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Abstract

Under some conditions, parameterized games with strategic substitutes exhibit monotone
comparative statics of equilibria. These conditions relate to a tradeoff between a direct pa-
rameter effect and an opposing, indirect strategic substitute effect. If the indirect effect does
not dominate the direct effect, monotone comparative statics of equilibria are guaranteed.
These conditions are available for best-response functions, differentiable payoff functions,
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1 Introduction

Games with strategic substitutes (GSS) and games with strategic complements (GSC) for-
malize two basic economic interactions.1 In GSS, if one player takes a higher (or more
aggressive, or more intensive) action, a given player’s best-response is to take a lower ac-
tion. That is, best-response of each player is weakly decreasing in actions of the other
players. For example, consider a simple, textbook Cournot duopoly, where a given firm’s
profit-maximizing output is lower when the other firm increases its output. In GSC, if one
player takes a higher action, a given player’s best response is to take a higher action, too.
That is, best-response of each player is weakly increasing in actions of the other players. For
example, consider a game of network externalities, where a given player’s marginal benefit
from adopting a technology is increasing as more other players adopt the same technology.

Monotone comparative statics arise in many applications. The main question is: in a
parameterized game, if a parameter increases, when will equilibrium actions of all players
increase?

For parameterized GSC, the problem of monotone comparative statics is well-understood,2

but for parameterized GSS, general results are less commonly available. In this paper, we
provide some results in this direction.

Notice that there does not appear to be a general result that can be applied to show
increasing equilibria in the following simple, asymmetric Cournot duopoly. Consider a linear
inverse market demand curve given by p = a−b(x1+x2), where x1 is output of firm 1, and x2

of firm 2. Suppose each firm has constant marginal cost c. Moreover, there is a parameterized
subsidy of t ≤ c per unit, split with an exogenously specified share 3

5
for firm 1 and 2

5
for

firm 2.3 Thus, firm 1’s marginal cost net of subsidy is c− 3
5
t, and that of firm 2 is c− 2

5
t. In

this case, the unique equilibrium is given by x∗(t) ≡ (x∗
1(t), x

∗
2(t)) = (

a−c+( 9

5
−1)t

3b
,

a−c+(2− 9

5
)t

3b
).

With the standard product order on strategy spaces, this example does not fit the
framework of Milgrom and Shannon (1994), because the profit functions are not quasi-
supermodular.4 Therefore, this game is not supermodular, and this example does not fit the
framework of Topkis (1979), Sobel (1988), Vives (1990), or Milgrom and Roberts (1990).

1Such games are defined in Bulow, Geanakoplos, and Klemperer (1985), and as they show, models of
strategic investment, entry deterrence, technological innovation, dumping in international trade, natural
resource extraction, business portfolio selection, and others can be viewed in a more unifying framework
according as the variables under consideration are strategic complements or strategic substitutes. Earlier
developments are provided in Topkis (1978) and Topkis (1979).

2Some of this work can be seen in Topkis (1979), Lippman, Mamer, and McCardle (1987), Sobel (1988),
Milgrom and Roberts (1990), Vives (1990), Zhou (1994), Milgrom and Shannon (1994), Milgrom and Roberts
(1994), Shannon (1995), Villas-Boas (1997), Edlin and Shannon (1998), Echenique (2002), Echenique and
Sabarwal (2003), and Quah (2007) among others. Extensive bibliographies are available in Topkis (1998),
in Vives (1999), and in Vives (2005).

3Alternatively, the parameter t can be thought of as technological improvement, and (3
5 , 2

5 ) can be thought
of as differential adaptation of technological improvement. A slightly more general example is presented later.

4Denote profit of firm 1 at (x1, x2, t) by f1(x1, x2, t), and consider the values a = 10, b = 1, c = 1, t = 0,
and consider (x1, x2) = (3, 2), and (x′

1, x
′
2) = (4, 3). Then, f1(x′

1, x2, t) ≥ f1(x1, x2, t), but f1(x′
1, x

′
2, t) <

f1(x1, x
′
2, t).
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If the order on one of the strategy spaces is reversed, then it is known (see, for example,
Milgrom and Shannon (1994), and Amir (1996)) that this example is a quasi-supermodular
game. Of course, such a transformation can violate the single-crossing property in (player
strategy; parameter), and therefore, standard results about monotone comparative statics
might still not apply.5 Moreover, asymmetric Cournot conditions rule out an application of
Amir and Lambson (2000), and of the intersection point theorem of Tarski (1955).6

In parameterized GSC, monotone comparative statics are typically shown as follows.
First, one shows that the equilibrium set is a complete lattice, and therefore, there exists a
smallest and a largest equilibrium. Next, one shows that both the smallest and the largest
equilibrium increase when the parameter increases.

Roy and Sabarwal (2008) show what goes wrong when such techniques established for
GSC are used to analyze GSS. They show that the equilibrium set in GSS is a complete
lattice, if, and only if, the game has a unique equilibrium. Indeed, with multiple equilibria,
the equilibrium set is completely unordered; that is, no two equilibria are comparable. In
particular, there cannot be a smallest and a largest equilibrium. Therefore, with multiple
equilibria, techniques for strategic complements that use the complete lattice structure of
the equilibrium set, and especially the existence of a largest and smallest equilibrium, are
invalid for GSS.

In this paper, we show that using different techniques, it is possible to recover a version of
monotone comparative statics for GSS. Our main insight is to observe that in parameterized
GSS, when a parameter increases, there are two opposing effects – a direct effect and an
indirect effect. The direct effect increases a given player’s best-response, and serves to
increase a given player’s new equilibrium strategy. The indirect effect works as follows: an
increase in the parameter increases the best-response of the competitor players, and with
strategic substitutes, this tends to indirectly lower a given player’s new equilibrium strategy.7

A key result here is to show that when a parameter increases, if the indirect effect does not
dominate the direct effect, then a higher equilibrium is guaranteed. The various conditions
presented in this paper can be viewed as different ways to identify measures of this combined
effect. The result applies to symmetric and asymmetric equilibria.

This result is extended in several directions. Particularly useful for applications is an ex-
tension of this result to N -player games in which strategies are real-valued, payoff functions
are twice continuously differentiable, and best-responses are singleton-valued. The trans-
parency and ease-of-use of this condition makes it a valuable tool to analyze applications
that could not be analyzed easily using earlier results. Applications considered here include
Cournot duopoly, tournaments, and common-pool resource games. The result is extended

5Indeed, as shown below, in slight variations of this game, it is easy to have the equilibrium strategy of
either player increasing and that of the other player decreasing.

6Tarski’s intersection point theorem applies only to linearly ordered spaces, and the trick of composing
the best response functions for the special duopoly case may not necessarily work with asymmetric equilibria.
Indeed, as shown below, it is easy to formulate examples of simple Cournot duopolies where the equilibrium
is increasing for one player, and decreasing for the other. The same point applies to techniques that apply
when the best-response of one player depends only on the aggregate best-response of other players.

7Notably, in GSC, both effects work in the same direction.
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to differentiable payoff functions with multi-dimensional strategies and parameters, and to
general payoff functions. Similar results are shown for best-response correspondences.

Recall that as shown by Villas-Boas (1997), in parameterized GSS, equilibria do not
decrease when a parameter increases. But in general, this result cannot be strengthened to
conclude increasing equilibria.8

Moreover, as shown by Villas-Boas (1997), in the case of a Cournot oligopoly, if an
analyst can choose a new partial order, then under certain conditions, there exists a new
partial order in which equilibria are increasing. The new partial order, however, might not
necessarily be intuitive or relevant for natural parametric policy experiments. For example,
for a Cournot oligopoly, the product order may be natural when considering the impact of
taxes or subsidies on firm output, and the existence of some other partial order under which
equilibria are increasing might not be interesting. The results here apply to cases where a
partial order is considered as fixed.

The paper proceeds as follows. Section 2 presents the main ideas and the results for best
response functions and differentiable payoff functions. Section 3 presents results for general
payoff functions. Section 4 provides some examples. Finally, section 5 extends the results to
correspondences.

2 Monotone Comparative Statics

Consider the basic problem of monotone comparative statics: if a parameter increases, when
will equilibrium actions of all players increase as well?

This question can alternatively be viewed in the more general context of providing in-
centives to players to try and internalize an externality. Lets think of players as firms for
now, engaged in decentralized Cournot competition, and producing an output with a positive
externality, say, wireless internet gateways, and suppose it is regulatory policy to encourage
additional internet access, by, say, subsidizing production.

It is well-known that if a particular firm gets a subsidy, its output will go up. But then
strategic substitutes imply that the output of the other firms will go down. Moreover, if the
other firms receive a subsidy as well, they will show a tendency to increase output. This
tendency will serve to depress the output of the first firm, due to the strategic substitute
effect. Therefore, it is unclear if a subsidy in the presence of strategic substitutes necessarily
increases firm output. Consequently, in oligopoly markets with externalities, it may be hard
for regulators to create decentralized incentives to internalize the externalities and increase
output for all firms.9

8A more specialized result is available, too. When player strategy spaces are chains, symmetric equilibria
are nondecreasing in the parameter. This can be inferred from results in, for example, Milgrom and Roberts
(1994), and Villas-Boas (1997). Another derivation can be found in Roy and Sabarwal (2008). Additionally,
some aspects of non-monotone mappings that are increasing in some variables and decreasing in others are
explored in Roy (2002).

9A regulator might not care about increasing total output only, because that is consistent with expanding
one firm, and contracting the other, which may lead to anticompetitive behavior.
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In order to fix ideas, let’s consider the following interpretive example that shows how
asymmetry can affect monotone comparative statics.

Example 1. (Simple Cournot Duopoly.) Consider a standard Cournot duopoly with
a linear inverse market demand curve given by p = a − b(x1 + x2), where x1 is output
of firm 1, and x2 of firm 2. Suppose each firm has constant marginal cost, c. Moreover,
there is a subsidy of t ≤ c per unit, split with share ξ ∈ [0, 1] for firm 1, and share 1 − ξ

for firm 2.10 Thus, marginal cost net of subsidy is c − ξt for firm 1, and c − (1 − ξ)t for
firm 2. The best-response function for firm 1 is g1(x2, t) = a−c+ξt−bx2

2b
, and for firm 2 is

g2(x1, t) = a−c+(1−ξ)t−bx1

2b
.

With the standard product order, it is easy to check that the joint best-response function,
g(x1, x2, t) ≡ (g1(x2, t), g

2(x1, t)), is strictly decreasing in (x1, x2), and is strictly increasing

in t. The unique equilibrium at t is x∗(t) ≡ (x∗
1(t), x

∗
2(t)) = (a−c+(3ξ−1)t

3b
,

a−c+(2−3ξ)t
3b

). Conse-
quently,

ξ < 1
3

⇔ x∗
1(t) is decreasing in t, and x∗

2(t) is increasing in t,
1
3
≤ ξ ≤ 2

3
⇔ x∗

1(t) is increasing in t, and x∗
2(t) is increasing in t, and

2
3

< ξ ⇔ x∗
1(t) is increasing in t, and x∗

2(t) is decreasing in t.

In particular, equilibrium is monotone nondecreasing in t, if, and only if, 1
3
≤ ξ ≤ 2

3
. There-

fore, this example shows the possibility of monotone comparative statics with asymmetric
equilibria (ξ 6= 1

2
), as long as the asymmetry is not too large.

More generally, consider a triple (X, T, g), where (X,�) is a nonempty partially ordered
set, T is a nonempty partially ordered set,11 and g : X × T → X is a function. For a triple
(X, T, g), consider the following assumptions.

Assumption I.A: For every x ∈ X, g(x, ·) is nondecreasing in t;12 and for every t ∈ T ,
g(·, t) is nonincreasing in x.13

Assumption I.B: (X,�) is a nonempty, compact, convex, sublattice of a Banach lattice;
order intervals in X are closed and convex; and for every t, g(·, t) is continuous.

Assumption I.C: (X,�) is a nonempty, closed, bounded, convex, sublattice of a Banach
lattice; order intervals in X are closed and convex; and for every t, g(·, t) is a compact
operator.

In a parameterized GSS, each player’s best response function is nonincreasing in other
player strategies, and therefore, the product of the best-response functions of the players
satisfies the nonincreasing-in-x property (in the product order). Similarly, when each player’s
best-response function is nondecreasing in the parameter t, then the product of the best-
response functions of the players satisfies the nondecreasing-in-t property (in the product
order). Of course, as stated, the assumptions do not require that X be a product of individual
strategy spaces, or it be endowed with a product order.

10The example in the introduction is the case where ξ = 3
5 .

11Throughout the paper, when no confusion arises, the same symbol � denotes the partial order on T .
12For every x, and for every t, t̂ ∈ T , t � t̂ ⇒ g(x, t) � g(x, t̂).
13For every t, and for every x, y ∈ X , x � y ⇒ g(y, t) � g(x, t).
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A triple (X, T, g) is admissible if it satisfies either I.A and I.B, or I.A and I.C.14 For each
t, let E(t) = {x ∈ X | x = g(x, t)} be the equilibrium (or fixed) points of g at t. Schauder’s
theorem implies that for every t, E(t) is non-empty. Here is a key result.

Theorem 1. Let (X, T, g) be an admissible triple. Fix t∗ ∈ T , and let x∗ ∈ E(t∗). Consider
t̂ ∈ T such that t∗ � t̂, and let ŷ = g(x∗, t̂), and x̂ = g(ŷ, t̂).
If x∗ � x̂, then there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.

Proof. Notice that x∗ � ŷ, because g is nondecreasing in t. Moreover, for every x in
[x∗, ŷ], g(x, t̂) ∈ [x∗, ŷ], and this can be seen as follows. Suppose x∗ � x � ŷ. Then x � ŷ

implies that g(x, t̂) � g(ŷ, t̂) � x∗, where the first inequality follows from the fact that
g(·, t̂) is nonincreasing, and the second follows from the condition in the theorem. Moreover,
x∗ � x implies that g(x, t̂) � g(x∗, t̂) = ŷ, where the inequality follows from nonincreasing
g(·, t̂), and the equality follows from definition of ŷ. Therefore, the restriction of g(·, t̂) to
[x∗, ŷ] is a map from [x∗, ŷ] to [x∗, ŷ]. By Schauder’s theorem, there is x̂∗ ∈ [x∗, ŷ] such that
g(x̂∗, t̂) = x̂∗, and consequently, there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.

As mentioned above, this theorem does not require that X be a product of individual
strategy spaces, or it be endowed with a product order.

Moreover, the fact that order intervals are compact and convex is used only to guarantee
existence of an equilibrium. In classes of games where an equilibrium always exists, these
assumptions are not needed to prove theorem 1. For example, in quasi-aggregative games,
see Jensen (2010), equilibrium existence is guaranteed without convexity or quasi-concavity
assumptions, and therefore, our proof will work by invoking equilibrium existence on [x∗, ŷ],
and not requiring convexity or quasi-concavity.

The intuition behind the condition in this theorem can be seen clearly in a two-player
game, with players indexed i = 1, 2. Suppose player i’s strategies lie in a non-empty, compact,
convex interval X i of the real numbers, and there is a partially ordered parameter space T .
Player i’s best-response function is gi : Xj × T → X i, with i 6= j. For each i and t,
suppose gi(·, t) is nonincreasing, and for each i, and for each xj ∈ Xj, suppose gi(xj, ·) is
nondecreasing. Let X = X1 × X2, endowed with the product order (denoted �). Suppose
g(x1, x2, t) ≡ (g1(x2, t), g

2(x1, t)) is continuous in (x1, x2). Theorem 1 implies:

Corollary 1. Consider a two-player game, as above. Fix t∗, t̂ ∈ T , with t∗ � t̂, and let
x∗ = (x∗

1, x
∗
2) ∈ E(t∗). Let (ŷ1, ŷ2) = (g1(x∗

2, t̂), g
2(x∗

1, t̂)), and (x̂1, x̂2) = (g1(ŷ2, t̂), g
2(ŷ1, t̂)).

If x∗
1 ≤ x̂1 and x∗

2 ≤ x̂2, then there is x̂∗ = (x̂∗
1, x̂

∗
2) ∈ E(t̂) such that x∗ � x̂∗.

The conditions in this corollary can be viewed as follows. Starting from an existing
equilibrium, x∗ = (x∗

1, x
∗
2) at t = t∗, an increase in t has two effects on g1(·, ·). One effect is

an increase in g1, because best-response functions are nondecreasing in t. (This is a direct

14Notice that assumption I.A is an integral component of a parameterized GSS, whereas assumption I.B
or I.C is made to guarantee existence of an equilibrium via Brouwer-Schauder type theorems. In particular,
in I.B or I.C, the assumption on order intervals in X is automatically satisfied in standard Banach lattices
such as R

n, Lp(µ) spaces, space of continuous functions over a compact set, and so on. In I.A, I.B, and I.C
the partial order on X is assumed to be the same, and the order and the topological structure on X are
assumed to be compatible in terms of lattice norms. See, for example, Aliprantis and Border (1994).
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Figure 1: Existence of Increasing Equilibria
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Figure 2: Violation of first condition

effect of an increase in t.) The other effect is a decrease in g1, because an increase in t

increases g2(x∗
2, t), and x1 and x2 are strategic substitutes. (This is an indirect effect arising

from player 1’s response to player 2’s response to an increase in t.) Similar statements are
valid for player 2 as well. Taken together, the conditions say that for each player, as long as
the indirect strategic substitute effect does not dominate the direct parameter effect, there
is a new equilibrium that is larger than x∗ = (x∗

1, x
∗
2). The intuition for the general case is

similar. A simple graphical illustration of these conditions is presented in Figure 1.

It is useful to note that if either condition in the corollary is not satisfied, this result
may not necessarily apply. This can be seen graphically in figure 2, where the first condition
is violated but the second condition is satisfied. An alternative figure can be constructed
similarly where the reverse is true.

The condition in theorem 1 can be translated to payoff functions by noticing that if
x∗ is an equilibrium at t∗, and if g(g(x∗, t), t) is increasing in t at t∗, then the condition in
theorem 1 is satisfied for an increase in t from t∗. For twice continuously differentiable payoff
functions, this insight leads to the following transparent, and easy-to-use condition.

Suppose there are N players, strategies and parameters are real-valued, and payoff func-
tion of player i is given by f i(xi, x−i, t), where for each (x−i, t), arg maxxi∈Xi f i(xi, x−i, t) is
singleton-valued,15 and for each i, f i is C2. In this case, for player i = 1, the condition in
the theorem 1 is satisfied, if

∂

∂t

(

g1(g2(x−2, t), g
3(x−3, t), . . . , g

N(x−N , t), t)
)

∣

∣

∣

∣

(x∗,t∗)

> 0,

and for each player i = 2, . . . , N , a similar condition with an appropriate change of index.16

15This is true when f i is strictly quasi-concave in xi, or strictly concave in xi.
16As usual, to apply this version, we suppose that the derivative is well-defined; in particular, (x∗, t∗) is

in the interior.
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Using the Implicit Function theorem, it is easy to calculate that

∂

∂t

(

g1(g2(x−2, t), . . . , g
N(x−N , t), t)

)

∣

∣

∣

∣

(x∗,t∗)

> 0 ⇔ f 1
1,t +

N
∑

n=2

f 1
1,n

(

−
fn

n,t

fn
n,n

)

∣

∣

∣

∣

∣

(x∗,t∗)

> 0,

where a superscript on a payoff function f indexes a player, and subscripts denote partial
derivatives. Thus, for example, f i

i,n = ∂2f i

∂xi∂xn
, and f i

i,t = ∂2f i

∂xi∂t
.17

With an appropriate change of index, it follows that if for every i = 1, . . . , N ,

f i
i,t +

∑

n 6=i

f i
i,n

(

−
fn

n,t

fn
n,n

)

∣

∣

∣

∣

∣

(x∗,t∗)

> 0,

then for small increases in t from t∗, the condition in theorem 1 is satisfied.

These conditions have the same intuition as earlier. For a given player i, f i
i,t is positive,

and captures the direct effect of an increase in t. The term
∑

n 6=i

f i
i,n

(

−
fn

n,t

fn
n,n

)

is negative, and

captures the indirect effect of an increase in t, one for each competitor. As above, if the indi-
rect effect does not dominate the direct effect, monotone comparative statics are guaranteed.
Notice that in this use of the Implicit Function theorem, we only require knowledge of how
best-responses are behaving around t∗, not how fixed points of best-responses are behaving
around t∗. This yields two benefits: it is computationally easier, and it provides economi-
cally intuitive conditions. These benefits are typically absent in standard applications of the
Implicit Function theorem to the equilibrium set.

Similarly, if for each player i = 1, . . . , N , i’s strategy space is multi-dimensional, say
X i ⊂ R

Ni, and the parameter space is multi-dimensional, say, T ⊂ R
N0. Then again, for

player i = 1, the relevant condition is

Dt

(

g1(g2(x−2, t), . . . , g
N(x−N , t), t)

)
∣

∣

(x∗,t∗)

= −[D1f
1
1 ]−1

[

Dtf
1
1 +

N
∑

n=2

Dnf
1
1 (−[Dnfn

n ]−1Dtf
n
n )

]
∣

∣

∣

∣

(x∗,t∗)

≥ 0.

For reference, notice that the dimension of the matrix on either side of the inequality is
N1 × N0. When N0 = 1, the above condition is a vector inequality, and when N0 > 1, the
linear operator in the above condition is a positive operator. If a similar condition holds for
each i, then the condition in theorem 1 is satisfied. The following corollary to theorem 1 is
useful to exhibit increasing selections of equilibria.

Corollary 2. Let (X, T, g) be an admissible triple. If for every x, g(g(x, t), t) is nonde-
creasing in t, then for every t∗ � t̂, and for every x∗ ∈ E(t∗), there is x̂∗ ∈ E(t̂) such that
x∗ � x̂∗.

17Notice that in a parameterized game of strategic substitutes, for n 6= i, f i
i,n < 0 formalizes strategic

substitutes, and for n = i, f i
i,n < 0 formalizes strict concavity in own argument. Moreover, f i

i,t > 0 formalizes
increasing differences in t.

7



The following corollary presents a version of strong monotone comparative statics; that
is, all equilibria at t̂ are greater than x∗.

Corollary 3. Let (X, T, g) be an admissible triple, with X a complete lattice. Fix t∗ � t̂,
and let x∗ ∈ E(t∗). Consider g(g(x, t̂), t̂), and let x̂L = infX

{

x|g(g(x, t̂), t̂) � x
}

.

If x∗ � x̂L, then for every x̂∗ ∈ E(t̂), x∗ � x̂∗, and
If x∗ ≺ x̂L, then for every x̂∗ ∈ E(t̂), x∗ ≺ x̂∗.

Proof. Notice that g(g(x, t̂), t̂), is nondecreasing in x, and therefore, by Tarski’s theorem,
x̂L exists, and is the smallest fixed point of g(g(x, t̂), t̂) at t̂. Moreover, the set of fixed points
of g(g(x, t̂), t̂) at t̂ is a complete lattice. The result now follows by noting that the set of
fixed points of g at t̂ is a subset of the set of fixed points of g(g(x, t̂), t̂) at t̂.

Another condition that guarantees the conclusion of the second statement (strictly in-
creasing equilibria) in this corollary is the following.

If x∗ � x̂L, and if E(t̂) is not a singleton, then for every x̂∗ ∈ E(t̂), x∗ ≺ x̂∗.

This statement can be proved using results in Dacic (1981), and Roy and Sabarwal (2008),
which imply that in games with strategic substitutes, the equilibrium set is completely
unordered; that is, no two elements are comparable. Therefore, if x∗ � x̂L, and if E(t̂) is not
a singleton, then x∗ 6∈ E(t̂), and the result follows.

3 Conditions on Payoff Functions

This section defines general parameterized GSS, and provides conditions on payoff functions
that yield the analogue of theorem 1 above. In order to do so, it is helpful to understand
first conditions on payoff functions that guarantee nonincreasing best-responses. These are
presented in the next subsection.

3.1 A Monotonicity Theorem

Recall from Milgrom and Shannon (1994) that when X is a lattice,18 a function f : X → R

is quasi-supermodular if (1) f(x) ≥ f(x ∧ y) =⇒ f(x ∨ y) ≥ f(y), and (2) f(x) >

f(x∧y) =⇒ f(x∨y) > f(y). Moreover, when X is a lattice and T is a partially ordered set,
a function f : X × T → R satisfies single-crossing property in (x; t), if for every x′ � x′′

and t′ � t′′, (1) f(x′, t′′) > f(x′′, t′′) =⇒ f(x′, t′) > f(x′′, t′), and (2) f(x′, t′′) ≥ f(x′′, t′′) =⇒
f(x′, t′) ≥ f(x′′, t′). Recall that the single-crossing property is an ordinal condition. Its
cardinal version is increasing differences, with the well-known intuition that the function
f(x′, t) − f(x′′, t) as a function of t crosses zero at most once, and only from below.

We shall say that a function f : X × T → R satisfies decreasing single-crossing
property in (x; t) if for every x′ � x′′ and t′ � t′′, (1) f(x′, t′′) ≤ f(x′′, t′′) =⇒ f(x′, t′) ≤

18This paper uses standard lattice terminology. See, for example, Topkis (1998).
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f(x′′, t′), and (2) f(x′, t′′) < f(x′′, t′′) =⇒ f(x′, t′) < f(x′′, t′). Analogous to the single-
crossing property, the decreasing single-crossing property is an ordinal condition, and its
cardinal version is decreasing differences, which implies that the function f(x′, t) − f(x′′, t)
as a function of t crosses zero at most once, and only from above. This intuition is the
motivation for our present terminology.19

For an order on nonempty subsets of X, we use the standard (induced) set order used in
the literature. That is, for non-empty subsets A, B of X, A v B if for every a ∈ A, and for
every b ∈ B, a ∧ b ∈ A, and a ∨ b ∈ B, where the operations ∧,∨ are with respect to �.

With these concepts, the proof of the monotonicity theorem in Milgrom and Shannon
(1994) can be adapted to prove the following theorem.

Theorem 2. Let X be a lattice, T be a partially ordered set, S be a nonempty subset of X,
and f : X × T → R. Reverse the standard set order on X.20 The following is true.
arg maxx∈S f(x, t) is monotone nonincreasing in (t, S), if, and only if, f is quasi-supermodular
in x and satisfies decreasing single-crossing property in (x; t)

Proof. For each (t, S), let M(t, S) = arg maxx∈S f(x, t).
(⇐=) Let t � t′, S ′ v S, x ∈ M(t, S), x′ ∈ M(t′, S ′). Consider x ∧ x′. As x ∈
M(t, S), f(x, t) ≥ f(x ∨ x′, t). Therefore,

f(x ∨ x′, t) 6> f(x, t) =⇒ f(x′, t) 6> f(x ∧ x′, t)
⇐⇒ f(x′, t) ≤ f(x ∧ x′, t)
=⇒ f(x′, t′) ≤ f(x ∧ x′, t′),

where the first implication follow from quasi-supermodularity, and the last implication follows
from decreasing single-crossing property. Thus, x∧x′ ∈ M(t′, S ′). Similarly, it can be shown
that x ∨ x′ ∈ M(t, S).
(=⇒) To show that f is quasi-supermodular in x, fix t ∈ T , and x, x′ ∈ X. Let S =
{x, x ∨ x′}, and S ′ = {x′, x ∧ x′}. Then S ′ v S. Suppose f(x ∨ x′, t) ≤ f(x, t). Then
x ∈ M(t, S). But then, as M(·, ·) is nonincreasing, it follows that x ∧ x′ ∈ M(t, S ′), whence
f(x′, t) ≤ f(x ∧ x′, t). The proof for strict inequality is similar.
To show that f satisfies decreasing single-crossing property in (x; t), fix x ≺ x′ and t ≺ t′.
Let S = {x, x′}. Suppose f(x′, t) ≤ f(x, t). Then x ∈ M(t, S), and as M is nonincreasing,
x = x ∧ x′ ∈ M(t′, S). Consequently, f(x′, t′) ≤ f(x, t′). The proof for strict inequality is
similar.

This theorem is interesting in its own right as characterizing nonincreasing solutions in a
class of maximization problems. Its main application to parameterized GSS here is the “if”
direction, with a player’s strategy space given by X, with S identically equal to X, and with
strategy space of other players given by T .

19Amir (1996) proposes a similar “dual single-crossing” property for one-dimensional strategies.
20S is lower than S′ in the reverse order means that S′ v S.
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3.2 Parameterized Games with Strategic Substitutes

Consider a set of players I, with players indexed by i ∈ I. Each player i has a partially
ordered strategy space (X i,�i). The overall strategy space is the product of X i, denoted
X, and endowed with the product order (and topology). Let T be a partially ordered set
of parameters. Each player i has a payoff function, f i : X × T → R, denoted f i(xi, x−i, t).
The collection Γ = (I, T, (X i,�i, f i)i∈I) is a parameterized game with strategic sub-
stitutes, if for every player i,
(1) (X i,�i) is a nonempty, sub-complete, convex, sub-lattice of a Banach lattice, with closed,
convex intervals,21 and f i is continuous,
(2) For every (x−i, t), f

i is quasi-supermodular in xi,
(3) For every x−i, f i satisfies single-crossing property in (xi; t), and
(4) For every t, f i satisfies decreasing single-crossing property in (xi; x−i).

Recall that (2) and (3) are standard ingredients of parameterized supermodular and
quasi-supermodular games. Single-crossing property in (xi; t) allows best responses to be
nondecreasing in the parameter. Strategic substitutes are modeled by the assumption of
decreasing single-crossing property in (xi; x−i). Theorem 2 implies that each player’s best
response is nonincreasing in other player strategies.

Suppose for each i, and for each (x−i, t), gi(x−i, t) = arg maxxi∈S f i(xi, x−i, t) is singleton-
valued, and let g = (gi)i∈I .

Let t∗, t̂ ∈ T , and x∗ ∈ E(t∗). For player i, f i satisfies monotone comparative statics
(MCS) at (x∗, t∗, t̂), if for every xi � x′

i, (1) f i(xi, x
∗
−i, t

∗) ≥ f i(x′
i, x

∗
−i, t

∗) ⇒ f i(xi, ŷ−i, t̂) ≥
f i(x′

i, ŷ−i, t̂), and (2) f i(xi, x
∗
−i, t

∗) > f i(x′
i, x

∗
−i, t

∗) ⇒ f i(xi, ŷ−i, t̂) > f i(x′
i, ŷ−i, t̂), where

ŷ−i = (ŷj)j 6=i, and for each j 6= i, ŷj = arg maxxj
f j(xj , x

∗
−j , t̂).

22 As discussed in detail

above, ŷ−i is the indirect strategic substitute effect of a change in the parameter from t∗ to t̂,
and it determines how much the direct effect has to change to compensate for this opposing
indirect effect. The lemma below shows that the combined effect is favorable, if MCS holds.

Lemma 1. If f i satisfies MCS at (x∗, t∗, t̂), then x∗
i � gi(ŷ−i, t̂).

Proof. Let x∗
i = gi(x∗

−i, t
∗) and x̂i = gi(ŷ−i, t̂). Notice that f i(x∗

i , x
∗
−i, t

∗) ≥ f i(x∗
i ∧

x̂i, x
∗
−i, t

∗), and therefore, using quasi-supermodularity,f i(x∗
i ∨ x̂i, x

∗
−i, t

∗) ≥ f i(x̂i, x
∗
−i, t

∗),
and therefore, using MCS at (x∗, t∗, t̂), f i(x∗

i ∨ x̂i, ŷ−i, t̂) ≥ f i(x̂i, ŷ−i, t̂), whence x∗
i ∨ x̂i = x̂i.

Similarly, x∗
i ∧ x̂i = x∗

i , and consequently, x∗
i � gi(ŷ−i, t̂).

Notice that a limitation of the MCS condition is that it requires knowledge of ŷ−i; that
is, how do opponents of i respond to the old equilibrium at the new parameter value. Never-
theless, this condition can be used in examples, as shown in the next section. An alternative
condition can be postulated, requiring only an upper bound for the best-response, as fol-
lows.23 In the MCS condition, replace each ŷj by a ỹj, where ỹj � arg maxxj

f j(xj, x
∗
−j , t̂),

21As earlier, the order and topological structure are assumed to be compatible in terms of lattice norms.
22Notice that this has the flavor of a single crossing property. Indeed, if we let ŷ−i(t) = g−i(x

∗, t), and
consider the single-crossing property in (xi; t) for the function (xi, t) 7→ f i(xi, ŷ−i(t), t), then the above is a
restricted version of that property.

23We are grateful to an anonymous referee for pointing out this condition.
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and replace each ŷ−i by ỹ−i. Using ŷj = arg maxxj
f j(xj , x

∗
−j , t̂), and ŷ−i = (ŷj)j 6=i, lemma

1 remains true as stated. In its proof, replace ŷ−i by ỹ−i everywhere, to get x∗
i � gi(ỹ−i, t̂).

Now, ŷ−i � ỹ−i and gi is nonincreasing in y−i imply x∗
i � gi(ŷ−i, t̂), as desired.

Let Γ be a parameterized GSS, t∗ ∈ T , and x∗ ∈ E(t∗). Γ satisfies MCS at (x∗, t∗), if
there is t̂ � t∗ such that for all i, f i satisfies MCS at (x∗, t∗, t̂). Γ satisfies all parameter
MCS at (x∗, t∗), if for every t̂ � t∗ and for every i, f i satisfies MCS at (x∗, t∗, t̂). The
following theorem is now easy to prove.

Theorem 3. Let Γ be a parameterized game with strategic substitutes, t∗ ∈ T , x∗ ∈ E(t∗).
If Γ satisfies MCS at (x∗, t∗), then there is t̂ � t∗ and there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.
If Γ satisfies all parameter MCS at (x∗, t∗), then for every t̂ � t∗, there is x̂∗ ∈ E(t̂) such
that x∗ � x̂∗.

Proof. Suppose Γ satisfies MCS at (x∗, t∗). Then there is t̂ � t∗ such that for all i, f i

satisfies MCS at (x∗, t∗, t̂). By the lemma above, for each i, x∗
i � gi(ŷ−i, t̂), and therefore,

x∗ � g(ŷ, t̂), as required in Theorem 1. The proof of the second statement is similar.

Theorem 3 provides for “local” monotone comparative statics.24 Conditions that guar-
antee “global” MCS can be posited as follows. A parameterized GSS Γ satisfies MCS, if for
every t∗, there is x∗ ∈ E(t∗) such that Γ satisfies MCS at (x∗, t∗). Γ satisfies all parameter
MCS, if for every t∗, there is x∗ ∈ E(t∗) such that Γ satisfies all parameter MCS at (x∗, t∗).
The first two statements in the corollary below follow immediately. Still stronger results
can be derived with stronger conditions, as follows. A parameterized game with strategic
substitutes Γ satisfies strong MCS, if for every t∗ and for every x∗ ∈ E(t∗), Γ satisfies MCS
at (x∗, t∗). Γ satisfies all parameter strong MCS, if for every t∗, and for every x∗ ∈ E(t∗),
Γ satisfies all parameter MCS at (x∗, t∗). The last two statements in the corollary below
follow immediately.

Corollary 4. Let Γ be a parameterized game with strategic substitutes.
(1) If Γ satisfies MCS, then for every t∗ ∈ T , there is x∗ ∈ E(t∗), there is t̂ � t∗ and there
is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.
(2) If Γ satisfies all parameter MCS, then for every t∗ ∈ T , there is x∗ ∈ E(t∗), such that for
every t̂ � t∗, there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.
(3) If Γ satisfies strong MCS, then for every t∗ ∈ T , and for every x∗ ∈ E(t∗), there is t̂ � t∗

and there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.
(4) If Γ satisfies all parameter strong MCS, then for every t∗ ∈ T , for every x∗ ∈ E(t∗), for
every t̂ � t∗, there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.

Notice that if for every t, the equilibrium is unique, then the strong MCS property is
equivalent to MCS, and the all parameter strong MCS property is equivalent to all parameter
MCS. An example in which all parameter strong MCS property holds is presented below.

24Notice that for twice continuously differentiable functions, the condition presented in section 2 can be
translated to the MCS condition above.
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4 Examples

This section presents several examples. The Cournot duopoly game presented in section 2
is analyzed using the monotone comparative statics property mentioned above. The other
two examples show applications of differentiability conditions mentioned in section 2.

Example 1 (continued). Consider the Cournot duopoly example presented earlier. As
shown below, for ξ ∈ [1

3
, 2

3
], this game satisfies all parameter MCS. Moreover, as equilibrium

is unique, it satisfies all parameter strong MCS. Notice that the profit of each firm is

f 1(x1, x2, t) = (a − b(x1 + x2))x1 − (c − ξt)x1, and
f 2(x1, x2, t) = (a − b(x1 + x2))x2 − (c − (1 − ξ)t)x2.

Fix t∗ and t̂ ≥ t∗. Recall that (x∗
1, x

∗
2) = (a−c+(3ξ−1)t∗

3b
,

a−c+(2−3ξ)t∗

3b
). It follows that for every

x1, f 1(x1, x
∗
2, t

∗) may be written as f 1(x1, x
∗
2, t

∗) =
[

2(a−c)
3

− bx1 + 2(3ξ−1)t∗

3

]

x1. Moreover, re-

call that ŷ2 = g2(x∗
1, t̂) =

a−c+(1−ξ)t̂−bx∗

1

2b
, and this simplifies to ŷ2 = a−c

3b
+ (1−ξ)t̂

2b
− (3ξ−1)t∗

6b
. Using

this ŷ2, notice that for every x1, f 1(x1, ŷ2, t̂) may be written as f 1(x1, ŷ2, t̂) = f 1(x1, y
∗
2, t

∗)+
(3ξ−1)(t̂−t∗)

2
x1.

Now suppose x1 ≥ x′
1, and f 1(x1, x

∗
2, t

∗) ≥ f 1(x′
1, x

∗
2, t

∗). Then it can be calculated that

f 1(x1, ŷ2, t̂) ≥ f 1(x′
1, ŷ2, t̂), if, and only if (3ξ−1)(t̂−t∗)

2
x1 ≥ (3ξ−1)(t̂−t∗)

2
x′

1, and this holds, if
ξ ≥ 1

3
. Similarly, it can be shown that the condition for player 2 holds, if ξ ≤ 2

3
.

Example 2. Consider a common-pool resource game.25 Consider two players, indexed
i = 1, 2, each with an endowment ei > 0. There are two investment options: (1) a common
resource (such as a fishery) that exhibits diminishing marginal return, and (2) a (potentially
asymmetric) outside option with constant marginal return, ri > 0. If player i invests an
amount xi ≤ ei of his endowment into the common resource, he receives a proportional
share of total output (a(x1 + x2) − b(x1 + x2)

2). Thus, payoff to player i is given by

f i(x1, x2) = ri(ei − xi) +
xi

x1 + x2

(

a(x1 + x2) − b(x1 + x2)
2
)

.

It is well-known that in a Nash equilibrium, the common-pool resource is over-appropriated,
and this has a long-run implication for resource conservation. A question of interest is
whether a regulator can provide decentralized tax incentives to induce both players to re-
duce their individual investment in the common pool resource, and thereby reduce over-
appropriation. Equivalently, under what conditions will a subsidy increase individual invest-
ment in the common-pool resource? Consider the following subsidy-parameterized payoff for
player i.

f i(x1, x2, t) = (1 − t)ri(ei − xi) +
xi

x1 + x2

(

a(x1 + x2) − b(x1 + x2)
2
)

.

It is easy to calculate that f 1
1,t = r1, f 1

1,2 = −b, f 2
2,t = r2, and f 2

2,2 = −2b. Consequently,

f 1
1,t + f 1

1,2

(

−
f2

2,t

f2

2,2

)
∣

∣

∣

(x∗,t∗)
≥ 0 ⇔ 2r1 ≥ r2. Similarly, f 2

2,t + f 2
1,2

(

−
f1

1,t

f1

1,1

)
∣

∣

∣

(x∗,t∗)
> 0 ⇔

25See, for example, Ostrom, Gardner, and Walker (1994).
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r2 ≥
r1

2
. It follows that equilibria increase in the cone determined by r2 = 2r1 and r2 = 1

2
r1

in the (r1, r2)-space.

Example 3. Consider a game of tournaments.26 Suppose a tournament has 3 players,
where a parameterized reward r(t) (with 0 ≤ t ≤ T , and r′(t) > 0) is shared by the players
who succeed in the tournament. If one player succeeds, he gets r(t) for sure, if two players
succeed, each gets r(t) with probability one-half, and if all players succeed, each gets r(t)
with probability one-third. Each player chooses effort xi ∈ [0, 1] with probability of success
xi. Expected reward per unit for player i is

πi(xi, xj , xk) = xi(1 − xj)(1 − xk) +
1

2
xixj(1 − xk) +

1

2
xixk(1 − xj) +

1

3
xixjxk.

The quadratic cost of effort xi is ci

2
x2

i , and is allowed to be asymmetric across players. The
payoff to player i is expected reward minus cost of effort. That is,

f i(xi, xj, xk, t) = r(t)πi(xi, xj, xk) −
ci

2
x2

i ,

Here’s a question of interest: if tournament organizers increase reward, when will all play-
ers compete more strongly?27 Notice that f i

i,j = r(t)πi
i,j(xk), f i

i,k = r(t)πi
i,k(xj), f i

i,t =

r′(t)πi
i(xj , xk); −

f
j
j,t

f
j
j,j

=
r′(t)πj

j (xi,xk)

cj
, −

fk
k,t

fk
k,k

=
r′(t)πk

k
(xi,xj)

ck
; and x∗

i =
r(t∗)πi

i(x
∗

j ,x∗

k
)

ci
, x∗

j =
r(t∗)πj

j (x∗

i ,x∗

k
)

cj
,

x∗
k =

r(t∗)πk
k
(x∗

i ,x∗

j )

ck
. Therefore,

f i
i,t + f i

i,j(−
f

j
j,t

f
j
j,j

) + f i
i,k(−

fk
k,t

fk
k,k

)

∣

∣

∣

∣

(x∗,t∗)

> 0

⇔ r′(t)πi
i(xj , xk) + r′(t)πi

i,j(xk)xj + r′(t)πi
i,k(xj)xk

∣

∣

(x∗,t∗)
> 0

⇔ πi
i(x

∗
j , x

∗
k) + πi

i,j(x
∗
k)x

∗
j + πi

i,k(x
∗
j)x

∗
k > 0.

Moreover,

πi
i(x

∗
j , x

∗
k) + πi

i,j(x
∗
k)x

∗
j + πi

i,k(x
∗
j )x

∗
k

= (1 − x∗
j )(1 − x∗

k) + 1
2

(

x∗
j (1 − x∗

k) + x∗
k(1 − x∗

j )
)

+ 1
3
x∗

jx
∗
k

+
[

1
3
x∗

k −
1
2
((1 − x∗

k) + x∗
k)

]

x∗
j +

[

1
3
x∗

j −
1
2

(

(1 − x∗
j) + x∗

j

)]

x∗
k

= (1 − x∗
j )(1 − x∗

k).

Therefore, the condition on payoff functions is satisfied, if each of x∗
i , x

∗
j , x

∗
k is less than 1.

In other words, if the equilibrium is not degenerate, that is, no player wins the tournament
for sure, then the equilibrium increases with the parameter. The result extends to N player
tournaments, as shown in the appendix.

Similar applications can be made to other games as well. In particular, an application of
the differentiability results does not necessarily require knowledge of best-response functions,
or closed form solutions for an equilibrium. Therefore, from a practical point of view, the
results here can have broad applications.

26This version is based on Dubey, Haimanko, and Zapechelnyuk (2006).
27Tournament organizers might have an incentive to have players compete more strongly, perhaps because

it increases audience size, and therefore, ticket sales.
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5 Extensions to Correspondences

The next subsection extends theorem 1 to the case of correspondences, and the subsection
after that extends theorem 3 to the case of correspondences.

5.1 Conditions on Correspondences

Consider a triple (X, T, g), where (X,�) is a nonempty, subcomplete, sublattice of a Banach
lattice, T is a nonempty partially ordered set, and g : X × T � X is a correspondence. For
a triple (X, T, g), consider the following sets of assumptions.

Assumption II.A: For every x ∈ X, g(x, ·) is nondecreasing in t,28 and for every t ∈ T ,
g(·, t) is nonincreasing in x, and nonempty-sublattice-valued.29

Assumpton II.B: (X,�) is a nonempty, compact, convex, sublattice of a Banach lattice;
order intervals in X are closed and convex; and for every t, g(·, t) is upper hemi-continuous,
and nonempty-compact-convex valued.

Assumption II.C: (X,�) is a nonempty, closed, convex sublattice of a Banach lattice;
order intervals in X are closed and convex; for every t, g(X, t) is relatively compact; and for
every t, g(·, t) is upper hemi-continuous, and nonempty-closed-convex-valued.

As earlier, a triple (X, T, g) is admissible-II if it satisfies either II.A and II.B, or II.A
and II.C. For each t, let E(t) = {x ∈ X | x ∈ g(x, t)} be the equilibrium (or fixed) points of
g at t. Theorems of Kakutani-Glicksberg-Ky Fan, or Bohnenlust-Karlin imply that for every
t, E(t) is non-empty. The following extends theorem 1 to correspondences.30

Theorem 4. Let (X, T, g) be an admissible-II triple. Fix t∗ ∈ T , and let x∗ ∈ E(t∗).
Consider t̂ ∈ T such that t∗ � t̂, and let ŷ = supXg(x∗, t̂).
If x∗ � infXg(ŷ, t̂), then there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.

Proof. Notice that x∗ � ŷ, because g is nondecreasing in t, (hence g(x∗, t∗) v g(x∗, t̂),)
x∗ ∈ g(x∗, t∗), and sup g(x∗, t∗) � ŷ. Moreover, for every x in [x∗, ŷ], g(x, t̂) ⊂ [x∗, ŷ], and
this can be seen as follows. Suppose x∗ � x � ŷ. Then x � ŷ implies that inf g(x, t̂) �
inf g(ŷ, t̂) � x∗, where the first inequality follows from the fact that g(·, t̂) is weakly decreasing
with respect to v, and the second follows from the condition in the proposition. Moreover,
x∗ � x implies that sup g(x, t̂) � sup g(x∗, t̂) = ŷ, where the inequality follows from weakly
decreasing g(·, t̂), and the equality follows from definition of ŷ. Therefore, the restriction of
g(·, t̂) to [x∗, ŷ] is a correspondence from [x∗, ŷ] to [x∗, ŷ]. By Kakutani-Glicksberg-Ky Fan
or by Bohnenlust-Karlin, there is x̂∗ ∈ [x∗, ŷ] such that x̂∗ ∈ g(x̂∗, t̂). Consequently, there is
x̂∗ ∈ E(t̂) such that x∗ � x̂∗.

28For every t, t̂ ∈ T , t � t̂ ⇒ for every x, g(x, t) v g(x, t̂).
29For every x, y ∈ X , x � y ⇒ for every t, g(y, t) v g(x, t).
30We are grateful to an anonymous referee for pointing out an earlier version of this extension.
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5.2 Conditions on General Payoff Functions

Consider the following definitions. For non-empty subsets A, B of X, A is completely lower
than B, denoted A vc B if for every a ∈ A, and for every b ∈ B, a � b. Let Γ = (I, T, (X i,�i

, f i)i∈I) be a parameterized game with strategic substitutes. Suppose for each i, f i is strictly
quasi-supermodular,31 and for each (x−i, t), arg maxxi

f i(xi, x−i, t) is convex-valued. Let
gi(x−i, t) = arg maxxi

f i(xi, x−i, t), and g = (gi)i∈I . In this case, let t∗ ∈ T , x∗ ∈ E(t∗),
and let t̂ � t∗. For player i, f i satisfies monotone comparative statics (MCS)-II at
(x∗, t∗, t̂), if for every xi � x′

i, f i(xi, x
∗
−i, t

∗) ≥ f i(x′
i, x

∗
−i, t

∗) ⇒ f i(xi, ŷ−i, t̂) > f i(x′
i, ŷ−i, t̂),

where ŷ−i = sup g−i(x
∗, t̂).32 Here is a corresponding lemma.

Lemma 2. If f i satisfies MCS-II at (x∗, t∗, t̂), then x∗
i � inf gi(ŷ−i, t̂).

Proof. Fix t∗ ∈ T , x∗ ∈ E(t∗), t̂ � t∗, and let ŷ−i = sup g−i(x
∗, t̂). Notice that gi(x∗

−i, t
∗) vc

gi(ŷ−i, t̂), as follows. Fix xi ∈ gi(x∗
−i, t

∗) and x̂i ∈ gi(ŷ−i, t̂) arbitrarily. Suppose xi and x̂i

are unordered. Then f i(xi, x
∗
−i, t

∗) ≥ f i(xi ∧ x̂i, x
∗
−i, t

∗), and therefore, using strict quasi-
supermodularity,f i(xi∨ x̂i, x

∗
−i, t

∗) > f i(x̂i, x
∗
−i, t

∗), and therefore, using MCS-II at (x∗, t∗, t̂),
f i(xi ∨ x̂i, ŷ−i, t̂) > f i(x̂i, ŷ−i, t̂), a contradiction. Thus, xi and x̂i are ordered. Suppose
xi 6� x̂i. Then x̂i ≺ xi. Moreover, f i(xi, x

∗
−i, t

∗) ≥ f i(x̂i, x
∗
−i, t

∗), and therefore, using MCS-
II at (x∗, t∗, t̂), f i(xi, ŷ−i, t̂) > f i(x̂i, ŷ−i, t̂), a contradiction. Thus, xi � x̂i, as desired. Now,
gi(x∗

−i, t
∗) vc gi(ŷ−i, t̂) implies that x∗

i � sup gi(x∗
−i, t

∗) � inf gi(ŷ−i, t̂), as desired.

Let Γ be a parameterized game with strategic substitutes, t∗ ∈ T , and x∗ ∈ E(t∗). Γ
satisfies MCS-II at (x∗, t∗), if there is t̂ � t∗ such that for all i, f i satisfies MCS-II at
(x∗, t∗, t̂). Γ satisfies all parameter MCS-II at (x∗, t∗), if for every t̂ � t∗ and for every
i, f i satisfies MCS-II at (x∗, t∗, t̂). Lemma 2 and theorem 4 yield the following theorem.

Theorem 5. Let Γ be a parameterized game with strategic substitutes, t∗ ∈ T , x∗ ∈ E(t∗).
If Γ satisfies MCS-II at (x∗, t∗), then there is t̂ � t∗ and there is x̂∗ ∈ E(t̂) such that x∗ � x̂∗.
If Γ satisfies all parameter MCS-II at (x∗, t∗), then for every t̂ � t∗, there is x̂∗ ∈ E(t̂) such
that x∗ � x̂∗.

As earlier, this can be viewed as a “local” monotone comparative statics. Conditions
that guarantee “global” MCS can be posited, too. A parameterized game with strategic
substitutes Γ satisfies MCS-II, if for every t∗, there is x∗ ∈ E(t∗) such that Γ satisfies
MCS-II at (x∗, t∗). Γ satisfies all parameter MCS-II, if for every t∗, there is x∗ ∈ E(t∗)
such that Γ satisfies all parameter MCS-II at (x∗, t∗). Similarly, a strong MCS-II and an
all parameter strong MCS-II property can be posited, and a corollary similar to corollary 4
holds.

31As usual, a function f : X → R is strictly quasisupermodular, if for all unordered x, y ∈ X , f(x) ≥
f(x ∧ y) =⇒ f(x ∨ y) > f(y).

32As earlier, this can be viewed as a restricted version of a strict single-crossing property, as defined in
Shannon (1995). Moreover, as earlier, an alternative condition can be postulated requiring only an upper
bound for the best-response set.
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Appendix

Example 3 (continued). Suppose a tournament has N ≥ 2 players, where a parameterized reward r(t)
(with 0 ≤ t ≤ T , and r′(t) > 0) is shared by the players who succeed in the tournament. If one player
succeeds, she gets r(t) for sure, if two players succeed, each gets r(t) with probability one-half, and if all
players succeed, each gets r(t) with probability one-third. For player i = 1, the expected reward per unit is

π1(x1, . . . , xN ) = x1

∏

i1∈{2,...,N}

(1 − xi1)

+ 1
2

N
∑

i1=2

x1xi1

∏

i2∈{2,...,N}\{i1}

(1 − xi2)

+ 1
3

N
∑

i1=2

N
∑

i2=i1+1

x1xi1xi2

∏

i3∈{2,...,N}\{i1,i2}

(1 − xi3)

+ 1
4

N
∑

i1=2

N
∑

i2=i1+1

N
∑

i3=i2+1

x1xi1xi2xi3

∏

i4∈{2,...,N}\{i1,i2,i3}

(1 − xi4 )

+ . . .

+ 1
N

x1x2 · · ·xN ,

and the expected reward is r(t)πi(x1, . . . , xN ). The quadratic cost of effort x1 is c1

2 x2
1, and it is allowed to

be asymmetric across players. The payoff to player 1 is expected reward minus cost of effort. That is,

f1(x1, . . . , xN ) = r(t)π1(x1, . . . , xN ) −
c1

2
x2

1.

Following the same argument as in the text, it follows that

f1
1,t +

N
∑

n=2

f1
1,n

(

−
fn

n,t

fn
n,n

)

∣

∣

∣

∣

∣

(x∗,t∗)

> 0 ⇔ π1
1(x

∗
−1) +

N
∑

n=2

x∗
nπ1

1,n(x∗
−(1,n)) > 0.

Here, as usual, x∗
−(1,n) is the vector x∗ without components 1 and n. The details below show that

π1
1(x∗

−1) +

N
∑

n=2

x∗
nπ1

1,n(x∗
−(1,n)) =

N
∏

n=2

(1 − x∗
n).

A similar result holds for each player i, and therefore, it follows that if the equilibrium is not degenerate,
then equilibrium increases with the parameter.

Details. Notice that

π1
1(x

∗
−1) =

∏

i1∈{2,...,N}

(1 − x∗
i1

)

+ 1
2

N
∑

i1=2

x∗
i1

∏

i2∈{2,...,N}\{i1}

(1 − x∗
i2

)

+ 1
3

N
∑

i1=2

N
∑

i2=i1+1

x∗
i1

x∗
i2

∏

i3∈{2,...,N}\{i1,i2}

(1 − x∗
i3

)

+ 1
4

N
∑

i1=2

N
∑

i2=i1+1

N
∑

i3=i2+1

x∗
i1

x∗
i2

x∗
i3

∏

i4∈{2,...,N}\{i1,i2,i3}

(1 − x∗
i4

)

+ . . .

+ 1
N

x∗
2 · · ·xN .
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Moreover, for each n = 2, . . . , N ,

π1
1,n(x∗

−(1,n)) = −
∏

i1∈{2,...,N}\{n}

(1 − x∗
i1

)

+ 1
2

∏

i2∈{2,...,N}\{n}

(1 − x∗
i2

)

− 1
2

∑

i1∈{2,...,N}\{n}

x∗
i1

∏

i2∈{2,...,N}\{i1,n}

(1 − x∗
i2

)

+ 1
3

∑

i2∈{2,...,N}\{n}

x∗
i2

∏

i3∈{2,...,N}\{i2,n}

(1 − x∗
i3

)

− 1
3

∑

i1∈{2,...,N}\{n}

∑

i2∈{i1+1,...,N}\{n}

x∗
i1

x∗
i2

∏

i3∈{2,...,N}\{i1,i2,n}

(1 − x∗
i3

)

+ 1
4

∑

i2∈{2,...,N}\{n}

∑

i3∈{i2+1,...,N}\{n}

x∗
i2

x∗
i3

∏

i4∈{2,...,N}\{i2,i3,n}

(1 − x∗
i4

)

− 1
4

∑

i1∈{2,...,N}\{n}

∑

i2∈{i1+1,...,N}\{n}

∑

i3∈{i2+1,...,N}\{n}

x∗
i1

x∗
i2

x∗
i3

∏

i4∈{2,...,N}\{i1,i2,i3,n}

(1 − x∗
i4

)

+ . . .

+ 1
N

∏

i1∈{2,...,N}\{n}

x∗
i1

.

Using the above expression for π1
1,n(x∗

−(1,n)), notice that the first term in x∗
nπ1

1,n(x∗
−(1,n)), the one that

has a coefficient of −1, is −x∗
n

∏

i1∈{2,...,N}\{n}

(1− x∗
i1

), and therefore, the sum of such terms, as n varies over

2, . . . , N , can be written as

−
∑

i1∈{2,...,N}

x∗
i1

∏

i2∈{2,...,N}\{i1}

(1 − x∗
i2

).

Similarly, notice that the term in x∗
nπ1

1,n(x∗
−(1,n)) that has a coefficient of + 1

2 is 1
2x∗

n

∏

i2∈{2,...,N}\{n}

(1− x∗
i2

),

and therefore, the sum of such terms, as n varies over 2, . . . , N , can be written as

1

2

∑

i1∈{2,...,N}

x∗
i1

∏

i2∈{2,...,N}\{i1}

(1 − x∗
i2

).

Now notice that the sum of the previous two sums cancels the second term in the expression for π1
1(x∗

−1),
the one with coefficient 1

2 .

Similarly, it can be calculated that the term in x∗
nπ1

1,n(x∗
−(1,n)) that has a coefficient of − 1

2 , when summed
as n varies over 2, . . . , N , can be written as

− 1
2

N
∑

n=2

∑

i1∈{2,...,N}\{n}

x∗
nx∗

i1

∏

i2∈{2,...,N}\{i1,n}

(1 − x∗
i2

)

= −
N
∑

i1=2

N
∑

i2=i1+1

x∗
i1

x∗
i2

∏

i3∈{2,...,N}\{i1,i2}

(1 − x∗
i3

),

where the equality follows from adding terms that appear exactly two times. In the same manner, the term
in x∗

nπ1
1,n(x∗

−(1,n)) that has a coefficient of + 1
3 , when summed as n varies over 2, . . . , N , can be written, after

adding terms that appear exactly two times, as

2

3

N
∑

i1=2

N
∑

i2=i1+1

x∗
i1

x∗
i2

∏

i3∈{2,...,N}\{i1,i2}

(1 − x∗
i3

).

Notice again that the sum of the last two double sums cancels the third term in the expression for π1
1(x∗

−1),
the one with coefficient 1

3 . Similarly, it can be concluded that

π1
1(x∗

−1) +

N
∑

n=2

x∗
nπ1

1,n(x∗
−(1,n)) =

N
∏

n=2

(1 − x∗
n),

as desired.
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