
Discussion Paper No. 706 
 

 
 
 
 
 
 

 

 
DETERMINACY OF EQUILIBRIUM 

UNDER VARIOUS PHILLIPS CURVES 
 
 
 

Yoshiyasu Ono 
 
 
 
 
 
 
 
 
 
 
 
 

February 2008 
 
 

The Institute of Social and Economic Research 
Osaka University 

6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6251806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


February 2008 

 
 

Determinacy of Equilibrium under Various Phillips Curves 
 

 

by 

Yoshiyasu Ono* 
Osaka University 

 

 

Abstract 
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1. Introduction 
 

 This paper examines the existence of a unique equilibrium path under various Phillips 

curves, viz. the original Phillips curve, the backward-looking one, the forward-looking one and 

the hybrid of the backward- and forward-looking ones. It does so under a money stock control 

rule and interest-rate feedback rules (Taylor rules) and finds that the path is non-existent or 

indeterminate under various situations. 

 Since Phillips (1958) found a negative relationship between the inflation rate and the 

unemployment rate, various attempts to elaborate the Phillips curve have been made. Friedman 

(1968) and Phelps (1967) introduce the expected inflation rate into the original Phillips curve 

and present a backward-looking Phillips curve, called the New Classical Phillips Curve.1 More 

recently microeconomic foundations of nominal price adjustment have been analyzed and a 

forward-looking Phillips curve, called the New Keynesian Phillips Curve, is proposed instead 

of the backward-looking one. Roberts (1995) derives it from the models of staggered contracts 

developed by Taylor (1979, 1980), Rotemberg (1982) and Calvo (1983).2 

 However, empirical fitting of the New Keynesian Phillips Curve is found to be 

unsuccessful. Thus, a hybrid type of the backward- and forward-looking Phillips curves is 

proposed and shown to fit data better than the others. Fuhrer and Moore (1995), Gali and 

Gartler (1999), Christiano et al. (2005), Rudd and Whelan (2005a, 2005b), Sawyer (2007), 

Smith and Wickens (2007) are such examples. 

 Apart from those empirical analyses Benhabib et al. (2001a) theoretically examine the 

stability of macroeconomic dynamics under the forward-looking Phillips curve when the 

monetary authority follows a Taylor rule. They find that the equilibrium path is determinate if 

the authority moves the nominal interest rate so much that the real interest rate also moves in 

the same direction as the inflation rate does (viz. active feedback) but indeterminate if the 

feedback is not so much (viz. passive feedback). Benhabib et al. (2001b) analyze the stability 

in the case of multiple steady states and find that the equilibrium path is indeterminate even 

under the active feedback. Woodford (2003) extensively studies this issue under the 

                                                 
1 This type of Phillips curve is adopted by Kydland and Prescott (1977) and Barro and Gordon (1983) when 

analyzing the effects of monetary policies. 
2 Kimball (1995) and Yun (1996) incorporate Calvo’s price-setting model into a dynamic general equilibrium 

framework. 
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forward-looking Phillips curve and various Taylor rules and shows that the path can be 

determinate or indeterminate, depending on the parameter values of the Taylor rules.3  

 Since they focus on the dynamic performance of Taylor rules rather than that of the 

Phillips curve, they treat only the cases of flexible prices and the forward-looking Phillips 

curve:4 the cases of the other Phillips curves are not examined. In contrast, this paper focuses 

on the dynamic stability under various Phillips curves, viz. the original, the backward-looking, 

the forward-looking and the hybrid ones, and explores under which type of Phillips curve the 

equilibrium path is determinate. Furthermore, since a money stock control rule instead of a 

Taylor rule is mostly assumed in the monetary-growth literature, it begins with the case of a 

fixed amount of nominal money stock. It is found that there is a case where the path is 

non-existent under the backward-looking Phillips curve and the hybrid one whereas it is 

always determinate under the original Phillips curve and the forward-looking one.  

 Determinacy of equilibrium under a Taylor rule is also examined in each case. It is shown 

that, as long as the Taylor rule is passive, the equilibrium path is never determinate under any 

of the four Phillips curves. It is either non-existent or indeterminate. If it is active, the 

equilibrium path is always determinate under any of them. Thus, if a Taylor rule is adopted, the 

monetary policy must be active in order for the equilibrium path to be determinate. 

 

2. The Model 
  

 The household sector receives income y, which equals actual total production, and holds 

real balances m. For simplicity, it is assumed that m is the only storable asset. The household 

sector determines c and m so as to maximize lifetime utility U:  

 U = ,),(
0

dtemcu tρ−∞

∫  

subject to the flow budget equation: 

 m& = y − c − πm + τ, (1)  

where ρ is the subjective discount rate, π is the inflation rate of commodity price P, y is 

                                                 
3 The possibility of equilibrium indeterminacy under a Taylor rule is also explored in the presence of capital 

accumulation. See Itaya and Mino (2004) and Meng and Yip (2004) for the case of flexible prices and Dupor 
(2001) and Carlstrom and Fuerst (2005) for the case of the forward-looking Phillips curve in a continuous-time 
and discrete-time setting respectively. 

4 Schmitt-Grohé and Uribe (2000) analyze the dynamic stability under a Taylor rule and flexible prices and 
find that there are the case with a continuum of equilibrium paths and that with a unique equilibrium path. 
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aggregate demand, and τ is the government’s lump-sum transfer. 

 Naturally, u(c, m) is assumed to satisfy the following properties:  

 

Assumption 1. uc > 0,  um  > 0,  ucc < 0,  umm < 0,  Φ = ummucc − ucm
2  > 0. 

 

Assumption 2.                 ∂(um/uc)/∂c = (umcuc − uccum)/uc
2 > 0, 

 ∂(um/uc)/∂m = (ummuc − ucmum)/uc
2 < 0, 

 1 + ucmm/uc > 0. 

 

Assumption 1 presents the standard conditions, including concavity, that a utility function must 

satisfy. The first two properties of assumption 2 imply normality of consumption c and of real 

balances m, respectively. The third property means that ucm is not significantly negative. It is 

definitely valid either if c and m are Edgeworth substitutes (viz. ucm > 0) or if u(c, m) is additive 

separable (viz. ucm = 0).  

 From the Hamiltonian function of this problem: 

 H = u(c, m) + λ(y − c − πm + τ),  

one derives the first-order optimal conditions that are summarized as follows: 

 R = 
),(
),(

mcu
mcu

c

m  = ρ + π − 
),(

),(),(
mcu

mmcucmcu

c

cmcc && +
,  (2) 

where a dot represents a time derivative, each subscript implies the partial derivative with 

respect to it, and R is the nominal interest rate. The transversality condition is  

 )exp(lim tmttt
ρ−λ

∞→
= 0     where   λt = uc(ct, mt).  (3) 

 The equilibrium of the money market is given by 

 M/P = m, (4)  

where M is the nominal money stock. If commodity price P is flexible, the present model is the 

same as that of Obstfeld and Rogoff (1983) and thus the unique equilibrium path obtains.5 

Alternatively, this paper assumes P to be sluggish and considers the following four types of 

commodity price adjustment: 

 Original:   π = f1(y/yn), (5a) 

 Backward-looking:  π&  = f2(y/yn), (5b)  

                                                 
5 The path is such that P initially jumps to the steady-state level and stays there. 
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 Forward-looking:   π&  = ρπ − f3(y/yn), (5c)  

 Hybrid:   π&&  = ρπ&  − f4(y/yn), (5d)  

 where  fi(1) = 0  and  fi′ > 0  for  i = 1, 2, 3, 4. 

In the above equations yn is the natural rate of output and ρ is the subjective discount rate.  

 (5a) is clearly the original Phillips curve. Note that y and π have a one-to-one 

correspondence and hence the degree of freedom is 1 when choosing the initial levels of the 

two variables. (5b) is the continuous version of the backward-looking adjustment (viz. the 

Neoclassical Phillips Curve) proposed by Phelps (1967) and Friedman (1968): 

 πt  = πt−1 + γln(yt /yn). 

It reduces to  

 πt − πt−1 = γln(yt /yn),   

which is essentially the same as (5b). Since πt−1 is predetermined, πt is determined once yt is 

determined –i.e., the degree of freedom is 1 when choosing the initial levels of y and π. 

 (5c) is the continuous version of the forward-looking adjustment (viz. the New Keynesian 

Phillips Curve) presented by Roberts (1995):  

 πt  = βEt[πt+1]  + κln(yt /yn), 

where β is the subjective discount factor. This equation reduces to  

 πt+1 − πt  =  [(1 − β)/β]πt − (κ/β)ln(yt /yn), 

which is essentially the same as (5c). Note that discount factor β equals 1/(1 + ρ) and hence the 

coefficient of πt in the right-hand side equals ρ, as presented in (5c). Since there is πt+1 in this 

equation, yt and πt are both jump variables. 

 The hybrid model by Christiano et al. (2005) (see also Woodford, 2003, p.215) is 

 πt − πt−1 = βEt[πt+1 − πt] + κln(yt /yn), 

which reduces to 

 (πt+1 − πt) − (πt − πt−1) =  [(1 − β)/β](πt − πt−1) − (κ/β)ln(yt /yn). 

(5d) is its continuous version. Since πt−1 is predetermined, πt and yt are jump variables. 

However, once they are chosen, πt − πt−1 and πt+1 − πt are determined. Thus, the degree of 

freedom is 2 when choosing the initial levels of y, π and π&  in this case. 

 Needless to say, each fi(y/yn) (for i = 1, 2, 3, 4) is a generalized form of γln(y/yn) or 

(κ/β)ln(y/yn) discussed above. 
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3. Money Stock Control Rule 
  

 This section assumes a simple money stock control rule, viz. keeping money stock M to be 

constant. Then, from (4), 

 m&  = − πm. (6)  

Fiscal spending is assumed to be zero and thus transfer τ is zero. In this case (1) and (6) imply 

 y = c.  (7) 

Applying (6) and (7) to (2) gives the dynamic equation of y: 

 y&  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

),(
),(

myu
myu

cc

c ⎥
⎦

⎤
⎢
⎣

⎡
π⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−ρ−

),(
),(

1
),(
),(

myu
mmyu

myu
myu

c

cm

c

m . (8) 

Equations (6), (8) and one of the four equations in (5) formulate an autonomous dynamic 

system. Note that the four scenarios have the same steady state represented by 

 (π, y, m) = (0, yn, m*),    where 
*),(
*),(

myu
myu

n
c

n
m  = ρ. (9)  

In this state transversality condition (3) is obviously valid.6 

 

3.1. Original Phillips curve 

 Substituting π given by (5a) into (6) and (8) yields 

 y&  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

),(
),(

myu
myu

cc

c

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−ρ− )/(

),(
),(

1
),(
),(

1
n

c

cm

c

m yyf
myu

mmyu
myu
myu

, 

 m&  = − f1(y/yn)m.  

Therefore, around the steady state given by (9) the characteristic equation of the (y, m) 

dynamics is 

λ−
′

−

λ−

n

my

y
mf

yy
*1

&&

= 0, 

where under assumption 2 my&  satisfies  

                                                 
6 There may be another steady state in which m expands to infinity, um = 0, and y takes the value that makes y&  

given by (8) equal zero. In the case where ucm = 0, for example, such a state indeed obtains when ρ + π = 0 and y 
takes the value that makes π equal − ρ under each Phillips curve (5a) – (5d). However, from (2), λ in (3) and (6), 

λλ /& + mm /& − ρ = um/uc = 0 in this state, implying that transverslity condition (3) is invalid. Therefore, the path 
that approaches this state cannot be an equilibrium path.  
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 my&  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

cc

c

u
u

m
uu cm

∂
∂ )/(

 < 0. (10) 

 The characteristic function reduces to  

 λ2 + Aλ + B = 0, 

where using (10) one finds 

 B = λ1λ2 = f1′ my& m*/yn < 0, 

and λ1 and λ2 are the two characteristic roots. Therefore, the two roots are both real numbers, 

among which one is positive and the other is negative. Since y is jumpable while m is not, the 

equilibrium path is uniquely determined.  

 

3.2. Backward-looking adjustment 

 Around the steady state given by (9) the characteristic function of the (π, y, m) dynamics 

formulated by (5b), (6) and (8) is  

 
λ−−

λ−

′λ−

π

0*

0/2

m
yyy

yf

my

n

&&&  = 0, (11)  

where my&  is the same as given by (10). Under assumptions 1 and 2 πy&  and yy&  satisfy 

 πy&  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

cc

c

u
u

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

c

cm

u
mu

1  < 0,    

 yy&  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

cc

c

u
u

c
uu cm

∂
∂ )/(

 > 0.   (12) 

The characteristic function (11) reduces to 

 λ3 + Aλ2 + Bλ + D = 0, 

where using (10) and (12) one finds 

 A = − (λ1 + λ2 + λ3) = − yy&  < 0, 

 B = λ1λ2 + λ2λ3 + λ3λ1 = − f2′ πy& /yn > 0, 

 D = − λ1λ2λ3 = f2′ my& m*/yn < 0. (13) 

 First, suppose that all the roots are real numbers. Since neither π nor m is jumpable 

whereas y is jumpable, in order that there is a unique equilibrium path one of the roots is 

positive and the other two are negative. Calling the positive root λ1 and the two negative roots 

λ2 and λ3, the first property of (13) gives 
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 0 < − (λ2 + λ3) < λ1, 

which implies  

 B = λ1(λ2 + λ3) + λ2λ3 < λ2λ3 − (λ2 + λ3)2 < 0. 

This property contradicts the second property of (13), and hence the case of one positive and 

two negative roots never occurs. From this result and the third property of (13), all roots are 

positive, implying that there is no equilibrium path.  

 If two of the three roots are complex numbers, which must be conjugate, the third property 

of (13) implies the real root to be positive. From the first and second properties the real part of 

the complex roots can be either positive or negative. If it is positive, all paths are unstable and 

hence there is no equilibrium path. If it is negative, the equilibrium path is determinate. At the 

end of this section it is shown that the two cases in fact arise. 

 

3.3. Forward-looking adjustment 

 Around the steady state given by (9) the characteristic function of the (π, y, m) dynamics 

formulated by (5c), (6) and (8) is 

λ−−
λ−

′−λ−ρ

π

0*

0/3

m
yyy

yf

my

n

&&&  = 0. 

This equation reduces to  

 λ3 + Aλ2 + Bλ + D = 0,  

where from (10) and (12) 

 A = − (λ1 + λ2 + λ3) = − (ρ + yy& ) < 0, 

 D = − λ1λ2λ3 = − f3′ my& m*/yn > 0. (14) 

 If all the roots are real numbers, from the second property of (14) λi’s (i = 1, 2, 3) satisfy  

 either   λ1 > 0,   λ2 > 0,   λ3 < 0; 

 or   λ1 < 0,   λ2 < 0,   λ3 < 0. 

Since the second case contradicts the first property of (14), only the first case is valid, implying 

that there are two positive roots and a negative one. Since π and y are jump variables whereas m 

is not, there is a unique equilibrium path in this case.  

 If two of the three roots are complex numbers, which must be conjugate, from the second 

property of (14) the real root is negative and from the first property of (14) the common real 
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part of the complex roots is positive. Therefore, the equilibrium path is determinate whether or 

not all roots are real numbers.  

  

3.4. Hybrid adjustment 

 Since (5d) is a second-order differential equation, it is decomposed to the following two 

equations: 

 π&  = z,  

 z&  = ρz − f4(y/yn). (15)  

The (π, z, y, m) dynamics is given by (6), (8) and the two equations in (15). Around the steady 

state given by (9) the characteristic function is  

 

λ−−
λ−

′
−λ−ρ

λ−

π

00*
0

00
001

4

m
yyy

y
f

my

n

&&&
= 0,  

where πy& , yy&  and my&  are given by (10) and (12). It reduces to 

 λ4 + Aλ3 + Bλ2 + Dλ + E = 0, 

where using (10) and (12) one finds 

 A = − (λ1 + λ2 + λ3 + λ4) = − (ρ + yy& ) < 0, 

 B = (λ1 + λ3)(λ2 + λ4) + λ1λ3 + λ2λ4 = ρ yy&  > 0,  

 D = − (λ1λ2λ3 + λ2λ3λ4 + λ3λ4λ1 + λ4λ1λ2) = f4′ πy& /yn < 0,  

 E = λ1λ2λ3λ4 = − f4′ my& m*/yn > 0. (16) 

 First, suppose that all roots are real numbers. Since m is not jumpable and only two of y, π 

and z are jumpable, as discussed at the end of section 2, two of the four roots (called λ1 and λ2) 

are positive and the other two are negative (called λ3 and λ4) in order that the equilibrium path 

is determinate. In this case λ1λ3 + λ2λ4 < 0 and hence from the first and the second properties of 

(16) one finds 

 λ1 + λ3 > 0,  λ2 + λ4 > 0. 

Since both λ1λ3 and λ2λ4 are negative, the above property yields   

 λ1λ3(λ2 + λ4) + λ2λ4(λ1 + λ3) < 0,  
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which contradicts the third property of (16). Therefore, the case of two positive and two 

negative roots never occurs. Moreover, from the first and last properties of (16) it follows that 

all roots are positive, implying that there is no equilibrium path.  

 Next, when two roots (λ1 and λ2 without loss of generality) are real numbers and the other 

two are mutually conjugate complex numbers (δ ± εi), (16) reduces to  

 − A = λ1 + λ2 + 2δ > 0, 

 B = λ1λ2 + 2δ(λ1 + λ2) + δ2 + ε2 > 0,  

 − D = 2δλ1λ2 + (λ1 + λ2)(δ2 + ε2) > 0,  

 E = λ1λ2(δ2 + ε2) > 0. (17) 

From the fourth property of (17), λ1 and λ2 are either both negative or both positive. If the 

former is right, the first property implies  

 δ > − (λ1 + λ2)/2 > 0. 

From this property one obtains 

 2δλ1λ2 + (λ1 + λ2)(δ2 + ε2) < δ[2λ1λ2 + (λ1 + λ2)δ]  

 < δ[2λ1λ2 − (λ1 + λ2)2/2] = − δ(λ1 − λ2)2/2 < 0, 

which contradicts the third property of (17) and hence both λ1 and λ2 are positive. The value of 

δ that is consistent with all the four properties can be either positive or negative. The 

equilibrium path is non-existent if δ is positive, and determinate if it is negative. It is later 

shown that the two cases indeed occur. 

 Finally, suppose that all roots are conjugate complex numbers:  

 δ ± εi   and   θ ± νi.  

Then, the first and second properties of (16) reduce to 

 (ρ + yy& )/2 = δ + θ, 

 ρ yy&  = (θ + δ)2 + ν2 + 2δθ + ε2. 

Since they yield 

 (ρ − yy& )2/4 + ν2 + 2δθ + ε2 = 0, 

δ and θ must have mutually different signs –i.e., the equilibrium path is determinate.  

  The results of this section are summarized as follows: 

 

Proposition 1. Suppose that the monetary authority keeps the nominal money stock to be 

constant. Under the backward-looking Phillips curve and the hybrid one the equilibrium 
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path is either non-existent or determinate. Under the forward-looking Phillips curve and 

the original Phillips curve the equilibrium path is always determinate.  

 

 As mentioned in Proposition 1, the equilibrium path may be non-existent under the 

backward-looking Phillips curve and the hybrid one. Using an additive separable utility 

function in c and m (viz. ucm = 0) one can explicitly obtain the condition with respect to ηm, ηc 

and fi′ (i = 2 or 4) for the path to be non-existent (or determinate) under the backward-looking 

Phillips curve and the hybrid one, where ηm = − ummm/um, the elasticity of the marginal utility 

of money, and ηc = − uccc/uc, the elasticity of the marginal utility of consumption. It is formally 

stated in proposition 2, of which the proof is set out in the appendix. 

 

Proposition 2. Suppose that the monetary authority keeps the nominal money stock to be 

constant and that the utility function is additive separable. Under the backward-looking 

Phillips curve the equilibrium path is non-existent if and only if ηm < 1. Under the hybrid 

Phillips curve the path is non-existent if and only if ηm < 1/2 − (f4′/ηc)/(4ρ3) (see figure 1).7  

 

 Since nominal interest rate R satisfies (2), if the utility function is additive separable, one 

finds 

 (m/R)∂R/∂m = ηm. 

If R has a positive lower bound R0, as is the case under a liquidity trap, ηm approaches zero as m 

increases.8 Thus, ηm is very small if m is large enough in the steady state. Proposition 2 implies 

that if the equilibrium path is determinate in this case, the Phillips curve is neither the 

backward-looking type nor the hybrid type. 

 

4. Taylor Rule 
 

 This section examines the dynamic stability under a Taylor rule. Nominal money stock M 

is controlled so that nominal interest rate R given by (2) should be a function of π:  

                                                 
7 Note that f4′ has the same order as ρ3 and π&& , as is clear from (5d).  
8 By applying both parametric and nonparametric methods to Japanese data in the 1990s, Ono, Ogawa and 

Yoshida (2004) find that um/uc (= R) has indeed a positive lower bound.  
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),(
),(

myu
myu

c

m  = R(π),     R′(π) > 0. (18) 

It is also assumed that the monetary authority sets R equal to the subjective discount rate when 

π = 0: 

    R(0) = r(0) = ρ, 

so that nominal price P will be stabilized when the natural output is realized and the steady 

state is reached. In this case the steady state is the same as that under the money stock control 

rule, which is given by (9). Obviously, transversality condition (3) is valid there.  

 The increment of M is transferred to the household sector in a lump-sum manner and thus 

 μm = τ   where  μ = 
M
M& . 

Note that μ is continuously controlled so that (18) is valid. Given that under (18) real interest 

rate r is a function of π: 

 r(π) = R(π) − π,  (19) 

the monetary policy is called 

active when r′(π) > 0, 

passive when r′(π) < 0. 

 From (2), the time derivative of (18) and (19), one derives  

 Φ y&  = − ucmucR′ π&  − (ummuc − ucmum)[r(π) − ρ], (20) 

where Φ (> 0) is given in assumption 1.  

 

4.1. Original Phillips curve 

 Substituting into (20) the time derivative of (5a): 

 π&  =  y&  f1′(y/yn)/yn, 

and rearranging the result yields 

 y
umuu
yfRuu

ccm

n
ccm &⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂∂
′′+Φ

− 2
1

]/)/([
/

 = r(f1(y/yn)) − ρ, (21) 

where the coefficient of y&  is positive under assumptions 1 and 2 unless ucm is significantly 

negative. Thus,  

 yy&  
>

<
=  0   ⇔   r′ 

>

<
=  0. 
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Since y is a jump variable, this property shows that under an active monetary policy (viz. r′ > 0) 

the dynamics of (21) is unstable and that the equilibrium path is uniquely determined: the 

steady state is chosen from the beginning. Under a passive policy (r′ < 0), however, the 

dynamics is stable and hence there is a continuum of equilibrium paths –i.e., the path is 

indeterminate. 

 

4.2. Backward-looking adjustment 

 By substituting (5b) into (20) one obtains 

 Φ y&  = − ucmucR′f2(y/yn) − (ummuc − ucmum)[r(π) − ρ]. (22) 

Around the steady state given by (9) the characteristic function of the (π, y) dynamics 

formulated by (5b) and (22) is  

λ−
Φ

′′−
Φ

′−
−

′
λ−

n
ccmmcmcmm

n

y
fRuuruuuu

y
f

2

2

)(  = 0. 

It is rewritten as  

 λ2 + Aλ + B = 0, 

where under assumptions 1 and 2 

 A = − (λ1 + λ2) = − ucmucR′f2′/(Φyn) 
<
>=  0     ⇔   ucm 

>

<
=  0, 

 B = λ1λ2 = r′f2′(ummuc − ucmum)/(Φyn) 
<
>=  0    ⇔   r′ 

>

<
=  0. 

From these properties, the two roots satisfy 

 r′ > 0: λ1 > 0   and  λ2 < 0;  

 r′ < 0: λ1 
>

<
=  0 and λ2 

>

<
=  0    ⇔   ucm 

>

<
=  0  if A2 − 4B > 0, 

the real part of λ1 and λ2 
>

<
=  0    ⇔   ucm 

>

<
=  0     if A2 − 4B < 0.  

Since y is jumpable while π is not, under an active monetary policy (r′ > 0) there is a unique 

equilibrium path. Under a passive policy (r′ < 0) the equilibrium path is non-existent if m and c 

are Edgeworth substitutes (ucm > 0) and indeterminate if ucm ≤ 0. 
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4.3. Forward-looking adjustment 

 Substituting (5c) into (20) yields 

 Φ y&  = − ucmucR′[ρπ − f3(y/yn)] − (ummuc − ucmum)[r(π) − ρ]. (23)  

Since r′(π) = R′(π) − 1 from (19), around the steady state given by (9) the characteristic 

function of the (π, y) dynamics formulated by (5c) and (23) is  

λ−
Φ

′′
Φ

′+
−

′
−λ−ρ

n
ccmcmmmcm

n

y
fRuuruuuu

y
f

3

3

 = 0. 

It reduces to 

 λ2 + Aλ + B = 0, 

where under assumptions 1 and 2  

 A = − (λ1 + λ2) = − [ρ + ucmucR′f3′/(Φyn)], 

 B = λ1λ2 = (ucmum − ummuc)r′f3′/(Φyn) 
>

<
=  0     ⇔   r′ 

>

<
=  0. 

 Thus, under an active monetary policy (r′ > 0) the characteristic equation has either two 

positive roots or two conjugate complex numbers with a positive real part as long as ucm is not 

so significantly negative as to make A positive. Since both y and π are jumpable and the 

dynamics is unstable, it has a unique equilibrium path on which the steady state is reached from 

the beginning. Note that this is valid whether the two roots are real numbers or complex 

numbers. 

 Under a passive monetary policy (r′ < 0) it has two real roots among which one is positive 

and the other is negative. The equilibrium path is indeterminate since both y and π are jump 

variables.9 

 

4.4. Hybrid adjustment 

 Substituting (5d) into (20) yields 

 Φ y&  = − ucmucR′z − (ummuc − ucmum)[r(π) − ρ], (24) 

                                                 
9 The result of this subsection is consistent with that of Benhabib et al. (2001a) in the case where real balances 

are held for nonproductive purposes. 
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where z represents π& , as given by (15). The two equations in (15) and (24) formulate an 

autonomous dynamic system with respect to π, z and y. Around the steady state given by (9) the 

characteristic function is 

λ−Φ′−Φ′−−

′−λ−ρ
λ−

//)(
/0

01

4

Ruuruuuu
yf

ccmmcmcmm

n  = 0. 

It is rewritten as 

 λ3 + Aλ2 + Bλ + D = 0,  

where under assumptions 1 and 2 

 A = − (λ1 + λ2 + λ3) = − ρ < 0, 

 B = λ1λ2 + λ2λ3 + λ3λ1 = n
ccm

y
fRuu

Φ

′′
− 4  

<
>=  0   ⇔   ucm 

>

<
=  0, 

 D = − λ1λ2λ3 = n
mcmcmm

y
fruuuu

Φ

′′−
− 4)(

 
>

<
=  0    ⇔   r′ 

>

<
=  0. (25) 

In this dynamics m is not jumpable and only two of y, π and z are jumpable under (5d), as 

mentioned at the end of section 2. 

  Under an active policy (r′ > 0) D is positive. Therefore, from the first and third properties 

of (25), one of the three roots is negative and the other two are positive if all the three roots are 

real numbers. If one of the three roots is a real number and the other two are complex numbers, 

from the third property of (25) the real root is negative and hence from the first property of (25) 

the real part of the complex roots must be positive. Therefore, the equilibrium path is anyway 

determinate.  

 Under a passive monetary policy (r′ < 0) D in (25) is negative. Therefore, when all roots 

are real numbers, the case where two of them are positive and the rest is negative is invalid. The 

case where all roots are positive and the case where one is positive and the other two are 

negative are both possible if ucm < 0, and hence the equilibrium path is either non-existent or 

indeterminate. If ucm ≥ 0, however, B in (25) is non-positive –i.e., only the latter case is valid 

and then the path is indeterminate.  

 If two of the three roots are mutually conjugate complex numbers, δ ± εi, the third property 

of (25) implies the real root λ to be positive. Since the first and second properties reduce to 

 λ + 2δ > 0, 
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 2λδ + δ2 + ε2 
<
>=  0   ⇔   ucm 

>

<
=  0, 

δ is either positive or negative if ucm < 0 and hence the equilibrium path is either non-existent or 

indeterminate. If ucm ≥ 0, however, δ is negative and hence the path is indeterminate.  

 Thus, under a passive monetary policy the equilibrium path is either non-existent or 

indeterminate if ucm < 0, whether the characteristic roots are all real numbers or not. However, 

if m and c are Edgeworth substitutes (ucm > 0) or if the utility function is additive separable in c 

and m (ucm = 0), the path exists but is indeterminate. 

 The results of this section are summarized as follows: 

 

Proposition 3. If the monetary authority follows an active interest-rate feedback rule, the 

equilibrium path is always determinate under any of the four Phillips curves. If a passive 

interest-rate feedback rule is adopted, under any of the four Phillips curves the 

equilibrium path is never determinate. It is always indeterminate under the original 

Phillips curve and the forward-looking one whereas under the backward-looking one and 

the hybrid one it is either non-existent or indeterminate.  

 

5. Conclusion 
 

 This paper examines equilibrium determinacy under four types of the Phillips curve, viz. 

the original, the backward-looking, the forward-looking and the hybrid ones, when the 

monetary authority adopts a money stock control rule or an interest-rate feedback rule (a 

Taylor rule). The result is summarized in table 1. 

 If the monetary authority keeps the nominal money stock to be constant, the equilibrium 

path is always determinate under the original Phillips curve and the forward-looking one. 

Under the backward-looking Phillips curve and the hybrid one, however, the path can be 

non-existent. It is indeed the case if the utility function is additive separable and the elasticity 

of the marginal utility of money (ηm) is small, as is under a liquidity trap. 

 The forward-looking Phillips curve is often criticized because of poor empirical fitting. 

The original Phillips curve is also criticized because of the lack of a microeconomic foundation 

and empirical fitting. However, as is seen from figure 2, the original one seems to fit the 
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Japanese data quite well.10 Such an empirical analysis is beyond the scope of the present paper 

but the present theoretical result and figure 2 may suggest that we should reexamine the 

empirical validity of the original Phillips curve and explore a microeconomic foundation for 

it.11  

 Turning to an interest-rate feedback rule, if the monetary policy is passive, the equilibrium 

path is never determinate under any of the four Phillips curves: it is either non-existent or 

indeterminate. If it is active, the equilibrium path is always determinate under any one of them. 

Thus, the monetary authority must actively control the interest rate in order for the equilibrium 

path to be determinate, as long as it follows a Taylor rule.   

 

Appendix: Proof of Proposition 2 
  

The case of the backward-looking Phillips curve: 

 From (9), (10), (12) and (13) in which ucm = 0, the characteristic function is then 

 F(λ) = λ3 − ρλ2 + (f2′/ηc)λ − ρηmf2′/ηc = 0, (A1) 

where ηc = − uccc/uc and ηm =  − ummm/um. As proven in subsection 3.2, if it has two complex 

roots (δ ± εi), the real root λ1 is positive. Since the first equation of (13) and (A1) yield 

 ρ = λ1 + 2δ, 

the common real part of the complex roots δ satisfies 

 δ 
>

<
=  0    ⇔   ρ 

>

<
=  λ1 (> 0). (A2) 

Since λ1 is the only real root in the present case, function F(⋅) given by (A1) intersects the 

horizontal axis only once and from below. Moreover, since F(ρ) is 

 F(ρ) = (ρf2′/ηc)(1 − ηm) 
>

<
=  0  ⇔   ηm 

<
>=  1, 

and F(λ1) = 0 by the definition of λ1, using (A2) one finds that δ satisfies 

                                                 
10 Using Japanese quarterly data (1981-2000) Kitaura et al. (2002) find that the backward-looking Phillips 

curve is empirically rejected and that the original Phillips curve fits the data well. The yearly data used in figure 2 
are consistent with it, as shown by figure 3 –i.e., there is almost no correlation between a yearly change in the 
inflation rate and the unemployment rate. 

11 Akerlof et al. (1996) is an important attempt to present such a foundation.  



 17

 δ 
>

<
=  0    ⇔   ηm 

<
>=  1. (A3) 

 Next, it is shown that (A1) indeed has only one real root if ηm > 1. From (A1), 

 F′(λ) = 3λ2 − 2ρλ + (f2′/ηc). 

Therefore, if ρ2 − 3f2′/ηc > 0, the two extrema of F(λ) exist and the local maximum is 

          F((ρ − cf η′−ρ /3 2
2 )/3)  

 = − [2(ρ2 − 3f2′/ηc)(ρ − cf η′−ρ /3 2
2 ) + 24ρf2′/ηc]/33 − (ηm − 1)ρf2′/ηc, 

which yields 

 F((ρ − cf η′−ρ /3 2
2 )/3) < 0   if  ηm > 1.  

This property shows that there is indeed only one real root if ηm > 1 and ρ2 − 3f2′/ηc > 0. If ρ2 − 

3f2′/ηc < 0, F(λ) has no extremum and hence there is only one real root, whether ηm > 1 or not. 

Therefore, if ηm > 1, (A1) has only one real root, which is λ1 (> 0). From (A3) δ is negative in 

this case and hence the path is determinate.  

 The above result also implies that ηm must be less than 1 in order for the three roots of (A1) 

to be real numbers and then the path is non-existent, as shown in subsection 3.2. Furthermore, 

if two of the three roots are complex numbers and λ1 (> 0) is the only real root in the case where 

ηm < 1, from (A3) δ is positive –i.e., the path is non-existent. Thus, if ηm < 1, the path is 

non-existent, whether (A1) has two complex roots or not. 

 If ηm = 1, δ is zero as shown by (A3) and hence the characteristic roots are a positive real 

number (viz. λ1) and two pure imaginary ones. Since y is the only jump variable, it jumps to 

one of the cyclical paths. Although the steady state given by (9) is not reached along any 

cyclical path, all variables cyclically move within some finite ranges and transversality 

condition (3) is valid. Therefore, the path is determinate.  

 

The case of the hybrid Phillips curve: 

 Since it has already been found in subsection 3.4 that the path is non-existent when all 

roots are real numbers and determinate when all roots are complex numbers, the case where 

two roots are real numbers, λ1 and λ2, and the other two are complex numbers, δ ± εi, is 

examined. Note that the path is non-existent if and only if δ > 0 since λ1 and λ2 satisfy  

 λ1 > 0,    λ2 > 0, 
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as shown in subsection 3.4.  

 From (9), (10), (12) and (16) in which ucm = 0, the characteristic function is 

 G(λ) = λ4 − 2ρλ3 + ρ2λ2 − (f4′/ηc)λ + ρηmf4′/ηc = 0. (A4) 

Since λ1 and λ2 are real roots of (A4), from the first property of (17) and (A4) they satisfy 

 λ1 + λ2 = 2(ρ − δ) > 0, 

 (λ1 − ρ)[λ1
2(λ1 − ρ) − f4′/ηc] = (f4′/ηc)(1 − ηm)ρ, 

 (λ2 − ρ)[λ2
2(λ2 − ρ) − f4′/ηc] = (f4′/ηc)(1 − ηm)ρ. (A5) 

By taking the difference between the second and third equations above and substituting the 

first equation into the result one obtains  

 f4′/ηc + 2δ (ρ − 2δ)2 = 2(ρ − 2δ)[(ρ − 2δ)ρ − λ1λ2]. (A6) 

Since from the first equation of (A5) λ1λ2 satisfies 

 λ1λ2 = (λ1 + λ2 − ρ)ρ − (λ1 − ρ)(ρ − λ2) = (ρ − 2δ)ρ − (λ1 − ρ)(ρ − λ2), 

substituting this value into λ1λ2 in (A6) and rearranging the result gives  

 (λ1 − ρ)(ρ − λ2) = [f4′/ηc + 2δ (ρ − 2δ)2]/[2(ρ − 2δ)]. (A7) 

 Multiplying the second equation of (A5) by (λ2 − ρ) and the third one by (λ1 − ρ), 

summing them up and substituting the first equation into the result yields 

 (λ1 − ρ)(ρ − λ2)[(ρ − 2δ)2 + (λ1 − ρ)(ρ − λ2)] =  (1 − ηm)ρf4′/ηc. 

Substituting (λ1 − ρ)(ρ − λ2) given by (A7) into the above equation and rearranging the result 

leads to 

 2ρ3(1 − 2ηm) − f4′/ηc = 4δ(ρ − δ)[2ρ(1 − 2ηm) + (ρ − 2δ)4/(f4′/ηc)]. (A8) 

If 2ρ3(1 − 2ηm) − f4′/ηc > 0, then 1 − 2ηm > 0. From the first property of (A5), ρ − δ > 0. Using 

these properties and (A8) one finds δ > 0 if 2ρ3(1 − 2ηm) − f4′/ηc > 0.  

 As the converse, if δ > 0, then 1 − 2ηm > 0 since (A8) is rewritten as 

 2ρ(ρ2− 2δ)2(1 − 2ηm) = 4δ(ρ − δ)(ρ − 2δ)4/(f4′/ηc) + f4′/ηc. 

Therefore, the right-hand side of (A8) is positive so that the left-hand side is also positive, i.e., 

2ρ3(1 − 2ηm) − f4′/ηc > 0.  

 In sum,   

 δ > 0    ⇔   2ρ3(1 − 2ηm) − f4′/ηc > 0, (A9) 

and then the path is non-existent, as long as (A4) has two real and two complex roots. 

 Next, it is shown that the case of four complex roots does not arise in the area given by 

(A9). G(λ) given by (A4) satisfies 

 G(ρηm) = [ηm(ηm − 1)]2ρ4 > 0, 
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 G(ρ) = (f4′/ηc)(ηm − 1)ρ < 0   if  ηm < 1. (A10) 

When the condition given by (A9) is valid, ηm < 1/2 and hence the two properties of (A10) 

show that G(λ) has at least one real root. Thus, the case of four complex roots (in which the 

path is determinate) does not arise in the area given by (A9). Either the case with two real and 

two complex roots or the case of four real roots occurs. 

 The area in which the four roots are real numbers is included by the area given by (A9), as 

shown below. From (A4),  

 G′(λ) = 2λ(2λ − ρ)(λ − ρ) − f4′/ηc, 

 G″(λ) = 2[λ − (1/2 − 3 /6)ρ][λ − (1/2 + 3 /6)ρ]. (A11) 

Since ηm < 1/2 in the area given by (A9), from (A10) and (A11) G(ρ) satisfies 

 G(ρ) < 0,   G″(λ) > 0  for ∀λ > ρ, 

implying that there is a positive real root that is larger than ρ and that there is no other real root 

larger than it. Therefore, from (A11), if the four roots are real numbers,  

 G(θ1) < 0,   G(θ2) > 0, 

 where G′(θ1) = G′(θ2) = 0,   0 < θ1 < (1/2 − 3 /6)ρ < θ2 < ρ. (A12) 

Note that 0 < θ1 since all the four roots are positive, as shown in subsection 3.4. Since the 

second property of (A11) implies 

 G″(λ) > 0  for ∀λ < (1/2 − 3 /6)ρ, 

using the first equation in (A11) and (A12) one finds 

 0 = G′(θ1) < G′((1/2 − 3 /6)ρ) = ( 3 /9)ρ3  − f4′/ηc, 

i.e., f4′/ηc must satisfy 

 f4′/ηc < ( 3 /9)ρ3. (A13) 

 Furthermore, from the first equation in (A11) and (A12),  

 G(θ1) < 0,   G′(θ1) = 2θ1(2θ1 − ρ)(θ1 − ρ) − f4′/ηc = 0. 

Therefore, replacing f4′/ηc by 2θ1(2θ1 − ρ)(θ1 − ρ) in (A4) and rearranging the result yields 

 G(θ1) = θ1(ρ − θ1)H(θ1) < 0, 

 where  H(θ1) = 3θ1
2 − (1 + 4ηm)ρθ1 + 2ηmθ1

2. 

Since θ1 < ρ from (A12), the above property shows H(θ1) to be negative and hence θ1 is located 

between the two solutions that makes H(θ1) = 0: 

  [1 + 4ηm − (16ηm
2 − 16ηm + 1)1/2]ρ/6 < θ1 < [1 + 4ηm + (16ηm

2 − 16ηm + 1)1/2]ρ/6, (A14) 

where ηm satisfy 
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  16ηm
2 − 16ηm + 1 ≡ 16[ηm − (2 − 3 )/4][ηm − (2 + 3 )/4] > 0. 

Since θ1 < (1/2 − 3 /6)ρ, as shown in (A12), in order for θ1 that satisfies (A14) to exist ηm 

must satisfy 

 [1 + 4ηm − (16ηm
2 − 16ηm + 1)1/2]ρ/6 < (1/2 − 3 /6)ρ. 

Since this property reduces to 

 {[ηm − (2 − 3 )/4][ηm − (2 + 3 )/4]}1/2 > ηm − (2 − 3 )/4, 

ηm must satisfy 

 ηm < (2 − 3 )/4.  (A15) 

Therefore, if the four roots are real numbers, both (A13) and (A15) are valid.  

 When f4′/ηc and ηm satisfy (A13) and (A15) respectively, it is easily found that the 

condition given by the right-hand side of (A9) is valid. Thus, the area of four real roots is 

included by the area given by (A9). Since the path is non-existent when all roots are real 

numbers, as shown in subsection 3.4, and (A9) gives the condition for the path to be 

non-existent in the case of two complex roots, (A9) in fact shows the condition under which the 

path is non-existent, whether all roots are real numbers or not. 
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Table 1: Equilibrium Determinacy under Various Phillips Curves
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Figure 1: ηm and f4′/ηc That Make the Path Non-existent 
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Figure 2: Phillips Curve in Japan (1987-2006) 

Statistics Bureau, Ministry of Internal Affairs and Communications, Japan. 

    Unemployment rate: http://www.stat.go.jp/data/roudou/longtime/03roudou.htm. 

    CPI: http://www.stat.go.jp/data/cpi/200707/index.htm 

            and http://www.stat.go.jp/data/cpi/longtime/index.htm.  
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Figure 3: Change in Inflation and Unemployment Rate  

Statistics Bureau, Ministry of Internal Affairs and Communications, Japan. 

    Unemployment rate: http://www.stat.go.jp/data/roudou/longtime/03roudou.htm. 

    CPI: http://www.stat.go.jp/data/cpi/200707/index.htm 

            and http://www.stat.go.jp/data/cpi/longtime/index.htm.  


