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1. Introduction

It is increasingly recognized that many important economic phenomena, such as goods exchange,
information diffusion, and learning, take place within social networks (e.g. Granovetter 1985,
Jackson 2008) and that the architecture of these networks can affect the efficiency and equity of
the resulting allocation (Vega-Redondo 2006). We also now know that the mechanism through
which links are created has a profound influence on the equilibrium architecture of purposely
formed networks. In particular, Bala and Goyal (2000) have shown that unilateral and bilateral
link formation result in fundamentally different network structures — see also Goyal (2007). This
paper proposes a methodology for testing unilateral versus bilateral link formation and presents
an empirical illustration of it.

Bilateral link formation refers to situations in which the consent of both nodes is needed for
a link to be formed between them; it is a natural assumption for voluntary exchange. Unilateral
link formation arises whenever one node can form a link without the express consent of the other;
it is a natural assumption for information access networks, e.g., the Internet, and it may also
arise in exchange networks when legal or social norms make it unlawful for one party to refuse
to trade.! We propose a simple methodology for testing whether network data reflect a simple
willingness to link or an existing link and, in the latter case, whether this link is generated by an
unilateral or bilateral link formation process. Building on the work of Comola (2007), we take
pairwise stability as starting point for the estimation process. First introduced by Jackson and
Wolinsky (1996), pairwise stability has established itself as a cornerstone equilibrium concept in
the study of bilateral link formation processes (Goyal 2007). Comola (2007) has already shown

how pairwise stability can be used to construct a bivariate probit estimator of a bilateral link

'In many developed countries anti-discrimination laws typically make it unlawful for a retailer to refuse to sell
to a specific customer.



formation process. We extend this approach by showing that unilateral link formation can be
estimated in a similar fashion: the basic intuition behind our approach is that, in a unilateral
link formation framework, the absence of a univariate link is equivalent to a pairwise stable
decision by both nodes not to form a link. Estimates obtained under each regime are compared
using a standard non-nested likelihood ratio test first proposed by Vuong (1989), that we adapt
in order to take into account the network dependence across residuals.

We illustrate our methodology using data on risk-sharing links from a Tanzanian village
named Nyakatoke. In Nyakatoke every individual was asked who in the village would turn to
him or he would turn to in times of trouble for help in cash, kind or labor. Aggregating answers
at the household level yields a map of reported mutual insurance links among all households in
the village. Those reported links are our dependent variable of interest.

A noticeable feature of the data is that, in several cases, household ¢ mentions relying on
j for mutual insurance but j does not mention 7. This is open to two possible interpretations.
The first is that respondents gave the names of households from which they would wish to
receive help. In this case, answers are seen as representing not an actual link but a ‘willingness
to link’. Another possible interpretation is that respondents provided information on actual
links but, because of measurement error, answers differ. We test which of these two alternative
interpretations best fits the data.

The next issue of interest is whether links are bilateral or unilateral. It would seem natural
to expect mutual insurance links to require the agreement of both parties — and this is indeed
how the economic literature has modeled informal risk sharing (e.g. Coate and Ravallion 1993,
Kocherlakota 1996). It is also possible that social norms make it impossible for villagers to refuse
assistance to others. For instance, it may be inconceivable for a son to refuse to assist his father in

difficulty. Platteau (1996) argues that many agrarian societies, especially in sub-Saharan Africa,



cultivate egalitarian norms, a point that has repeatedly been made by anthropologists and by
casual observers alike. Barr and Stein (2008) provide some recent evidence to this effect. In the
presence of sharing norms, links would best be seen as unilateral decision. Our contribution is
to provide a framework to test whether bilateral or unilateral link formation is most consistent
with the responses given by Nyakatoke households. Our empirical findings suggest that, when
pegging the bilateral and unilateral against each other, the bilateral link formation model wins.
However, both are outperformed by a simple willingness to link model.

We then investigate whether reported willingness to link is affected by self-censoring, an
issue that has been raised in the economic literature on dating (e.g. Hitsch, Hortacsu and
Ariely 2005, Belot and Francesconi 2006, Fisman, Iyengar, Kamenica and Simonson 2008).
Anticipating rejection, respondents may refrain from reporting an intent to link with certain
individuals. Respondents may also report links with individuals to whom they would prefer not
to link but who they cannot refuse to help. Both cases can be thought of a self-censoring — of
willingness to link in the first case, and of unwillingness to link in the second. We test both
models against pure willingness to link and find evidence of self-censoring.

The contribution of this paper is primarily methodological. The econometric analysis of
social networks is still novel, and there often is a lack of clarity on the implicit assumptions
necessary to estimate network models. The ultimate aim of this paper is to shed some light on
the way self-declared network data should be interpreted, and how discordant responses should
be treated. We find that in our case some models fit the data better than others. Other data
may yield different conclusions.

The paper is organized as follows. In Section 2 we provide a conceptual framework and
describe our estimating and testing strategy. The data are described in Section 3. Estimation

results are discussed in Section 4. Section 5 concludes.



2. Conceptual framework and testing strategy

In this section we begin by presenting the theoretical ground of the different estimation strategies
used in the paper. As in Comola (2007) the starting point of our estimation strategy is pairwise
stability as defined by Jackson and Wolinsky (1996). We then discuss the important issue of
how to draw consistent inference by correcting standard errors for non-independent data. We
conclude the section with a discussion of non-nested hypothesis testing with non-independent
data.

Formally, for each pair of nodes (“dyad") ij, define gfj = 1 if ¢ reported a link with j,
and 0 otherwise. Similarly define gf] = 1 if j reported a link with i. Variables g;; and gfj
provide a representation of the data. Their interpretation varies depending on what the data
generation process is assumed to be. In subsection (2.1) we consider these data as an indication
of willingness to link and we specify the corresponding data generation process. In subsections
(2.2) and (2.3) we regard gfj and gf] as two different measurements of the same actual link g;;.
Subsection (2.2) specifies the data generation process if the link formation process is bilateral

while subsection (2.3) focuses on the unilateral case.

2.1. Willingness to link

Before introducing the unilateral and bilateral link formation models, it is useful to examine what
happens when we interpret the data as indicative of a willingness to link, and not as an existing
link. When we do so we cannot draw any inference about the network formation process because
the same pattern of willingness to link may result in different equilibrium networks depending
on whether the process is bilateral or unilateral.

Here the response variables gfj and gf] are interpreted as the expression of the willingness

of nodes 7 and j respectively to form the link g;;. Formally, let this network be described by



its adjacency matrix g = [ g;;] with g;; = 1 if the link 4j exists and g;; = 0 otherwise. By a
standard abuse of notation, let g_;; denote the network g without the link g;;, that is, with
gij = 0. Similarly, let g,;; denote the network with the link g;;, that is, with g;; = 1.

The utility that node 4 derives from network g is written U;(g). The gain to household i of
forming the link g;; is U;(g445) — Ui(9—i;). We assume that this gain can be written as a linear

function of observables X;; and a zero-mean residual e;;. We thus have:

Ui(g+ij) — Ui(g—ij) = Xi;0 + ei (2.1)

and analogously,

Uj(g+ij) — Uj(g-ij) = X3:8 + eji (2.2)

Assuming that (e;;,ej) are jointly normal, equations (2.1) and (2.2) can be estimated as a
standard bivariate probit. Since the order in which ¢ and j appear in the data is arbitrary,
they must be interchangeable. This implies that the coefficient vector 8 must be the same in

equations (2.1) and (2.2).

2.2. Bilateral link formation

Let us now think of our data as measuring actual links g;;. The set of links define a network g.
Given the reciprocal nature of risk-sharing relations (e.g. Coate and Ravallion 1993, Fafchamps
and Lund 2003) and the nature of our data, it makes little sense to think of ¢g as a directed
network. We therefore assume that g;; = g;;: if a risk sharing relationship exists between i
and j, by reciprocity it also exists between j and i. Consequently we interpret gfj and gf] as
measures of the actual link g;; — and discrepancies in survey answers gfj and gfj as due to error

of measurement.



In order to specify the data generation process, we have to clarify how links are formed.
We first consider the bilateral link formation case. As in Comola (2007) the starting point of
our estimation strategy is pairwise stability as defined by Jackson and Wolinsky (1996). Under
bilateral link formation, the agreement of both nodes is needed for a link to be formed. This

occurs if and only if:

Voi; = 1, Ui(g+ij) > Ui(9—i;) and Uj(g+ij) > Uj(9-ij)

Vgij = 0,if Ui(9—i;) < Ui(gyi;) then Uj(g—i;) > Uj(g+4j)

This set of conditions is known as pairwise stability. It implies that:

Pr(gij = 1) = Pr (Ui(9+i5) = Ui(9—i;) and U;(g+45) = Uj(g—ij)) (2.3)

Using (2.1) and (2.2) equation (2.3) is equivalent to:

Pr(gij = 1) =Pr (61‘]‘ < XZ/],B and €ji < X]/zﬂ) (24)

where (e;5, €j;) are jointly normal. Estimating /5 under the assumption of bilateral link formation
thus boils down to maximizing the likelihood function implicitly defined by (2.4).

Model (2.4) has a single dependent variable but two regressing equations. Such model, first
proposed by Poirier (1980) and later on used by Comola (2007) to model network formation, is
known as a partial observability bivariate probit. This is because the link g;; can be understood

as the product of two distinct and unobservable events, ¢’s willingness to form the link 75 and j’s

willingness to form the same link. Let us define these unobservable variables w!; and w?

ij . such

J

that wzj =1life; < X%(Jﬂ and similarly for ng. Under pairwise stability, a link is formed only



if both 7 and j are willing to form it, i.e., gij = 1 iff wj; = 1 and wf] = 1 or, more succinctly,

iff wjjwf] = 1. The term ‘partial observability’ comes from the fact that we only observe the

product wfjwf-'j, not each of them separately. That is, whenever a link g;; = 0 we can not observe
whether one or both nodes are not willing to form it. A partial observability model assumes a
smaller amount of knowledge than a standard model in that only uses the information on the

equilibrium outcome, which preserves the spirit of a pairwise stable equilibrium.

2.3. Unilateral link formation

An undirected network may also result from a process of unilateral link formation. This cor-
responds to the situation in which only one side’s consent is sufficient for a link to be formed.
Put differently, a link does not exist only if both nodes refuse to create it (Goyal 2007). As in

i

the bilateral case, we let w;;

and wfj represent the nodes’ unobserved willingness to form link
gij- Under unilateral link formation, g;; = 1 whenever either of the two nodes wishes to form
a link. It follows that g;; = 0 only when both links do not wish to form the link. This simple
observation forms the basis of our estimation strategy because it implies that, using a change
of variable, the unilateral link formation model can also be estimated as a partial observability

model.

To see how this is possible, we begin by noting that:

Pr(gi; =0) = Pr(Ui(g+ij) < Ui(g—ij) and Uj(g445) < Uj(g—ij)) (2.5)

= Pr (eij > X{]ﬁ and €ji > X;zﬂ)

Let hij = 1 — gij. We have h;; = 1 iff w}; = 0 and wij = 0 or, more succinctly, iff (1 —w};)(1 -

wfj) = 1. Estimation can proceed by applying a partial observability bivariate probit to the



transformed system:
Pr(hij = 1) = Pr(—e;; < —Xj;f and —ej; < —X},3) (2.6)

The dependent variable is still binary, and the partial observability feature ensures that the
absence of a link (h;; = 1) is interpreted as implying that both nodes do not wish to form that
link. As is clear from (2.6), estimated coefficients have the reverse sign compared to (2.4). This

is because we are estimating individuals’ willingness not to form a link.

2.4. Standard errors

Dyadic data can seldom if ever be regarded as made of independent observations; residuals are
typically correlated across some observations. This does not invalidate estimation itself: as long
as regressors remain uncorrelated with residuals, coefficients can be estimated consistently. But
uncorrected standard errors are inconsistent, invalidating inference.

Methods have been proposed to correct standard errors in non-independent data. These
methods extend White’s formula for robust standard errors to correlation across observations
(Conley 1999). For dyadic data, the most pressing concern is the correlation in the residual
for observation g;; with those pertaining to all observations involving nodes ¢ and j. This is
because i’s decision to form a link with j potentially affects his or her decision to form a link
with any other node. Fafchamps and Gubert (2007) propose a correction of standard errors that
takes care of this form of cross-observation dependence. The formula for the network corrected

covariance matrix is of the form:

N

N N N
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where § denotes the vector of coefficients, NV is the number of dyadic observations, K is the
number of regressors, X is the matrix of all regressors, X;; is the vector of regressors for dyadic
observation ij, and m;p = 1ifi = k,j =[,i =l or j = k, and 0 otherwise. 2 The only structure
imposed on the covariance structure is that Elu;j, wix] # 0, Eluij, uk;] # 0, Eluij,ujp] # 0
and Elu;j, u;] # 0 for all k but that Elu;j, ug,| = 0 otherwise. Formula (2.7) was initially
developed for linear regressions but it applies to maximum likelihood estimation provided that
Xi; is everywhere replaced by the corresponding score [;;.

It is conceivable that Elu;j, ugm| # 0 for i # k,m and j # k,m. This would arise, for
instance, if 7’s willingness to form a link with j depends on whether &k has a link with m. In this
case, formula (2.7) is no longer sufficient to correct standard errors and more cross-terms should
be added. Whether this is feasible depends on the data. If the researcher has observations
from unlinked sub-populations (e.g., multiple villages), it is possible to allow for arbitrary cross-
observation dependence by clustering standard errors at the level of each sub-population (e.g.
Arcand and Fafchamps 2008, Barr, Dekker and Fafchamps 2008). In our data, we only have a
single village so this option is not available. Bester, Conley and Hansen (2008) has suggested
an approach to approximately eliminate bias in standard errors by dividing the data into large
blocks and clustering within blocks. Unfortunately this approach requires a large sample, which

again is not our case. The standard errors reported in this paper are all based on formula (2.7).

2.5. Non-nested tests

Our aim is to test which one of the models presented above best accounts for the data. To
this effect we proceed by pairwise comparisons. Vuong (1989) has proposed a framework for

hypothesis testing in non-nested models. Say we want to test which of two alternative, non-

2The dependence across g:; and g;; due to the fact that we include both of them in the estimation is automat-
ically corrected for in formula (2.7) since the central term is divided by 2.

10



nested models k and m fit the data best. Let M = N(N — 1) be the total number of dyadic

observations. The original form of the Vuong test statistic is

~1/2
M I(;}R(k,m) 2 NL)

where LR (k,m) = L¥ — L™ is the log of the likelihood ratio statistic and:

2 M k

1 l’? 1 5.

~92 1] )
= log 2| — | log-2

where lfj and lg‘ are the observation-specific scores for each model & and m. This test can be
implemented more simply by regressing the difference between the scores on a constant:

1 — U = ogn + 0"
The t-value on the constant ay,, is the Vuong statistic that tests whether model & outperforms
model m. In our case, for inference to be valid we need to correct the standard error of the

constant @, for possible cross-dependence across observations. We do this by applying formula

(2.7).

3. The data

To illustrate our estimation and testing strategy we use survey data from a village community
named Nyakatoke in the Buboka Rural District of Tanzania, at the west of Lake Victoria.
The village is mainly dependent on farming of bananas, sweet potatoes and cassava for food,
while coffee is the main cash crop. The community is composed by 600 inhabitants, 307 of
which are adults, for a total of 119 households interviewed in five regular intervals during 2000.

This dataset is ideal for our purpose because it is a census covering all 119 households in the

11



village.? The data include information on households’ demographics (composition, age, religion,
education), wealth and assets (land and livestock ownership, quality of housing and durable
goods), income sources and income shocks, transfers and network relations.

Each adult respondent was asked: “Can you give a list of people from inside or outside of
Nyakatoke, who you can personally rely on for help and/or that can rely on you for help in
cash, kind or labor?". Aggregated at the level of each household, the responses to this question
constitute variables gfj and gfj In other words, gfj = 1 if an adult member of household ¢
mentions an adult member of household j in their response to the above question. We explain
in detail below how survey responses gfj and gfj are used to build the dependent variables.
Nyakatoke data have been analyzed by De Weerdt and Dercon (2006) and De Weerdt and
Fafchamps (2007). These authors have shown that reported mutual insurance links gfj and gfj
are strong predictors of subsequent loans and gifts, and that linked households give and receive
much more from each other in times of illness.

Given the cultural context, it is not obvious how to interpret Nyakatoke villagers’ responses
to the risk sharing link question. One possible interpretation is that responses represent the
respondent’s desire to establish a link. This interpretation is particularly appealing when the
responses are discordant, that is, when gfj =+ gfj It is nevertheless possible that discordant
responses as due to measurement error and that the data describe, albeit with some error,
actual links between villagers.*

The process by which links between villagers are formed can be bilateral or unilateral. Much

3Everyone in the village agreed to participate in the survey, but there are some missing data for 4 households.

*Independently of whether the underlying network follows a bilateral or unilateral link formation process, it is
necessary to decide how to treat discordant responses in the estimation itself. If respondents forget to mention
some of their risk-sharing partners because they are involved in too many links to recall them all, we should
treat any discordant pair as an existing link, i.e, as g;; = 1. Doing so implicitly assumes that the main form of
measurement error is omission, i.e., that respondents do not mention someone as a risk sharing partner unless
the expectation of reciprocity is strong. Alternatively, discordant responses may arise because one of the two
respondents mistakenly reported a link where none exists, i.e., discordant cases correspond to g;; = 0. Without
information on individual intent, we cannot disentangle the two.

12



of the economic literature on informal risk sharing in developing countries has assumed that
households willingly enter in such arrangements (e.g. Kimball 1988, Coate and Ravallion 1993).
Applied to social networks, this approach implicitly assumes that mutual insurance links follow
a bilateral process. In contrast, much of the anthropological literature has emphasized the
difficulty for individuals to abstract themselves from the moral and social obligation to assist
others in need (e.g. Scott 1976, Platteau 1996). This point has been made by a number of
economists as well, notably those studying remittance flows (e.g. Lucas and Stark 1985, Azam
and Gubert 2006). Anderson and Baland (2002) provide evidence that individuals living in
Kenyan slums put money in rotating savings and credit associations (ROSCAs) to avoid claims
on their resources by spouse and relatives. Ambec (1998) and Banerjee and Mullainathan (2007)
take these observations as starting point to model the saving behavior of poor households. This
line of reasoning implies an unilateral mechanism of link formation. Testing these alternative
data generation processes is the objective of this paper.

Because our dataset is small, we are limited in the number of regressors we can credibly
include in the analysis. The covariates that appear in the regressions should be seen as illustrative
of the kind of variables one may want to include in an analysis of this kind. What matters most
for our purpose is whether conclusions regarding bilateral or unilateral link formation are robust
to alternative choices of regressors. If we include too few regressors, the alternative models we
wish to test will not account for much of the variation in the data, and we will not be able to
tell them apart. Ultimately, all we want is a list of regressors that enables us to robustly test
the models against each other.

In this section we present our preferred list of regressors. At the end of the paper we discuss
whether our results vary with alternative regressors. The covariates X;; used in the regression

analysis fall into three categories: variables that reflect the attractiveness of the potential partner
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j; variables proxying for homophyly, that is, the desire to link with similar households; and
variables controlling for ¢’s need to link.
Two regressors capture attractiveness. The first one, O;;, is the overlap in productive activ-

ities between ¢ and j. It is calculated as:

7
Oij = LaiLa;
a=1

where L,; is the share of total time spent by adult members of household 7 in activity a.> Each
Lg; is constructed using information collected on time use in seven broad income generating
categories. Households whose productive activities overlap are expected to have more correlated
incomes. Since less correlated incomes generate more opportunities for risk pooling, households
with less overlap in activities with household ¢ are in principle more attractive risk sharing
partners (. Fafchamps and Gubert 2007, De Weerdt and Fafchamps 2007) We therefore expect
O;; to have a negative sign.

We also control for the in-degree Pj of 7, omitting any link between ¢ and j to avoid spurious
correlation. We think of P; as a proxy for various unobservable characteristics — e.g., sociability,
generosity, moral sense — that make j an attractive partner for many villagers. It is reasonable
to assume that, other things being equal, all households in our sample would prefer to be linked
to popular households. Of course, popular households may not wish to link to everyone, since

this would mean assisting the entire village.® They may therefore be unwilling to link with

®In the survey each adult individual mentions the productive activities he or she is involved into. These activ-
ities are divided in seven categories: casual labor, trade, crops, livestock rearing, assets, processing of agricultural
products, and other off-farm work. Individuals can report multiple activities but are not asked about the relative
importance of each activity. We have therefore no alternative but to assign equal weight to all listed activities.
L is calculated as follows. Say household i has n members, m of which report working full time in a and k report
a and one other activity. Then L,; = %(m + %) Individuals who do not report any involvement in an income
generating activity are omitted from the calculation. Five households in the sample report no active member.

8For a formalization of this idea, see for instance Vandenbossche and Demuynck (2009) ’s model of risk sharing
network formation. See Ellsworth (1989) for a detailed description of mutual assistance flows in a Burkinabe
village, and of the role played by one ‘holy man’ as center of a village-wide redistribution network. There is no
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unpopular households, a feature that is captured by pairwise stability and the bilateral link
formation model.

A second set of regressors seeks to control for homophyly, that is, the desire to link with
similar or proximate households. The literature has shown that social ties depend to a large
extent on social and geographical proximity (e.g. Fafchamps and Gubert 2007, De Weerdt and
Fafchamps 2007). To control for geographical proximity, we introduce a dummy that takes value
one if i and j are neighbors, that is, live less than 100 meters apart.” Blood ties are controlled
for using a kinship dummy that takes value one if i and j — or members of their household —
are related.® Constructing this variable is particularly demanding in terms of data collection, a
strong point of the Nyakatoke dataset. We also include a religion dummy taking the value of
one if i and j have the same religion.”

To capture similarity in social status, we include as regressor the absolute difference in total
wealth (computed as the sum of land and livestock) |w; — w;| between 4 and j.!0 If i prefers to
link with someone of similar wealth, the coefficient of |w; — w;| should be negative. To avoid
spurious results, we borrow from Fafchamps and Gubert (2007) and include the sum of wealth
(w; + w;) to control for the possibility that wealthier individuals have, on average, more links.

The third set of regressors includes factors likely to make household ¢ more interested in
forming links. Some respondents report more links than others. This may be because they
are pro-social or anti-social. To control for ¢’s proclivity for forming — or reporting — mutual
insurance links with others, we include ¢’s out-degree as regressor, omitting any link with j.

Wealthy households are less in need of mutual insurance. To capture this possibility, we include

such central person in our village, however.

Slight variation in the cutoff distance does not affect our main results.

8This includes parents/children, siblings, cousins, uncle/aunt/niece/nephew, grand-parents/grand-children,
and other blood ties.

9Catholic, or Protestant, or Muslim — 41%, 39% and 20% of the village population respectively.

"Data on land was collected in acres, but transformed in monetary equivalent using a conversion rate of 300000
tzs for 1 acre. This reflects the average local price in 2000, the time at which the data were collected.
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a dummy which is equal to one if household 7 in top 25% wealth percentile in the village. For
similar reasons, we also include the number of adult members of household i. As De Weerdt
and Fafchamps (2007) show, informal transfers in Nyakatoke respond to health shocks. Since
they pool labor resources, larger households should find it easier to deal with health shocks than
smaller ones — and hence are less in need of forming mutual insurance links with other villagers
(Binswanger and Mclntire 1987).

Descriptive statistics are reported Table 1. The first and second panels of the table present
dichotomous and continuous variables, respectively. In the dataset there are 119 households,
which make 119%118=14042 dyads in total. We see from the Table that the proportion of pairs
for which gl?j or gfj = 11is 7%. The proportion of discordant responses is large. Around one
third of household pairs share the same religion. Wealth and the other continuous regressors
display a healthy amount of variation in the data. Some regressors were rescaled to facilitate

estimation.!!

"'To minimize convergence problems that arise when using bivariate probit with partial observability.
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Table 1: Descriptive statistics (n=14042)

94 93 gl =g =1 280
) 100
g =gl = 13062
Neighbors distance ij <100 m 4%
Same family 17 have blood ties 6%
Same religion ij same religion 35%
Rich respondent i in top 25th % 25%
continuous variables mean min max sd
Overlap in productive activities O; 0.22 0 1 0.162
In-degree of household j (/10) (**) 0.52 0 230 0.445
wj — w;|*) 044 0 2.80  0.524
wi +w? 091 0 556 0.678
Out-degree of household 7 (/10) (**) 0.52 0 1.90  0.304

No. adult members in household 7 (/10) 0.26 0.1 090 0.131

(*) 1 unit corresponds to 1 million Tanzanian Shillings.

(**) excluding the ij link

4. Empirical results

4.1. Model estimation

We now estimate and compare the three models presented in (2.1), (2.2), and (2.3). Each model
includes the list of X;; regressors presented in Table 1. For each set of results the z-values
reported in the last column are based on dyadic standard errors corrected using formula (2.7).

We begin by reporting the estimation results obtained when we assume that responses to

17



the risk sharing question capture willingness to link, as explained in subsection (2.1). Since,
by our notation, gfj = ggi, equations (2.1) and (2.2) can be estimated by stacking gfj and gjl
observations and applying probit. Coeflicients estimates are reported in Table 2. They suggest
that respondents prefer to link with popular households who live nearby, are related, and share a
similar level of wealth. The coefficient of w;+wj is positive and marginally significant, suggesting

that willingness to link is higher among wealthy households. Other regressors are not significant.

Table 2: Willingness to link

Regressor coefficient dyadic z
Overlap in activities O;; -0.194 -0.85
Popularity Pj 0.508 T.71HF*
Neighbor dummy 0.760 5.1THH*
Blood ties dummy 0.987 5.86***
Same religion dummy 0.169 1.31

lw; — w;] -0.250 -2.35%*
w; + wj 0.249 1.74%*
Out-degree of i 0.287 1.65*
Rich dummy of ¢ -0.004 -0.04

Nber adult members of 4 0.105 0.26

Intercept -2.659 -15.99%%*

We then turn to the bilateral link formation model. We experimented with three versions
of the model. All assume the same data generation process (2.4) but are based on different
assumptions on the meaning of discordant dyads. In the first version, a link between i and j is
assumed not to exist whenever the pair is discordant. The discrepancy between gfj and gf] is

assumed to come from over-reporting. With this assumption, g;; = gfj gfj In the second version,
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a link is taken to exist if either ¢ or j mentions it. This is akin to assuming that discrepancies
come from omission. Here g;; = 1 whenever gfj or gfj = 1. The third version is agnostic
with respect to the source of discrepancy. In this version, gfj are gf] are assumed to be two
distinct (but non-independent) observations of the same true link g;;, observed with error. A
discordant pair thus corresponds to a 50% chance of over-reporting (g;; = 0) and a 50% chance
of under-reporting (g;; = 1).}2

We experimented with all three versions of the model. All three versions yield parameter
estimates that are by and large comparable. But the Vuong test cannot be used to compare the
first two versions to the willingness to link model because they ultimately use different dependent
variables. For this reason, we focus on the results from the third version.

Results are presented in Table 3. Several coefficient estimates are similar to those reported
in Table 2. Popularity PjZ remains strongly significant. We continue to find plenty of evidence
of homophyly. Overlap in activities O;; is now marginally significant with the anticipated sign,

suggesting a desire to link with individuals who have a different income profile.

2Since in this case the dependent variables for observations g;; and g;; differ, we constraint the coefficients to
be the same for the two individual-level bivariate probit equations.
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Table 3: Bilateral link formation

Regressor coefficient dyadic z
Overlap in activities O;; -0.065 -1.92%*
Popularity P 0.136 2.52%*
Neighbor dummy 0.213 3.20%**
Blood ties dummy 0.316 3.95%%*
Same religion dummy 0.042 1.95%
|w; — wyl -0.057  -1.81*
w; + wj 0.051 1.33
Out-degree of ¢ 0.037 1.05
Rich dummy of ¢ 0.021 0.71

Nber adult members of 7 0.213 2.30**
Intercept -0.271 -1.74%

arc tan(p) -1.894  -3.59%%*

Next we present the results assuming that the data were generated by the unilateral link
formation model (2.6). As explained in subsection (2.3), we transform household responses
gfj and gfj into the equation-level dependent variables héj =1- ggj and hg]. =1- gfj As
for bilateral link formation, we estimate three versions of the model: one in which discordant
responses are regarded as over-reporting; one in which they are regarded as under-reporting;
and one combining the other two. We focus on the mixed model since the other two are not
directly comparable with the willingness to link model.

Results for the unilateral link formation model are reported in Table 4. To facilitate com-
parison with Table 3, we report estimated coefficients B directly, which means inverting the sign

of the coefficient estimates obtained from estimating (2.6) with partial observability bivariate
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probit. In terms of coefficient estimates, results are similar to those reported in Table 3. Pop-
ularity P]? and activity overlap O;; are both significant with the anticipated sign. Homophyly

variables are all strongly significant while ¢’s characteristics are not.

Table 4: Unilateral link formation

Regressor coefficient dyadic z
Overlap in activities O;; -0.213 -2.04%*
Popularity Py 0.412 7.83 %K%
Neighbor dummy 0.706 9.88%***
Blood ties dummy 0.928 9.54HH*
Same religion dummy 0.155 2.83%**
w; — w| L0108 -3.69%**
w; + wj 0.171 1.80*
Out-degree of ¢ 0.161 0.97
Rich dummy of ¢ 0.107 1.17

Nber adult members of ¢ 0.564 1.50
Intercept -2.862 24.64%**

arc tan(p) 0.628 3.47THHH

4.2. Specification tests

We now turn to the main object of the paper, which is to compare the performance of the
different models in accounting for the data. As explained in Section 2, we proceed by pairwise
comparisons, adapting the non-nested Vuong test to the dyadic structure of the data. To compare
two models k& and m we calculate, for each observation ij, the log-likelihood contributions (or
score) under the two models and we regress the difference lfj — l;; on a constant, correcting the

standard errors using formula (2.7). The ¢-value of the constant is the corrected Vuong test.
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Since the distribution of the Vuong test is asymptotically normal, the relevant critical value for a
5% level of significance is 1.96. Note that the test works in two directions: if ¢ > 1.96 this means
that model k is to be preferred to model m; in contrast, if ¢ < —1.96 this means that model m
is to be preferred to model k. For values of ¢ between —1.96 and 1.96 the test is inconclusive —
both models fit the data equally.

Table 5 reports the result of the pairwise comparisons between the willingness-to-link model
and the other two. When the bilateral and unilateral models are compared to each other, the
bilateral model is found superior. But the findings unambiguously shows that the willingness-
to-link model fits the data best.

Table 5: Vuong tests

Model k Model m  Vuong test Best fit
bilateral unilateral 2.28%* bilateral
willingness to link  bilateral 2.34%* willingness to link

willingness to link unilateral — 3.34***  willingness to link

4.3. Self-censoring

Our results imply that responses given to the mutual insurance question are more a reflection of
willingness to link than evidence of an actual link. Yet De Weerdt and Fafchamps (2007) have
shown that these responses are strong predictors of gifts and transfers reported in subsequent
survey rounds. Fafchamps and Gubert (2007) report similar findings with data collected in
the Philippines using a similarly worded risk sharing question.'® This makes us suspect that
responses to the mutual insurance question may actually be more than just willingness to link.

One possibility is that respondents did not report households with whom they would like to

share risk but who are likely to turn them down. Self-censoring has been discussed in the eco-

3In fact the Philippines question was used as template for the Tanzania survey.
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nomic literature on dating. In that literature, the researcher typically has access to information
on willingness to date — e.g., answers to a direct question following speed dating interviews (e.g.
Belot and Francesconi 2006, Fisman et al. 2008), or emails sent to prospective partners on an
internet dating site (Hitsch et al. 2005). In both cases, the authors worry that respondents may
fail to list or contact desirable partners who are unlikely to accept them.!*

A similar kind of self-censoring may also be at work in our data. In particular, household ¢
may have liked to share risk with household j but expected j to refuse, and so failed to mention
7 as possible mutual insurance link. This corresponds to an alternative data generating process
in which j can veto a link that ¢ wants.

Such data generating process can be represented as follows. Let gfj be i’s report of whether
a link to j exists. This report is now thought of as made of two parts: (1) ¢’s willingness to link
with j, which we denote w;j; and (2) i’s expectation of whether the link would be accepted by
J, which we denote e;;. Expectation e;; is thought of as made of two intermingled parts: j’s
willingness to link with 7 and j’s inability to refuse a link with ¢ even though j does not want to
link with 7. We observe ggj = 1 if both w;; = 1 and e;; = 1. We observe gfj = 0 if either w;; =0
or e;; = 0 or both.

To illustrate what we have in mind, imagine that unpopular households wish to link to pop-
ular households (w;; = 1) but popular households never wish to link with unpopular households
(wji = 0). Yet popular households cannot refuse to help some of the unpopular ones, e.g.,
members of their church. In that case, unpopular household ¢ will report gfj = 1 with popular

household j whenever ¢ expects that j will not refuse to help (e;; = 1) because of social norms

1 Self-censoring has also been discussed in the context of matching models in which individuals can only rank
a subset of their possible choices (e.g., schools or jobs). In such models, it is optimal for low ranked individuals
not to ‘waste’ limited slots on options they are unlikely to get.
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or altruism. Formally we have:

Pr(gfj =1)=Pr(w;; =1 and ¢;; = 1) (4.1)
with
Pr(wij = 1) = 5xij
Pr(eij = 1) = "}/,CL']'Z'

Model (4.1) can be estimated using bivariate probit with partial observability. The only
difference with model (2.4) is that we no longer impose that coefficients be the same in the two
equations. Instead, we now estimate different coefficients S and ~ for the two equations. As
before, the estimator allows for non-independence between Pr(w;; = 1) and Pr(e;; = 1) (for
instance because of unobserved individual effects common to both). Model (4.1), which we call
the ‘vetoed link’ model, can be seen as a refined version of willingness to link which incorporates
expectations about the potential partner’s likely behavior.

Estimation results for the vetoed link model are presented in Table 6. Coefficient estimates
for the w;; equation have the same interpretation as before. Coefficient estimates for the e;;
equation capture two kinds of effects: j willingness to link with ¢, and j capacity to veto a
link with 4. If the data generating process behind gfj is bilateral link formation, we should
observe § = . This corresponds to the case where ¢ perfectly internalizes the rejection behavior
of others, in which case gfj is a measurement of the true bilateral network g;; (possibly with
measurement error). In contrast, if gfj only represents ¢’s willingness to link, then we should
observe v = 0. If v < 0 for a given regressor x,;, this implies that x; is associated with a lower

ei; and thus a higher likelihood of ‘veto’ by j. A 4 > 0 in contrast implies that the corresponding
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xj; makes it harder for j to refuse to assist 1.

We see that estimated coefficients in the w;; equation are somewhat similar in terms of
magnitude and statistical significance to those reported in earlier regressions: popularity Pfj is
again strongly significant, and so are geographical proximity and a shared religion. The out-
degree of i (omitting the 45 link) is also statistically significant. In contrast, coefficients in the
ei; regression are quite different from those reported for the w;; equation. This confirms that
gfj reports are unlikely to reflect a bilateral link formation process. Only three coefficients are
statistically significant: the kinship dummy, j’s out-degree, and the size of j’s household. This
means that kin are less likely to veto a link but the smaller j’s household is and the larger j’s
out-degree, the more likely 5 will veto a link with ¢. This suggests that larger households have a
duty to care for others, possibly because their size makes them better able to self-insure — and

thus to assist others.
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Table 6. Vetoed links model

Regressor

Overlap in activities O;;
Popularity P;

Neighbor dummy;;
Blood ties dummyy;;
Same religion dummy;;
|wj — wi

w;i + Wj

Out-degree of 7

Rich dummy of ¢

Nber adult members of i
Intercept

arc tan(p)

w;j equation

coefficient

0.281

0.462

0.643

0.963

0.205

-3.233

0.271

0.259

0.003

0.148

-2.597

-1.999

dyadic z
1.50
7,32
7. 347HH*
5. 73
2,97
-1.06
1.09
3.59%H*
0.03
0.88
-12.85%**

-4.00%**

Regressor

Overlap in activities O;;
Popularity Pij

Neighbor dummy;;
Blood ties dummy;;
Same religion dummy;;
|wj — wi

w; + w;

Out-degree of j

Rich dummy of j

Nber adult members of j

Intercept

ej; equation

coefficient dyadic z
-2.389 -1.23
-0.034 -0.16
0.454 0.29
-0.306 -0.42
-0.308 -1.26
7.914 0.36
-0.513 -0.60
-0.845 -1.99%*
0.103 0.52
4.672 2.25%*
2.700 2.54%*

By analogy with Section 2, it is also possible to define the ‘dual’ analogue of the vetoed link

model. In this model, ¢ reports his unwillingness to link with j, except in cases when j can

impose a link with 7. This implies that ¢ reports gfj = 1 whenever 7 expects j to impose a link

on i, even if i is not keen to link with j. In this model, we have:

Pr(gfj =0) = Pr(w;; =0 and ¢;; = 0)
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with

Pr(wij = O) :—Bxij

Pr(eij = 0) :—'yzvji

This model is the generalized equivalent of the unilateral link formation with h;; = 1 — g;;.
It can be estimated in a fashion similar to (4.1), but the interpretation is slightly different. Here
1 reports a missing link (gfj = 0) if 4 does not want to link and i expects that j cannot impose
a link on . But i reports a link whenever either ¢ wishes to link with j or ¢ expects that j can
impose a link. We call this model the ‘forced link’ model since j can force a link that ¢ does not
want.

Regression estimates are shown in Table 7. As we did for Table 4, we report estimated
coefficients B and 7 directly, i.e., we invert their sign to facilitate comparison with Table 6.
Interpretation of the coefficients of the w;; equation is as before. In the case of the e;; equation,
unilateral link formation would imply v = 5. This would arise for instance if ¢ fully internalizes
the unilateral link formation equilibrium. If all v = 0, gfj is consistent with pure willingness to
link. A v > 0 means that the x;; variable raises the likelihood that, in i’s opinion, j’s can force
a link on 7.

Coefficient estimates for the w;; equation are fairly similar to those reported earlier in Table
2, except that w; + w; is not marginally significant anymore and ¢’s out-degree and ¢’s rich
dummy are now statistically significant. Coefficient estimates for the e;; equation are different
in sign and magnitude from those of the w;; equation, a result that is consistent with our earlier
finding that gfj is not consistent with a unilateral link formation process. Several regressors have

a significant coefficients in the e;; equation, indicating factors that make it more (or less) likely
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that j be willing and able to force a link onto i. Geographical proximity and blood ties appear

with a strongly significant positive coefficient, indicating that it is difficult to deny assistance to

kin and neighbors. The negative coefficient for ¢’s popularity Pij indicates that the more popular

1 is, the less likely it is that j can impose a link onto i.

Table 6. Forced links model

Regressor

Overlap in activities O;;
Popularity P;

Neighbor dummy;;
Blood ties dummyy;;
Same religion dummy;;
|wj — wi

w;i + W;

Out-degree of 7

Rich dummy of ¢

Nber adult members of i
Intercept

arc tan(p)

w;j equation

coefficient

-0.162

0.707

0.436

0.788

0.131

-1.776

0.172

0.534

0.168

0.270

-3.112

1.081

dyadic z
-0.62
7.31HH*
2.07**
4.86%**
1.20
-1.85%
1.48
4.15%%*
2.05%*
0.97
-10.82%**

1.29

Regressor

Overlap in activities O;;
Popularity Pij

Neighbor dummy;;
Blood ties dummy;;
Same religion dummy;;
|wj — wi

w; + wj

Out-degree of j

Rich dummy of j

Nber adult members of j

Intercept

€ji equation

coefficient dyadic z
-0.326 -0.98
-0.496 -2.13%*
1.023 8.117H%*
1.218 7.82%x*
0.219 1.47
-5.052 -3.25%*%
0.130 0.72
-0.509 -1.81%*
0.277 1.91*
0.925 2.75%**
-2.247 -10.12%**

While these results are interesting in their own right, our primary interest is whether either

of these models fits the gfj data better than the pure willingness to link model. The Vuong

test for the vetoed link and forced link models are presented in Table 8. Results show that
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both significantly dominate the willingness to link model.'> This is consistent with the idea
that reported links gfj are best interpreted as self-censored willingness to link. The last row
of the Table also shows that we cannot distinguish between the vetoed link and forced link
model: although the vetoed link provides a slightly better fit, the difference is not statistically
significant. This is not entirely surprising given that the two models are fairly similar in terms

of the underlying data generation process.

Table 8: Vuong test — vetoed links and forced links

model k model m Vuong test best fit

vetoed links  willingness to link  3.47***  vetoed links

vetoed links bilateral 3.58***  vetoed links
vetoed links unilateral 4.05%**  vetoed links
forced links  willingness to link 2.65%* forced links
forced links bilateral 3.27H** forced links
forced links unilateral 3.947H%* forced links
vetoed links forced links 0.70 both

5. Robustness analysis

To ascertain whether our findings are sensitive to the choice of regressors, we reestimate all
models using different sets of explanatory variables. Results, not shown here to save space,
indicate that when the included regressors have little predictive power — e.g., when the number

of regressors is small — the comparison between models tends to be less conclusive. This is hardly

5For comparison purposes, we also computed a standard likelihood ratio test to compare the vetoed link and
bilateral link formation models since the latter is nested in/is a restricted form of the former. The value of the test
is 87, which is well above the 1% critical value of 20.1 for a x? distribution with 8 degrees of freedom. This confirms
that the vetoed link regression dominates the bilateral link formation model. A similar comparison between the
forced link and the unilateral link formation model yields a test statistic of 124, which clearly shows that the
forced link model dominates. Neither of these test statistics corrects for dyadic correlation across observations,
however.
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surprising as the problem is common to all non-nested tests. The models are compared in terms
of their ability to account for the data. When regressors have little predictive power, all models
do rather poorly in predicting observed gfj and hence cannot be distinguished.

In most situations eliminating one or more regressors leaves the models’ ranking unchanged
but turns some pairwise comparison inconclusive. Dropping some regressors can nevertheless
change the models’ ranking. In particular, if we drop the in-degree PJZ of j and/or the out-
degree of i, non-nested comparisons indicate that willingness to link ranks lower than bilateral
or unilateral link formation. Both self-censored models continue to dominate, however.

Finally, it worth mentioning that we have encountered the convergence difficulties that partial
observability models are known for. Using a stepping algorithms for non-concave regions of the
likelihood function alleviates part of the problem, but occasionally convergence may not be
achieved. Also, in our experience the partial observability bivariate probit model is particularly
sensitive to the choice of ad-hoc initial values and to collinearity, which in some extreme cases

may result in the impossibility of computing standard errors.

6. Conclusion

The theoretical literature on networks has shown that the nature of the link formation process —
e.g., whether unilateral or bilateral — has a strong effect on the resulting network architecture. In
this paper we develop a methodology to test whether network data reflect a simple willingness to
link or an existing link and, in the latter case, whether this link is generated by an unilateral or
bilateral link formation process. Taking the equilibrium concept of pairwise stability as starting
point, we propose a methodology to compare bilateral and unilateral processes. Central to this
methodology is the observation that unilateral link formation requires that both nodes wish

not to form a link for the link not to exist. This formal similarity between the bilateral and
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unilateral link formation processes allows us to model them both as partial observability models
and to compare them with the appropriate non-nested likelihood test.

We illustrate this methodology with data on informal risk-sharing networks in a Tanzanian
village. The data is particularly well suited for our purpose because it covers all households in
the community, and because the respondents are asked to enumerate all their network partners.
The information provided by respondents is nevertheless open to several interpretations.

One possible interpretation is that responses capture an actual link. This interpretation is
consistent with the observation made by De Weerdt and Fafchamps (2007) and Fafchamps and
Lund (2003) who have shown that risk sharing links reported by survey respondents strongly
predict subsequent inter-household transfers. It however remains unclear what process generated
these links. The development literature is uncertain as to whether risk sharing networks should
be seen as entirely voluntary, or whether social norms impose an element of moral or social
pressure making it difficult for households to refuse helping others. If risk sharing is voluntary,
link formation can be modelled as bilateral; if risk sharing is imposed by social norms, unilateral
link formation is a more appropriate representation of the data generating process. Using a
Vuong non-nested test, we find that the bilateral link formation model fits the data better than
a unilateral one.

Another possible interpretation is that responses to a question about mutual insurance links
capture the respondent’s willingness to link, not an actual link. This may explain the large
proportion of discordant answers whereby ¢ reports a link with j although j does not report a
link with 7. We test a willingness-to-link model against the bilateral and unilateral link formation
models and find that willingness to link fits the data best. This finding, however, is reversed if
we drop the in-degree of j or the out-degree of i as regressors.

We then expand the data generating process to allow for self-censoring by respondents. We
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investigate two forms of self-censoring. In the first one, which we call the vetoed link model, we
allow respondents to form expectations about the other party’s ability to refuse a link. In the
second, which we call the forced link model, respondents anticipate that they may be unable
to refuse certain links. We find that both models dominate the other three models, suggesting
that self-censoring is present. But we are unable to distinguish between the vetoed and forced
link models — both fit the data equally well.

While promising, the approach presented here suffers from a number of shortcomings. Test
results are ultimately predicated on the assumption that the regressors used in the estimation are
reasonable predictors of willingness to link. In the case of the self-censoring models, identification
rests on exclusion restrictions that cannot be tested without additional data. The contribution
of this paper should therefore be seen as primarily methodological. Stronger inference could be
achieved if, in addition to information about links, the survey contained more direct evidence
on respondents’ willingness to link (or de-link) with other households. Should such data become
available together with objective information on social links, the methodology presented here
can yield a stronger test of bilateral versus unilateral link formation.

The methodology used here can potentially be expanded to deal with more complex equilib-
rium concepts, such as the coalition-proof equilibria discussed in Genicot and Ray (2003). To
test whether coalition-proofness constraints are binding, one would need to expand the likelihood
function to include other voluntary participation constraints. How this could be implemented

in practice remains unclear. This is left for future research.
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