
Basic Paper: February 1997

(Updates of references listed as “forthcoming,” January 2004)

Nonlocal Sensitivity Analysis
with Automatic Differentiation 1

Leigh Tesfatsion

Professor of Economics and Mathematics

Iowa State University

Ames, IA 50011-1070

http://www.econ.iastate.edu/tesfatsi/

Email: tesfatsi@iastate.edu

Keywords and Phrases: nonlocal sensitivity analysis, the Nasa program, automatic

differentiation, computational differentiation, the Feed algorithm, adaptive homotopy,

adaptive computation.

1 Basic Problem Formulation

Sensitivity analysis problems typically reduce to determining the response of a vector x∗ =

(x∗1, . . . , x
∗

n) to changes in a scalar α∗, where x∗ and α∗ are required to satisfy an n-dimensional

system of nonlinear equations of the form2

0 = ψ(x, α) = (ψ1(x, α), . . . , ψn(x, α))T . (1)

Assuming ψ:Rn+1 → Rn is twice continuously differentiable and has a nonsingular Jacobian matrix

ψx(x∗, α∗), the implicit function theorem guarantees the existence of a continuously differentiable

function x(α) taking some neighborhood N(α∗) of α∗ into Rn such that

0 = ψ(x(α), α) , α ∈ N(α∗), (2)

1The published version of this article appears as pp. 92-97 in C. A. Floudas and P. M. Pardalos (eds.), En-

cyclopedia of Optimization, Volume 4, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. See
http://www.econ.iastate.edu/tesfatsi/nasahome.htm for annotated pointers to related articles and to the Nasa pro-
gram (available on-line as freeware).

2This problem formulation, with a scalar paramater α, is more general than it might first appear. For example,
suppose an analyst wishes to investigate the surface of function values x = f(z) taken on by some function f :Rm

→ Rn

as z ranges over a specified region Z in Rm. One approach is to consider a suitably smooth curve s:[0, 1] → Z which
roughly fills this region, of the form z = s(α), and to define a new function of the form ψ(x, α) ≡ x−f(s(α)). Solving
the system of equations ψ(x,α) = 0 for x as a function of α as α ranges from 0 to 1 then yields a curve of points
x(α) on the function surface which gives some idea of the shape of this surface over the region Z.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6250526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


with x(α∗) = x∗. From (2) one obtains the fundamental equation for sensitivity analysis,

dx(α)/dα = − ψx(x(α), α)−1ψα(x(α), α) , α ∈ N(α∗). (3)

As it stands, (3) is an analytically incomplete system of ordinary differential equations. That is,

a closed form representation for the Jacobian inverse J(α)−1 = ψx(x(α), α)−1 as a function of α is

often not obtainable for n ≥ 3. Thus, the integration of (3) from initial conditions would typically

require the supplementary algebraic determination of the Jacobian inverse J(α)−1 at each step in

the integration process.

Why not simply incorporate a linear equation solver to accomplish the needed matrix inversions?

Two reasons can be given. First, the Jacobian matrix might have one or more eigenvalues which

are small in absolute value. Consequently, as can be seen using a singular value decomposition, the

inverse matrix can be highly ill-conditioned in the sense that its elements have large absolute values

and take on both positive and negative values. In this case, small round-off and truncation errors

can cause large errors in the resulting numerically determined component values of the sensitivity

vector dx(α)/dα. Second, there exists an alternative approach [9] that has proven its reliability

and efficiency in numerous contexts over the past twenty years: replace the algebraic operation of

matrix inversion by an initial value problem highly suited for modern digital computers.

The latter approach is taken in [10]. The differential system (3) is extended by the incorporation

of ordinary differential equations for the Jacobian inverse. More precisely, letting A(α) and δ(α)

denote the adjoint and the determinant of the Jacobian matrix J(α), and recalling that the inverse

of any nonsingular matrix can be represented as the ratio of its adjoint to its determinant, the

following differential system is validated for x(α), A(α), and δ(α):

dx(α)/dα = −A(α)ψα(x(α), α)/δ(α) ; (4)

dA(α)/dα = [A(α)Trace(A(α)B(α)) −A(α)B(α)A(α)]/δ(α) ; (5)

dδ(α)/dα = Trace(A(α)B(α)) . (6)

The ijth component of the matrix B(α) = dJ(α)/dα appearing in equations (5) and (6) is

n∑

k=1

(ψi
jk(x(α), α)dxk(α)/dα) + ψi

j,n+1(x(α), α) , (7)

where ψi
jk denotes the second partial of ψi with respect to xj and xk, and ψi

j,n+1 denotes the

second partial of ψi with respect to xj and α. Given (4), note that each of the components (7)

is expressible as a known function of x(α), A(α), δ(α), and α. Initial conditions for equations (4)

through (6) must be provided at a parameter point α∗ by specifying values for x(α∗), A(α∗), and

δ(α∗) satisfying 0 = ψ(x(α∗), α∗), A(α∗) = Adj(J(α∗), and δ(α∗) = Det(J(α∗)) 6= 0.

2



In summary, the system of equations (4) through (6) provides an analytically complete system of

ordinary differential equations for the nonlocal sensitivity analysis of the original system of interest,

0 = ψ(x, α). That is, it permits the tracking of the solution vector x(α) and the sensitivity vector

dx(α)/dα, together with the adjoint A(α) and the determinant δ(α) of the Jacobian matrix J(α),

over any α-interval [α∗, α∗∗] where the determinant remains nonzero.

2 Fully Automated Implementation

The complete differential system (4) through (6) was initially implemented in [10] by means of

a fortran program incorporating a fourth-order Adams-Moulton integration method with a Runge-

Kutta start and hand-coded partial derivatives. High numerical accuracy was obtained in illustra-

tive applications, even near critical points α where the determinant δ(α) became zero. Nevertheless,

hand-coding of partial derivatives was clearly an undesirable feature of the program. The partial

derivative expressions in (7) involve the second-order partial derivatives of ψ(·); and ψ(·) in turn

could involve the partial derivatives of some still more basic function, such as the criterion func-

tion for an optimization problem. This is indeed the typical case for economic problems (e.g.,

the profit maximization problem handled in [10]), since such problems invariably incorporate the

decision-making processes of various types of economic agents.

In consequence, a more fully automated fortran program for nonlocal sensitivity analysis was

eventually developed in [11]. This program, referred to as Nasa,3 incorporates a fairly substantial

library for the forward-mode automatic evaluation of partial derivatives through order three [13] as

well as an adaptive homotopy method [12] for automatically obtaining all required initial conditions.

The following sections briefly describe these features. An example of how Nasa has been applied

to an applied general equilibrium problem in economics is detailed in [2].

3 Incorporation of Automatic Differentiation

Four basic approaches4 can be used to obtain computer-generated numerical values for deriva-

tives: hand-coding; numerical differentiation; symbolic differentiation; and automatic derivative

evaluation, or automatic differentiation for short.5 Numerical differentiation methods substitute

discrete approximate forms for derivative expressions. For example, finite difference methods involve

the approximation of derivatives by ratios of discrete increments; e.g., f ′(t) ≈ [f(t + h) − f(t)]/h

3Nasa is an acronym for N onlocal Automated Sensitivity Analysis. Nasa is available for downloading as freeware
from the Web site http://www.econ.iastate.edu/tesfatsi/.

4See Jerrell [7] for an interesting comparative discussion of these four alternative approaches.
5Recently, computational differentiation has come to be the preferred term for automatic differentiation; see [1].

To avoid confusion, the more traditional term is used here.

3



for some suitably small h. Symbolic differentiation methods generate exact symbolic expressions

for derivatives that can be manipulated algebraically as well as evaluated numerically. In contrast,

automatic differentiation methods do not generate explicit derivative expressions, either approx-

imate or symbolic. Rather, these methods focus on the generation of derivative evaluations by

breaking down the evaluation of a derivative at a given point into a sequence of simpler evaluations

for functions of at most one or two variables. These evaluations are exact up to round-off and

truncation error.

For the nonlocal sensitivity analysis problem outlined in Section 1, the primary requirement is

for partial derivative evaluations through order three to be obtained in a reliable and efficient man-

ner. The use of numerical differentiation methods such as finite difference introduces systematic

approximation errors into applications that can be reduced but not eliminated entirely due to the

risk of catastrophic floating point error. Symbolic differentiation software packages such as Mac-

syma, Mathematica, and Maple6 produce analytical expressions for derivatives but are notorious

for “expression swell”—that is, for the great many lines of code they produce for the derivative

expressions of even relatively simple functional forms despite repeated use of reduction routines;

see [5] for explicit examples. Thus, an automatic derivative evaluation routine would seem to be

the preferred alternative for the application at hand.

Automatic differentiation appears to have been independently developed by Moore [15] and

Wengert [20]. The key idea of Moore and Wengert was to decompose the evaluation of complicated

functions of many variables into a sequence of simpler evaluations of special functions of one or two

variables, referred to below as a “function list.” Total differentials of the special functions could

be automatically evaluated along with the special function values, and partial derivatives could

then be recovered from the total differentials by solving certain associated sets of linear algebraic

equations.

As detailed in [1] and [4], great strides have been made over the past thirty years in developing

fast and reliable automatic differentiation algorithms. The Nasa program incorporates one such

algorithm, originally developed in [13], that is now referred to as Feed.7 Total differentials are

replaced by derivative arrays in order to avoid repeated function evaluations and the need to recover

partial derivatives from total differentials for each successively higher-order level of differentiation.

As a simple illustration of Feed, consider the function F :R2
++ → R defined by

z = F (x, y) = x+ log(xy) . (8)

6Automatic differentiation has recently been introduced into Maple; see Heck [6].
7Feed is an acronym for Fast Efficient Evaluation of Derivatives. A detailed discussion of the use of this automatic

differentiation algorithm for both optimization and sensitivity analysis can be found in [8].

4



Suppose one wishes to evaluate the function value z and the partial derivatives zx, zy, zxx and zxxx

at a given domain point (x, y). Consider Table 3.1.

Table 3.1: An Illustrative Application of the Feed Algorithm

Function List ∂/∂x ∂/∂y ∂2/∂x2 ∂3/∂x3

a = x 1 0 0 0

b = y 0 1 0 0

c = ab axb+ abx ayb+ aby axxb+ 2axbx + abxx axxxb+ 3axxbx + 3axbxx + abxxx

d = log(c) c−1cx c−1cy −c−2c2x + c−1cxx 2c−3c3x − 3c−2cxcxx + c−1cxxx

z = a+ d ax + dx ay + dy axx + dxx axxx + dxxx

The first column of Table 3.1 constitutes the function list for the function (8); it sequentially

evaluates the function value z = x + log(xy) at the given domain point (x, y). The remaining

entries in each row give the indicated derivative evaluations of the first entry in the row, using

only algebraic operations. The first two rows initialize the algorithm, one row being required for

each independent variable. The only input required for the first two rows is the domain point

(x, y). Each subsequent row outputs a one-dimensional array of the form (p, px, py, pxx, pxxx), using

the arrays obtained from previous row calculations as inputs. The final row yields the desired

evaluations (z, zx, zy, zxx, zxxx).8

The elements in each of the rows in Table 3.1 can be numerically evaluated by means of sequen-

tial calls to Feed calculus subroutines. These evaluations are exact up to round-off and truncation

error. For expositional simplicity, Table 3.1 only depicts evaluations for partial derivatives through

order three. However, Feed calculus subroutines can in principle be constructed to evaluate the

function value and the distinct partial derivatives through order k of any real-valued multi-variable

function that can be sequentially evaluated in a finite number of steps by means of the two-variable

functions

w = u+ v, w = u− v, w = uv, w = u/v, w = uv (9)

and arbitrary nonlinear one-variable kth-order differentiable functions such as

cos(u), sin(u), exp(u), cu, log(u), and aub + c (10)

for arbitary constants a, b, and c. Systematic rules for constructing general kth-order calculus

subroutines for special functions such as (10) are derived in [13]. References to other work focusing

8The limitation to this collection of partial derivative evaluations is for expositional simplicity only. The evaluation
of any additional desired partial derivative of z, say zxyy or zxxxy, can be obtained in a similar manner by suitably
augmenting Table 3.1 with an additional column of algebraic operations.

5



on recurrence relations for the derivatives of special functions such as (10) can be found, for example,

in [14]. A detailed discussion of the library of Feed calculus subroutines currently incorporated into

Nasa is given in [11].

The Feed algorithm thus envisions the successive transformation of arrays of partial derivatives

through any specified order k into similarly-configured arrays as one forward sweep is taken through

the function list for a specified kth-order differentiable function. A similar approach is proposed

in [14] and [17, page 280]. In contrast, the partial derivative evaluation methods proposed in [16,

Chapter VI, pages 91-111] and [21] have a tree structure; that is, gradient operations are used to

generate evaluations for each successively higher-order collection of partial derivatives using the

results of previous gradient operations as inputs. Another approach that has attracted a great deal

of interest is reverse-mode differentiation; see [3] and [18].

4 Automatic Initialization via Adaptive Homotopy Continuation

The initial conditions needed to integrate the complete differential system (4)-(6) from a given

initial parameter point α∗ consist of a solution vector x(α∗) together with evaluations for the adjoint

A(α∗) and determinant δ(α∗) of the Jacobian matrix ψx(x(α∗), α∗). For many nonlinear problems,

finding an initial solution vector is a difficult matter in and of itself.

Nasa incorporates an adaptive homotopy method [12] for automating these needed initializa-

tions. A standard (linear) homotopy method applied to the problem of finding a solution x∗ for a

system of equations 0 = F (x) proceeds by introducing a homotopy of the form

0 = tF (x) + [1 − t][x− c] (11)

and solving for x as a function of t as t varies from 0 to 1 along the real line, where c represents any

initial guess for the solution vector x∗. In contrast, an adaptive homotopy is a homotopy for which

the usual continuation parameter t varying from 0 to 1 on the real line is replaced by an adaptive

continuation “agent” that makes its way by trial and error from 0 + 0i to 1 + 0i in the complex

plane in accordance with certain stated objectives.

Specifically, the continuation agent designed in [12] adaptively selects a path of β values from

0 + 0i to 1 + 0i in the complex plane for the homotopy

0 = [F (x) − F (c)] + βF (c) , (12)

where c again represents any initial guess for the solution vector x∗. The path for β is selected

in accordance with the following multiple objective optimization problem: Reach the point 1 + 0i

starting from the point 0 + 0i by taking as few steps as possible along a spider-web (spoke/hub)

6



grid centered at 1 + 0i in the complex plane, but do so in a way that avoids regions where the

Jacobian matrix becomes ill-conditioned.

The adaptive homotopy method introduced in [12] and incorporated into Nasa is thus an exam-

ple of what might more generally be called an adaptive computational method , i.e., a computational

method that embodies the following principle important for applied researchers: Let the computa-

tional algorithm adapt to the physical problem at hand instead of requiring users to reformulate

their physical problems to conform to algorithmic requirements. For sufficiently smooth functions

F (·), a properly constructed homotopy—e.g., a probability one homotopy as formulated in [19]—is

theoretically guaranteed to have no singular points along the real continuation path from 0 to 1 for

almost all initial starting points c. However, successful implementation of such homotopy methods

can require a mathematically sophisticated reformulation of the user’s original problem.

The homotopy (12) is solved for x as a function of β as β varies from 0 + 0i to 1 + 0i in the

complex plane by making use of a complete system of ordinary differential equations analogous to

the system set out in Section 1. At each β point one obtains a solution vector x∗(β) together with

evaluations A∗(β) and δ∗(β) for the adjoint and determinant of the homotopy Jacobian matrix9

J∗(β) = Fx(x∗(β)). In principle, the solution vector x∗(1 + 0i) obtained for (12) at β = 1 + 0i

yields a solution vector for the original system of interest, 0 = F (x). In particular, letting F (x) =

ψ(x, α∗), one obtains complete initial conditions for the original problem of interest, the nonlocal

sensitivity analysis of the system 0 = ψ(x, α) over an interval of α values starting at α∗.

References

[1] Berz, M., Bischof, C., Corliss, G., and Griewank, G., Computational Differentiation: Tech-

niques, Applications, and Tools, SIAM, Philadelphia, Pennsylvania, 1996.

[2] Dakhlia, S., “Testing for a Unique Equilibrium in Applied General Equilibrium Models,”

Journal of Economic Dynamics and Control Volume 23, 1999, 1281–1297.

[3] Griewank, A., “On automatic differentiation,” pp. 83–108 in Mathematical Programming: Re-

cent Developments and Applications, Iri, M., and K. Tanabe (eds.), Kluwer Academic Pub-

lishers, 1989.

[4] Griewank, A., and Corliss, G., Automatic Differentiation of Algorithms: Theory, Implemen-

tation, and Application, SIAM, Philadelphia, 1991.

9Note that the homotopy Jacobian matrix coincides with the Jacobian matrix for the original function of interest
F (·), implying that singularities are not artificially induced into the problem by the homotopy method per se.

7



[5] Hayes, K., Hirschberg, J., and Slottje, D., “Computer algebra: Symbolic and algebraic com-

putation in economic/econometric applications,” Advances in Econometrics, Volume 6, JAI

Press, Inc., 1987, 51–89.

[6] Heck, A., Introduction to Maple, Springer-Verlag, New York, 1993.

[7] Jerrell, M. E., “Automatic differentiation and interval arithmetic for estimation of disequilib-

rium models,” Computational Economics 10 (August 1997), 295–316.

[8] Kagiwada, H., Kalaba, R., Rasakhoo, N., and Spingarn, K., Numerical Derivatives and Non-

linear Analysis, Plenum, New York, N.Y., 1985.

[9] Kalaba, R., Zagustin, E., Holbrow, W., and Huss, R., “A modification of Davidenko’s method

for nonlinear systems,” Computers and Mathematics with Applications 3 (1977), 315–319.

[10] Kalaba, R., and Tesfatsion, L., “Complete comparative static differential equations,” Nonlinear

Analysis: Theory, Methods, and Applications 5 (1981), 821–833.

[11] Kalaba, R., and Tesfatsion, L., “Nonlocal automated sensitivity analysis,” Computers and

Mathematics With Applications 20 (1990), 53–65.

[12] Kalaba, R., and Tesfatsion, L., “Solving nonlinear equations by adaptive homotopy continua-

tion,” Applied Mathematics and Computation 41 (1991), 99–115.

[13] Kalaba, R., Tesfatsion, L., and Wang, J.-L., “A finite algorithm for the exact evaluation

of higher-order partial derivatives of functions of many variables,” Journal of Mathematical

Analysis and Applications 92 (1983), 552–563.

[14] Kedem, G., “Automatic differentiation of computer programs,” ACM Transactions on Math-

ematical Software 6 (June 1980), 150–165.

[15] Moore, R. E., “Interval arithmetic and automatic error analysis in digital computing,” Ph.D.

Thesis, Department of Computer Science, Stanford University, 1962.

[16] Rall, L., Automatic Differentiation: Techniques and Applications, Springer-Verlag, N.Y., 1981.

[17] Rall, L., “The arithmetic of differentiation,” Mathematics Magazine 59 (1986), 275–282.

[18] Van Iwaarden, R., “Automatic differentiation applied to unconstrained nonlinear optimization

with result verification,” Interval Computations 4 (1993), 30–41.

[19] Watson, L. T., Sosonkina, M., Melville, R. C. Morgan, A. P., and Walker, H. F., “HOM-

PACK90: A suite of FORTRAN 90 codes for globally convergent homotopy algorithms,”

ACM Trans. Math. Software, Volume 23, 1997, 514–549.

[20] Wengert, R., “A simple automatic derivative evaluation program,” Communications of the

ACM 7 (1964), 463–464.

8



[21] Wexler, A., “An algorithm for exact evaluation of multivariate functions and their derivatives

to any order,” Computational Statistics and Data Analysis 6 (1988), 1–6.

Copyright c©2004 Leigh Tesfatsion. All Rights Reserved.

9


