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Abstract

Sub-Sahara African populations are tall relative to the extremely adverse disease environment and 

their low incomes. Selective mortality, which removes shorter individuals leaving taller individuals 

in the population, was proposed as an explanation. From heights of surviving and non-surviving 

children in Gambia, we estimate the size of the survivorship bias and find it to be too small to 

account for the tall adult heights observed in sub-Saharan Africa. We propose instead a different yet 

widely ignored explanation: African populations attain a tall adult stature, because they can make 

up a significant amount of the growth shortfall after age 5. This pattern is in striking contrast to 

other developing countries. Moreover, mortality rates are relatively low after age 5 adding further 

doubts about selective mortality. 
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1. Motivation 

Mean adult height of a population is a measure of nutritional and health status. Numerous 

micro-level studies demonstrated that ill-health and malnutrition stunt body growth, with poverty 

being an important underlying determinant. One would expect to find similar results in the 

aggregate.  However, when comparing mean adult heights across countries regional anomalies 

appear, particularly with respect to sub-Saharan Africa (SSA): Most African populations are tall 

despite their low levels of income and exposure to one of the most deadly disease environments in 

the world (Deaton, 2007; Moradi, 2010). Table 1 gives summary statistics of this paradox. The 

height-mortality paradox also exists across time: Infant mortality decreased in most parts of SSA 

1950-1980, yet mean adult heights did not increase accordingly (Akachi & Canning, 2010; Moradi, 

2010). Akachi and Canning (2010) argued that in SSA technological progress was centred on 

preventing mortality and did not much to reduce the type of morbidity that affects stunting. The 

‘African height paradox’ is also visible in child anthropometry: Africa’s prevalence of stunting (low 

height-for-age) is relatively moderate compared to the high levels of mortality and income poverty 

(Klasen, 2008).1

Recently, Deaton (2007) offered an explanation to reconcile high mortality and high mean 

heights within a ‘framework of scarring and selection’. Scarring is the imprint that adverse disease 

and nutritional environments, proxied by mortality rates, leave in children’s height. The scarring 

effect reduces adult height among survivors. Selection, in contrast, is the removal of frail and 

shorter individuals by mortality. Selective mortality increases the adult height of survivors. This is 

not a new idea in itself (e.g. Teller et al., 1979). However, Deaton’s claim is new that the positive 

selection effect strongly outweighs the negative scarring effect in high-mortality environments, 

particularly in SSA, therefore making adults in this region so tall. 

                                                          
1 We will argue in section Error! Reference source not found. that the height paradox in adults is not just an ‘adult 
version of the child malnutrition-child mortality puzzle’ as reasoned by Bozzoli et al. (2009). The height paradox is 
much bigger in adults and is largely a result of extraordinary growth after age 5. 
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A large number of studies demonstrated the predictive power of anthropometric indicators on 

child mortality (Caulfield, Onis, Blössner, & Black, 2004; Fawzi et al., 1997; Pelletier, 1994; Rice, 

Sacco, Hyder, & Black, 2000). The correlation is particularly strong for weight-for-age and weight-

for-height, less so for height-for-age. Nevertheless, there is no doubt that shorter children are more 

likely to die and that a survivorship bias exists. However, the extent of the bias is far from clear. 

The question has important implications for the study of nutritional status of pre-school 

children and adults alike. Nutritional and health status is inferred from height measurements of 

living individuals, and the samples are often treated as if they were a proper representation of birth 

cohorts at birth. Survivorship bias can make inferences from such samples grossly misleading. 

In a widely ignored study, Boerma et al. (1992) estimated the effect of the survivorship bias 

on the prevalence of stunting. From mortality odds ratios comparing stunted with non-stunted 

children Boerma et al. (1992) inferred that malnutrition rates increase by less than 1% if all children 

survive to age 5. Interestingly, they did not find a large difference between countries of different 

regions, for example the proportion of stunted children would increase by 0.1% (Sri Lanka), 0.4% 

(Egypt) and 0.7% (Bolivia and Mali) if all children survive to age 5. 

In this article, we examine the extent of the survivorship bias on mean height of adults and 

whether the size is large enough to account for the puzzlingly tall stature in SSA. We propose 

another explanation which has not received enough attention so far: African populations attain a tall 

height at adults because they are able to make up a significant share of growth shortfall after age 5. 

2. The extent of the puzzle 

How large is the puzzle? Or in other words, how much ‘too tall’ are African populations? We 

can think of this as the Africa dummy. The regression coefficient of the Africa dummy indicates the 

average difference in height between SSA and non-SSA populations which cannot be explained by 
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the regression model. The size of the Africa dummy may depend on i) the choice of reference 

category and thereby the sample composition and ii) the model specification. 

We derived height data of women in developing countries from the Demographic and Health 

Surveys (Macro).2 To complement our sample with richer countries, we added data from the 

Eurobarometer survey, which provides self-reported heights for all European Union member states 

(European Commission, 2005). All the surveys are nationally representative for the time when they 

were carried out. The mean heights are based on five-year age cohorts, with birth years centring in 

the early 1970s. Because Eurobarometer samples were smaller, we calculated mean heights from 

the age group 25-34. Our data is purely cross-sectional. 

Some regression models may better explain the heights in SSA than others and reduce the 

coefficient of the Africa dummy.3 We estimate a parsimonious model and focus on determinants in 

which context the paradox of African tall stature was placed.4 We use protein supply and IMR, 

proxying nutrition and health conditions, and GDP/c (PPP) (FAOSTAT; Heston, Summers, & Aten, 

2002; UN Population Division, 2009). Following the usual approach of birth cohort analyses the 

variables measure conditions at birth; values are averaged over the period the cohort was born. 

                                                          
2 DHS surveys did not measure the height of men. We used the STATCompiler extracting summary statistics from the 
following DHS surveys. SSA includes Benin 2006, Burkina Faso 2003, Cameroon 2004, Central African  
Republic 1994-95, Chad 2004, Comoros 1996, Congo (Brazzaville) 2005, Congo Democratic Republic 2007, Cote 
d'Ivoire 1998-99, Eritrea 2002, Ethiopia 2000, Gabon 2000, Ghana 2003, Guinea 2005, Kenya 1998, Lesotho 2004, 
Liberia 2007, Madagascar 2003-04, Malawi 2004, Mali 2006, Mauritania 2000-01, Mozambique 2003, Namibia 2006-
07, Niger 2006, Nigeria 2003, Rwanda 2000, Senegal 2005,  Sierra Leone 2008, Swaziland 2006-07, Tanzania 2004-05, 
Togo 1998, Uganda 2000-01, Zambia 2001-02, Zimbabwe 2005-06. 
Non-SSA includes Armenia 2005, Azerbaijan 2006, Bangladesh 2004, Bolivia 2003, Brazil 1996, Cambodia 2000, 
Colombia 2000, Dominican Republic 1996, Ecuador 2004, Egypt 2005, El Salvador 2002, Guatemala 1998-99, 
Haiti 2000, Honduras 2005-06, India 2005-06, Jordan 2002, Kazakhstan 1999, Kyrgyz Republic 1997, Moldova 2005, 
Morocco 2003-04, Nepal 2001, Nicaragua 2001, Peru 2000, Turkey 1998, Turkmenistan 2000, Uzbekistan 1996 and 
Yemen 1997. 
3 In principle, one can enter into a quest for solving the Africa dummy. More precisely, one can test various regression 
models; the variable that turns the Africa dummy insignificant can explain African heights and solves the puzzle. 
However, the methodology is ill-suited to clearly identify the cause of the tall heights. SSA is unique in many ways. 
High mortality is just one. Other features include unique a disease environment, diet, underreported food supply, culture, 
genetics and growth after age 5. The methodology may return any variable that takes more or less unique values for 
Africa thereby essentially substituting the same. 
4 Coefficients may well be biased. If, for example, Deaton (2007) is correct and the selection effect dominates the 
scarring effect at high levels of mortality, the estimated influence of health conditions as proxied by IMR will be 
downward biased. At the same time this would increase the Africa dummy. 
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Bivariate correlations hold no surprises. IMR, protein supply and GDP/c all are significant and 

have the expected signs (column (1)-(4), Table 2). For a better comparability, we excluded states 

that were created in the post-1990 era in column (2), Table 2, as we lack data on proteins and GDP/c 

in the 1970s for those countries. The coefficient of the African dummy in the bivariate regressions 

is around 4. In a multivariate regression, we find IMR and protein supply still significant and with 

the expected signs whereas GDP/c becomes insignificant (column (5), Table 2). It is noteworthy 

that the size of the Africa dummy increased by about 1. One might object that the cluster of 

European countries may influence our estimate of the Africa dummy. When we exclude them and 

switch the reference category to developing countries, IMR loses its strength but the size of the 

Africa dummy does not change (column (6), Table 2). We take the latter estimate for the extent of 

the paradox: African women are 5 cm taller than one might expect from the nutrition and health 

conditions present at birth. 

3. Selective mortality 

How large is the effect of selective mortality? Can selective mortality really explain the 

variation in adult height observed in SSA? Studies that report heights of surviving and deceased 

children alike are most informative. Such studies, however, are rare.5 One study where this was 

done is from Billewicz & McGregor (1982). Children from two villages in Gambia were followed 

from birth to maturity and height measurements were taken annually up to age 5. It is worth a look 

to obtain an estimate of the survivorship bias. Gambia is a high-mortality country: In 1960, 205 of 

1000 infants died before reaching age 1; 360 children died before age 5 (World Bank, 2009). 

Equipped with the figures from Billewicz & McGregor (1982), reported in Table 3, we can do a 

                                                          
5 Most studies, like those cited in Pelletier (1994), use binary measures of child anthropometry (stunted yes/no) to 
predict mortality and report odds ratios. This study design does not allow calculating the impact on mean height. For a 
simulation of the effect of survivorship bias on the prevalence of malnutrition, see Boerma et al. (1992). 
Unfortunately, we were not able to access original data. DHS surveys do not record the heights of children who died. 
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counterfactual: What would adult mean height be if IMR were reduced to 0 and all children were 

surviving?

Height of the total child population H at age i can be easily calculated by 

(1)
)( disi

didisisi
i NN

HNHNH
�
�

�

where Ns and Nd is the number of survivors and deaths; Hs and Hd is the mean height of survivors 

and deaths in age group i respectively. 

A few assumptions are necessary to calculate the effect on adult height. Firstly, mortality at 

ages later than 5 years can be ignored. This assumption is unproblematic as most deaths before 

adulthood occur in the age bracket 0-5 yrs. Secondly, there is no catch-up growth after age 5 so that 

we can infer mean adult height from that of children. According to which rule exactly, however, is 

not clear. Various behavioural relationships are plausible and found support in the literature (Li, 

Stein, Barnhart, Ramakrishnan, & Martorell, 2003; Schmidt, Jørgensen, & Michaelsen, 1995). We 

describe each in turn. 

Presumption 1: There is no catch-up growth in absolute terms. Every centimetre that the 

child population ‘lost’ at each age i due to selective mortality will translate into a shorter adult 

height of exactly the same amount. Thus, we can aggregate the effect of selective mortality on adult 

height SM by 

(2) )(
1 siii

HHSM ��� �

Using equation (1) and (2) and the figures from 
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Table 3 we find SM to be 2.1 cm and 2.2 cm for the male and female population respectively. 

Presumption 2: There is no catch-up growth in relative terms. During the process of physical 

growth, a population’s height distribution does not only shift to the right, its standard deviation also 

increases.6 We address this issue by transforming heights into height-for-age z-scores (HAZ).7 The 

trajectory of HAZ-scores in Gambia follows the pattern typical of most developing countries, 

whereby growth retardation starts a few months after birth and continues to an age of 2–3 years 

(Figure 1). Growth velocity at age 3-5 is roughly on par with the NCHS/ CDC reference population, 

as indicated by the nearly constant HAZ-scores. HAZ-scores of surviving males are smaller than the 

ones of surviving females, whereas HAZ-scores of deceased children did not substantially differ by 

gender. For the computation, we use equations (1) and (2) but replacing height H with HAZ-scores. 

We find SM to be 0.7 HAZ-scores for both, male and female population. This would imply an effect 

of selective mortality on adult height of about 5.2 cm and 4.4 cm for the male and female 

population respectively.8

Presumptions 1 and 2 assume a cumulative effect: As shorter than average children drop out 

of the population, it increases mean height of every subsequent cohort. 

Presumption 3: Selective mortality does not have a cumulative effect. The child population 

that dies follows a specific height trajectory like the one in Figure 1. In other words, those children 

who died at age 1 would have achieved the same HAZ-score as children who died at later ages. At 

ages later than 2 yrs the HAZ-series of survivors and non-survivors run about parallel and trends in 

age are, if at all, negligible. We therefore use this age group to obtain an estimate of the difference 

in HAZ-scores. We estimate the following regression by OLS 

                                                          
6 In the Gambian sample from Billewicz & McGregor (1982), for example, standard deviations in the age groups below 
5 years averaged 4.4 and 4.2 for surviving girls (boys), whereas height of adult men and women in the age group 20-45 
years had a standard deviation of 5.5 and 6.4 respectively. 
7 HAZ-scores measure the distance, in standard deviations of the reference population, between the mean height of 
Gambia’s population and the median of the reference population of equal age and sex. HAZ-scores were calculated 
using the command zanthro in Stata 10.1. The 2000 CDC Reference was chosen as reference population.  
8 Billewicz & McGregor (1982) found adult mean heights stagnating. Men had a mean height of 167.2 cm (HAZ: -1.35); 
women had a mean height of 157.7 cm (HAZ: -0.87). If presumption 3 is correct, it follows that without any deaths 
male population were 162 cm (HAZ: -2.08) and women were 153.3 cm (HAZ: -1.53). 
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(3) uDHAZ ��� ��   for each sex 

where D is a dummy variable for children who died (1=yes, 0=no); � is our estimate of the 

difference in HAZ-scores between surviving and non surviving children. As estimate of � we obtain 

-1.015 (-0.685) for girls (boys) (column (1) and (3), Table 4). Our sample represents averages from 

a much larger sample of individual height measurements (Table 3). When weighting the data by the 

number of measurements, we obtain an estimate of � of -1.034 (-0.594) for girls (boys) which is 

very close to the unweighted regression (column (2) and (4), Table 4).9 We now can use equation (1) 

to calculate the HAZ-score of the total population including those who dropped out due to mortality. 

From the U5MR of 360 in Gambia in 1960, we take Nd =360 and Ns=640. Then, we obtain an HAZ-

score of -2.13 (-2.19) for the full population instead of the -1.77 (-1.97) for the surviving girls 

(boys). The SM of -0.37 (-0.21) for females (males) is not large. Adults with those HAZ-scores 

were 149.5 (161) cm instead of 151.7 (162.7) cm. This is very similar to the results under 

presumption 1. 

To sum up, we simulated a huge reduction in mortality which has not been observed 

empirically. Nevertheless, the effect on adult height is large in only one of the three scenarios 

(under presumption 2). In the other scenarios, the effect of selective mortality is about 2 cm and too 

small to explain the estimated excess height of Africans of about 5 cm.10

While Deaton (2007) did not explicitly raise the point, there might also be a possibility of a 

longer run impact of selective mortality. Because growth retardation is a response to a harsh disease 

environment and scarce nutritional resources, in principle selective mortality does not need to select 

the ‘genetically short’, but the ‘environmentally disadvantaged, short’ individuals. However, it can 

well be that selective mortality put a continuous pressure on populations selecting the genetically 

tall. This type of evolutionary explanation needs some motivation however: What are the plausible 
                                                          
9 We also tested specifications where we added age and age squared to equation (2). In the weighted regressions, they 
were significant at the 5% level. The estimate of � decreased from -1.034 (-0.594) to -.962 (-.533) for girls (boys). 
10 Selective mortality also influences adult height in other developing regions, even if to a lesser degree. Therefore, our 
results cannot be interpreted as if selective mortality explains 2 of the 5 cm. It is rather an upper bound estimate. 
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channels for selection of genetically tall individuals?11 It also raises questions as to why one can 

find tall and short populations on a relatively close neighbourhood. And finally, there is an 

emerging literature taking an historical perspective finding cases where adult height of African 

populations were remarkably transformed over a period of 50-70 years in the 20th century like the 

Kikuyu in Kenya (Moradi, 2009) and the population in Cote d’Ivoire (Cogneau & Rouanet, 2009). 

Finally, there is another widely neglected, indirect channel of how mortality can positively 

influence a population’s adult height. Micro studies found a negative correlation between the 

number of children in a household and their nutritional status (Desai, 1995; Rosenzweig, 1986). We 

can interpret such a relationship as sibling rivalry: When children die, the household size decreases; 

if total nutrition and health resources at the household level remain unchanged, the household will 

be able to spend more resources for the surviving siblings. This effect adds to the bias. The mean 

height of the same cohort of surviving children would be lower when moving to a low-mortality 

regime.12

4. Growth from childhood to maturity 

In the previous section we assumed that there is no significant catch-up growth after age 5. 

We now present evidence that this is not the case in sub-Sahara African populations. 

Originally, the issue was addressed by longitudinal studies that correlated height at different 

ages during childhood with height at adulthood. Studies typically found correlations between 0.2 

and 0.3 at birth, rising to between 0.7 and 0.8 at age 2 and increasing only slowly afterwards, thus 

indicating that most of adult height is determined by age 2 (Schmidt et al., 1995). Moreover, it was 

observed that HAZ-scores typically decrease from delivery until approximately 24 months of age, 

after which they remain at the same level throughout (Li et al., 2003; Schmidt et al., 1995). 

                                                          
11 On patterns of growth and the influence of genetics, see Bogin (2001) and McEvoy and Vischer (2009). 
12 We are not aware of any longitudinal study that has properly quantified this impact.  
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We essentially follow this methodology with two important modifications. Firstly, we analyse 

populations instead of individuals. Secondly, we lack longitudinal data following individuals over 

the complete growth phase. We make comparisons between child and adult populations at the same 

point in time. Secular trends can therefore be mistakenly interpreted as catch-up growth: if a child 

population enjoys improved conditions, it will achieve a greater height during childhood than the 

adult population actually did at the time of their childhood. The opposite is true if conditions 

deteriorated. Thus, upward/downward trends in height of birth cohorts will let us 

under/overestimate catch-up growth. 

We first obtain a glimpse on growth patterns by studying the development of HAZ-scores 

from birth to maturity using the Ethiopian Rural Household Surveys. The surveys covered 15 

villages from the various agro-ecological zones in Ethiopia (Dercon & Hoddinott, 2004).13 Within 

each village random sampling was used, stratified by female headed and non-female headed 

households.  Heights of household members were measured in 1994 and 1997. 

In the 1994 survey, HAZ-scores are stable in age cohorts 3–9 indicating that growth velocity 

is roughly on par with the NCHS/CDC reference population (solid lines, Figure 2). In the age 

cohort 9-11, growth of Ethiopian girls falls behind, primarily because the reference population 

enters the adolescent growth spurt, which is delayed in malnourished populations. Ethiopian girls 

however make up the shortfall when they enter puberty. In the age cohort 15-17 HAZ-scores have 

improved and the improvement continues into the age cohort 18-20. The pattern for boys is very 

similar, except that the adolescent growth spurt of boys occurs later and so the dip and the recovery 

of HAZ-scores occur later too. Ethiopian boys may also benefit from prolonged growth up into their 

20s, which again is normal in malnourished populations. What is important is that HAZ-scores of 

girls (boys) improved from -1.85 (-1.85) in the age cohort 3-5 to -1.2 (-1.4) in adulthood. In other 

                                                          
13 Data available at http://www.csae.ox.ac.uk/datasets/Ethiopia-ERHS/ERHS-main.html 
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words, Ethiopians are taller in adulthood, relative to a reference population of the same age and sex, 

than in childhood. 

We strongly believe that the peculiar trend in HAZ-scores is a true ‘age pattern’ and is not 

hugely affected by cohort effects (that older age cohorts were born during more favourable years 

than younger age cohorts). Plotting HAZ-scores of the same children from a second measurement 

three years later we find the pattern largely stable (dashed lines, Figure 2). Moreover, the order of 

magnitude makes cohort effects unlikely. An increase of 0.65 HAZ-scores, as observed in Ethiopian 

women, corresponds to about 4 cm of adult height.14 Secular trends in heights seldom exceed 1 cm 

per birth decade and only under massively improved nutrition and health conditions. In the data, for 

example, we find HAZ-scores of the age group 24-49 stagnating in men and women.15 Finally, the 

growth pattern in rural Ethiopia, as shown in Figure 2, does not seem to represent an exception. 

HAZ-scores in Cote d’Ivoire and Ghana follow very similar patterns (Moradi, 2010). 

For assessing whether this pattern is indeed different to other developing regions, we use 

height data collected by the World Bank’s Living Standard Measurement Studies for Brazil 1996/97 

and Guatemala 2000 (World Bank).16 The former covered the Northeast and Southeast Region of 

Brazil whereas the latter is nationally representative. While the Brazil series shows a clear 

downward trend in HAZ-scores, Guatemala falls rather into the typical age pattern described by 

Martorell & Habicht (1986), whereby growth retardation occurs in the first 2-3 years of life and 

children fail to significantly catch up thereafter (Figure 3). The decrease in HAZ-scores by age can 

be described as a continuation of the secular trend present in the data. HAZ-scores in the age group 

20-49 increase almost linearly by 0.09 and 0.13 per birth decade for girls respectively boys in Brazil 

and 0.05 per birth decade for both sexes in Guatemala. 

                                                          
14 We take individuals at age 20 from 2000 CDC Reference to calculate HAZ-scores for adults. 
15 HAZ-scores of men increase until 23. Prolonged growth must be considered part of the age pattern. 
16 The 2000 Guatemala Encuesta Nacional Sobre Condiciones de Vida and 1996-97 Brazil Pesquisa Sobre Padrões de 
Vida are available at http://www.worldbank.org/lsms/ 
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The evidence so far point to the age around puberty when African populations catch-up and 

become tall. We lack comprehensive height data of teens to study this further. However, even 

comparisons of HAZ-scores between pre-school children and adults can provide valuable insights. 

If there is no catch-up growth, HAZ-scores of children who survived age 5 should be similar to 

HAZ-scores of adults. In the data of the two Gambian villages, for example, mean HAZ-scores of 

surviving children aged 4-5 yrs were -1.8 (boys) and -1.5 (girls). The HAZ-scores of adults, in 

contrast, were -1.35 (men) and -0.87 (women). As Billewicz & McGregor (1982) claimed that there 

was no secular trend in the two villages, there must have been some catch-up growth that improved 

final height of males by 0.45 HAZ-scores and that of females by 0.62 HAZ-scores. 

We now use to the DHS surveys to test more fully how much HAZ-scores change from 

childhood to adulthood. 17 We correlate mean HAZ-scores of countries as follows: 

(4) 1��� ii HAZHAZ ��  for each i 

where i=1, 2, 3, 4 denote the age groups 3, 4, 20-24, 25-29 yrs. If �=0 and �=1, HAZ-scores are 

indeed stable as frequently assumed in the literature. If ��0 and �=1, HAZ-scores change by a fixed 

amount indicated by �. Parameters ��0 and ��1 describe other patterns. For an easier interpretation 

we use scatter plots: Data points above the 45-degree diagonal indicate improvements in nutritional 

and health status as measured by height. 

We first study the sample of SSA countries only. There is little change in HAZ-scores 

between the age groups 3 yrs (hollow circles in Figure 4, horizontal axis) and 4 yrs (vertical axis). 

Correlation is very strong (Table 5). Improvements in HAZ-scores occur especially in those 

                                                          
17 We use the same DHS surveys as in footnote 2. Unfortunately, the STATCompiler does not report summary statistics 
of by age and gender. We therefore had the extract the HAZ-scores from the original data sets. This reduced the sample. 
Ecuador 2004, El Salvador 2002 and Turkmenistan 2000 were not available for download; Eritrea 2002 and Mauritania 
2000-01 required special authorisation. Central African Republic 1994-95, Comoros 1996, Kenya 1998, Kyrgyz 
Republic 1997, Togo 1998 and Uzbekistan 1996 were dropped from the analysis, because they did not record heights of 
children older than 3 years. 
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countries with extremely low HAZ-scores; when excluding countries with a HAZ-score of less than 

-2 at age 3 yrs, the regression line almost perfectly fits the 45-degree diagonal. 

The relationship between HAZ-scores of 4-year-old girls and women aged 20-24 yrs, in 

contrast, is very different (black squares in Figure 4). Firstly, all African countries are above the 45-

degree line indicating that without exception HAZ-scores improved from child to adulthood. The 

extent of the improvement is by no means trivial: the difference in HAZ-scores averages 0.85 and is 

statistically significant (std: 0.36); if adult African women had the same HAZ-score like 4-year-old 

girls (-1.67), they would measure 152.5 cm instead of the 158 cm that they actually attained. 

Secondly, while there is a significant positive correlation, HAZ-scores are a not as strongly 

correlated as between 3 and 4 year olds or between 20-24 and 25-29 year olds (Table 5). This 

indicates a wide range of growth experiences: populations with very similar HAZ-scores at age 4 

such as in Madagascar (-2.04), Democratic Republic of Congo (-2.12), Zambia (-2.01) and Niger (-

2.07) have very different HAZ-scores of adults (-1.71, -1.19, -0.95 and -0.59 respectively). 

Secular trends are unlikely to affect conclusions. Firstly, in the majority of sub-Sahara African 

countries the proportion of stunted children (with a HAZ-score below -2) hardly changed over the 

period 1990 to 2005 (de Onis, Blössner, Borghi, Morris, & Frongillo, 2004).18 Secondly, trends in 

mean height in SSA rarely exceed one centimetre per birth decade (Moradi, 2010). In our sample 

for example, the HAZ-scores between the age groups 25-29 and 20-24 decreased by 0.08 on 

average. Secular trends can therefore not account for the improvement in height from age 4 to age 

20.

The pattern in SSA stands in striking contrast to populations in other regions. When repeating 

the exercise for other developing countries, we find HAZ–scores across all the age groups 3, 4, 20-

24 and 25-29 closely related (

                                                          
18 De Onis et al. (2004) reported a noteworthy improvement only for Middle Africa, where the prevalence of stunted 
children (0-5 yrs) decreased from 42.2% in 1990 to 35.8% in 2005. Other regions in Africa were rather stagnant, e.g. 
Western (34.7% to 32.0%), Eastern (44.4% to 44.4%) and Southern Africa (25.4% to 24.3%). 
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Table 5, Figure 5). HAZ-scores are stable between age 3 and 4, and 20-24 and 25-29 with 

regression lines fitting the 45-degree line (�=0 and �=1); the correlation between age 4 and 20-24 is 

somewhat shallower (�<0 and �<1). For countries other than Africa a secular trend exists and may 

indeed systematically lift HAZ-scores of children (de Onis et al., 2004). Taking this into account, 

children in at least some of the non-African developing countries may even loose further on their 

way to adulthood (as HAZ-scores of adults exceed the ones of children even though the adult birth 

cohorts enjoyed less favourable conditions). Nevertheless, the general pattern comes relatively close 

to the common idea that height is determined at age 3. 

Overall, our findings support a different explanation of tall statures in SSA: adult populations 

in SSA are not primarily tall because they were tall as children, but because growth velocity 

exceeded the one of the reference population and populations in other developing countries at ages 

later than childhood. We do not believe that the African growth pattern is due to genetics suddenly 

kicking in after childhood (though this cannot be ruled out). It could rather be a result of an 

improved diet and age-specific health environment at later ages. This could also explain why IMR 

is a poor predictor of adult height: the indicator simply fails to proxy for conditions at later ages. 

Moradi (2010), for example, found indeed that changes in mean adult height in SSA are strongly 

influenced by conditions around puberty, particularly economic growth: falling mean heights in 

mid-1960s and 1970s birth cohorts in SSA can be attributed to the economic crisis in the late 1970s 

and 1980s. 

5. Conclusions

Current explanations for the ‘African height paradox’ have focused on missing or weak 

correlations between IMR and adult height. Akachi and Canning (2010) argued that there is a 

general discrepancy between health environments that lead to death and to stunted height. However, 

what seems to contradict their idea is that the correlation between height and IMR is essentially 
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‘lost’ on the way to adulthood. While Klasen (2008) demonstrated that the Africa height paradox 

also exists for child anthropometry, the paradox is much smaller. When applying the same 

explanatory models as in Table 2 for children, we always find IMR negatively correlated with 

height and highly significant (with t-statistics larger than 4). Thus, the link between morbidity, 

mortality and stunting seems to work in children. 

Deaton (2007) argued that selective mortality outweighs the scarring effect caused by 

morbidity which is positively associated with mortality. We calculated the size of the effect of 

selective mortality on height of the surviving population in Gambia. Though we found that selective 

mortality makes the surviving population taller, the effect is too small to explain much of the excess 

height in SSA populations. 

Comparing the height of children and adults suggest that growth after childhood is key to 

understand the puzzlingly tall adult heights in sub-Saharan Africa. At the current stage, we are not 

able to say what exactly it is that allows populations in SSA to catch-up. Childhood diseases play an 

important role in child undernutrition and adolescents might be less vulnerable to the adverse 

disease environment. It might be that children acquired some form of immunity after surviving 

childhood. In this case, the exposure to diseases is similar in adolescents and children but the impact 

on growth is reduced at the older ages. Alternatively, the disease environment varies with age and 

diarrhoea episodes, respiratory infections, etc. are less frequent in adolescents. One can also 

imagine that the intra-household allocation is more favourable to teens, e.g. because they contribute 

to household income. This suggests an important avenue of research. Longitudinal studies that 

follow individuals from birth to maturity are best suited to find answers. The strong emphasis on 

infant mortality to explain adult height, however, is misplaced. After all, it is the age after childhood, 

when African populations achieve their tall adult height, which is least affected by mortality. 
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Table 1:  Adult height, mortality and income across regions

Region Adult height (cm) IMR U5MR GDP/c (PPP) $ 

Central Asia 159.1 80 120 
Sub-Saharan Africa 158.8 122 220 1,672 
Middle East & North Africa 156.9 128 206 2,708 
Latin America & Caribbean 153.3 95 151 3,208 
South Asia 150.9 138 209 963 

Note: Figures represent simple unweighted averages of country data within regions. Height data is based on women of 
5-year age groups born in the early 1970s, see footnote 2 for details (Macro). Figures for mortality and income refer to 
conditions at birth (FAOSTAT; Heston et al., 2002; UN Population Division, 2009). 

Table 2: OLS regression of adult height (in cm)

(1) (2) (3) (4) (5) (6) 

Africa dummy 3.886*** 4.109*** 3.837*** 4.526*** 5.030*** 5.037*** 
(4.418) (4.330) (4.713) (3.375) (5.658) (5.608) 

IMR -0.090*** -0.087*** -0.051*** -0.019 
(-11.708) (-10.765) (-4.258) (-1.542) 

Protein supply 0.213*** 0.142*** 0.099*** 
(gr/cap/day) (11.862) (5.916) (3.578) 

LnGDP/c 4.027*** -0.224 -0.478 
(7.456) (-0.384) (-0.854) 

Constant 165.89*** 165.43*** 143.55*** 125.37*** 153.94*** 154.20*** 
(355.18) (304.87) (95.11) (25.63) (28.55) (32.40) 

Sample 
Excl. newly 

formed
states 

Developing
countries

only 
N 92 79 75 70 68 47 
R2-adj. 0.63 0.61 0.68 0.42 0.73 0.52 

Estimator is OLS; robust t-statistics in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
Note: See Table 1. 
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Table 3 Selective mortality in two Gambian villages (age 0-5 years)

 Males  Females 

Age Height
(survivors) 

Height
(deaths)

N
Survivors 

N
deaths

Height
(survivors) 

Height
(deaths)

N
Survivors 

N
deaths

0.0- 59.9 57.5 135 44  57.8 56.9 133 51 
0.5- 68.4 66.4 150 26  66.7 66.3 133 42 
1.0- 74.1 70.2 158 24  72.9 69.7 153 32 
1.5- 77.1 77.1 172 17  76.8 74.9 143 17 
2.0- 82.1 79.1 150 24  80.9 76.0 149 17 
2.5- 84.8 84.1 181 15  84.3 82.8 146 7 
3.0- 88.9 86.9 154 5  88.6 84.5 142 7 
3.5- 92.6 90.9 184 11  91.7 89.3 147 13 
4.0- 96.0 96.7 151 3  95.8 89.7 147 4 

4.5-5.0 99.2 88.9 181 1  98.7  135 0 
Source: Billewicz & McGregor (1982). 
Note: The study was longitudinal with children surveyed annually. Therefore, values in every second age group represent 
the progress of a cohort of largely the same children. 

Table 4 Difference in HAZ-scores between surviving and non-surviving children (age 2-5 yrs)

Girls Boys 

 (1) (2)  (3) (4) 

Died (0=no, 1=yes) -1.015*** -1.034*** -0.685* -0.594** 
(-6.134) (-3.843) (-2.160) (-2.299) 

Constant -1.763*** -1.765*** -1.969*** -1.972*** 
(-15.81) (-28.64) (-8.786) (-32.32) 

Weighted  Yes  Yes 
N 11 11 12 12 
R2-adj 0.786 0.579 0.250 0.280 

Estimator is OLS; t-statistics in parentheses  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 5 Correlation matrix of HAZ-scores across age groups

 Sub-Sahara Africa  Other developing countries 
Age groups 
(years) 3 4 20-24 25-29  3 4 20-24 25-29 

          
3 1.00     1.00    
          
4 0.89*** 1.00    0.98*** 1.00   
          
20-24 0.31 0.54*** 1.00   0.84*** 0.85*** 1.00  
          
25-29 0.27 0.49*** 0.98*** 1.00  0.81*** 0.82*** 0.99*** 1.00

*** p<0.01, ** p<0.05, * p<0.1. N(Sub-Saharan Africa)=28, N(Other developing countries)=21. 
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Figure 1: HAZ-scores of survivors and deaths in two Gambian villages (age 0-5 years)

Source: Table 3. 
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Figure 2: HAZ-scores from birth to maturity in 15 Ethiopian villages

Source: Ethiopian Rural Household Surveys Round 1994 & 1997 (Dercon & Hoddinott, 2004). N(Round 1994 / 
1997)=4152 / 3423. The study was longitudinal. Therefore, HAZ-scores in the next 3-age cohort of the subsequent round 
represent the progress of a cohort of largely the same children. 

Figure 3: HAZ-scores from birth to maturity in Guatemala and Brazil

Source: 2000 Guatemala Encuesta Nacional Sobre Condiciones de Vida and the 1996-97 Brazil Pesquisa Sobre Padrões 
de Vida (World Bank). Studies are cross-sectional. N(Brazil /Guatemala)= 19799/ 8015.
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Figure 4: Correlation between HAZ-scores across age groups in SSA populations (females)

Note: For data source and countries, see footnote 2 and 17. N=28. 

Figure 5: Correlation between HAZ-scores across age groups in other developing countries (females)

Note: For data source and countries, see footnote 2 and 17. N=21. 
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