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Abstract

We examine the impact of real oil price shocks on labor market flows in the

U.S. We first use smooth transition regression (STR) models to investigate to

what extent oil prices can be considered as a driving force of labor market fluc-

tuations. Then we develop and calibrate a modified version of Pissarides’ (2000)

model with energy costs, which we simulate in response to shocks mimicking the

behavior of the actual oil price shocks. We find that (i) these shocks are an im-

portant driving force of job market flows; (ii) the job finding probability is the

main transmission mechanism of such shocks; and (iii) they bring a new amplifi-

cation mechanism for the volatility and should thus be seen as complementary of

labor productivity shocks. Overall we conclude that shocks in oil prices cannot

be neglected in explaining cyclical labor adjustments in the U.S.
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1 Introduction

This paper investigates to what extent shocks in oil prices are significant in accounting

for labor market fluctuations. We take a workers flow perspective and focus on the

unemployment fluctuations resulting from the job finding and job separation rates. In

this way we complement and push forward the work by Davis and Haltiwanger (2001)

on the US manufacturing sector. These authors took a job flows approach to assess the

effects of the oil price shocks on job creation and job destruction, and found them to

account for 25 percent of the employment volatility. Here, instead, we take a workers

flow1 perspective and find significant effects on vacancies and unemployment.

Although this flow perspective has become very popular in business cycle analysis of

the labor market, a consensus on the main source behind the volatility of unemployment

is still far to be reached. While some authors argue that the job finding rate is the

main cause of unemployment fluctuations (Hall, 2005; Shimer, 2007), others claim that

job separations are the central one (Elsby et al. 2009; Fujita and Ramey, 2009). In

particular, Shimer (2007) argues that 75 percent of the unemployment volatility is

driven by the job finding rate, whereas Fujita and Ramey (2009) place the explanatory

power of job separations between 40 and 50 percent.

This controversy is not central to this paper. Circumventing this analysis there is

an important consideration related to what we understand as sources of shocks or, in

other words, to what we consider as driving forces of the job finding and job separation

rates. In the flow approach, the behavior of the key labor market variables is generally

examined in response to aggregate technological shocks. In this paper, on the contrary,

we concentrate on shocks in real oil prices, which have traditionally received much

attention in other economic fields, and we contribute to this literature by bringing into

the scene the analysis of their impact on the US labor market fluctuations.

A related strand of literature focuses on the identification of shocks through struc-

tural vector autoregression (SVAR) models. Braun et al. (2009), for example, examine

the reaction of some labor market variables in response to shocks that are identified as

demand and supply shocks. In turn, in the particular context of energy prices, Kilian

(2009) disentangles demand from supply-side oil price shocks to evaluate their impact

on GDP and inflation. Although vector autoregressions provide useful starting points

for analyzing multivariate relationships between variables, concern about the short-

comings of linear models has led to considerable research on univariate models and

their enhanced possibilities to account for macroeconomic asymmetries (see Granger

and Teräsvirta, 1993, for a summary). Moreover, nonlinear phenomena of economic

relevance include nonlinear effects of policy changes, capacity constraints and adjust-

1As explained in Shimer (2007, Section 4.1), the difference between the workers flow and the jobs

flow approach is not trivial.
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ment costs, which might well characterize labor and energy markets. This was verified

in Mork (1989), which is the first study that substantiates the nonlinear impact of oil

price shocks on economic activities, and confirmed in Papapetreo (2001), who investi-

gates their impact on employment. Given these considerations, this paper follows the

nonlinear methodological route.

We consider actual shocks in real oil prices and investigate their cyclical effects on

the US unemployment rate through their impact on the job finding and job separation

rates. By actual shocks we interpret the specific impact of oil price changes on our four

variables of interest (unemployment, vacancies, and the job finding and job separation

rates), which we compute using the smooth transition regression (STAR) approach.2

In particular, we estimate a multivariate STAR model in which the cyclical component

of these four variables is modeled against the cyclical component of the real oil prices,

which is the transition function. This procedure has two particular advantages. First, it

allows a nonlinear specification of the relationship between the variables (which in our

case is to be expected) and, second, it is designed to capture regime switching (which

is crucial to identify the shocks and the corresponding transitions between equilibria).

The objective of this exercise is to learn the actual responses of our variables of

interest to the actual shocks in real oil prices which are nonlinear. Important results of

the econometric analysis are (i) that, both, vacancies and unemployment are sensitive

to oil price shocks and, especially, (ii) the larger responses in the job finding rate than

in the job separation rate which point to the former as main driving force under the

fluctuations in the labor market in response to oil price shocks.

This insightful econometric exercise does not reveal the transmission mechanisms

connecting oil prices with the labor market variables. The study of these transmission

channels and amplification mechanisms can only be undertaken through a theoretical

model. We thus take Pissarides’ (2000) search and matching model as benchmark,

and augment it by considering (i) oil prices and, consequently, (ii) endogenous capital

utilization and (iii) energy consumption. In this context shocks in real oil prices will

cause business cycle adjustments by affecting both the use of existing capital stock and

the marginal cost of new capital stock.

It is important to note that our model is consistent with the fact that energy is an

essential determinant of capacity utilization. In particular, along the lines of Finn (1995,

2000), we assume that a higher rate of capacity utilization causes faster depreciation,

and thus generates extra energy costs. At the same time, it is well known that the use

of energy in the short run is not excessively sensitive with respect to rises in energy

prices (Atkenson and Kehoe, 1999). In the context of our business cycle model, we

capture this fact by assuming adjustment costs in capital services so that higher energy

2STAR models are a generalization of discrete switching models. See Section 2 for details.
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costs decrease the response of capital services to changes in energy prices. Because

capital services and energy consumption move in parallel, energy consumption will also

display a mild reaction in response to energy price shocks. Figure 1 provides support

to our modeling strategy by uncovering the close connection between the interannual

quarterly growth rates of energy consumption and the rate of capacity utilization in the

U.S. The two series display, respectively, a standard deviation of 4.61 and 4.37 percent

with respect to their mean and a contemporaneous correlation coefficient of 0.83.3

Figure 1. Energy consumption and rate of capacity utilization
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We calibrate our model to the US and use it to simulate the consequences of ac-

tual shocks in real oil prices. Actual because they have been characterized in the

STAR analysis and they are now reproduced in terms of their main statistical features:

persistence and volatility. Through this analysis we generate simulated responses of

unemployment, vacancies, and the job finding and job separation rates, which we com-

pare with the equivalent estimated responses obtained through the econometric STAR

analysis. This comparison provides a straightforward check of the extent to which

actual shocks in oil prices are significant in accounting for labor market fluctuations,

which is the main objective of the paper.

Our main quantitative findings are the following. Real oil prices are an important

driving force of labour market fluctuations. Around two thirds of the volatility of the

unemployment rate, and more than 90 percent of the vacancies’ volatility is explained

when the job market is confronted to a negative shock in oil prices. The main transmis-

sion channel of these effects is the job finding probability which both our econometric

and simulation exercises uncover as substantially more responsive than the job sepa-

ration probability. The model, however, yields a better fit of the job separation rate

3Information on the source and precise definition of these varaibles is provided in the fourth para-

graph of Section 6.
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response. When the impact of the oil price shocks is examined in a broader macro-

economic context including the presence of technological shocks, we confirm that it

contributes to enhance the volatility produced by the standard Pissarides’ model. Fi-

nally, an important finding is that throughout the different analyses conducted, the

impact of these shocks is always consistent with the observed negative relationship

between vacancies and unemployment (that is, with the Beveridge curve).

The rest of the paper is structured as follows. In Section 2 we deal with the pre-

sentation and estimation of the STAR models. In Section 3 we present the augmented

version of Pissarides’ (2000) model. In Sections 4 and 5, respectively, we calibrate and

simulate the model. Section 6 assesses the impact of the oil price shocks in a broader

macroeconomic context, and Section 7 concludes.

2 Do oil prices drive labor market fluctuations?

In this Section we examine to what extent the trajectories of unemployment, vacancies,

and the job finding and job separation rates are driven by shocks in the real oil prices.

This analysis is conducted through the estimation of STAR models.

2.1 STAR models

STAR models are a useful tool to model economic series which, very often, are char-

acterized by nonlinearities and multiple equilibria. These models can be formulated

as

 = (+

X
=1

−)(1−( − − )) + (̃+

X
=1

̃−)( − − ) +  (1)

where , ̃, , ̃,  and  are parameters to be estimated, and  is an i.i.d. error

term with zero mean and constant variance 2. The transition function ( − − )

is continuous, non decreasing and bounded between 0 and 1. The exogenous variable

− is the so called transition variable and determines the regimes of the endogenous

variable.

This STAR model can be interpreted as a regime-switching model allowing for two

regimes associated with the extreme values ( − − ) = 0 and ( − − ) = 1,

each corresponding to a specific state of the economy. When − deviates from the

constant threshold value , there is a transition between regimes whose speed is governed

by the  parameter.
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Two popular choices of transition functions are the first-order logistic function,

LSTAR: ( − − ) = (1 + {−(− − )})−1   0 (2)

and the exponential function,

ESTAR: ( − − ) = 1− {−(− − )2}   0 (3)

The first one delivers the logistic STAR (LSTAR) model and encompasses two pos-

sibilities depending on the transition speed . When  → ∞, the logistic function
approaches to a constant and the LSTAR model becomes a two-regime threshold au-

toregressive (TAR) model. When  = 0, the LSTAR model reduces to a linear AR

model. Due its different responses to positive and negative deviations of − from

, the LSTAR specification is convenient for modelling asymmetric behavior in time

series. This is not the case of the exponential STAR (ESTAR) specification, in which

these deviations have the same effect. Consequently, this model is only able to capture

non-linear symmetric adjustment.

Following Granger’s (1993) “specific-to-general” strategy for building nonlinear time

series models, Granger and Teräsvirta (1993) and Teräsvirta (1994) develop a technique

for the specification and estimation of parametric STAR models. This procedure can

be summarized in four steps (van Dijk et al., 2002): (i) Specification of a linear AR

model of order  for the time series under investigation; (ii) Test of the null hypothesis

of linearity against the alternative of STAR; (iii) Selection of the appropriate transition

function for the transition variable, if linearity is rejected; (iv) Model estimation, which

is then used for descriptive or forecasting purposes.

Testing linearity against STAR is a complex matter because, under the null of

linearity, the parameters in the STAR model are not identified. Granger and Teräsvirta

(1993) suggest a sequence of tests to evaluate the null of an AR model against the

alternative of a STAR model. These tests are conducted by estimating the following

auxiliary regression for a chosen set of values of the delay parameter , with 1    :4

 = 0 +

X
=1

1− +
X

=1

2−− +
X

=1

3−
2
− +

X
=1

4−
3
− +  (4)

The null of linearity against a STAR model corresponds to: 0 : 2 = 3 = 4 = 0 for

 = 1 2  . The corresponding LM test has an asymptotic 2 distribution with 3(+1)

degrees of freedom under the null of linearity. If linearity is rejected for more than one

value of , the value of  corresponding to the lowest -value of the joint test is chosen.

4Equation (4) is obtained by replacing the transition function in the STAR model (1) by a suitable

Taylor series approximation (see Granger and Teräsvirta, 1993).
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In small samples, it is advisable to use  -versions of the LM test statistics because these

have better size properties than the 2 variants (the latter may be heavily oversized in

small samples). Under the null hypothesis, the  version of the test is approximately

 distributed with 3(+ 1) and  − 4(+ 1) degrees of freedom. Escribano and Jordà
(2001) propose an extension of the Teräsvirta (1994) linearity test by adding a fourth

order regressor.5 Below we use both tests.

If linearity is rejected, we need to test for LSTAR against ESTAR nonlinearity.

For this purpose, Granger and Teräsvirta (1993) and Teräsvirta (1994) propose the

following sequence of tests within the auxiliary regression (4):

03 : 4 = 0  = 1 2  

02 : 3 = 0|4 = 0  = 1 2  

01 : 2 = 0|3 = 4 = 0  = 1 2  

An ESTAR model is selected if 02 has the smallest p-value, otherwise the selected

model is the LSTAR. Escribano and Jordà (2001) also suggest a modification of this

sequence of tests and propose two test statistics, 0 and 0, for distinguishing be-

tween LSTAR and ESTAR models. An LSTAR is chosen if the minimum -value is

obtained for 0.

As noted before, linear model shortcomings have led to increasing research in nonlin-

ear models. However, the complexity of multivariate nonlinear modeling leads us to test

whether economic reasoning and data allow us to simplify this modeling. One possible

simplification stems from the presence of common nonlinear components. Therefore, let

us assume that within a given set of variables there is a nonlinear behavior of each indi-

vidual variable with respect to the same transition variable. If this is the case, we can

test whether there is a nonlinear comovement within this set of variables. In order to

address this issue we test for common LSTAR nonlinearities following the methodology

proposed by Anderson and Vahid (1998) based upon canonical correlations. Accord-

ingly, let

 = 0 + () +  ()[0 + ()] + 

be the multivariate version of the LSTARmodel, where  is the vector of variables under

analysis, () is a matrix polynomial of degree  in the lag operator,  is i.i.d., and

 () is a diagonal matrix containing the transition functions for each series. Testing

for common nonlinearities consists in testing whether some  exists such that 0 does

not exhibit the type of nonlinearity that is present in the mean of each individual .

The test statistic is based on canonical correlations and is asymptotically distributed as

2(3−1)5+2 , where  denotes the maximum lag length and  is the number of common

5They claim that this provides better results when the data are mainly in one of the regimes and

when there is uncertainty about the lag length of the autoregressive part. The corresponding LM test

statistic has an asymptotic 2 distribution with 4(+1) degrees of freedom under the null of linearity.
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nonlinearities. Rejection of the null hypothesis provides evidence of the presence of at

most  common nonlinearities.

Once the selected STAR models are estimated, they can be used to characterize the

dynamic behavior of the endogenous variables’ () through their impulse functions in

response to the shocks . As shown in Teräsvirta (1994) analogous impulse response

functions (IRFs) can be obtained by eventual forecast.

2.2 Variables and data

The variables we consider for  in equation (1) are vacancies (), the unemployment

rate (), the job finding rate (), and the job separation rate (). In all four STAR

models the transition function,  in equation (1), is the real oil price (). We work

with quarterly data (each datapoint corresponding to the average value of the variable

in that quarter and we always use the first seasonal log difference of the variables —∆,

∆, ∆, ∆, and ∆—, which we take as the best proxy to their cyclical component. A

popular alternative would be to use the Hodrick-Prescott filter, however we disregard

this possibility in view of the spurious dynamics that, as shown by Cogley and Nason

(1995), this two-sided filter may introduce in the analysis.

Our data is gathered from different sources. For the oil price we take the average

world crude price (expressed in U.S. dollars per barrel) supplied by the International

Monetary Fund (code 00176AAZZF).6 To obtain real magnitudes we divide by the

implicit GDP price deflator from the National Income and Product Accounts (NIPA)

seasonally adjusted by the U.S. Bureau of Economic Analysis (BEA). The unemploy-

ment rate (seasonally adjusted) is constructed by the Bureau of Labor Statistics (BLS)

from the Current Population Survey (CPS). As the proxy of vacancies we follow Shimer

(2005) and use the Conference Board () help-wanted advertising index, which is

measured as the number of help-wanted advertisements in 51 major newspapers. Un-

fortunately, this series is only available until 2003. For the job finding and job separation

rates we use the novel measures computed by Shimer (2007).7 Our sample period runs

from the first quarter of 1957 to the third quarter of 2003.

6The U.S. West Texas Intermediate oil price is only available since 1959. However, both series

display a correlation coefficient of 0.996 between 1959 and 2003.
7Shimer (2007) takes public data from the CPS on the number of employed, unemployed, and

recent unemployed workers (less than five weeks). He considers a two-state continuous time model

(employed or unemployed) and calculates the job finding and job separation probabilities by assuming

that unemployed workers find jobs and employed workers loose jobs according to a Poisson process.

Details are given in http: robert.shimer.googlepages.com/flows and Shimer (2007).
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2.3 Results

Linearity tests are only valid under the assumption of stationarity. We thus start

by confirming that our variables are stationary and we follow the procedure in Sollis

(2009) to test for the null of a unit root against the alternative of nonlinear stationarity.

Table 1 shows that the null of unit root is clearly rejected for all variables, with the

only exception of oil prices when the lag is chosen according to the multivariate AIC

criterion. Once unit root is rejected, it is possible to test the null of symmetric against

asymmetric nonlinear stationarity. Results are shown in the lower part of Table 1 and,

accordingly, symmetric nonlinearity is rejected for all variables. We conclude that the

variables are globally nonlinear stationary and asymmetric.

Table 1. Sollis et al. (2009) nonlinear unit root test.

Contrast: Unit root (0) versus nonlinear stationarity (1).

AIC BIC HQ MAIC

Variable lag cv lag cv lag cv lag cv

∆ 5 4.26* 2 10.70*** 5 4.26* 8 2.98

∆ 8 5.35** 4 13.30*** 4 13.30*** 4 13.30***

∆ 5 8.66*** 5 8.66*** 5 8.66*** 0 18.16***

∆ 5 4.24* 1 13.57*** 5 4.24* 5 4.24*

∆ 4 5.10** 1 13.57*** 4 5.10** 4 5.10**

Contrast: Symmetric (0) versus Asymmetric (1) nonlinear stationarity.

∆ 8.26*** 18.81*** 8.26*** 5.50**

∆ 5.06** 6.85*** 6.85*** 6.85***

∆ 5.96*** 5.96*** 5.96*** 12.56***

∆ 8.26*** 21.92*** 8.26*** 8.26***

∆ 9.71*** 21.92*** 9.71*** 9.71***

Notes: Critical values (cv) at the 10, 5 and 1 per cent for the Sollis (2009) test are 3.496, 4.297,

and 6.066, respectively. They have been computed by Monte Carlo simulation with

10,000 replications. *, ** and *** denote rejection of the null hypothesis of unit root

against nonlinear stationarity at, respectively, 10, 5 and 1 percent.

Table 2 presents the test statistics for the null hypothesis of linearity against STAR

nonlinearity. These tests are performed for each variable using real oil prices as tran-

sition variable, i.e.  in equations (1) and (4). According to the results, linearity

is rejected for all variables using both Granger and Teräsvirta (1993) and Escribano

and Jordà (2001) linearity tests. This robust result has a twofold implication. First,
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all variables exhibit a nonlinear behavior within two extreme regimes and, second, the

transition between both regimes is driven by real oil prices.

Adjustment to changes in the transition variable can be either symmetric or asym-

metric. As pointed out before, if the transition function is exponential the implied

adjustment will be symmetric, whereas if the transition function is logistic the ad-

justment is asymmetric. This is not a trivial choice, since in our case an asymmetric

behavior would imply that positive shocks to real oil prices have a different impact on

the dynamics of the labor market than negative shocks. Table 2 presents the Granger

and Teräsvirta (1993) and Escribano and Jordà (2001) test for choosing between the

ESTAR and the LSTAR model. According to the first set of tests statistics, the LSTAR

representation of the data is preferred to the ESTAR one, i.e. 02 does not present the

smallest -value for the unemployment and job separation rates. According to Escrib-

ano and Jordà’s (2001) test statistics, the LSTAR function is preferred for all variables

since 0 presents a lower -value than 0. Therefore not only unemployment, va-

cancies, and the job finding and job separation rates present a nonlinear behavior for

different values of real oil prices; on top of that, this behavior is asymmetric. This re-

sult give further insights in the asymmetric nature of labor market flows we have found

using the Sollis (2009) unit root test since, at least partially, the asymmetric behavior

of labor market variables is explained by an asymmetric response of these variables to

real oil prices changes.

Table 2. Linearity tests.

∆ ∆ ∆ ∆

Linearity test

Granger-Tërasvirta 0.001 0.000 0.015 0.070

Escribano-Jordà 0.009 0.000 0.027 0.027

LSTAR versus ESTAR

01 0.053 0.036 0.053 0.011

02 0.077 0.004 0.031 0.607

03 0.008 0.084 0.326 0.460

0 0.087 0.002 0.002 0.153

0 0.120 0.019 0.962 0.155

Multivariate linearity test

0.005 0.003 0.000 0.025

Note: p-values are shown.

Table 3 presents the results for the common STAR nonlinearities test proposed by

Anderson and Vahid (1998). These results are obtained using real oil prices as the
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(common) transition variable. Taking, as standard, 5 percent as critical value, the null

that there are no nonlinear factors in the system is rejected, whereas the null that there

is only one such factor is not rejected. These tests, therefore, provide evidence that

the nonlinear behavior of the labor market variables is generated by a common driving

force: the real oil prices. The detection of a common component enables parsimony,

which is specially important when estimating nonlinear multivariate models.

Table 3. Tests for common LSTAR nonlinearities.

Null hypothesis Alternative hypothesis p-value

The system is linear
At least one of the variables

has a LSTAR nonlinearity 0.007

The system has at most 1

common LSTAR nonlinearity

The system has at least 2

common LSTAR nonlinearities 0.192

The system has at most 2

common LSTAR nonlinearities

The system has at least 3

common LSTAR nonlinearities 0.736

The system has at most 3

common LSTAR nonlinearities

The system has at least 3

common LSTAR nonlinearities 0.989

The system has at most 4

common LSTAR nonlinearities

The system has at least 4

common LSTAR nonlinearities 0.999

We have now determined that the labor market variables share a nonlinear compo-

nent driven by oil prices as exogenous transition variable. As a consequence, to correctly

capture the relationship between oil prices and these variables we proceed to estimate

a multivariate non-linear model.

We start by regressing oil prices according to the following LSTAR process

∆ = 034
(007)

∆−1 − 051
(015)

∆−2 + (073
(021)

∆−1 − 055
(020)

∆−2) ×  (∆−3) +  (5)

which provides estimates of the transition parameter  that will be used as the initial

value in the estimation of the multivariate nonlinear model.8 The resulting estimates

of the nonlinear model are shown in Table 4 (with the lag-length chosen according

to the multivariate AIC criterion) and the impulse-response functions (IRFs) pictured

in Figure 2. These IRFs, and the corresponding 5 percent error bands, are obtained

through Monte Carlo simulation.9

8To obtain this initial value, an alternative procedure would be to conduct a grid search for the whole

multivariate nonlinear model. However, given that all variables share the same common nonlinearity,

i.e. the same value for , we find our procedure more clear and informative.
9We conducted 10,000 replications and used antithetical acceleration to improve convergence of

draws. On the odd values for draws, a draw is made from the inverse Wishart distribution of the

covariance matrix.
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The fact that as value of the transition parameter we use the estimate shown in

Table 4 de facto implies that the model becomes linear in the parameters. Ideally,

we would compute IRFs based on the estimation of a multivariate model, nonlinear

in both variables and parameters. However, when in the model we contrast the exis-

tence of a common nonlinear component, the matrix of transition functions becomes a

diagonal matrix with equal elements and, therefore, equal  parameters. As a conse-

quence, the non-linear system becomes more parsimonious and tractable and facilitates

the estimation process and the subsequent Monte Carlo simulations. This strategy of

estimation has an additional advantage. Having a linear model in the parameters en-

ables the comparison between the resulting empirical IRFs (shown in Figure 2) and the

theoretical IRFs obtained through simulation of the theoretical model linearized at the

steady state. This is so because the empirical IRFs can be interpreted as an average

of the IRFs that would be obtained for each of the regimes within the nonlinear model

under the oil price shock. This yields comparability with respect to the IRFs obtained

through the model’s simulation.

Table 4 presents the estimated multivariate nonlinear model where the transition

function has been restricted in each equation to be the same following the test for

common LSTAR nonlinearities.

Table 4. Estimated nonlinear system.

∆ = −061
(010)

∆−1 − 031
(005)

∆−1 − 093
(007)

∆−1 − 048
(008)

∆−2 + 048
(008)

∆−2+µ
003
(002)

∆−2 + 007
(002)

∆−4 + 016
(006)

∆−4 + 046
(011)

∆−2

¶
×  (∆−3) + 1

∆ = 033
(009)

∆−1 + 018
(007)

∆−4 + 089
(013)

∆−1 + 041
(010)

∆−1 − 014
(007)

∆−3 − 036
(007)

∆−1+µ
−006
(003)

∆−3 − 011
(003)

∆−4 − 057
(022)

∆−1 + 030
(015)

∆−4

¶
×  (∆−3) + 2

∆ = 051
(005)

∆−1 + 012
(005)

∆−4 − 013
(005)

∆−2+µ
037
(011)

∆−2 − 006
(002)

∆−3 − 008
(003)

∆−4 − 056
(013)

∆−1

¶
×  (∆−3) + 3

∆ = −026
(008)

∆−1 + 022
(009)

∆−4 − 043
(008)

∆−2 − 024
(008)

∆−3 − 020
(007)

∆−4 + 007
(002)

∆−3+µ
045
(017)

∆−2 + 038
(015)

∆−4 − 038
(015)

∆−4

¶
×  (∆−3) + 4

where:  (∆−3) = (1 + [−213
(059)

∆−3])−1

Note: standard errors in parentheses.
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Figure 2 plots the IRFs of unemployment, vacancies, and the job finding and job

separation probabilities in response to a one-off shock on real oil prices. The shock we

examine is always unfavorable (oil prices rise) and its size is normalized to one standard

deviation. Cumulative responses to this shock are given in Table 6.

Figure 2. IRFs to a one-off shock in real oil prices
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As shown in Figure 2a, the oil price shock has a strong initial impact (oil prices

immediately rise by 11.89 percent) and vanishes quickly (its impact is statistically zero

already in the third period). In consistency with this dynamic behavior, the theoretical

model below assumes that the oil price shock follows the same LSTAR process.
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As expected, an unfavorable shock rises unemployment, reduces vacancies, depresses

the job finding rate, and promotes job destruction. The corresponding 5 percent con-

fidence intervals indicate that all these responses are significant not only when the

shock takes place but also for a number of periods. Therefore, beyond the fact that

the labor market is significantly affected by an oil price shock, a first important result

is the delayed and gradual responses of the variables due to the costly adjustments

taking place. Although the adjustments are reflected in all variables, their dynamics

vary. The unemployment and vacancy rates display a similar response (of different sign

but similar magnitude) which picks up in the fifth period and subsequently dies out to

zero (Figures 2b and 2c). A similar qualitative response can be seen in the job finding

rate (Figure 2d), but with an initial positive response that is hard to rationalize and a

smaller pick effect. In these three cases there is also some overshooting (only starting in

the 9th or 10th periods) before the IRFs converge to zero. In contrast, the job separa-

tion rate (Figure 2e) displays a different reaction which is more volatile, less persistent,

and smaller in magnitude.

The cumulative responses of the variables allow us to complete the analysis (note

that these cumulative responses are plotted in Figure 3 below). In response to an overall

increase of 13.68 percent in oil prices, the unemployment and job separation rates would

rise by 3.22 and 0.94 percent respectively, while the vacancies and job finding rates

would decrease by 2.85 and 1.79 percent. Therefore, there is a larger response in terms

of unemployment and vacancies which, in turn and as expected, reproduce a negative

Beveridge curve with slope -0.89 (=-2.85/3.22). It is also important to remark the key

role of the job finding rate in explaining the movements in the Beveridge curve. Its

response almost doubles the size of the job separation rate response and emerges as the

main driving force of the adjustments in the labor market in response to an oil-price

shock.

Table 5. Estimated cumulative responses to a one-off shock in oil prices

∆ ∆ ∆ ∆ ∆

Cumulative responses

(percent)
13.68 3.22 -2.85 -1.79 0.94

3 The model

In this section we extend Pissarides’ (2000) search and matching model to include real

oil prices which further entails the endogenization of capital utilization and energy (oil)

consumption. This extension generates a new set of economic relationships which has

not yet been considered in the context of these models. In particular, energy prices

affect both the capacity utilization rate of existing capital stock and the marginal cost
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of new capital, and creates a channel whereby the labor factor, and thus the job finding

and job separation rates, are affected. It is in this context that we study the effects of

real oil price shocks on labor market fluctuations.

The economy is integrated by a continuum of risk-neutral, infinitely-lived workers

and firms. Workers have linear utility over consumption of a homogeneous good. Work-

ers and firms discount future payoffs at a common and constant rate, 1    0, and

capital markets are perfect. In addition, time is discrete.

Workers can be either unemployed or employed. Unemployed individuals enjoy a

constant instantaneous utility  each period. Those who are employed earn a wage .

Before a position is filled, the firm has to open a job vacancy with constant flow cost

. As in Pissarides (2009), when workers and firms start an employment relationship,

the firm pays fixed training costs . These costs are sunk because they take place

once the wage bargain is concluded and the worker takes up the position. Firms have

a constant-returns-to-scale Cobb-Douglas production technology with two production

factors, capital and labor. Firms hire capital once the new worker has arrived and a wage

rate has been agreed. The intensity in the use of capital is non-constant and governed by

the capital utilization rate, . Defining  as the capital stock per employee, the output

per worker is () = ()
1−, where  is a technological parameter bounded

between 0 and 1 and  is the match-specific productivity term, which is assumed to

be independent and identically distributed across firms and time with a cumulative

distribution function () and support [0 ].

Two particular features of this modeling need be remarked. First, similar to Finn

(1995, 2000), higher capital utilization increases the capital depreciation rate (), and

generates energy costs equal to the product of energy prices, , and energy consumption

per worker, (). Specifically, we assume that () =  and () = ,

where the parameters   0 and   0. In this context, the per worker energy

consumption, (), captures the idea that energy is essential to determine the rate

of capital utilization (note that the larger  the more use of energy per unit of capital

 at the constant rate ). Second, we capture the fact that energy use does not change

much in the short-run in response to energy price changes (Atkenson and Kehoe, 1999)

by adding adjustment costs to capital services. Thus, the presence of adjustment costs

reduces the response of capital services, , to changes in energy prices, , and, since

 and energy consumption () are complementary, the latter also moves slowly

over time in response to a shock in .

We assume that energy prices, , follow a LSTAR process similar to the estimated

one for oil prices in (5) so that the energy price shocks can be adequately modeled. At

the end, each productive firm yields an instantaneous profit equal to output per worker,

(), minus the wage, , the capital costs, (1 − 1

) + (), and the energy

15



costs per employee ().

There is a time-consuming and costly process of meeting workers and job vacancies,

captured by a constant-return-to-scale meeting function( ) , where  denotes the

unemployment rate and  is the vacancy rate. We follow den Haan et al. (2000) and

assume that ( ) =


(

 +


 )
1 with   0. This functional form ensures that the

ratios
()


and

()


lie between 0 and 1. Unemployed workers meet job opening

positions with probability
()


= (), where  is the vacancy-unemployment ratio



, and vacancies meet workers with probability

()


= (). Note that given the

properties of the meeting function, these probabilities only depend on ; therefore, the

higher the number of vacancies with respect to the number of unemployed workers, the

easier is for each of these workers to meet a job 0()  0, and the more difficult is for

a firm to fill its vacancy 0()  0.

Firms open vacancies until the expected value of doing so becomes zero. Therefore,

in equilibrium the value of vacancies  must equal zero. Imposing the free entry

condition ( = 0), the marginal condition for labor demand is

0 = −+ ()

∙Z ̄

+1(+1()− )()

¸
 (6)

where  is the expectation operator. Note that expectations are taken over the distri-

bution of next periods’ energy price. In turn, () is the value of a filled job which is

represented by the following Bellman equation

() = ()−(1

−1)−()−()−+(1−)

∙Z ̄

+1(+1())()
¸


(7)

Each period workers may be exogenously separated with constant probability .

Moreover, firms endogenously terminate the matches with productivity below some

threshold, e. This productivity threshold is defined such that nonprofitable matches
are severed,

(e) = 0 (8)

It follows that employees separate with probability , and unemployed workers find

jobs with probability , where

 = + (1− )(e) (9)

 = (−1)(1−(e)) (10)

From the workers’ side, the Bellman equations for the unemployed and employed
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workers are given by

 = +

∙
()

µZ ̄

+1 +1()() +(e+1)+1

¶
+ (1− ()(1−(e+1))+1

¸


(11)

and

() = () + 

∙
(1− )

µZ ̄

+1 +1()() +(e)+1

¶
+ +1

¸
 (12)

The unemployment rate, , evolves according to the following backward-looking

differential equation:

 = −1 + (1− −1)− −1 (13)

Firms take wages as given and both rent and use as much capital as it is necessary to

maximize  with respect to  and . The equilibrium condition for the firm’s capital

stock requires the marginal product of capital to equal its marginal cost:


0
() = (

1


− 1) + () + 

0
() (14)

Moreover, the condition regulating capacity utilization is


0
() = (

1


− 1 + 0()) + 

0
() (15)

which sets the marginal benefit of capital utilization equal to its marginal cost. On the

one hand, (1

− 1 + 0()) represents the marginal cost in terms of increased capital

rents and depreciation from using capital at a higher rate. On the other hand, 
0
()

captures the increase in energy costs caused from higher capital utilization.

Observe that (14) and (15) represent a system of two equations in two unknowns,

 and , which are jointly determined when shocks in energy prices hit the economy.

To close the model, we also assume that wages are determined through bilateral Nash

bargaining between workers and firms. The first-order condition yields the following

equation

(1− )( ()− ) = () (16)

where  ∈ (0 1) denotes the workers’ bargaining power relative to the firms’. Under
this assumption, the equilibrium wage is

 = 

∙
()− (1


− 1) − () − () + + 

¸
+ (1− ) (17)

For a given ∗, an equilibrium is a sextuple (e∗ ∗ ∗ ∗ ∗ ∗) that satisfies con-
dition (13) for  = −1 = 0, the equilibrium conditions for the firm’s capital rent (14)
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and capital utilization (15), the job creation condition (6), the job destruction condition

(8), and the wage equation (17).

The solution of the model is recursive. Capital stock and the rate of capital utiliza-

tion per employee are determined first; the threshold e∗, labor market tightness ∗, and
the wage ∗ are determined next; and unemployment ∗ is determined last.

4 Calibration

In this section we calibrate the model at quarterly frequencies by matching the steady-

state properties of the model to US data.

Regarding the target values, we place the inverse of the quarterly output-capital

ratio ∗(1 − ∗)∗ at 10, and the depreciation rate (∗) at 2.5 percent per quarter.

These are standard values generally used in the Real Business Cycle (RBC) literature.

The average rate of capacity utilization, , is set at 81 percent based on data for the

industrial sector from the Federal Reserve Board. And the average share of energy

expenditures over GDP, ∗∗(1 − ∗)∗, is placed at 2.3 percent following Edelstein

and Kilian (2007).10

The remaining targets are related to labor market outcomes. The average unem-

ployment rate, ∗, is set at 10.4 percent following Yashiv (2006);11 the steady-state

job separation probability, ∗, at 0.10 percent per quarter following Shimer (2005); and

the elasticity of the matching function with respect to unemployment, , at 0.72

according to the estimate reported in Shimer (2005). In turn, we target the vacancy

and training costs using information reported by Barron et al. (1997) and Silva and

Toledo (2009a). According to Barron et al. (1997) it takes 17 days on average to fill a

vacancy. During this time the number of man-hours spent by the firm personnel recruit-

ing, screening, and interviewing applicants to hire one individual for a vacant position

is equal to 13.5. According to Silva and Toledo (2009a), the total average cost of these

13.5 hours amount to about 4 percent of the quarterly wage of a full productive worker.

We thus set ∗ = 004. Barron et al. (1997) report that new workers spend 142

hours on training during the first three months in the firm while experienced workers

spend 87.5 hours training new employees (on average). The total average training cost

of these man-hours is equivalent to 55 percent of the quarterly wage of a new hired

worker. We follow Silva and Toledo (2009b) who calculate that only 28 percent of these

10This share corresponds to the average sum, between 1977 and 2006, of the nominal value added

in oil and gas extraction, imports of petroleum, and petroleum products divided by the US nominal

GDP.
11Yashiv (2006) computes this average unemployment rate by considering not only the officially

unemployed but also those not in the labor force who acknowledge to want a job. In this way, this

value reflects the fraction of unmatched workers in the US. This computed unemployment rate is

extremely correlated with the official rate (0.98).
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costs are sunk, and fix ∗ = 055× 028 = 0154.
Notice that we are selecting parameter values based on long-run estimates or mi-

croeconomic data, which are not necessarily those giving the best time series responses

for the unemployment, vacancy, job finding and job separation rates.

Table 6. Calibrated parameter values for the U.S. economy.

Parameters Value
Target or

Calibration

Energy price ∗ 1 Normalized

Mean of the distribution of   0000 Normalization

Standard deviation of   020 Other studies

Exogenous separation probability  0065 JOLTS data

Discount rate  0990 Match interest rate

Employment opportunity cost  1439 Solves (8)

Parameter of the matching function  2963 Match 

Worker’s bargaining power  0458 Solves (6)

Vacancy cost  0079 Barron et al. (1997)

Training costs  0369 Barron et al. (1997)

Depreciation rate parameter  0031
Match average

depreciation rate

Energy usage  0003 Match energy share

Labor share  066 NIPA data

Having dealt with the targets, we need to find values for the following parameters:

 (discount factor),  (technology),  (depreciation),  (energy usage),  (matching

function),  (exogenous job separation),  (vacancy cost),  (training costs),  (workers

bargaining power),  (exogenous job separation),  (employment opportunity cost); and

also for the stochastic processes governing  (real oil prices) and  (random variable).

From our targets on the rates of capital depreciation and capacity utilization, we

obtain:

 =
(∗)
∗

= 00309

The relative price of energy in the steady-state is normalized so that ∗ = 1. Together

with the targets on the unemployment rate, the output-capital ratio, and the average

share of energy expenditures share, the use of energy consumption function (∗∗)

yields:

 =

³
∗∗(1−∗)

∗

´
∗(∗∗)∗(1− ∗)

= 0003

We set the discount factor  = 099, which implies a reasonable quarterly interest rate

of nearly 1 percent in the steady state. We also set the production function parameter
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 = 066, which is consistent with an average labor share of around two thirds given

by the NIPA.

Regarding the exogenous separation probability , we interpret exogenous separa-

tions as worker-initiated separations. Hence, endogenous separations, (e∗), are asso-
ciated with the layoff rate. According to the U.S. Job Opening Labor Turnover Survey

(JOLTS), layoffs represent on average about 35 percent of total separations. Thus,

using equation (9) we set  = 0065 and (e∗) = 00374.
Following den Haan et al. (2000), the idiosyncratic productivity, , is assumed to be

log-normally distributed with mean  and standard deviation  , whose values are set,

respectively, at 0.0 and 0.2.12. Thus, the calibrated threshold and the expected value

of productive matches are equal, respectively, to e∗ = 0700 and b = 1035.
Given , ∗, (∗), , ∗, and b, we obtain ∗ from the equilibrium condition for

the firm’s capital stock (14),

∗ =

Ã
(1− )b∗(1−)

(1

− 1)∗ + (∗) + ∗∗

! 1


= 26163

Then, with, ∗(1 − ∗)∗ = 10 and ∗∗(1 − ∗) = 0023, the calibrated values of

total output and energy consumption are, respectively, ∗ = 2616 and ∗ = 0067.

Given our target job separation probability of  = 010, and using the unemploy-

ment equation (13), the equilibrium job meeting probability is (∗) = 0895.

We select the matching technology parameter  in order to match our target elas-

ticity . Since the matching elasticity depends on  as well, we need to solve the

following system of equations for  and ∗,

 =


(1 + )


(∗) =
∗

(1 + )
1




The first equation is the average elasticity of the matching function with respect to un-

employment in the steady state. The second is the equilibrium job meeting probability.

From this computation, we obtain,  = 2963 and ∗ = 1375.

The remaining parameters are vacancy flow costs , training costs , the employment

opportunity cost , and the wage bargaining parameter . We chose  and  to satisfy

the job creation and job destruction conditions (6) and (8). Parameters  and  are

chosen to target the hiring and training costs. This requires to solve for  using the

wage equation (17) and yields =00793, =0369, =0458, =1439, and ∗=1845.

12For the standard deviation of the idiosyncratic shock, the literature provides a range of values

between 0.1 (den Haan et al., 2000) and 0.4 (Trigari, 2005) and we choose the intermediate case.
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5 Simulated results

Next we use our matching model to simulate the labor market behavior in response

to a particular exogenous process in the growth rate of the real oil price, ∆. This

process reproduces the main statistical features (in terms of persistence and standard

deviation) of the actual shocks experienced by the US oil prices.13 We evaluate the

model by comparing the extent to which the simulated cumulative responses obtained

through this model fit the empirical ones estimated in Section 2. Figure 3 pictures the

estimated (continuous-blue line) and simulated (dashed-red line) cumulative IRFs, while

Table 7 gives the corresponding cumulative percent changes and the overall percent fit.

From a qualitative point of view, the sequence of unfavorable shocks and model’s

responses is as follows. First, an increase in real oil prices, , rises both the user cost of

capital and its marginal cost. Second, to restore the equilibrium conditions for capital

and the rate of capacity utilization, both  and  decrease immediately to their new

equilibrium after the shock. Third, since energy is essential to capital utilization, energy

usage, , is also reduced. Fourth, with less capital stock and lower capital utilization,

the marginal product of labor becomes smaller and firms do not have the incentive

to employ additional workers. Therefore, to avoid job creation firms need to close

vacancies,  (job creation effect), which reduces the rate at which workers meet jobs

() and, in turn, increases the unemployment rate, , and reduces the workers’ wages,

. Moreover, with the reduction in the marginal product of labor, low productive jobs

are severed, which in turn increases the job destruction probability, , and the flow of

workers into unemployment (job destruction effect).

At the end, higher real oil prices increase unemployment but have uncertain effects

on vacancies. On the one hand, the job creation effect reduces the number of vacancies

but, on the other hand, the job destruction effect increases the number of unemployed

available and, therefore, it is easier for firms to recruit new workers and they have new

incentives to open vacancies. If the job creation effect dominates the job destruction

effect, vacancies are reduced after the shock.

From a quantitative point of view, we first solve the model by using a first-order

log-linearization procedure implemented in Dynare for Matlab, and we then compute

the simulated IRFs. Although this linearization makes the exercise inherently unable

to capture the nonlinear response of the labor market variables to shocks, we should

recall that the estimated IRFs can be interpreted as an average of the IRFs that would

be obtained for each of the regimes within the nonlinear model under the oil shock. In

13The stochastic process of oil price growth rate, ∆, is considered exogenous and simulated accord-

ing to the LSTAR process estimated in equation (5) . The values of the autoregressive parameters and

the standard deviation of the white noise process are calibrated to match the actual autocorrelation

coefficient (0268) and standard deviation (0127) of ∆ observed between 1957 and 2003.
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this way, our analysis should be interpreted with caution since we can not distinguish

the different effects (if any) that the shock may have in the different regimes.

With this caveat in mind, it is interesting to see that the model accounts for a number

of features identified through our previous econometric analysis. First of all, the model

displays a negative relationship between vacancies and unemployment, and is thus qual-

itatively consistent with the downward-sloping Beveridge curve observed in the data.

Second, the model is able to reproduce 64.6 percent of the cumulative unemployment

response, and 94.0 percent of the vacancies’ response. Therefore their negative relation-

ship is precisely captured since the simulated labor market tightness amounts to -1.29

(= −268208) which is not far from the estimated one (which is -0.89= −285322).
Third, also in accordance with our econometric analysis, the cumulative response of

the job finding rate is higher than the response in the job separation probability, even

though both are underestimated by the model. The simulated cumulative impact of

the job finding rate fails short by 20 percent (-1.43 versus -1.79), while that of the

job destruction rate does it by less than 6 percent (0.89 with respect to 0.94 in the

data). As a consequence, the simulated cumulative response of the job finding rate is

70 percent larger than the one of the job separation rate, a figure somewhat smaller

than the 90 percent obtained in the econometric analysis. Irrespective of these concrete

values, it seems safe to conclude that the main driving force under the unemployment

fluctuations in response to oil price shocks is the job finding probability.

Table 7. Cumulative responses to a one-off shock in real oil prices.

∆ ∆ ∆ ∆ ∆

Estimated cumulative responses

(percentage points)
13.68 3.22 -2.85 -1.79 0.94

Simulated cumulative responses

(percentage points)
13.67 2.08 -2.68 -1.43 0.89

Fit (percent) 99.9 64.6 94.0 80.2 94.4

Turning now to the path followed by the cumulative IRFs, we should note, first of all,

that we reproduce the initial jump of 11.89 percent in real oil prices in response to the

shock (Figure 3a), that we also match its path up to the 5th quarter, but that the series

deviates afterwards to end-up converging to the same cumulated value (13.7 percent).

This discrepancy, however, is not the cause under the relatively poor performance of

the model in reproducing the dynamic trajectories of the labor market variables in the

aftermath of the shock as shown in Figures 3b to 3e. The reason for these deviations

needs to be found in the propagation mechanisms imbedded in the model. Due to
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the forward looking behavior of the firms and the absence of planning lags in posting

vacancies and laying off workers, oil price shocks are quickly translated into the labor

market, especially through an almost immediate adjustment in the vacancy and job

separation rates. As a consequence, subsequent labor market adjustments exhibit little

of the persistence observed in the data.

Figure 3. Cumulative IRFs to a one-off shock in real oil prices.
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Summarizing, our model provides a good description of the cumulative responses of

the labor market variables and is helpful in identifying the channels whereby the job

finding rate is a driving force of labor market fluctuations produced by oil price shocks.

However, the model is not able reproduce the dynamic behavior of these variables,
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mainly because of the initial excessive sensitivity to the shock of the vacancy and job

destruction rates.

6 Oil prices in a broader macroeconomic context

Although the Pissarides matching model has become a standard theory of equilibrium

unemployment, its ability to match the observed cyclical fluctuations of US the un-

employment rate was critically questioned by Shimer (2005). Its main criticism lies in

the discrepancy between the similar expected volatilities of the vacancy-unemployment

ratio and labor productivity under a reasonable calibration strategy, and the fact that

the first of these standard deviations turns out to be at least 8 times larger than the

latter. This discrepancy, which is generally known as the unemployment volatility puz-

zle, has prompted a dense literature trying to improve the empirical performance of the

Pissarides model by extending its original formulation. Consideration of new sources of

shocks in one of such extensions and the oil price shocks a natural complement to the

standard labor productivity (or technological) shocks.

Along these lines, we next complete our assessment of the quantitative effects of

the oil price shocks on labor market fluctuations by considering further macroeconomic

variables and neutral technological shocks. We proceed in two steps. First, we show

statistics describing the short-run behavior of the variables, including measures of their

standard deviations and their cross-correlations with respect to ∆ at leads and lags

of up to four quarters. Then, we simulate again our theoretical model in two scenarios,

one in which the two independent and exogenous shocks on labor productivity and oil

prices are considered, and another one in the absence of the oil price shock. At that

point, by comparing how the simulated model in the presence and absence of the oil

price shock fits the actual volatilities and contemporaneous correlations, we will be able

to assess to what extent such shocks determine labor market and other macroeconomic

fluctuations.

Up to this point we have worked with a restricted set of variables at the cost of

disregarding other interesting macroeconomic relationships that have become popular

in the context of the unemployment volatility puzzle. The reasons were, on the one

hand, the requirement of sufficient degrees of freedom to estimate the multivariate

STAR model in Section 2, which left some variables out; and, on the other hand, the

correspondence needed between the variables considered in the econometric and the

theoretical analyses. In order to overcome this restriction, in this section we briefly

expand our analysis by considering other relevant macroeconomic variables such as

energy consumption (), capital utilization (), total output (), investment (), wages

(), and labor productivity (). In this way we are able to connect our results to
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those generally obtained in the related literature.

Energy consumption is the index of total energy consumed in the industrial sector

(from the US Energy Information Administration); capital utilization is the rate of

capacity utilization in the industrial sector (from the Federal Reserve); total output

is the real gross domestic product and investment is the real gross private domestic

investment in equipment and software (both from the NIPA and seasonally adjusted

by the US BEA). In turn, data on wages and labor productivity are taken from Shimer

(2005). Wages is a real hourly compensation index and labor productivity is the sea-

sonally adjusted real average output per person (both in the non-farm business sector,

and both constructed by the BLS from the NIPA).

Since the time-series on  and  are only available 1967 and 1973 onwards respec-

tively, we deal with a new sample period running from the first quarter of 1973 to the

third quarter of 2003. As before, all series, including the labor market variables (  ,

and ) as well as the real oil price , are first transformed in logs and then differentiated

(∆).

The unconditional correlations displayed in Table 8 offer some important pieces of

information that endorse our previous results. The first one is the negative relationship

between changes in oil prices and changes in both capital utilization —and consequently

in energy consumption— and new investments. In parallel, firms also respond by posting

less vacancies and destroying more jobs. As a result, the job finding rate decreases

and unemployment increases. A second piece of evidence is the appearance of real oil

prices as a leading indicator of the labor market performance, given that the maximum

correlation is, in most cases, reached after four lags. For example, the contemporaneous

correlation between ∆ and ∆ is very low and negative -0.039, but becomes highly

positive (0.424) with ∆−4. This result is in line with the gradual adjustment of the

labor market variables uncovered by the estimated IRFs in Section 2.3 in response to

an unfavorable oil price shock.

We next simulate our matching model with independent and exogenous shocks in

both oil prices and labor productivity. For the oil price shock we use the same sto-

chastic process than in Section 5 based on the LSTAR process estimated in section

2.3. However, the process is now calibrated to reproduce the persistence (0.259) and

standard deviation (0.158) of the US real oil price growth rate between 1973 and 2003.

For the labor productivity shock we incorporate a new stochastic process by adding an

aggregate component  to output per worker () and assuming that its loga-

rithm follows an AR(1) process so that () = (−1) +  with  ∼ (0 ).

The values of the autoregressive parameter and the standard deviation of the white

noise process are calibrated to match the actual autocorrelation coefficient (0.11) and

standard deviation (0.085) of ∆ (), and we thus set  = 090 and  = 00085. As
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before, the model is solved by linearizing around the deterministic steady state and we

also use Dynare for Matlab to compute the moments of the simulated series. Tables

9 shows the results (the baseline model considers both shocks while ∆ = 0 indicates

that the oil price shock has been suppressed).

Table 8. Standard deviations and cross-correlations: real oil price

versus other variables. US quarterly data, 1973-2003.

∆

 +4 +3 +2 +1 0 -1 -2 -3 -4

∆

(5.039)
-0.131 -0.014 -0.026 -0.096 -0.039 0.011 0.096 0.225 0.424

∆

(6.014)
0.088 0.035 0.031 0.087 0.033 -0.061 -0.090 -0.213 -0.383

∆

(4.340)
0.018 0.088 0.020 -0.011 0.089 0.044 -0.082 -0.248 -0.297



(4.253)
0.102 0.109 -0.067 -0.082 0.025 0.131 0.156 0.204 0.084

∆

(0.603)
0.149 -0.034 0.015 0.015 -0.387 -0.272 0.036 -0.009 0.005

∆()

(0.854)
0.182 0.050 -0.062 -0.055 -0.204 -0.173 -0.162 -0.112 -0.157



(2.563)
0.198 0.155 0.021 0.089 0.039 -0.066 -0.085 -0.110 -0.290

∆

(1.501)
0.033 0.031 -0.015 0.094 0.081 -0.059 -0.094 -0.158 -0.388

∆

(2.278)
0.033 0.078 -0.064 0.107 0.076 -0.006 -0.022 -0.083 -0.113



(0.851)
0.194 0.127 -0.036 0.066 -0.066 -0.105 -0.155 -0.149 -0.267

Note: standard deviations in parentheses, In turn the standard deviation of ∆ is 15.837.

When both shocks are considered (row 2 in Table 9), the simulated model per-

forms well in matching the volatilities of all variables with the exception of wages. In

some cases there is some underestimation —it generates, respectively, 91, 81, 85, and

80 percent of the observed standard deviations of unemployment, the job finding rate,

investment, and capital utilization—, and in some others the volatility is overestimated

—it reproduces 106 percent of the volatility observed in energy consumption, and yields

standard deviations that are between 16 and 56 percent larger than in the data for the

remaining variables—.
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On the contrary, when the oil price shock is suppressed (row 3 in Table 9) all

simulated volatilities fall, some of them significantly (again with the exception of wages).

In other words, oil prices are an important transmission channel and play a relevant

role in amplifying labor market fluctuations. In particular, when the oil price shock is

operative, the standard deviations of the labor market variables increase between 12

percent (in the case of unemployment) and 33 percent (in the case of labor productivity).

Regarding the rest of macroeconomic variables, the oil price channel contributes to rise

by 24 percent the volatility of output, by 55 percent that of investment, and allows to

multiply by 4 (from 0.30 to 1.20) the standard deviation of capital utilization.

Table 9. Simulated standard deviations (percent)

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆() ∆

US Data 0.85 2.56 2.28 1.50 5.04 6.01 4.34 4.25 0.85 0.603

Parameterization

Baseline 1.33 2.17 2.42 1.20 4.57 9.14 3.51 4.91 0.85 2.13

∆= 0 1.07 1.40 1.56 0.30 4.04 7.58 2.99 4.46 0.64 2.08

These results should come as no surprise since an oil price shock has a direct impact

on the optimal conditions (14) and (15), which are the ones governing capital accu-

mulation and capital utilization, respectively. In parallel, energy consumption becomes

also less volatile due to its high complementarity with capital services .

Table 10. Simulated cross-correlations

US Data Parameterization

Baseline ∆= 0

(∆,∆) 0.583 0.941 0.961

(∆,∆) 0.349 0.941 0.961

(∆,∆) 0.742 0.767 0.958

(∆,∆) -0.686 -0.946 -0.948

(∆,∆) 0.648 0.844 0.910

(∆,∆) -0.818 -0.824 -0.878

(∆,∆) 0.407 0.330 0.235

(∆,∆) -0.240 -0.775 -0.832

(∆,∆) 0.764 0.979 0.972

(∆,∆) -0.073 0.322 0.265

Furthermore, as Table 10 shows, results from our baseline calibrated model contain

two important predictions. Regarding the labor market, the negative correlation of -0.82

between vacancies and unemployment is correctly matched, and the model is thus able
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to reproduce the Beveridge curve. Regarding the macroeconomic scenario, the model

is able to reproduce the sign of the relationship between GDP and the rest of variables

(except wages) although most of the observed correlations are overestimated. This

quantitative discrepancy, which is not large in most cases, is in part due to the absence

of other relevant sources of shocks, such as investment-specific shocks. Consideration

of these shocks, which are receiving growing attention in the literature but lie beyond

the scope of this paper, would tend to reduce the simulated correlations.14

7 Conclusions

This paper brings several new and important results to the literature. First, shocks

in real oil prices are a relevant driving force of labor market fluctuations. Second, the

transmission mechanism of such shocks is essentially the job finding rate. And third, oil

price shocks are complementary to the standard technological shocks and provide a new

amplification mechanism of business cycle fluctuations in the context of the Pissarides’

model.

To enhance our understanding of these new results, we have augmented Pissarides’

(2000) search and matching model to incorporate energy consumption and endogenous

capacity utilization, both depending on oil prices. Through this model we have been

able to confirm and explain the relevance of real oil price shocks in generating labor

market fluctuations. We have also uncovered and quantified the relevant role of the job

finding rate as a key driving force of those shocks, and we have provided a satisfactory

account of the facts in terms of their cumulative impact. On the less successful side,

we have failed to match the gradual response of the different variables.

In a nutshell, our model yields two new important insights. On the one hand, it

seems safe to conclude that shocks in oil prices cannot be neglected in explaining cyclical

labor adjustments in the U.S. On the other hand, to provide a fully comprehensive

account of the relationships at work, search and matching models à la Pissarides (2000)

need to be further extended.

Along the lines of Polgreen and Silos (2009), one possibility would be to distinguish

skilled from non skilled workers and focus on the interactions between the match qual-

ity/skill level of workers and oil as an input. Another natural extension could consider

Kilian’s (2009) claim that not all oil price shocks are alike and, thus, that demand and

supply shocks need to be disentangled. This would give room to a full consideration

of the nonlinear and asymmetric effects of such shocks, which has been constrained in

14Toledo and Silva (2010), for example, show that investment-specific technological shocks (i -shocks)

reduce the correlation coefficients between GDP and the rest of labor market and macroeconomic

variables (for example, the correlation between GDP and unemployment falls from -0.95 to -0.82; see

their Table 7 for details)
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this paper. Following this claim, new research avenues should consider general equilib-

rium models where not only firm’s decisions depend on oil prices, but also household’s

decisions are taken into account. We suspect such extension could deliver an extra

propagation mechanism for the effects of the shocks in oil prices. If households react

to such shocks, as it seems to be the case (Edelstein and Kilian, 2009), then firms will

feel demand-side constraints, on top of supply-side constraints of the type considered

in this paper. This will help to complete the important but still incomplete picture we

have just presented.
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