly
higher than the arbitrage lower bound ��(�c�); the widest range of \utility
bounds" across all possible uncertain future endowments coincides with the
interval of arbitrage bounds. Hence, if neither preferences nor endowments
are observable, e�ciency arguments do not lead to tighter bounds on the price
of a contingent claim c� than the simple arbitrage bounds �(c�) and ��(�c�):
In order to achieve tighter bounds, further restrictions on preferences and/or
endowments are necessary.

2.5 Portfolio performance

In this section, we apply the results of the previous sections to the measure
of portfolio performance. As in Dybvig (1988a), in measuring performance
we follow the tradition of comparing some investment strategy - and its dis-
tribution of payo�s - to the alternative of trading in a given securities market:
the benchmark market. However, we do not assume that it is frictionless,
and because of this we have to take the uncertain future endowment into
account since investment and hedging decisions can no longer be separated.
Ignoring these frictions would make the benchmark market available to in-
vestors more attractive than it actually is. This e�ect is mitigated by the
fact that the investment strategy itself is subject to the same frictions. The
previous results will allow us to evaluate the net e�ect.

15
For instance if a risky asset follows a geometric brownian motion with a positive bid-ask spread, a minimum

cost strategy that dominates a call option consists in buying and holding the risky asset (see Soner et al. [1995]).
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Given an uncertain future endowment x; an investment strategy is eval-
uated on the basis of the distribution Fc+x of its net payo� c + x, where c
might depend on information not available to the agents (but only to the
portfolio manager), allowing for information-trading and private investments
outside the benchmark market. The benchmark market is described by the
set K of underlying linear pricing rules that summarize the investment op-
portunities that are available. For utility pricing, by Theorem 2.2 (iii) the
relevant characteristic of the benchmark market is the set of cumulative dis-
tribution functions of the underlying linear pricing rules fFE : E 2 Kg: The
following Theorem is the counterpart of Theorem 4 in Dybvig (1988a) for
the frictionless case, and is a consequence of our Theorem 2.2.

Corollary 2.2 : Suppose that an investment strategy leads from an initial
wealth w0 to a cumulative net distribution of payo�s Fc+x; where x is the
uncertain future endowment. Let Vx(c) = maxfR 10 F�1

c+x(y)F
�1
E (1 � y)dy �

E(x) : E 2 Kg: Then,

(i) If w0 < Vx(c); we have superior performance, i.e. there exists a rational
agent with concave and strictly increasing Von Neumann-Morgenstern pref-
erences who prefers receiving the net distribution of payo�s Fc+x to trading in
the benchmark market. Moreover, the largest amount such a rational agent
would pay to switch is Vx(c)� w0 > 0.

(ii) If w0 = Vx(c); we have ordinary performance, i.e. every rational agent
with concave and strictly increasing Von Neumann-Morgenstern preferences
weakly prefers trading in the benchmark market to receiving the distribution
of payo�s Fc+x: However, the lowest amount such a rational agent would pay
to switch is equal to zero.

(iii) If w0 > Vx(c); we have inferior performance, i.e. every rational agent
with concave and strictly increasing Von Neumann-Morgenstern preferences
strictly prefers trading in the benchmark market to receiving the distribution
of payo�s Fc+x: Moreover, the lowest amount such a rational agent would pay
to switch is w0 � Vx(c) > 0.16

16
These are in fact the in�mum or the supremum over all the concave strictly increasing Von Neumann-

Morgenstern preferences, which are not necessarily attained for a speci�c utility function.
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Hence, by comparing the initial investment required by an investment
strategy to the utility price of the distribution of its payo� we can evaluate
its performance. If the utility price is lower than the initial investment,
the portfolio is not well-diversi�ed and is underperforming. If the utility
price is equal to the initial investment, the portfolio is well-diversi�ed and
it is performing as it should. If the utility price is larger than the initial
investment, the manager has superior ability and/or information, and/or is
subject to lower transaction costs, and the portfolio is overperforming.

As argued in Dybvig (1988a) this provides an alternative to the Security
Market Line (SML) in measuring portfolio performance. As opposed to the
SML analysis, this alternative gives a correct evaluation even when superior
performance is due to private information. Indeed, the SML is based on
mean-variance analysis,17 and even if securities returns are assumed to be
jointly normally distributed, they will typically not be normal once condi-
tioned on information (see Dybvig and Ross [1985]).

3. Examples and numerical results

In this section we examine examples of a multiperiod economy (the bino-
mial economy) where agents can trade a riskless asset, paying a continuously
compounded interest rate r; and a risky asset that follows a multiplicative
binomial process with an initial value S(0) and an actual probability of 1

2

of going \up" by u = exp(�T
n
+ �

q
T
n
) or \down" by d = exp(�T

n
� �

q
T
n
)

each period and at each node, where T denotes the length of the investment

horizon, and n the number of periods. We shall assume that � > j�� rj
q

T
n

to ensure the absence of arbitrage. In this example all states of the world
are equiprobable and the results of section 2 apply. It is well-known that
this binomial process converges (as the number of periods n goes to in�nity)
to a geometric Brownian Motion process with drift (instantaneous expected
return) �+ 1

2
�2 and volatility � (see Cox, Ross and Rubinstein [1979]).

3.1 Bid-ask spreads: proportional transaction costs

In this example transacting in the risky asset is costly, and the transaction
cost is proportional to the quantity transacted. If one share of the risky asset

17
Mean-variance analysis can be justi�ed either by assuming normally distributed returns or by assuming

quadratic utility. However, the latter assumption implies undesirable properties such as nonmonotonic prefer-

ences and increasing absolute risk aversion.
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is worth S at a given time and state of the world, we assume that it can be
bought for (1 + �)S and can be sold for (1 � �)S : the bid-ask spread (per
share) is equal to 2�S; where � is a nonnegative constant. We assume that the
risky asset has a nonnegative expected excess return (i.e. u+d

2
� exp(r T

n
)),

i.e. the risk-neutral probability pu of going \up" from each node is less than
or equal to 0:5:

Even for very small (but strictly positive) �; the strategy that consists
in dynamically duplicating a call option on the risky asset (for any strike
price P ) is ine�cient when n is large. In the frictionless economy (where
� = 0) by Theorem 2.1 the e�cient consumption bundles are those that
are in the same order as the price of the risky asset (since pu � 0:5). This
means that if the price of the risky asset is higher in a state of the world
than in another, so is the payo� of any e�cient consumption bundle. Since
the payo� of a call option with strike price P (and physical delivery) is
equal to c� = maxf(1 � �)S(T ) � P; 0g at its expiration date, it satis�es
this requirement. However, the trading strategy that duplicates this payo�
requires frequent portfolio rebalancing: if � > 0 it can be shown (see Soner
et al. [1995]) that as the number of periods n grows to in�nity the total cost
incurred is at least equal to the cost (1 + �)S(0) of purchasing one share
of the risky asset at the initial date. Since the payo� of this investment
strategy is (1 � �)S(T ) at the �nal date T; it strictly dominates the payo�
of the call option. This shows that duplicating the call option is ine�cient,
regardless of its strike price, as long as � > 0: Note that by Theorem 2.2
the \utility price" V0(c

�) of any consumption bundle c� is at most equal
to exp(�rT )E 1

2

(c�); the present value of its expected value with respect to

the actual probability measure.18 Hence, the ine�ciency cost of c� satis�es
�(c�)�V0(c

�) � �(c�)� exp(�rT )E 1

2

(c�); where �(c�) denotes the minimum

cost of achieving or dominating c�: In our example (when n goes to in�nity)
this means �(c�)� V0(c

�) � (1 + �)S(0)� exp(�rT )E 1

2

(maxfS(T )� P; 0g):
For example, if � = 0:1%; r = 6%; � = 20%; �+ 1

2
�2 = 12%; P = S(0); and

T = 1 year, then the ine�ciency cost of hedging an at-the-money call option
is at least equal to 83:99% of the value of the underlying risky asset, an
enormous amount. Nevertheless, the cheapest hedging strategy for that call

18
Indeed, since after normalizing by exp(rT ) we have V0(c

�)=minf�(c):c2�(c�)g; where �(c�) is the set of

convex combination of contingent claims distributed as c�; and since (E 1

2

(c�);:::;E 1

2

(c�)) belongs to �(c�) this

implies V0(c
�)�maxfE(E 1

2

(c�);:::;E 1

2

(c�)):E2Kg=E 1

2

(c�):
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option costs (1 + �)S(0) (see Soner et al. [1995]) but has a zero ine�ciency
cost by Theorem 2.3 and Remark 2.2. By Theorem 2.1 and Theorem 2.2 we
also have

Remark 3.1 : If Log(1+�
1��

) > maxfj(��r)T+nLog( exp(�
p

T

n
)+exp(��

p
T

n
)

2
)j; j��

rjTg; e.g. if Log(1+�
1��

) > j� + 1
2
�2 � rjT when n is large enough, then

the only e�cient trading strategies consist in investing in the riskless as-
set. The \utility price" V0(c

�) of any consumption bundle c� is then equal to
V0(c

�) = exp(�rT )E 1

2

(c�); the present value of its expectation with respect to
the actual probability measure with equiprobable states of the world.

For instance, consider the parameters above where (�+ 1
2
�2� r)T = 6%:

In this case, if � is equal to 3% or more this condition is satis�ed and the
only strategy that is e�cient consists in investing in the riskless asset. To
put this number into prospective, Amihud and Mendelson (1991) report that
the typical bid-ask spread on Treasury Notes and Bonds is roughly equal
to 0:03% of face value, i.e. � = 0:015%: On the other hand, Sharpe (1987)
reports an average bid-ask spread of 0:52% for large capitalization stocks
(larger than 1:5 billion dollars), up to 6:55% for small capitalization stocks
(smaller than 10 million dollars). When the typical commission rate of 1%
charged by retail brokers is taken into account this means that � averages
from 1:25% to 4:25% for stocks, depending on their size.

3.2 Short selling costs/Di�erent borrowing and lending rates

In this example the risky asset has no bid-ask spread and it can be sold
short, but it costs an annualized percentage c of the asset value to do so over
any period of time (see Tuckman and Vila [1992]). To model this situation
we assume that the risky asset cannot be held in negative quantities and we
introduce a shadow risky asset ~S that cannot be held in positive quantities

and that has a higher expected return: ~S(0) = S(0); ~u = exp((�+c)T
n
+�
q

T
n
)

and ~d = exp((� + c)T
n
� �

q
T
n
): We shall analyze the e�ciency of a stop-

loss trading strategy by an investor who expects the risky asset to have a
negative excess return (i.e. �� r+ 1

2
�2 � 0) and sells it short, but liquidates

the position if unexpected19 losses exceed a given threshold percentage � of
the initial investment. This is plausible if investors disagree on the actual
probability distribution of returns of the risky asset. Note that the short
interest on the NYSE averaged about 3:5 billion shares in 1997, almost 2%

19
This is a slight di�erence with the strategy in Dybvig (1988b) where the threshold applies to actual losses.
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of the total number of shares listed, more than 6 time the average daily
volume,20 and according to Engel and Boyd (1983, chap. 22) short selling
normally accounts for 6% to 8% of transactions.21 We have by Theorem 2.2

Remark 3.2 : The utility price of any contingent claim c� is equal to
V0(c

�) = E�(~c) where ~c is distributed as c� and is in reverse order of E�; the
probability measure such that the conditional probability of going \up" at each

node is � = maxf([�1; �2] [ [1� �2; 1� �1]) \ [0; 1
2
]g; with �1 =

exp((r�c)T
n
)�d

u�d

and �2 =
exp(r T

n
)�d

u�d
:

This provides us with a simple algorithm (together with Feller [1950,
vol. 1, chap. 14] for the distribution of payo�s of the trading strategies)
for computing the utility price of any contingent claim c� and evaluating
the ine�ciency cost of any trading strategy (the computation of �(c�) can be
carried out by backward induction as shown in Jouini and Kallal [1995 b]). If
T = 1 year, r = 8%; �+ 1

2
�2� r = �4%; � = 20%; and � = 10%; when short

selling is costless we �nd that the ine�ciency cost of the stop-loss strategy is
equal to 0:28% (see Dybvig [1988b]), but if the short selling cost is equal to
c = 1% it is reduced to 0:2%; and it is totally eliminated if the short selling
cost is as high as c = 4%: More generally we have by Theorem 2.1

Remark 3.3 : The stop-loss strategy is e�cient if and only if the cost c of
short selling the risky asset is equal to �(�� r+ 1

2
�2); i.e. to the negative of

its expected excess return over the riskless rate. This means that if the short
selling costs are high enough they rationalize strategies such as stop-loss that
are ine�cient in frictionless markets.22

To put these costs into prospective note that short selling a speci�c stock
requires posting a 50% initial margin, and that the proceeds from the short
sale are typically not available to the investor (although large institutional
investors are generally able to negotiate a much lower rental fee, it tends
to increase sharply with the desirability of the short sale).23 In this case,
c = r; which is equal to 8% in our example. In the bond market, short

20
See The Wall Street Journal, June 22, 1998, page C12.

21
Arguably, a good portion of the short positions have hedging motives in situations such as mergers and

acquisitions, the purchase of options or convertible securities, and tax management.
22
We would obtain exactly the same result for other strategies studied in Dybvig (1988b) such as lock-in

strategies and rolled-over portfolio insurance.
23
See Cox and Rubinstein (1985, p. 50), and Sharpe (1987, p. 34).
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sales are performed through repurchase agreements in which the short seller
lends money at the repo rate and takes the bond as collateral. If the bond is
\special", meaning that it is particularly hard to borrow - which is typically
the case for the most liquid benchmark bonds - its repo rate can be sharply
lower than the repo rate on general collateral. The short selling cost c is then
the sum of the bid-ask spread on the repo rate, and the di�erence between the
repo rate and the repo on general collateral. Stigum (1983) reports typical
values of c between 0:25% and 0:65%; but we can have c = r if the bond
is impossible to borrow and the short seller is forced to fail on its delivery.
Since this is likely to happen when the bond has outperformed, stop-loss
strategies are plausibly rationalized by such shortselling costs.

We can similarly analyze the case where the borrowing rate is higher
than the riskless lending rate (net of the ex-ante probability of default).
This can occur because of asymmetric information between borrowers and
lenders, and the inability of good borrowers to di�erentiate themselves from
bad ones. We examine a stop-loss strategy that consists in borrowing some
amount at the initial date and investing it in the risky asset, liquidating the
position whenever unexpected losses exceed a given threshold fraction � of
the initial investment. If T = 1 year, r = 8%; �+ 1

2
�2 � r = 10%; � = 20%;

and � = 10%; when there are no borrowing costs we �nd that the ine�ciency
cost of the stop-loss strategy is equal to 0:79%; but if the borrowing cost is
equal to 3% it is reduced to 0:49%; and it is totally eliminated if the cost is
as high as 10%: Again, we �nd that this strategy is rationalized by borrowing
costs equal to the expected excess return of the risky asset �+ 1

2
�2 � r:

To put these borrowing costs into prospective, note that individual in-
vestors can borrow with their home as collateral at a spread of roughly 1%;
that they typically pay a spread of 2:5% to borrow against their stock hold-
ings, and a spread of the order of 10% on their credit card balance (uncol-
lateralized borrowing). As far as corporations are concerned, the spread at
which they can borrow typically depends on their leverage. For instance, the
average spread at which AAA companies can borrow is roughly 0:4% whereas
it is roughly 5:5% for B companies24. According to Standard & Poor's Credit
Week (November 8, 1993, p. 41-2) the median total debt as a percentage
of capitalization was 21:9% for AAA companies and 65:9% for B companies

24
Although it is di�cult to estimate ex-ante probabilities of default, the available evidence suggests that

these spreads go well beyond this component.
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during the three-year period 1990-1992. In order to take these stylized facts
into account we assume that leverage is observable and that it enables bor-
rowers to partially di�erentiate themselves. Suppose that the borrowing cost
is equal to a+ bR with a = 0:5% and b = 3%; where R is the debt-to-equity
ratio. In this case, the stop-loss strategy is rationalized by such borrowing
costs if the liquidation threshold is equal to 50% or higher.

5. Conclusion

In this paper, we have provided a general price characterization of e�-
cient (i.e. optimal for at least one rational agent with concave and strictly
increasing Von Neumann-Morgenstern preferences) consumption bundles in
arbitrage-free multiperiod economies with market frictions. The opportunity
set in such economies can be characterized in terms of a sublinear pricing rule
that is the maximum of a convex set of underlying frictionless nonnegative
linear pricing rules. We have shown that a contingent claim is e�cient if and
only if it gives the right to at least as much net consumption in \cheaper"
states of the world, where \cheaper" is meant with respect to an underlying
linear pricing rule that \prices" the contingent claim. We have then de�ned a
conservative measure of the potential ine�ciency of a contingent claim as the
di�erence between its minimum cost to achieve and the maximum amount it
would cost any rational agent to get at least the same utility level (the \util-
ity price", which does not depend on any speci�c utility function). We have
shown that the utility price coincides with the \distributional price" (i.e.
the minimum amount it costs to obtain the same distribution of consump-
tion) in frictionless economies, but that it is in general smaller in economies
with market frictions, and that it is equal to the minimum amount it costs to
obtain the same distribution of consumption or a convex combination of con-
sumption bundles with the same distribution. Furthermore, we have proved
that it is not possible to tighten the arbitrage bounds on a contingent claim
to consumption based on e�ciency arguments without restricting preferences
or endowments. Also, we have exploited these results to propose a measure
of portfolio performance in imperfect markets without relying on strong as-
sumptions on preferences such as the Security Market Line analysis. We have
then applied these results to commonly used trading and hedging strategies
in the presence of di�erent borrowing and lending rates due to asymme-
tries of information, short selling costs, and bid-ask spreads. We have given

23



examples of e�cient trading strategies that become ine�cient with market
frictions, as well as examples of ine�cient strategies that are rationalized by
market frictions. Indeed, the presence of market frictions genarally changes
and tends to shrink the set of e�cient strategies, shifting investors away from
diversi�ed investment strategies into low cost strategies, and for large costs
into no trading at all.
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Appendix

First, recall that for a convex function F : 
 ! R, where 
 is an open
subset of Rn, the subgradient of F at x 2 
 is de�ned by @F (x) = fp 2 Rn :
p �(y�x) � F (y)�F (x) for all y 2 
g: Furthermore, following Clarke (1983,
Theorem 2.5.1) we have that @F (x) is the convex hull of flimn!1 F 0(xn) :
(xn) converges to x and F is di�erentiable at xng: For a concave function G
we de�ne @G as �@(�G).

Example : Ine�cient Distributions of Returns

Consider a two-period economy with two equiprobable states of the world,
\up" and \down". We shall assume that the riskless rate is equal to zero
(this is merely a normalization) and that investors can buy and sell a risky
asset that pays o� Su in state \up" and Sd in state \down", with Su > Sd; at
an ask price Sb = bSu+(1� b)Sd and a bid price Sa = aSu+(1� a)Sd; with
1 > b > a > 0: We have already found that the set of risk-neutral measures
(or underlying linear pricing rules) is equal toKa;b = f(p�; 1�p�) : p� 2 [a; b]g;
and hence the minimum cost to obtain a consumption bundle (cu; cd) is equal
to acu+(1�a)cd if cu � cd; and is equal to bcu+(1�b)cd otherwise. Suppose
without loss of generality that cu < cd; which means that (cu; cd) would be
e�cient in a frictionless world. The distributional price of (cu; cd); i.e. the
minimum cost to get a consumption claim distributed as (cu; cd); is then
equal to minfacu + (1� a)cd; bcd + (1� b)cug: It is then easy to check that
if a < 1

2
< b then minfacu + (1 � a)cd; bcd + (1 � b)cug > cu+cd

2
: Since any

rational agent with preferences satisfying Assumption 2.2 weakly prefers the
consumption bundle ( cu+cd

2
; cu+cd

2
) to (cu; cd) and to (cd; cu); and since the

consumption bundle ( cu+cd
2

; cu+cd
2

) only costs cu+cd
2

to obtain, this shows that
the distribution of payo�s of (cu; cd) as a whole is ine�cient: neither (cu; cd)
or (cd; cu) will ever be chosen by a rational agent, no matter what his utility
function is.

Note that this example is not a degenerate one. Both consumption bun-
dles (cu; cd) and (cd; cu) are in the opportunity set and neither of them is
dominated by a consumption bundle that costs the same amount to obtain.25

Moreover, for any given set of payo�s Su and Sd for the risky asset we can

25
In the presence of market frictions this would not violate the absence of arbitrage. See Bensaid et al. (1992)

for an example and a discussion of this point.
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�nd a transaction cost large enough to make any distribution of consump-
tion other than the riskless one (i.e. cu = cd) ine�cient. And if there is any
positive bid-ask spread around an initial price of Su+Sd

2
for the risky asset

then the only e�cient distribution of consumption is the riskless one.

Proof of Proposition 2.1 : See Jouini (1999).

Proof of Theorem 2.1 : We shall treat here the case where the uncertain
future endowment x is equal to zero. The case where x 6= 0 is an immediate
extension. First, note that by Proposition 2.1 and following Clarke (1983,
Theorem 2.8.6) @�(x) is de�ned for all x 2 Rn and @�(x) � fE 2 K : E(x) =
�(x)g: Moreover, if c� is e�cient (resp. strictly e�cient), there exists u 2 U
(resp. u 2 Usc) such that c� solves maxfu(c) : �(c) � �(c�)g; and by Rock-
afellar (1970, Theorems 28.2 and 28.3) there exists a nonnegative real number
� such that 0 2 �@u(c�)+�@�(c�): Also, by de�nition of U (resp. Usc) there
exists a concave (resp. strictly concave) and strictly increasing function U :
R! R such that for all c = (c1; : : : ; cn) 2 Rn; u(c) = 1

n
[U(c1) + : : :+ U(cn)]

and we have that @u(c�) =
Qn
i=1[U

0
+(ci); U

0
�(ci)] where U

0
�(x) and U 0+(x) are

the left and the right derivatives of U at x; respectively. Consequently, there
exists E� 2 K and � � 0 such that �E� 2 Qn

i=1[U
0
+(c

�
i ); U

0
�(c

�
i )]: Since U is

concave (resp. strictly concave) and strictly increasing, if c�i > c�j we have
0 < U 0+(c

�
i ) � U 0�(c

�
i ) � U 0+(c

�
j) � U 0�(c

�
j) (resp. 0 < U 0+(c

�
i ) � U 0�(c

�
i ) <

U 0+(c
�
j) � U 0�(c

�
j)). This implies that � > 0 and that E� is strictly positive

and in reverse order (resp. strict reverse order) of c�:
Conversely, let E� = (e�1; : : : ; e

�
n) 2 K be strictly positive and such that

E�(c�) = �(c�) and c� is in reverse order of E�: Consider the function g : R!
R; which is right-continuous, piecewise linear with potential discontinuity
and change of slope at c�1; : : : ; c

�
n: The function g is then entirely de�ned by

its values and left limits at each point c�i : g(c�i ) = inffe�k : c�k = c�i g and
g(c�i )

� = supfe�k : c�k = c�ig; and by the equations : g(c) = g(c�min)+(c�min�c)
for c < c�min and g(c) = g(c�max)exp(c

�
max � c) for c > c�max (where c�min

and c�max are respectively the smallest and the largest values taken by the
c�i 's). It is clear that g is positive nonincreasing (resp. decreasing) and if we
de�ne U� : R ! R by U�(x) =

R x
0 g(t)dt; then U� is concave (resp. strictly

concave) and strictly increasing. Furthermore, for every i = 1; : : : ; n we
have e�i 2 [g(c�i ); g(c

�
i )
�] = [U�0+(c

�
i ); U

�0
�(c

�
i )] = @U�(c�i ) which implies (for

a convex program) that c� solves maxfu(c) : E�(c) � E�(c�)g; where u is
de�ned on Rn by u(c1; : : : ; cn) =

1
n
[U�(c1) + : : : + U�(cn)]: Consequently c�
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solves maxfu(c) : �(c) � �(c�)g:
Proof of Remark 2.1 : If there exists E 2 K that is strictly positive and
prices �x then, by Theorem 2.1, duplicating �x (with a zero net payo�) is
e�cient since the null vector is in reverse order of any linear pricing rule and
hence of E: Conversely, if there is no such E 2 K then duplicating �x is not
e�cient since part (i) of Theorem 2.1 is not satis�ed.

Proof of the Lemma : Let P(c�) = fc : u(c) � u(c�); for all u 2 Ug; and
�(c�) be the convex hull of the permutations of the vector c� (i.e. the convex
hull of the consumption bundles that are distributed as c�). It is clear that if
a consumption bundle is distributed as c�; it is giving the same utility as c� to
every agent with preferences in U : Hence, by concavity of the preferences in U ;
any convex combination of consumption bundles distributed as c� provides
at least the same utility as c� to every agent with preferences in U : And
by monotonicity of the preferences in U ; any bundle that dominates such a
convex combination provides at least the same utility as c� to every agent
with preferences in U : Hence we must have �(c�) + Rn

+ � P(c�): Note that
since fc : u(c) � u(c�); for all u 2 Ug � fc : u(c) � u(c�); for all u 2 Uscg;
we would reach the same conclusion if we de�ned P(c�) as P(c�) = fc :
u(c) � u(c�); for all u 2 Uscg:

Conversely, let c 2 P(c�) and suppose that c =2 �(c�) + Rn
+: Consider ~c

�

(resp. ~c), the permutation of c� (resp. c) that satis�es ~c�1 � ~c�2 � : : : � ~c�n
(resp. ~c1 � ~c2 � : : : � ~cn). We have that ~c 2 P(c�) and ~c =2 �(c�) + Rn

+

(indeed, P(c�) and �(c�) + Rn
+ are stable by permutation of coordinates).

Since �(c�)+Rn
+ is closed and f~cg is compact, by a standard strict separation

Theorem (see Luenberger [1969]), there exists a nonzero vector p 2 Rn such
that p � ~c < inffp � x : x 2 �(c�) + Rn

+g: It is easy to see that p must be
nonnegative and that we have p � ~c < p � x for all permutations x of c�:
Consider �p; the permutation of p satisfying �p1 � �p2 � : : : � �pn: We then
have �p � ~c � p � ~c and since p � ~c < p � x for all permutations x of c�; we also
have that p � ~c < �p � x for all permutations x of c�: In particular, we have
that �p � ~c < �p � ~c�: Let us now consider a concave, strictly increasing real
function U : R ! R such that U 0(~c�i ) = �pi for all i = 1; : : : ; n and let us
de�ne the utility function u 2 U by u(c) = 1

n
(U(c1) + : : : + U(cn)) for all

c 2 Rn: We have that u0(~c�) � (~c� ~c�) < 0 and consequently, by concavity of
u; u(~c) < u(~c�) or equivalently u(c) < u(c�): This contradicts the fact that
c 2 P(c�) and shows that P(c�) � �(c�) + Rn

+; which concludes the proof.
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If instead we de�ne P(c�) by P(c�) = fc : u(c) � u(c�); for all u 2 Uscg;
let Uq : R ! R be de�ned by Uq(x) = U(x) � 1

q
exp(�x); for every positive

integer q: Since U is concave and strictly increasing Uq is strictly concave and
strictly increasing for every positive integer q: Hence, the utility function
uq(c) = 1

n
(Uq(c1) + : : : + Uq(cn)); for all c 2 Rn; belongs to Usc for every

positive integer q: Moreover since u(~c) < u(c�) we have uq(~c) < uq(c
�) for

q su�ciently large, which contradicts the fact that c 2 P(c�) and concludes
the proof.

Proof of Theorem 2.2: We shall treat here the case where the un-
certain future endowment x is equal to zero. The case where x 6= 0 is
an immediate extension. Let us show that for every c� 2 Rn we have
sup
u2U

fminf�(c) : u(c) � u(c�)gg = minf�(c) : c 2 P(c�)g; where P(c�) =

fc : u(c) � u(c�); for all u 2 Ug: It is obvious that we have minf�(c) : c 2
P(c�)g � sup

u2U

fminf�(c) : u(c) � u(c�)gg: Recall that we have assumed that

there exists a probability measure ~E 2 K that is strictly positive (i.e. ~ei > 0
for all i = 1; : : : ; n), and let m = 1

2
inf
i
~ei; and M = sup

i

jc�i j + 1 � log(m):

Consider U0; the class of utility functions u that belong to U and that satisfy
u(c) = 1

n
(U(c1) + : : : + U(cn)) with U(x) � M +m(x �M) for x � M and

U(x) � x+M for x � �M (by monotonicity of U this implies that U(x) �M
for all x 2 [�M;M ]). Clearly, we have sup

u2U0

minf�(c) : u(c) � u(c�)g �
sup
u2U

minf�(c) : u(c) � u(c�)g � minf�(c) : for all u 2 U ; u(c) � u(c�)g:
Suppose for now that K is a singleton f �Eg (the frictionless market case)

and consider an e�cient permutation �c of c� (i.e. a permutation of c� that
is in reverse order of �E). Then derive the function �U : R ! R from �E
and �c as U� was derived from E� and c� in the proof of Theorem 2.1.
Let the utility function �u be de�ned by �u(c) = 1

n
( �U(c1) + : : : + �U(cn)):

By construction we have �u(�c) = maxf�u(c) : �(c) � �(�c)g and hence it
is easy to see that �(�c) = minf�(c) : �u(c) � �u(�c)g: This implies that
�(�c) = minf�(c) : for all u 2 U ; u(c) � u(�c)g; and since u(�c) = u(c�)
for all u 2 U ; combinining the previous two equalities we obtain minf�(c) :
�u(c) � �u(c�)g = minf�(c) : for all u 2 U ; u(c) � u(c�)g: Moreover it is easy
to verify26 that �u belongs to U0 (where U0 is de�ned above in relation to

26
Indeed, recall that �U(x)=

R
x

0
g(t)dt where g(M)=g(c�

max
)exp(c�

max
�sup

i

jc�
i
j�1+log(m))�exp(�1+
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~E which is �xed in the whole proof) and this implies that sup
u2U0

minf�(c) :
u(c) � u(c�)g � minf�(c) : for all u 2 U ; u(c) � u(c�)g and combining
this inequality with the inequalities already obtained we have sup

u2U0

minf�(c) :
u(c) � u(c�)g = minf�(c) : for all u 2 U ; u(c) � u(c�)g:

Let us now turn to the more general case where K is not reduced to
a singleton (the case with market frictions). Let W (c�) = sup

u2U0

minf�(c) :
u(c) � u(c�)g; which is also equal to W (c�) = sup

u2U0

minf�(c) : u(c) �
u(c�); and �(c) � �(c�)g: Consider some u 2 U0 and let c 2 Rn such that
u(c) � u(c�): We then have that

P
ci�M

[M + m(ci � M)] +
P

ci��M
[ci +

M)] +
P
�M�ci�M

M � nu(c�); which implies m
P

ci�M
ci +

P
ci��M

ci +

nM � nu(c�); and hence
P

ci�M
ci +

P
ci��M

ci � nu(c�)�nM
m

: Moreover, if

�(c) � �(c�) we have ~E(c) � �(c�) which means
Pn

i=1 ~eici � �(c�) and this
implies �

P
ci�M

ci + �
P

ci��M
ci � �(c�) + nM where � = inf

i
~ei = 2m > 0

and 0 < � = sup
i

~ei < 1�m: Subtracting the previous inequalities we obtain

(� � m)
P

ci�M
ci + (� � 1)

P
ci��M

ci � �(c�) + 2nM � nu(c�) and hence
m
P

ci�M ci + m
P

ci��M(�ci) � �(c�) + 2nM � nu(c�) which implies that

ci � supfM; �(c
�)+2nM�nu(c�)

m
g: Let Bu(c

�) = fc : u(c) � u(c�) and �(c) �
�(c�)g; which is then bounded (by the previous inequalities) and hence com-
pact. This gives us minf�(c) : u(c) � u(c�)g = min

c2Bu(c�)
maxfE(c) : E 2

Kg = maxf min
c2Bu(c�)

E(c) : E 2 Kg by the min-max Theorem (see Luenberger

[1969, Theorem 1, p. 208]). Hence, we have W (c�) = sup
u2U0

maxf min
c2Bu(c�)

E(c) :

E 2 Kg = maxfsup
u2U0

min
c2Bu(c�)

E(c) : E 2 Kg; and this implies that W (c�) �
maxfsup

u2U0

min
c:u(c)�u(c�)

E(c) : E 2 Kg: We have already seen that if E 2 K is

strictly positive then sup
u2U0

minfE(c) : u(c) � u(c�)g = minfE(c) : c 2 P(c�)g
and hence27 we obtain W (c�) � maxf min

c2P(c�)
E(c) : E 2 Kg: Combining this

inequality with the proof of part (ii); where we show that maxf min
c2P(c�)

E(c) :

log(m))�m which implies that �U(x)�M+m(x�M) whenever x�M�c�
max

. Moreover, if x��M then x�c�
min

and g(x)=g(c�
min

)+c�
min

�x:Moreover, in this case we have c�
min

�x�c�
min

+sup
i

jc�
i
j+1�log(m)�1 which implies

0�U(�M)�U(x)+(�M�x):
27
Recall that K is the closure of its strictly positive elements.
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E 2 Kg = minf�(c) : c 2 P(c�)g; we obtain that W (c�) � minf�(c) :
c 2 P(c�)g and hence W (c�) = minf�(c) : c 2 P(c�)g: Since we have that
U0 � Usc � U this gives us the result : V (c�) = minf�(c) : c 2 P(c�)g and
V (c�) = sup

u2Usc

minf�(c) : u(c) � u(c�)g: This concludes the proof of part (i):
We are now going to show that for all c� 2 Rn; minf�(c) : c 2 P(c�)g =

maxf min
c2P(c�)

E(c) : E 2 Kg where P(c�) = fc : u(c) � u(c�); for all u 2 Ug:
By the Lemma we have P(c�) = �(c�) +Rn

+; where �(c
�) is the convex hull

of the permutations of c� (i.e. of the bundles distributed as c�). Since � is
nondecreasing we have minf�(c) : c 2 P(c�)g = minf�(c) : c 2 �(c�)g =
min

c2�(c�)
maxfE(c) : E 2 Kg and since �(c�) and K are convex and compact

we have minf�(c) : c 2 P(c�)g = maxf min
c2�(c�)

E(c) : E 2 Kg by the min-max

Theorem (see Luenberger [1969, Theorem 1, p. 208]). Moreover, since each
E 2 K is a linear functional, we have minfE(c) : c 2 �(c�)g = minfE(c) :
c is a permutation of c�g and hence minf�(c) : c 2 P(c�)g = maxfP (c�; E) :
E 2 Kg: This concludes the proof of part (ii):

Part (iii) is a direct consequence of part (ii) and of Theorem 3 in Dybvig
(1988a).

Proofs of Theorem 2.3 (and footnote 17): We shall treat here the case
where the uncertain future endowment x is equal to zero. The case where
x 6= 0 is an immediate extension. If c� is strictly e�cient, by Theorem 2.1
it is in strict reverse order of a strictly positive linear pricing rule E� that
prices it, which implies that: E(c�) � E�(c�) � E�(c); for all E 2 K and
for all c 2 �(c�) +Rn

+; where �(c
�) is the convex hull of the permutations of

c� (i.e. of the consumption bundles that are distributed as c�). Hence, the
pair (E�; c�) is a saddle-point and it solves min

c2�(c�)+Rn

+

fmaxfE(c) : E 2 Kgg
and maxff min

c2�(c�)+Rn
+

E(c)g : E 2 Kg: Moreover, suppose that there exists

c0 6= c� that also solves min
c2�(c�)+Rn

+

fmaxfE(c) : E 2 Kgg: Then c0+c�

2
is strictly

preferred to c� by every strictly risk averse agent (since c0 is weakly preferred
to c�) and costs at most min

c2�(c�)
fmaxfE(c) : E 2 Kgg = �(c�) = �(c0); which

contradicts the strict e�ciency of c�:
Conversely, suppose that c� is the unique solution of min

c2�(c�)+Rn
+

fmaxfE(c) :
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E 2 Kgg; then it also solves min
c2�(c�)

fmaxfE(c) : E 2 Kgg: This is equivalent,
by the min-max Theorem (see Rockafellar [1970]), to the existence of E� 2 K
such that (E�; c�) is a saddle point, i.e. such that E(c�) � E�(c�) � E�(c);
for all E 2 K and for all c 2 �(c�): This means that there exists E� 2 K
that prices c� and is in reverse order of c�: This proves Theorem 2.3.

In order to conclude the proof of footnote 17 we also need E� to be
positive and in strict reverse order of c�: Suppose �rst that E� is in fact
in strict reverse order of c�: We are going to show that in this case we can
construct ~E that is also in strict reverse order of c� and that is strictly
positive. Indeed, suppose that (assuming, without loss of generality, that E�

is in nondecreasing order) we have e�1 = : : : = e�k = 0 and 0 < e�k+1 � : : : � e�n
for some n > k � 1: Since c� is in strict reverse order of E� we then have
c�1 = : : : = c�k and c�k � c�k+1 � : : : � c�n: Let � > 0 and consider the
consumption bundle c0 = (c�1+ �; : : : ; c�k+ �; c�k+1; : : : ; c

�
n): If c

�
k > c�k+1 we then

have that �(c�) = E�(c�) = E�(c0) and E�(c0) = �(c0) since if there were a
measure E 2 K such that E(c0) > E�(c�) it would also satisfy E(c�) > E�(c�)
which is impossible since E�(c�) = �(c�). This contradicts the uniqueness of
the solution of minf�(c) : c 2 P(c�)g since c0 6= c�: If c�k = c�k+1 then we either
have that �(c�) = E�(c�) = E�(c0) = �(c0) (and again a contradiction) or we
obtain a strictly positive measure ~E 2 K that is in strict reverse order of c�

and prices it. Indeed, if E�(c0) < �(c0) then there is a measure in K that is
identical to E� but puts more weight on c�1 = : : : = c�k and less weight on the
c�j 's such that c�j = c�k+1 and j � k+1: We can then construct (by convexity

of K) ~E 2 K that prices c�; is still in strict reverse order of c� and is such
that ~e1; ~e2; : : : ; or ek is strictly positive and ~ej > 0 for j > k: Repeating this
reasoning (k times at most) we obtain ~E that is strictly positive, in strict
reverse order of c� and prices it. To conclude the proof, we only need to show
that there exists a measure E� 2 K that prices c� and is in strict reverse order
of c�: Let A = fx : �(c�+x) � �(c�)g and B = fx : c�+x 2 �(c�)g (note that
0 is an extreme point of B). Since K has a �nite number of extreme points,
� is polyhedral and A is polyhedral. Since 0 belongs to A, the convex cone A0

generated by A is then closed (see Rockafellar [1970, Theorem 19-7]). Let B0

be the convex cone generated by B; since 0 belongs to B which is polyhedral
B0 is closed. It is also easy to show that B0 \ (�B0) = f0g; and this implies
that there exists an a�ne hyperplane H such that 0 =2 H; ~B = H \ B0

is compact and B0 is the convex cone generated by ~B (see Bourbaki [1981,
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chapter II-7-3]). Moreover, it is easy to show that A0\B0 = ; and hence that
A0 \ ~B = ;: Moreover, since A0 is closed and ~B is compact there exists � > 0
such that ( ~B + B(0; �)) \ A0 = ; (where B(0; �) is the closed ball of center
0 and radius �). Note ~B� = ~B + B(0; �) and let B0

� be the cone generated
by ~B�: Since ~B� is convex and compact and does not contain 0; then B0

� is a
closed convex cone, and it is easy to show that A0 \B0

� = f0g: Moreover, by
construction B0

� has a nonempty interior and we have 0 =2 int(B0
�) and hence

int(B0
�) \ A0 = ;: Hence, by Eidelheit separation Theorem, there exists a

nonzero linear map f such that for all (a; b) 2 A0�B0
�; f(a) � 0 � f(b) (see

Luenberger [1969]). This means that if Ei(c
� + x) � �(c�) for every extreme

point Ei of K then f(x) � 0: In other words, if Ei(c
� + x � �(c�)e) � 0 for

every extreme point Ei of K then f(c� + x � �(c�)e) � f(c�) � �(c�)f(e)
(where e is the vector with all components equal to one). Since f is bounded
above on a cone it is necessarily bounded by 0 and by Farkas' Lemma we have
that f is a nonnegative linear combination of the (�nite) extreme points of K
and f(c�)��(c�)f(e) � 0: Renormalizing f if necessary, f then belongs to K
and f(c�) � �(c�); which implies f(c�) = �(c�) (this means that f prices c�).
Now let b a nonzero vector of B; since B0 is the cone generated by ~B; there
exists ~b 2 ~B and a real number � > 0 such that b = �~b and B(~b; �) � B0

�:
Hence f is nonnegative on B(~b; �) and since f 6= 0 we must have f(~b) > 0
and therefore f(b) > 0. Since f(0) = 0; f attains its minimum on B0 at 0
only. This shows that f attains its minimum on �(c�) at the point c� only,
which implies that f is in strict reverse order of c� and concludes the proof
of footnote 17.

Proof of Remark 2.2 : Let the payo� �~x � �x of a minimum cost
strategy that dominates �x: This means �(�~x) = �(�x): If E� 2 K prices
�x we have �(�x) = E�(�x) � E�(�~x) � �(�~x) which implies �(�x) =
�(�~x) = E�(�~x) = E�(�x); i.e. E� prices �~x as well. Hence E� assigns a
zero price to the states of the world where �~x strictly dominates �x: Since
�~x + x equals zero in the other states, E� is in reverse order of �~x + x: By
Theorem 2.3 this shows that the minimum cost dominating strategy has no
ine�ciency cost.

Proof of Corollary 2.1 : We have Vx(c
�) � �(c�) by De�nition 2.2.

Moreover, V�c�(c
�) = �(c�): Indeed, any pricing rule in K that prices c� is in

reverse order of the net contingent claim equal to zero and hence, by Theorem
2.3, c� has a zero ine�cient cost given an uncertain future endowment �c�:
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Proof of Corollary 2.2 : This is a direct consequence of Theorem 2.2.

Proof of Remark 3.1 : We shall assume that all prices and payo�s at time t
have been normalized by exp(rt): Denote by E 1

2

the expectation with respect
to the actual probability measure with conditional probability 0:5 of going
\up" from each node in the tree. Using the inequalities satis�ed by � we have,
for every date t and every node !(t); we have (1��)S(t) � E 1

2

((1��)S(T ) j
!(t)) � (1 + �)S(t) or (1� �)S(t) � E 1

2

((1 + �)S(T ) j !(t)) � (1 + �)S(t):
This proves that E 1

2

belongs to K:

We shall now prove V0(c
�) = E 1

2

(c�) for all c�: By Theorem 2.2 (ii)

we have V0(c
�) = maxfP0(c

�; E) : E 2 Kg; hence V0(c
�) � P0(c

�; E 1

2

):

Moreover P0(c
�; E 1

2
) = E 1

2
(c�) since all states of the world are equiproba-

ble under E 1

2
: This implies V0(c

�) � E 1

2
(c�): By Theorem 2.2 (i) we have

V0(c
�) = minf�(c) : c 2 �(c�)g: Since (E 1

2

(c�); : : : ; E 1

2

(c�)) 2 �(c�) this

implies V0(c
�) � maxfE(E 1

2

(c�); : : : ; E 1

2

(c�)) : E 2 Kg and hence V0(c
�) �

E 1

2

(c�):
Suppose that c is not riskless, then there exist i and j such that ci > cj:

Because the inequalities satis�ed by � are strict, E 1

2

belongs to the relative in-

terior ofK:De�ne the linear pricing rule E = E 1

2

+(0; : : : ; 0; �; 0; : : : ; 0;��; 0; : : : ; 0);
where � is the i-th element and �� is the j-th element (without loss of gen-
erality). If � > 0 is su�ciently small E belongs to K: Since E(c) > E 1

2

(c)

this implies �(c) > E 1

2

(c) and hence �(c) > V0(c): This shows that the only
e�cient consumption bundles are the riskless ones.

Proof of Remark 3.2 : De�ne K = [�1; �2]
N and K� = [K [ (1 � K)] \

[0; 1
2
]N ; with �1 =

exp((r�c)T
n
)�d

u�d
and �2 =

exp(r T
n
)�d

u�d
; where N is the total num-

ber of nodes in the tree (except the terminal ones). K� is the set of probability
measures de�ned by conditional probabilities (of the \up" state) that are not
larger than 1

2
and belong to [�1; �2] [ [1 � �2; 1� �1]: By Theorem 2.2 (ii)

we have V (c�) = maxfP (c�; E) : E 2 Kg; where P (c�; E) = minfE(c) : c
is distributed as c�g: We then have V (c�) = maxfP (c�; E) : E 2 K�g; since
we can reorder c� to match the switch in conditional probabilities from the
"up" state to the "down" state, without changing its distribution. We are
now going to prove that (E�; ~c) is a saddle point, where ~c is a permutation
of c� which (i) is in reverse order of E�; and (ii) whenever two states of the
world have the same number of \ups" (and hence the same weights for the
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probability measure E�) ~c has a (weakly) higher payo� in the state that is
\higher up" in the tree. This means that we shall prove that (E�; ~c) satis�es
E(~c) � E�(~c) � E�(c) for every c distributed as c� and every E 2 K�; and
this will prove V (c�) = E�(~c): Note that as far as computing V (c�) is con-
cerned we can use any ~c that is in reverse order of E� since they all give the
same value for E�(~c): Also, E�(~c) � E�(c) follows immediately from (i). In
order to prove E(~c) � E�(~c) for all E 2 K�; we shall proceed by backward
induction and prove it for the expectations conditioned on each node. Let
E 2 K�; then the inequality on the conditional expectations obviously holds
at the �nal date. Assuming that it holds for an arbitrary date t; let us prove
that it holds for date t � 1 as well, i.e. E(~c j !(t � 1)) � E�(~c j !(t � 1));
for every date t � 1; every node !(t � 1) and every E 2 K�: Let the
successors of a t � 1 node !(t � 1) be !(t � 1; up) and !(t � 1; down);
and let � and 1 � � be their conditional probabilities under E: We have
E(~c j !(t�1)) = �E(~c j !(t�1; up))+(1��)E(~c j !(t�1; down)):We shall
now distinguish two cases: either E(~c j !(t� 1; up)) � E(~c j !(t� 1; down))
or E(~c j !(t � 1; up)) � E(~c j !(t � 1; down)): In the �rst case, since E be-
longs to K� we have � � �; we obtain E(~c j !(t�1)) � �E(~c j !(t�1; up))+
(1 � �)E(~c j !(t� 1; down)); and by our induction hypothesis this leads to
E(~c j !(t � 1)) � �E�(~c j !(t � 1; up)) + (1 � �)E�(~c j !(t � 1; down));
i.e. E(~c j !(t � 1)) � E�(~c j !(t � 1)): In the second case we have
E(~c j !(t � 1; up)) � E(~c j !(t � 1; down)) � E�(~c j !(t � 1; down)) �
E�(~c j !(t � 1; up)): The �rst inequality is by assumption, the second by
induction hypothesis, and the third by the properties (i) and (ii) satis�ed by
~c: This implies E(~c j !(t� 1)) � E�(~c j !(t� 1)):

Proof of Remark 3.3 : It is easy to see that when c = �(�� r+ 1
2
�2) the

linear pricing rule with equal prices for all states of the world is in K; and is
equal to E� of Remark 3.2. Since the stop-loss strategy only involves short
selling the risky asset (and investing in the riskless asset), it is easy to show
that this linear pricing rule prices its payo�. It then follows from Remark
3.2 and Theorem 2.1 that the stop-loss strategy is e�cient.
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