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Abstract

The program EI provides a method of inferring individual behavior from aggregate
data. It implements the statistical procedures, diagnostics, and graphics from the book
A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from
Aggregate Data (King 1997).

Ecological inference, as traditionally defined, is the process of using aggregate (i.e.,
“ecological”) data to infer discrete individual-level relationships of interest when individual-
level data are not available. Ecological inferences are required in political science research
when individual-level surveys are unavailable (e.g., local or comparative electoral poli-
tics), unreliable (racial politics), insufficient (political geography), or infeasible (political
history). They are also required in numerous areas of major significance in public policy
(e.g., for applying the Voting Rights Act) and other academic disciplines ranging from
epidemiology and marketing to sociology and quantitative history.
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1. Introduction

EI provides a method of inferring individual behavior from aggregate data that works in
practice. It implements the statistical procedures, diagnostics, and graphics from the book
A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from
Aggregate Data (King 1997). Please read the book prior to trying this program (a sample
chapter and other related information is available at my web site http://GKing.Harvard.
Edu/preprints.shtml#sei. Except where indicated, all references to page, section, chapter,
table, and figure numbers in this document refer to the book.

Ecological inference, as traditionally defined, is the process of using aggregate (i.e., “ecologi-
cal”) data to infer discrete individual-level relationships of interest when individual-level data
are not available. As existing methods usually lead to inaccurate conclusions about the empir-
ical world, the ecological inference problem had been to develop a method that gives accurate
answers. Ecological inferences are required in political science research when individual-level
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surveys are unavailable (e.g., local or comparative electoral politics), unreliable (racial poli-
tics), insufficient (political geography), or infeasible (political history). They are also required
in numerous areas of major significance in public policy (e.g., for applying the Voting Rights
Act) and other academic disciplines ranging from epidemiology and marketing to sociology
and quantitative history. Most researchers using aggregate data have encountered some form
of the ecological inference problem.

Because the ecological inference problem is caused by the lack of individual-level information,
no method of ecological inference, including that introduced in this book and estimated by
this program, will produce precisely accurate results in every instance. However, potential
difficulties are minimized here by models that include more available information, diagnostics
to evaluate when assumptions need to be modified, easy methods of modifying the assump-
tions, and uncertainty estimates for all quantities of interest. I recommend reviewing Chapter
16 while using this program for actual research.

2. Hardware and software requirements

EI is written in GAUSS, and will run on any computer hardware and operating system
that runs GAUSS. The GAUSS module CML (constrained maximum likelihood, by Ronald
J. Schoenberg) is also required. No other special hardware or software is required except the
program that accompanies this documentation. A menu-oriented, stand-alone version of this
program, by Kenneth Benoit and me, is available at my homepage, http://GKing.Harvard.
Edu/stats.shtml. This version, EzI: A(n easy) Program for Ecological Inference, does not
require GAUSS, but it is somewhat less flexible.

GAUSS and CML are available for DOS/Windows, Windows, UNIX, and other operating sys-
tems from Aptech Systems, Inc.; 23804 S.E. Kent-Kangley Road; Maple Valley, Washington
98038; (206) 432-7855; FAX: (206) 432-7832; E-mail: sales@aptech.com. If you do not have
a lot of RAM, but you do have a lot of observations, consider turning on GAUSS’ virtual
memory feature.

3. Installation

If you received the program in a zip file, unzip it (with the public domain program unzip).

On a DOS or Windows-based system: Copy ei.lcg to your lib subdirectory, such
as \GAUSS\LIB, and copy the remaining files (*.src, ei.dec, ei.ext, and sample.asc) to
somewhere on the GAUSSPATH or src path, such as the default \GAUSS\SRC.

On a UNIX-based system: If you have supervisor privleges, follow analogous steps as
for DOS systems. If you do not have supervisor privileges, or do not wish the program to be
installed for all users, unzip ei.zip into a directory and then specify ei in the library command
with a path, e.g.: library /files/gking/ecinf/ei;.

Information on Program Updates See the file whatsnew for a list of the major recent
and planned changes to EI, and the web page http://GKing.Harvard.Edu/netmind.shtml

http://GKing.Harvard.Edu/stats.shtml
http://GKing.Harvard.Edu/stats.shtml
mailto:sales@aptech.com
http://GKing.Harvard.Edu/netmind.shtml
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Race of Voting Voting Decision
Age Person Vote No vote

black βb
i 1− βb

i Xi

white βw
i 1− βw

i 1−Xi

Ti 1− Ti

Table 1: Notation for Precinct i. The goal is to infer the quantities of interest, βb
i (the fraction

of blacks who vote) and βw
i (the fraction of whites who vote), from the aggregate variables Xi

(the fraction of voting age people who are black) and Ti (the fraction of people who vote),
along with Ni (the number of voting age people). This is Table 2.3 (page 31) in the book.

to be automatically notified (via email) of future program updates.

4. Overview

As only four commands are required to use EI the program can be easily run interactively, or
in batch mode as a regular GAUSS program (other GAUSS commands can be used at any point
if desired). Each command may also be used with many optional globals and subcommands.
An example of these commands are as follows:

library ei; @ initialize EI @
dbuf = ei(t,x,n,1,1); @ run main prog., save results in dbuf @
call eigraph(dbuf,"tomog"); @ draw tomography graph @
v = eiread(dbuf,"betab"); @ extract precinct estimates from dbuf @

In most applications, eigraph and eiread would likely be run multiple times with different
options chosen, and other commands would be included with these four to read in the data
(t, x, and n).1

In this section, I describe these four commands through a very simple use of EI. (Refer to
the reference section below for further details and more sophisticated uses. That section also
includes sample data you can run with simple examples, and minor differences required when
running under Unix.) For this purpose, and without loss of generality, I use the running
example from the book portrayed in Table 2.3 (page 31) and reproduced below in Table
1. This example uses the fraction of the voting age population who are black (Xi), the
fraction turning out to vote (Ti), and the number of voting age people (Ni) in each precinct
(i = 1, . . . , p) to infer the fraction of blacks who vote (βb

i ) and the fraction of whites who vote
(βw

i ), also in each precinct.

Of course, this is only an example; EI can be used for any analogous ecological inference. It
can be used for larger tables, as described in Sections 8.4 and 15.1 of the book (see procedure
ei2 in the reference section). EI can also be used without modification if Ti is an average of
individual-level dichotomous variables (as in the example), interval-coded discrete variables,

1For example, to read in the data from an ascii text file, you can include these two commands after the
library command: clear t,x,n; and loadvars sample.asc t x n. A detailed example appears on page 5.
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or fully continuous variables, so long as the variables are scaled to the [0,1] interval (see
Section 14.3).

1. At the start of every program, use library ei; to initialize EI. (To reinitialize all
globals between programs, use eiset; if desired.)

2. Run the main procedure, dbuf = ei(t,x,n,1,1);, which takes three p × 1 vectors
as inputs: t (e.g., the fraction of the voting age population turning out to vote); x
(e.g., the fraction of the voting age population who are black); and n (e.g., the total
number of people in the voting age population). (The remaining two inputs are for
optional covariates; for the basic model, set them each to 1 for no covariates.) The
output of this procedure is dbuf, a gauss data buffer. A data buffer is a single entity
that can be saved from gauss in a single file on disk, but which can include many
different strings, vectors, matrices, or other elements (see the GAUSS command vput
in the GAUSS manual for more information). After running ei, it is a good idea to
save dbuf on disk (with a GAUSS command such as save dbuf;). While ei is running,
various intermediate results appear on the screen, such as iteration numbers, but no
final results of substantive interest are printed. As this step is by far the longest (about
2–5 minutes for 250 observations on an HP 715/80 or Pentium 90), it is usually most
convenient to run this separately from the remaining steps.

3. The output data buffer from ei includes a large variety of different results useful for
understanding the results of the analysis. A minimal set of nonrepetitive information
is stored in this data buffer, and a large variety of other information can be easily
computed from it. Fortunately, you do not need to know whether the information you
request is stored or computed as both are treated the same. 2 To extract information
from the data buffer, two procedures are available:

(a) For graphics, use eigraph(dbuf,"name");, where dbuf is the data buffer that is the
output of ei, and name can be any of a long list of ready-made graphs. For example,
use eigraph(dbuf,"fit"); to assess the fit of the model, eigraph(dbuf,"tomog");
to print a tomography graph, or eigraph(dbuf,"xgraph"); to display a scatter-
cross graph.

(b) For numerical information, use v = eiread(dbuf,"name"), where v is the item
extracted, dbuf is the data buffer that is the output of ei, and name can be
any of a long list of output possibilities. For example, use betab for a vector of
point estimates of βb

i , ci80w for 80% confidence intervals for βw
i , or sum to print a

summary of district-level estimates and information.

2Also stored in the output data buffer are the data input to this procedure, and all global options chosen
during the analysis. As such, this data structure is very convenient if you are in the habit of following the
replication standard by making publically available all the data and information necessary to replicate your
published analyses. In fact, the output data buffer is an automatically created and self-documented“replication
data set.” To follow the replication standard, you only need to provide this EI data buffer to the ICPSR or some
other public archive; others will then have access to the data and information necessary to replicate your results
(of course, they won’t have any other information unless you decide to provide it). To replicate an EI analysis,
you only need to load in the data buffer, loadm dbuf;, and call this procedure: dbufNew=eirepl(dbuf);. See
King (1995).
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5. Advanced topics: Bayesian model averaging

EI includes facilities to define and run multiple EI models all at once, and to combine them us-
ing formal Bayesian model averaging procedures. The procedure, dbufdef = eimodels_def(
dbufdef,num,t,x,n,zb,zw);, enables you to define a model specificiation (including all in-
put variables t,x,n,zb,zw, and all globals input to EI), to assign it a scalar integer model
number, num, and to store it in a “meta data buffer,” dbufdef. The meta data buffer contains
a set of individual data buffers, each containing everything needed to define one specification.
You can run eimodels_def multiple times to store as many models in dbufdef as needed
(the first time you run the procedure, set dbufdef="";).

Once all model specifications have each been defined and stored, use dbufrun = eimodels_run(
dbufdef); to run ei on each of the stored specifications and save the results in another meta
data buffer, dbufrun. The results of each ei run can be read using v = eiread(dbufrun);
and eigraph(dbufrun); while specifying the model number with the global variable, _EIMetaR
(default of this variable is 1 which reads the results of ei run for Model 1).

Finally, run dbufavg = eimodels_avg(dbufrun); to use Bayesian Model Averaging to com-
bine the results from multiple models with weights (the procedure calculates) indicating how
much the data supports each model. The results of this model averaging can be read using v
= eiread(dbufavg); and eigraph(dbufavg); where dbufavg is the output data buffer. To
use this method, the prior distribution for covariates should be specified for each model using
the global variables, _EalphaB and _EalphaW, so that the resulting posterior distribution is
known to be proper.

6. Reference

6.1. EI

Format: dbuf = ei(t,x,n,zb,zw);, where t, x, and n are p × 1 vectors, zb is a scalar 1
for no covariates or a p× kb matrix of covariates, and zw is the scalar 1 for no covariates or a
p× kw matrix of covariates (do not include a constant term). dbuf is an output data buffer.

Purpose: ei gives observation-level estimates (and various related statistics) of βb
i and βw

i

given variables Ti and Xi (i = 1, . . . , n) in this accounting identity: Ti = βb
iXi + βw

i (1−Xi).
Results are stored in dbuf, a data buffer that should be read with eiread or graphed with
eigraph. See the model in Chapter 6, and extensions in Chapter 9.

Example: The following example uses the sample file sample.asc that comes with EI.
This file includes hypothetical data from 75 precincts in rows and three variables, t, x, and
n, in columns. You may use any other variable names or ASCII files and may include recodes
or other GAUSS commands in this file.

new; @ clear workspace @
library ei; @ initialize libraries @
clear t,x,n; @ clear all variables in dataset @
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loadvars sample.asc t x n; @ load variables from disk file @
dbuf = ei(t,x,n,1,1); @ run ei @
save racevote=dbuf; @ save dbuf in file racevote.fmt @

The command loadvars is a keyword included with this program that makes it easy to read
variables in from an ASCII data set (see page 30 below). If your data are in a GAUSS data
file, use subdatv instead (see page 30 below). Because running ei takes several minutes, it
is usually easiest to write one program such as this, and to examine the results interactively
(or with a separate program) using eiread and eigraph.

Globals:

EalphaB (cols(Zb)×2) matrix of means (in the first column) and standard deviations (in the
second) of an independent normal prior distribution on elements of αb. If you specify
Zb, you should probably specify a prior, at least with mean zero and some variance
(default = {.}; which indicates no prior). (See Equation 9.2, page 170, to interpret αb).
(If you are using EzI and have trouble setting something to 0, try 0.000001 or some
such; this gets around an error in a GAUSS proc and should give essentially the same
answer empirically.)

EalphaW (cols(Zw)×2) matrix of means (in the first column) and standard deviations (in
the second) of an independent normal prior distribution on elements of αw. If you
specify Zw, you should probably specify a prior, at least with mean zero and some
variance (default = {.}; which indicates no prior). (See Equation 9.2, page 170, to
interpret αw). (If you are using EzI and have trouble setting something to 0, try
0.000001 or some such; this gets around an error in a GAUSS proc and should give
essentially the same answer empirically.)

Ebeta Standard deviation of the “flat normal”prior on B̆b and B̆w. The flat normal prior is
uniform within the unit square and dropping outside the square according to the normal
distribution. Set to zero for no prior (default). Setting to positive values probabilisti-
cally keeps the estimated mode within the unit square. 0.25 is a reasonable value to
experiment with at first.

Ebounds 1 if set CML bounds on parameters automatically unless z’s are included; 0 if
don’t use bounds; k × 2 (where k is the number of starting values) or 1 × 2 matrix to
indicate upper∼lower bounds. (Do not confuse the bounds referred to here with the
bounds on the quantities of interest.) Default = 1.

Ecdfbvn Determines which procedure to use for computing the area of the bivariate normal
distribution above the unit square: 1 based on the GAUSS function CDFBVN; 2 Martin van
der Ende’s method (based on D.R. Divgi, “Calculation of the univariate and bivariate
Normal integral,” Annals of Statistics, 1979, 903-910, with additional options available
for this method in the proc cdfbvn_div); 3 Integration of log of the unit square; 4 Direct
integration on unit square; 5, fairly accurate and fast, based on direct integration on the
unit square from a new GAUSS internal procedure (DEFAULT); 6, most accurate but
slow, based on a cdfbvn procedure by Alan Genz (using results from Drezner, Z. and
G.O. Wesolowsky, 1989. “On the computation of the bivariate normal integral,” Journal
of Statist. Comput. Simul. 35: 101–107). See Appendix F.
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Option 5 (the default) appears to be the best tradeoff between speed and accuracy
currently available (and so this global should not be changed to anything other than 6,
which is more accurate but much slower, unless you have a good reason to do so). How-
ever, fundamental progress remains to be made on methods of integrating the bivariate
normal, as all currently available methods are innacurate and jump discontinuously and
for very small values. Because of this, small values are truncated at the global _EcdfTol,
which you may wish to adjust.

EcdfTol Tolerance for the lncdfbvn function (when _Ecdfbvn=5, its default), with smaller
calculated values truncated at the value of this global (DEFAULT=2.220446e-11). This
can be any positive number, although lncdfbvn gets imprecise for small values. Only
set to smaller values if you think you need the precision, such as if most of your values
of Ti or Xi are very small.

Echeck 1 check inputs and globals and give nice error messages if problems (default); 0
don’t check, which saves some time. There is little reason to choose 0 unless you are
running a large number of estimations and you are certain all the inputs are correctly
specified. (Inessential global: not stored in dbuf.)

EdirTol direction tolerance for CML convergence. Default = 0.0001. Set to smaller values
if most of your values of Ti or Xi are very small.

EdoML 1 do maximum likelihood (default); 0 don’t do maximum likelihood, using instead
the values of φ stored in _EdoML_phi and vcphi in _EdoML_vcphi.

EdoML phi if _EdoML = 1, this should include a vector of values of φ and will be used
instead of the output of the likelihood maximization. (This global is ignored unless
_EdoML=1.)

EdoML vcphi if _EdoML = 1, this should include a matrix of values of estimated variance
matrix V (φ) and will be used instead of the output of the likelihood maximization
procedure. (This global is ignored unless _EdoML=1.)

EdoSim 1 do simulations (default); 0 don’t do simulations; −1 don’t do simulations or
compute the maxlik variance (use this option for computing conditional log-likelihood
of eta’s).

Eeta Automatically includes Xi in the inputs Zb and/or Zw. The actual inputs Zb and Zw
must be set to 1 if the default is changed. Using this global is better than explicitly
including Xi in the inputs, because eiread and eigraph will be “aware” of the contents
of Zb and Zw. If you set this global, it is generally best to also set the priors _EalphaB
and _EalphaW. See Chapter 9, and the parameterization in Equation 9.2 (page 170).
Options include:

• _Eeta=0 excludes Xi, which is equivalent to setting αb = αw = 0 (default).

• _Eeta=1 sets zb = x, zw = 1, which estimates αb and fixes αw = 0

• _Eeta=2 sets zb = 1, zw = x, which estimates αw and fixes αb = 0

• _Eeta=3 sets zb = zw = x, which estimates αb and αw.
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• Set to a 4× 1 vector with elements _Eeta = αb|αw|se(αb)|se(αw) to fix αb and αw,
and their standard deviations, during estimation.

• Finally, set to a 3 × 1 vector 4|a|b to set zb = x and zw = 1, to estimate αb, and
fix αw =a and its standard error to b. Set to a 3× 1 vector 5|a|b to set zb = 1 and
zw = x, to estimate αw, and fix αb =a and its standard error to b.

EI vc M × 2 matrix (M ≥ 1), each row of which represents instructions for one attempt
to compute an estimated positive definite variance matrix of φ. The procedure exits
after the first positive definite hessian is found. Options to include in various rows are:
{1 0} the usual numerical hessian computation (using GAUSS’s hessp.src proc); {1 d}
use usual hessian procedure and then adjust eigenvalues together so they are greater
than d; {2 f} use wide step lengths at f fraction falloff in the likelihood function; {3
f} use quadradic approximation with falloff in likelihood function set at f ; {4 0} use a
generalized inverse (to deal with singularity) and a generalized cholesky (to deal with
non-positive definiteness) based on work in progress by Jeff Gill and Gary King; {5 0}
use wide step lengths but check that the gradients for each are correct (and if necessary
search for better ones); {-1 0} avoid the computation of the variance covariance matrix
in case of non-positive definiteness and use the singular value decomposition for the
multinomial normal sampling (i.e. EisT has to be set to 0). In order to use this option,
also make sure to define relatively narrow upper and lower bounds of the parameters by
using Ebounds. DEFAULT={1 0, 4 0, 2 0.1, 2 0.05, 3 0.1, 1 0.1, 1 0.2}.
The variance computation only very rarely gets beyond the second try.

When the likelihood surface is normal (i.e., quadratic), which is true asymptotically,
all options produce identical results. In practice, this procedure is useful for ensuring
that a positive definite variance matrix can be found due to numerical, rather than
theoretical or empirical, difficulties, as can happen when the mode of the truncated
normal is far from the unit square due to imprecision in the function that computes the
bivariate normal CDF. (Another, sometimes better, way to fix these numerical problems
is to reduce the variances of the priors in _Erho and _Esigma.) Because importance
sampling is used after this procedure, different values of the variance matrix can produce
identical estimates of the quantities of interest. Be sure to verify that the simulations
are being appropriately drawn from the estimated contours (see compare the right two
figures in eigraph’s tomogS).

EIgraph bvsmth smoothing parameter for nonparametric estimation; used only if _Enonpar
= 1. Default = 0.08. (The same parameter controls the nonparametric bivariate density
estimation for diagnostic purposes in eigraph.) See Section 9.3.2.

EisChk 0 to do nothing (default); 1 change lnir from the scalar mean importance ratio
to a (_Esims*_Eisn)×(rows(φ)+1) matrix containing the log of the importance ra-
tio as the first column and normal simulations of φ̃ as the remaining columns. Also
changes PhiSims from the mean and standard deviation of the posterior phi’s to a
_Esims×rows(φ) matrix of normal simulations of phi.

EiLlikS 1 if save ( Esims×1) the log-likelihoods evaluated for each simulation; 0 saves only
the means of these likelihoods (default). These can be used for computing the marginal
likelihood.
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EisFac factor to multiply by estimated variance matrix in the normal approximation for
use in importance sampling, or set to −1 to use normal approximation only or −2 to
condition on the maximum posterior estimates. Adjust this, _Eisn, or _Eist if eiread’s
resamp larger than 15 or 20. If this is set too low, estimation variability will not be
sufficient and your confidence intervals may be too narrow; it must be greater than zero
and should probably be at least one. See Section 7.5. (Default = 4).

Eisn factor to multiply by _Esims to compute the number of normals to draw before re-
sampling. This is used to to try to get _Esims samples from exact posterior. Increase
this or change _EisFac or _EisT if resamp is larger than 15 or 20. Default = 10. See
Section 7.5.

EisT 0 (default) to use multivariate normal density to draw random numbers for initial ap-
proximation for importance sampling; or if greater than 2, use the multivariate Student
t density, with degrees of freedom _Eist. Use this, _EisFac, or _Eisn if resamp is
larger than 15 or 20. See Section 7.5.

EmaxIter Maximum number of iterations for CML. Default = 500.

EnonEval Number of nonparametric density evaluations for each tomography line (default
= 11). Only used if _EnonPar = 1.

EnonNumInt Number of points to evaluate for numerical integration in computing the
denominator for the bivariate kernel density (default = 50). Only used if _EnonPar
= 1.

EnonPar 0 do not run nonparametric model (default); 1 run nonparametric model. (When
choosing nonparametric estimation, only relevant options will be available under eigraph
and eiread.) See Section 9.3.2.

EnumTol Numerical tolerance. A homogeneous precinct is one for which Xi <_EnumTol or
Xi >(1-_EnumTol). Default is 0.0001. Set to smaller values if most of your values of Ti

or Xi are very small.

Eprt 0 print nothing; 1 print only final output from each stage; 2 also prints friendly iteration
numbers etc (default); 3 also prints all sorts of checks along the way. Use eiread and
eigraph instead of this global to see output. (Inessential global: not stored in dbuf.)

Eres If items are vput into _Eres before running ei, they are passed through into dbuf. For
example, identifiers for each aggregate unit would be useful in interpreting the results, or
using them in subsequent analyses (try: _Eres=vput(_Eres,caseid,"caseid") before
calling EI. If a title is vput and given the name titl, the title is printed in convenient
places. See eiread for further information. Do not use the name of any globals to this
procedure or options listed under eiread(), or your variable will be lost.

Erho The first element is the standard deviation of normal prior on φ5 for the correlation;
set to 0 to fix φ5 to a second element, _Erho[2]; set to −1 to estimate without a prior.
Default = 0.5. _Erho should be a scalar unless the first element is 0, in which case it
should be a 2× 1 vector, where the second element is the value at which the φ5 is fixed
(and not estimated). See Section 7.4.
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Eselect Controls which observations are included in the estimation stage, including both
likelihood maximization and importance sampling. All observations are included in the
simulation stage unless you delete them from the data set before starting EI. This
allows users to base the truncated bivariate normal contours on a subset of observations
that might be more representative (such as those for which Ti is not 0 or 1). Set to p×1
vector to of 1’s to include and 0’s to exclude individual observations.

EselRnd Set to scalar 1 to include all observations not already deleted by _Eselect (de-
fault), or a scalar greater than 0 and less than 1 to randomly select this fraction of
observations in the estimation stage. This global is especially useful for speeding up
estimation in very large datasets, since thousands of observations are not always needed
for estimating φ. Since all observations will still be included in the simulation stage,
precinct-level estimates of all quantities of interest will still be available. (If used with
EI2, each iteration of EI includes a different randomly selected set of observations.)

Esigma Standard deviation of an underlying normal distribution, from which a half normal
is constructed as a prior for both σ̆b and σ̆w. Note: the expected value under this prior
is _Esigma

√
2/π ≈_Esigma0.8. Set to zero or negative for no prior. Default = 0.5. See

Section 7.4.

Esims Number of simulations. Default is 100.

Estval For gradient methods: Scalar 1, use best guess starting values (default); or set to
k × 1 vector of starting values. If _Eeta[1] = 0 (its default), k = 5 with elements
guesses of φ, that is on the scale of estimation. If you have starting values on the
untruncated normal scale, ψ̆ = {Bb,Bw, σb, σw, ρ}, you can reparameterize as in this
example: _Estval=eireparinv(.5|.5|.2|.2|-.1). If _Eeta[1] = 1, 2, 4, or5, k = 6;
if _Eeta = 3, k = 7; and if covariates are used and rows(_Eeta) = 4, then k is 5 plus
the number of covariates included, with Zb coming before Zw.

For a grid search: Set _Estval to scalar 0 (with 5 divisions per zoom), or to a scalar
integer greater than or equal to 3 for a grid search with this number of divisions per
zoom. (That is, the grid search procedure divides the parameter space into a number of
divisions, evaluates the likelihood for every combination of values on all the parameters,
chooses the region of highest likelihood, zooms in and repeats the procedure on the
narrower parameter region. This continues until differences in the parameters differ by
the global _Edirtol.

EvTol Numerical tolerance for the conditional variance calculation. Must be greater than
0; Default is 1e− 322.

Output Global: _Eres, a data buffer containing the time of completion, if procedure fin-
ishes. If the procedure is aborted, _Eres is a data buffer containing the data and all items
computed up to that point.
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6.2. EI2

Format: dbuf2 = ei2(V,dbuf,zb,zw);, where v is a p × 1 vector, dbuf is a data buffer
output from ei() or an earlier run of this procedure, zb is a scalar 1 for no covariates or a
p × kb matrix of covariates, and zw is the scalar 1 for no covariates or a p × kw matrix of
covariates. (Do not include a constant term.) dbuf2 is the output data buffer.

Purpose: Gives observation-level estimates of parameters from 2 × C tables with C > 2.
First decompose the C outcome categories into a series of dichotomous choices. For example,
in the 2× 3 running example in the book (see Table 2.2, page 31), Democrat/Republican/No
Vote can be decomposed into Vote/No vote (which is analyzed as usual with ei) and Demo-
crat/Republican, among those who vote (which ei2 can analyze given Vi, the Democratic
fraction of the vote, and the output from ei). If desired, covariates in either ei or ei2 can
be used to avoid possibly incorrect independence assumptions.

In this running example, this procedure will estimate λb
i and λw

i (and various related statistics)
given Vi (Democratic fraction of the vote) and given an estimate of xi (black fraction of voters)
in this accounting identity: Vi = λb

ixi + λw
i (1 − xi). A first-stage estimate of βb

i from ei()
is used to estimate xi, since xi = βb

iXi/Ti (these first stage results should be studied with
eiread and eigraph before proceeding). Multiple imputation is used to incorporate the extra
uncertainty due to xi being estimated. The details of this procedure are discussed in Section
8.4.

The separately imputed data buffers are stored in the output global _ei2_mta. The simula-
tions from each data buffer are combined in a single data buffer, dbuf2. Both can be read with
eiread or graphed with eigraph. Because these programs work for both ei() and ei2(),
reading estimates requires using the names “betaB” and “betaW” for the parameters (even
though they might be more appropriately called“lambdaB”and“lambdaW”for this particular
example). In dbuf2, x are the mean posterior estimates of xi, and x2 is a (p×_Esims) matrix
of simulations of xi (see eiread and eigraph for further information). Diagnostic outputs in
this data buffer, such as resamp, are those from the final imputed data set.

Example: The following example references a file sample2.asc, included with EI, that
includes data from 100 precincts in rows along with four variables, v, t, x, and n, in columns.

new; @ clear workspace @
library ei; @ initialize libraries @
clear v,t,x,n; @ clear all variables @
loadvars sample2.asc v t x n; @ load variables from disk file @
dbuf = ei(t,x,n,1,1); @ estimate betaB and betaW @
save racevote=dbuf; @ save dbuf in file racevote.fmt @
dbuf2 = ei2(v,dbuf,1,1) @ estimate lambdaB and lambdaW @
save raceDem=dbuf2; @ save dbuf2 in file raceDem.fmt @

For example, given the 2×3 running example in the book (Table 2.2, Page 30), eiread(dbuf,
"betab") are point estimates of βb

i , the fraction of blacks who vote; eiread(dbuf,"betaw")
are point estimates of βw

i , the fraction of whites who vote; eiread(dbuf2,"betab") are



12 EI: A Program for Ecological Inference

point estimates of λb
i , the fraction of blacks who vote Democratic, among those who vote;

and eiread(dbuf2,"betaw") are point estimates of λw
i , the fraction of whites who vote

Democratic, among those who vote.

Globals:

ei globals All the globals from ei apply here too.

EI2 m Number of data sets to multiply impute (must be less than or equal to _Esims). If
it is set to -1, ei2 will use the posterior mean of βb to impute one data set. This option
should be used only when ei2 has the computational difficulty since the standard error
is likely to be underestimated. The point estimate will not be biased. Default = 4.

Output Global: _ei2_mta, a “meta-data buffer” having as elements separate data buffers
named dbuf1, dbuf2, dbuf3,. . . , one for each of _ei2_m imputations. Each is the output from
a separate imputation run. If ei2 fails, _ei2_mta contains results from each of the imputation
runs already completed. eiread and eigraph understand when you give it a meta-data buffer
as an argument; by default it uses dbuf1 (this default can be changed by setting the eiread
global _EIMetaR to the number of the imputation data buffer you wish to analyze.)

For example, to save the meta-data buffer to a file for safe keeping, and then examine the
results from the first data buffer, add these lines to the example above:

save MraceDem=_ei2_mta; @ save meta-data buffer @
eiread(_ei2_mta,"sum"); @ show summary statistics @
graphon; @ open graphics window @
eigraph(_ei2_mta,"estsims"); @ plot simulations @
graphoff; @ close graphics window @

6.3. EIGRAPH

Format: eigraph(dbuf,"name");, where dbuf is a data buffer that is the output of ei
and name is a string chosen from the options listed below.

Purpose: Graphs results taken from the ei output data buffer (i.e., for 2 × 2 tables) and
for ei2 data buffers (2× C tables). See eiread for extracting numerical information.

Example: This example assumes you have run ei and saved a data buffer (called racevote.fmt
in the example below). eigraph can be run interactively or via a batch file. Here is a typical
set of commands that you might run interatively on a DOS-based machine. (The calls to
graphclr; prevent one graphic image being overlaid on top of the next.) GAUSS for Unix
requires you to open graphics windows explicitly; see the reference item GRAPH on page 29
below.)
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new;
library ei; @ initialize ei @
loadm dbuf = racevote; @ load in data buffer @
graphon; @ open graphics window @
eigraph(dbuf,"xgraph"); @ check info from bounds @
graphclr; @ clear graphics screen @
eigraph(dbuf,"fit"); @ evaluate model fit @
graphclr; @ clear graphics screen @
eigraph(dbuf,"tomog"); @ tomography plot @
graphclr; @ clear graphics screen @
eigraph(dbuf,"post"); @ draw district-level posterior @
graphoff; @ close graphics window @

Options: Choose any of the items below in place of name to see the corresponding graph.
(Items that use true values from individual-level data will only work if you have vput this
information into _Eres prior to running ei under the name truth. These are useful for
verifying the method if individual-level data are available, but they are not useful for most
ecological inference applications, where this information is not available. The options are
included here only because I needed them while writing the book.)

beta betaB and betaW

betaB density estimate (i.e., a smooth version of a histogram) of point estimates of βb
i ’s,

with whiskers.

betaW density estimate (i.e., a smooth version of a histogram) of point estimates of βw
i ’s,

with whiskers.

betabw lines,Tlines,bivar,Tbivar. See Figure 10.8, page 214.

bias combination of biasB, biasW, TbiasB, TbiasW. See the points in Figure 13.2, page 238.

biasB Xi by estimated βb
i .

biasW Xi by estimated βw
i .

bivar estimated βb
i by βw

i . See the right graph in Figure 13.6, page 243.

boundX combination of boundXB, boundXW, boundXB overlaid on TbiasB, boundXW
overlaid on TbiasW. See Figure 13.2, page 238.

boundXB Xi by the bounds on βb
i (each precinct appears as one vertical line), see the lines

in the left graph in Figure 13.2, page 238.

boundXW Xi by the bounds on βw
i (each precinct appears as one vertical line), see the lines

in the right graph in Figure 13.2, page 238.

estsims All the simulated βb
i ’s by all the simulated βw

i ’s. The simulations should take roughly
the shape of the mean posterior contours, except for those sampled from outlier tomog-
raphy lines. Homogeneous precincts are excluded.
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fit Combination of xtfit and tomogP

fitT Combination of xtfit and tomogT

goodman Xi by Ti plot with Goodman’s regression line plotted. See Figure 4.1, page 60.

lines Xi by Ti plot with one estimated line per precinct. Homogenous precincts do not
appear. See Figure 10.8, page 214.

movie For each observation (i = 1, . . . , p), one page of graphics appears with the posterior
distribution of βb

i and βw
i (with whiskers drawn at each simulated value), a plot of

simulated values of βb
i by βw

i from the tomography line) and the numerical values of
Ti, Xi, Ni, and i. After the graph for each observation appears, the user can choose to
view the next observation (hit return), jump to a specific observation number (type in
the number and hit return), or stop (hit “s” and return). See Figure 8.1, page 148.

movieD For each observation (i = 1, . . . , p), one tomography plot appears (like tomogD)
with the line for observation i darkened. After the graph for each observation appears,
the user can choose to view the next observation (hit return), jump to a specific obser-
vation number (type in the number and hit return), or stop (hit “s” and return). See
Figure 5.1, page 81.

nonpar combination of tomogD and a nonparametric density estimation with contour plot
and surface plot representations. See Figure 9.9, page 195.

post combination of postB and postW. See Figure 10.4, page 208.

postB density estimate of (weighted) district quantity of interest, the posterior distribution
for Bb. See Figure 10.4, page 208.

postW density estimate of (weighted) district quantity of interest, the posterior distribution
for Bw. See Figure 10.4, page 208.

prectB plot of estimated βb
i by true βb

i . See Figure 10.5, page 210.

prectW plot of estimated βw
i by true βw

i . See Figure 10.5, page 210

profile Profile plots — that is plots of the posterior of each element of φ, holding constant
all other values at their maxima. The maximum posterior point, as found by CML
is displayed as a vertical line from the max down to the bottom of the graph. After
seeing these plots, you can zoom in by changing _eigraph_pro (as is useful for seeing
how curved the likelihood is near the maximum). (Kinks in the profile are due to
imprecision in the cdfbvn function necessitating truncation by _EcdfTol.) This option
is very useful for verifying whether the maximization procedure did indeed find the
maximum.

profileR Profile plots of the cdfbvn function, (Equation 6.15, page 104). These are plots
of R by each element of φ, holding constant all other values at their maxima. The
maximum posterior point, as found by CML is displayed as a vertical line from the
max down to the bottom of the graph. After seeing these plots, you can zoom in
by changing _eigraph_pro. Kinks in the profile are due to imprecision in the cdfbvn
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function necessitating truncation by _EcdfTol. This option is very useful for verifying
whether the posterior is numerical stable near the maximum.

ptile combination of ptileB and ptileW. See Figure 10.7, page 213.

ptileB true percentile at which βb
i falls by estimated βb

i . See Figure 10.7, page 213.

ptileW true percentile at which βw
i falls by estimated βw

i . See Figure 10.7, page 213.

results combination of postB, postW, betaB, betaW.

sims combination of simsB and simsW. See Figure 10.6, page 212.

simsB simulations of βb
i by true βb

i . See Figure 10.6, page 212.

simsW simulations of βw
i by true βw

i . See Figure 10.6, page 212.

TbiasB Xi by true βb
i . See the points in the left graph in Figure 13.2, page 238.

TbiasW Xi by true βw
i . See the lines in the right graph in Figure 13.2, page 238.

Tbivar true βb
i by βw

i . See Figure 13.2, page 238.

Tlines Xi by Ti plot with one true line per precinct. Homogenous precincts do not appear.
See Figure 3.1, page 41.

tomog tomography plot with ML contours. See Figure 10.2, page 204. Dashed lines are
added for observations _Eselect’d out of the estimation stage, and a note appears at
the bottom left and top right corners if any observations are included for which Ti = 0
or Ti = 1 (since as tomography lines they are represented as barely visible points). The
global _EselRnd is ignored.

tomogCI tomography plot with 80% confidence intervals. Confidence intervals appear on the
screen in red with the remainder of the tomography line in yellow. On printed output,
which is often easier to see than the screen display, the confidence interval portion is
printed thicker than the rest of the line. See Figure 9.5, page 179.

tomogCI95 tomography plot with 95% confidence intervals. Confidence intervals appear
on the screen in red with the remainder of the tomography line in yellow. On printed
output, which is often easier to see than the screen display, the confidence interval
portion is printed thicker than the rest of the line. See Figure 9.5, page 179.

tomogD tomography plot with data only. See Figure 5.1, page 81. Dashed lines are added
for observations _Eselect’d out of the estimation stage, and a note appears at the
bottom left and top right corners if any observations are included for which Ti = 0 or
Ti = 1 (since as tomography lines they are represented as barely visible points). The
global _EselRnd is ignored.

tomogE tomography plot with estimated mean posterior βb
i and βw

i points. Dashed lines are
added for observations _Eselect’d out of the estimation stage, and a note appears at
the bottom left and top right corners if any observations are included for which Ti = 0
or Ti = 1 (since as tomography lines they are represented as barely visible points). The
global _EselRnd is ignored.
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tomogP tomography plot with mean posterior contours. Dashed lines are added for obser-
vations _Eselect’d out of the estimation stage, and a note appears at the bottom left
and top right corners if any observations are included for which Ti = 0 or Ti = 1 (since
as tomography lines they are represented as barely visible points). The global _EselRnd
is ignored.

tomogS combination of tomog, tomogp, tomogCI, and Tbivar (or estsims if truth isn’t avail-
able). See Figures 10.2 (page 204), 9.5 (page 179), 7.1 (page 126). Dashed lines are
added for observations _Eselect’d out of the estimation stage, and a note appears at
the bottom left and top right corners if any observations are included for which Ti = 0
or Ti = 1 (since as tomography lines they are represented as barely visible points). The
global _EselRnd is ignored.

tomogT tomography plot with true βb
i and βw

i points. See Figure 7.1 (page 126). Dashed
lines are added for observations _Eselect’d out of the estimation stage, and a note
appears at the bottom left and top right corners if any observations are included for
which Ti = 0 or Ti = 1 (since as tomography lines they are represented as barely visible
points). The global _EselRnd is ignored.

truth combination of post, precB, precW (compare truth to estimates at district and precinct-
level). See Figures 10.4 (page 208) and 10.5 (page 210).

xgraph a scattercross with data plotted. See Figure 12.1, page 227.

XgraphC a scattercross with data plotted, with size proportional to Ni.

xt basic Xi by Ti scatterplot

xtC basic Xi by Ti scatterplot with circles sized proportional to Ni or some other variable
defined by the global _eigraph_circ.

xtfit Xi by Ti plot with estimated E(Ti|Xi) and conditional 80% confidence intervals. See
Figure 10.3, page 206.

xtfitg xtfit with Goodman’s regression line superimposed

Globals: These globals need not be changed for the most common uses.

eigraph bb string: xlabel for βb
i by βw

i plots. Default = "betaB"

eigraph bbhi high end for betaB plots. Default = 1.

eigraph bblo low end for betaB plots. Default = 0.

eigraph bvsmth smoothing parameter for nonparametric density estimation; used only for
option nonpar. Default = 0.08. (The same parameter is used in ei for nonparametric
estimation.

eigraph bw string: ylabel for βb
i by βw

i plots. Default = "betaW"

eigraph bwhi high end for betaW plots. Default = 1.
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eigraph bwlo low end for betaW plots. Default = 0.

eigraph dbuf if 1, create data buffer called _eigraph_dbuf with px, py, pz inputs to the
contour plot when option nonpar is chosen.

eigraph eval number of equally spaced evaluations on each axis of the nonparametric den-
sity estimation. Default = 31.

eigraph loess 1 if show simulated and fitted loess for xtfit; 0 if show fit only (default).

eigraph pro rows(φ)×2. The first column is the lower limit and the second is the upper
limit of the range in which eigraph’s profile command uses for plotting. The default,
when set to missing, is to use eiread’s ebounds option.

eigraph smpl Set this in the range (0,1] to randomly select this fraction of observations to
use in tomography plots. This is useful if p is so large that it is difficult to see patterns
because of the large number of lines. Default = 1.

eigraph T string: ylabel for xt plots. Default = "T"

eigraph Thi High end of T graphs. Default = 1.

eigraph Tlo How end of T graphs. Default = 0.

eigraph thick value to add to line thickness parameter (default = 1).

eigraph X string: xlabel for xt plots. Default = "X".

eigraph Xhi High end of X graphs. Default = 1.

eigraph Xlo How end of X graphs. Default = 0.

eigraphC scalar: Multiply by circle size to change sizes. Default = 1, which means do not
change. set to (0,1) to reduce circle size and to (1,∞] to increase circle size. Must be
greater than zero.

EIMetaR If dbuf is a meta-data buffer (i.e., from the _ei2_mta output global of ei2), this
global denotes which of the imputed data buffers stored in dbuf should be accessed when
running eigraph. Default = 1.

tomogClr Colors for each contour drawn on tomography plots, default = { 12, 9, 10, 11,
13, 5 }.

tomogPct Vector of percentage values at which to draw contours. One contour is drawn
for each element with this fraction of this distribution’s volume falling within the drawn
ellipse. Default = {.5, .95}; rows( tomogClr) must be ≥ rows( tomogPct).
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6.4. EIMODELS

Format: dbufdef = eimodels_def(dbufdef,num,t,x,n,zb,zw);, where dbufdef is an
input meta data buffer which contains all the model specifications previously defined as sepa-
rate EI data buffers (or "" for the first run), and to which the current model definition will be
added, num is the scalar integer model number to be assigned to the current model definition,
and the rest are defined as in ei: t, x, and n are p×1 vectors, zb is a scalar 1 for no covariates
or a p× kb matrix of covariates, and zw is the scalar 1 for no covariates or a p× kw matrix of
covariates (do not include a constant term). The output, dbufdef, is an updated meta data
buffer which contains the current model definition along with the previously stored ones.
dbufrun = eimodels_run(dbufdef);, where an input, dbufdef, is the output meta data
buffer from eimodels_def which contains multiple model definitions. The output, dbufrun,
is another meta data buffer, containing one data buffer for each data buffer of model specifi-
cations in dbufdef.
dbufavg = eimodels_avg(dbufrun);, where dbufrun is the output meta data buffer from
eimodels_run containing the results of ei run for multiple models. dbufavg is a regular
output data buffer.

Purpose: eimodels_def stores multiple model definitions in a meta data buffer by adding
one model at a time. Each model can use different covariates and/or different values of various
global variables used for ei estimation. eimodels_def only stores model specifications; it does
not run any models. Results are stored in ndbuf2, a meta data buffer which should be read
with eiread with the model number specified as the value of the global variable, _EIMetaR.
eimodels_run takes the output meta data buffer from eimodels_def as an input and runs
all the models stored in that meta data buffer. The output is another meta data buffer which
contains the results of ei runs for each model as a single component data buffer. This output
data buffer should be read with eiread and eigraph with the model number specified using
the global variable, _EIMetaR (the default for which is 1, for the first model).
eimodels_def and eimodels_run are useful when you have different numbers of EI models
to run but want to store the results in one meta data buffer rather than saving them as many
separate data buffers. The two procedures can also be used for the method called Bayesian
Model Averaging as explained below.
eimodels_avg takes the output meta data buffer from eimodels_run as an input and imple-
ments Bayesian Model Averaging over all the models stored in that data buffer. To use this
procedure, three global variables are required for each of the component EI runs. First, when
a model includes covariates, the prior distributions for αa and αb need to be specified for
Bayesian Model Averaging in order to ensure that the posterior distribution is proper. The
two global variables, _Ealpha_B and _Ealpha_W, perform this function. Second, EI uses the
Laplace approximation (default) or the harmonic mean estimator, for computing the marginal
likelihoods. It is recommended that the number of simulations, _Esims, should be set to a
relatively large number in order to improve the precision of this estimation. If you use the
harmonic mean estimator, _EiLikS should be set to 1 for each model so that the output data
buffer from eimodels_run stores the values of the log-likelihood at each simulation. These
values are necessary to compute the marginal likelihood for this method. Finally, the output
data buffer should be read with eiread and eigraph.
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Example: The following example uses the sample file sample.asc that comes with EI.
Consult section 6.1 for the description of data and explanation of the commands to load the
data set. The code first stores the three different model definitions in a meta data buffer using
eimodels_def, and then it runs ei for each of the three models. Finally, it implements the
Bayesian Model Averaging to combine the results from the three models using eimodels_avg.

new; @ clear workspace @
library ei; @ initialize libraries @
clear t,x,n; @ clear all variables in dataset @
loadvars sample.asc t x n; @ load variables from disk file @

eiset; @ clear for Model 1 @
_Eres = vput(_Eres, "Model 1", "titl"); @ print out model number @
_Eeta = 1; @ zb=x, zw=1 @
_Ealpha_B = {0 2}; @ prior for betaB @
_Esims = 1000; @ number of simulation @
dbufdef = eimodels_def("",1,t,x,n,1,1); @ save Model 1, the first model @

eiset; @ clear for Model 2 @
_Eres = vput(_Eres, "Model 2", "titl");
_Eeta = 2; @ zb=1, zw=x @
_Ealpha_W = {0 2}; @ prior for betaW @
_Esims = 1000;
dbufdef = eimodels_def(dbufdef,2,t,x,n,1,1); @ save Model 2 @

eiset; @ clear for Model 3 @
_Eres = vput(_Eres, "Model 3", "titl");
_Eeta = 3; @ zb=x, zw=x @
_Ealpha_B = {0 2}; @ prior for betaB @
_Ealpha_W = {0 2}; @ prior for betaW @
_Esims = 1000;
dbufdef = eimodels_def(dbufdef,3,t,x,n,1,1); @ save Model 3 @

save rvdef = dbufdef; @ save ndbuf in file rvdef.fmt @
dbufrun = eimodels_run(dbufdef); @ run ei on all the models @
save rvrun = dbufrun; @ save ndbres in file rvrun.fmt @

_EIMetaR = 1;
call eiread(dbufrun, "sum"); @ summary of ei run for Model 1 @

_EIMetaR = 3;
graphon;
call eigraph(dbufrun, "tomog"); @ tomography plot for Model 3 @
graphoff;

_EI_bma_prior = {0.2,0.4,0.4}; @ set prior model probabilities @
dbufavg = eimodels_avg(dbufrun); @ Bayesian Model Averaging @
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save rvavg = dbufavg; @ save dbres in file rvavg.fmt @

graphon;
call eiread(dbufavg,"sum"); @ summary for dbres @
call eigraph(dbufavg,"post"); @ draw district level posterior @
graphoff; @ close graphics window @

Globals:

EImodels save set to “filename” if you want to save the results at each iteration in a data
buffer on the disk (default = “ ”; for no save).

EImodels est scalar, if 1 the Laplace approximation will be used to estimate the marginal
likelihood (default). If 2, the harmonic mean estimator (an importance sampling scheme)
will be used.

EI bma prior ((# of models)×1) The discrete prior probability of each model in the as-
cending order of the model number (default = 0 which assigns the uniform prior). The
elements of this vector must sum up to 1.

6.5. EIREAD

Format: v = eiread(dbuf,"name");, where dbuf is the output from procedure ei or ei2,
name is the item you desire to be extracted or computed from dbuf (see the list below), and
v is the output vector, matrix, or string.

Purpose: To extract or calculate numerical information from the output data buffer of ei
(for 2× 2 tables) or ei2 (for 2× C tables), from the ecological inference model.

Example: This example assumes that you have first run ei and saved a data buffer (called
racevote.fmt in the example below). eiread can be run interactively or via a batch file.
Here is a typical set of commands that you might run, although many other options to replace
the items in quotes are available below.

new;
library ei; @ initialize ei @
loadm dbuf = racevote; @ load in data buffer @
format/rd 7,4; @ nicely format output; 4 decimal places @
eiread(dbuf,"sum"); @ summary info @
betaw = eiread(dbuf,"betaw"); @ extract point estimates for betaW @
betabCI = eiread(dbuf,"ci80b"); @ extract betaB confidence intervals @
call eiread(dbuf,"goodman"); @ run Goodman’s regression @

The last example illustrates the GAUSS “call” statement, which discards the output of eiread,
leaving only the results that are explicitly printed to the screen by some eiread options. To
save output from these procedures in an ascii text file, include commands like these:
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output file=filename.txt reset; @ start saving to filename.txt @
betaw; @ print previously saved output @
eiread(dbuf,"betab"); @ print betaB results @

output off; @ close output file @

Globals:

Eprt if ≥ 1, in addition to outputting results in v, print a display of the item to the screen
(available for options whose description begins with an asterisk, below) (default); 0 do
not print.

EIMetaR If dbuf is a meta-data buffer (i.e., from the _ei2_mta output global of ei2; the
output buffer from eimodels_def and eimodels_run), this global denotes which of the
imputed data buffers (in case of _ei2_mta) or which of the stored model (in case of
eimodels_def and eimodels_run) in dbuf should be accessed when running eiread
and eigraph. Default = 1.

Options: Choose from the following items for name. The possibilities include items stored
as is in dbuf (and so could also be retrieved with the GAUSS command vread), calculated
from dbuf, special optional items that can be added ahead of time, and additional items that
can be computed but require the added items. >From the perspective of the user, items in
each of these categories can be treated identically, as all calculations are automatic. Items
are not case sensitive. (Items that use true values from individual-level data will only work if
you have vput this information into _Eres prior to running ei under the name truth. These
are useful for verifying the method if individual-level data are available, but they are not
useful for most ecological inference applications, where this information is not available. The
options are included here only because I needed them while writing the book.)

When used with an EI2 output data buffer (i.e., for 2×C tables), eiread uses use the mean
posterior estimate for Xi for some items; the correct multiply imputed values of xi (x2) are
used only where specifically noted.

EalphaB value of this global (priors on αb)

EalphaW value of this global (priors on αw)

Ebeta value of this global (priors on B̆)

Ebounds value of this global (bounds for CML, not quantities of interest).

Ecdfbvn value of this global (method of calculating CDF of the bivariate normal)

EdirTol value of this global (CML convergence tolerance)

EdoML value of this global (do maxlik)

EdoML phi value of this global (input φ’s). Only relevant if _EdoML = 0.

EdoML vcphi value of this global (input variance-covariance of φ’s). Only relevant if
_EdoML = 0.
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Eeta value of this global (expanded model specifications; see Chapter 9).

EI bma prior value of this global (prior model probabilities for Bayesian Model Averaging).

EI vc value of this global (variance matrix computation)

EImodels save value of this global (file name for eimodels_run).

EIgraph bvsmth value of this global (smoothing parameter for nonparametric density es-
timation)

EisChk value of this global (check importance sampling)

EisFac value of this global (number to multiply by variance matrix by in importance sam-
pling or −1 for normal approximation)

EisN value of this global (first stage importance sampling factor)

EisT value of this global (multivariate t or normal for importance sampling)

EmaxIter value of this global (maximum iterations for CML)

EnonEval value of this global (number of nonparametric density evaluations for each to-
mography line). Only relevant if _Enonpar = 1.

EnonNumInt value of this global (number of points to evaluate for numerical integration in
computing the denominator for the bivariate kernel density). Only relevant if _Enonpar
= 1.

EnonPar value of this global (0, parametric or 1, nonparametric, estimation).

EnumTol value of this global (numerical tolerance for homogeneous and unanimous precincts)

Erho value of this global (prior on ρ). See Section 7.4.

Eselect value of this global (vector of 0/1 to delete/select observations during likelihood
stage, or 1 to select all).

EselRnd value of this global (fraction of observations to select randomly).

Esigma value of this global (priors on σ̆b and σ̆w). See Section 7.4.

Esims value of this global (number of simulations). See Appendix F.

Estval value of this global when ei was run (starting values).

n p× 1: the original variable Ni from the first stage EI analysis. This works only for EI2.

t p× 1: the original variable Ti from the first stage EI analysis. This works only for EI2.

EvTol value of this global (numerical tolerance for the conditional variance).

x p× 1: the original variable Xi from the first stage EI analysis. This works only for EI2.

Ez 2× 1: number of covariates (see Chapter 9), including implied constant term for Zb|Zw;
also clears and sets this in global memory.



Journal of Statistical Software 23

ABounds 2× 2: aggregate bounds rows:lower,upper; columns:betab,betaw. See Chapter 5.

ABounds2 2×2: aggregate bounds for the λ’s from EI2, rows:lower,upper; columns:lambdaB,
lambdaW. See Chapter 5.

AggBias 4× 2: regressions of true βb
i and βw

i on a constant and Xi. Requires truth to have
been vput into _Eres prior to running ei. See Table 11.1, page 219.

aggs _Esims×2: simulations of district-level quantities of interest, B̂b ∼ B̂w. See Section
8.3. (Uses x2 simulations when used with ei2).

AggTruth 2 × 1: true district-level Bb and Bw. Requires truth to have been vput into
_Eres prior to running ei. See Chapter 2.

beta p× 2 point estimates of βb
i (in the first column) and βw

i (in the second) based on their
mean posterior. See Section 8.2. (Uses x2 simulations when used with ei2.)

betaB p × 1 point estimates of βb
i based on its mean posterior. See Section 8.2. (Uses x2

simulations when used with ei2.)

betaBs p×_Esims: simulations of βb
i . See Chapter 8. (Uses x2 simulations when used with

ei2).

betaW p × 1 point estimate of βw
i based on its mean posterior. See Section 8.2. (Uses x2

simulations when used with ei2).

betaWs p× Esims: simulations of βw
i . See Section 8.2. (Uses x2 simulations when used

with ei2).

bounds p× 4: bounds on βb
i and βw

i , lowerB∼upperB∼lowerW∼upperW. See Chapter 5.

bounds2 p × 4: bounds on λb
i and λw

i , lowerB∼upperB∼lowerW∼upperW. See Chapter 5,
eqns 5.4.

checkR rows(φ)×2 matrix with rows corresponding to φ, columns corresponding to slightly
less∼more (by amount _EdirTol) than the MLEs, and each element indicating that the
CDFBVN function is sufficiently precise (when 1) and insufficiently precise (when 0).
This function calculates the R portion of the likelihood function to make the comparison
(Equation 6.15, p.104). See option R.

CI50b p × 2: lower∼upper 50% confidence intervals for βb
i . See Section 8.2. (Uses x2

simulations when used with ei2).

CI50w p × 2: lower∼upper 50% confidence intervals for βw
i . See Section 8.2. (Uses x2

simulations when used with ei2).

CI80b p × 2: lower∼upper 80% confidence intervals for βb
i . See Section 8.2. (Uses x2

simulations when used with ei2).

CI80bw p× 4: lowerB∼upperB∼lowerW∼upperW 80% confidence intervals for βb
i and βw

i .
See Section 8.2. (Uses x2 simulations when used with ei2).
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CI80w p × 2: lower∼upper 80% confidence intervals for βw
i . See Section 8.2. (Uses x2

simulations when used with ei2).

CI95b p × 2: lower∼upper 95% confidence intervals for βb
i . See Section 8.2. (Uses x2

simulations when used with ei2).

CI95bw p× 4: lowerB∼upperB∼lowerW∼upperW 95% confidence intervals for βb
i and βw

i .
See Section 8.2. (Uses x2 simulations when used with ei2).

CI95w p × 2: lower∼upper 95% confidence intervals for βw
i . See Section 8.2. (Uses x2

simulations when used with ei2).

coverage 2×4: confidence interval coverage; percent of true values within the 50% and 80%
confidence intervals: 50b∼80b∼50w∼80w (1st row = means, 2nd = weighted means).
Requires truth to have been vput into _Eres prior to running ei. (Uses x2 simulations
when used with ei2).

CsbetaB p × 1 confidence interval-based standard error of βb
i . (Uses x2 simulations when

used with ei2).

CsbetaW p× 1 confidence interval-based standard error of βw
i . (Uses x2 simulations when

used with ei2).

DataSet Zb∼Zw∼x∼t, used for input to eiloglik. If _Eselect is a scalar less than 1 (for
random selection of cases). The global _EselRnd is ignored.

date a string containing the date and time at which execution completed, as well as the
version number and date of the program EI that created the input data buffer.

double 2×1 coefficients from a double regression. Requires an EI2 data buffer as input. See
Section 4.3.

EaggBias 4× 2: regressions of estimated βb
i and βw

i on a constant term and Xi. First row:
coefficients, second row: standard errors. See Section 9.2.4.

etaC 2× 1 coefficients implied by global Eeta

etaS 2× 1 standard errors implied by global Eeta

ExpVarCI 100 × 4: 80% confidence intervals for Ti given Xi. X∼20%CI∼mean∼80%CI of
sims from P (Ti|X), where X in this context is 100 numbers equally spaced between 0
and 1. See Section 8.5. (Uses x2 simulations when used with ei2).

ExpVarCI0 p×4: 80% confidence intervals for Ti given the observed values of Xi and/or Zb
and Zw when applicable. T∼20%CI∼mean∼80%CI of sims from P (Ti|X,Zb, Zw) (Uses
x2 simulations when used with ei2).

ExpVarCIs 100× 4: same as expvarci, but smoothed with LOESS. Used for eigraph’s xtfit.
See Section 8.5. (Uses x2 simulations when used with ei2).
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GEbw p× 3: βb
i ∼ βw

i ∼Nsims. Point estimates of βb
i and βw

i , based on the mean posterior
under the prior that βb

i ≥ βw
i . Use this option (instead of beta) if you are reasonably

certain that βb
i ≥ βw

i . This procedure is based on simulations for which the inequality
holds, and thus also reports Nsims, the number of simulations on which each estimate
is based (If Nsims is not close to _Esims, you may wish to question your assumption or
increase _Esims).

GEbwa p × 2: Bb ∼ Bw. Aggregate level mean posterior estimates, based on simulations
where βb

i ≥ βw
i . See GEbw for more information.

GEwb p× 3: βb
i ∼ βw

i ∼Nsims. Point estimates of βb
i and βw

i , based on the mean posterior
under the prior that βb

i ≤ βw
i . Use this option (instead of beta) if you are reasonably

certain that βb
i ≤ βw

i . This procedure is based on simulations for which the inequality
holds, and thus also reports Nsims, the number of simulations on which each estimate
is based (If Nsims is not close to _Esims, you may wish to question your assumption or
increase _Esims).

GEwba p × 2: Bb ∼ Bw. Aggregate level mean posterior estimates, based on simulations
where βb

i ≤ βw
i . See GEwb for more information.

GhActual value of the output global _GhActual, the row of _ei_vc for which a positive
definite variance matrix was found.

Goodman 2 × 2: row 1: Goodman’s Regression coefficients, row 2: standard errors. See
Section 3.1.

lnIR If _EisChk = 1, this is a _Esims*_Eisn×rows(φ)+1 matrix , containing the log of
the importance ratio as the first column and normal simulations of φ̃′ as the remaining
columns. If _EisChk = 0, this is the scalar mean importance ratio (equivalent to meanIR
below).

LogLik value of log-likelihood at the maximum (unnormalized)

LogLikS value of log-likelihood at the maximum (unnormalized) for each observation i.

LLikSims If _EiLlikS = 1, this is _Esims×1 vector of log-likelihood values for each simu-
lation; otherwise it is a scalar mean of these.

Maggs 2 × 1: point estimate of 2 district-level parameters, B̂b and B̂w: meanc(aggs). See
Section 8.3. (Uses x2 simulations when used with ei2).

MeanIR scalar log of the mean importance ratio

mpPsiu Mean Posterior of ψ̆ (rather than MLEs).

N p× 1: number of individual elements in precinct i, Ni, an input to ei.

Nb p × 1: denominator of x and t, equal to x.*n, N b
i (e.g., number of blacks in the voting

age population).

Nb2 for ei2 data buffers only, p×_Esims: denominator of x2 and V, equal to x2.*n, N b
i

(e.g., number of blacks in the voting age population).
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Nt p× 1: numerator of t, equal to t.*n, N t
i (e.g., number of people who turnout).

NbN p×1: N bN
i (e.g., number of blacks who don’t vote). Requires truth to have been vput

into _Eres prior to running ei. See Chapter 2.

NbT p× 1: N bT
i (e.g., number of blacks who vote). Requires truth to have been vput into

_Eres prior to running ei. See Chapter 2.

Neighbor Freedman et al.’s neighborhood model point estimates (i.e., assuming βb
i = βw

i ,
with implied standard errors of zero).

nobs scalar: number of observations, p.

Nw p× 1: equal to (1-x).*n, Nw
i (e.g., number of whites in the voting age population)

Nw2 for ei2 data buffers only, p×_Esims: equal to (1-x2).*n, Nw
i (e.g., number of whites

in the voting age population)

NwN p × 1 NwN
i : (e.g., number of whites who don’t vote). Requires truth to have been

vput into _Eres prior to running ei. See Chapter 2.

NwT p× 1: NwT
i (e.g., number of whites who Turnout). Requires truth to have been vput

into _Eres prior to running ei. See Chapter 2.

Paggs 2×2: row 1: B̂b and B̂w; row 2: standard errors. See Section 8.3. (Uses x2 simulations
when used with ei2).

Palmquist scalar: Palmquist’s Inflation Factor. See Equation 3.14, page 52.

ParNames character vector of names for φ (_cml_parnames).

phi maximum posterior estimates from CML.

PhiSims If _EisChk==1, PhiSims is a _Esims×rows(φ) matrix of random simulations of
φ; otherwise, it is a rows(φ)×2 matrix of the means (in the first column) and standard
deviations (in the second column) of the simulations (which are the mean and standard
deviations of the posterior distribution of φ). See Section 8.2.

Pphi 2× 5 maximum posterior estimates. row 1: φ, row 2: standard errors. See Chapter 7.

psi reparameterized φ into ultimate truncated scale. See Section 6.2.2.

PsiTruth 5 × 1: true values of ψ (i.e., on truncated scale). Requires truth to have been
vput into _Eres prior to running ei. See Table 10.3, page 207.

psiu ψ̆, which was reparameterized from φ into untruncated scale. See Equation 7.4, page
136.

R The sum of the log of the volume above the unit square under the bivariate normal,
R(B̆, Σ̆). This is the last piece of the likelihood function. See checkR.

Ri The log of the volume above the unit square under the bivariate normal, R(B̆, Σ̆) for each
i. This is the last piece of the likelihood function, and will differ over i only if covariates
are included. See checkR.
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resamp number of resampling tries. This number will range between 1 and _Esims and is
better if small. If it is greater than 15–20, you can try adjusting _Eisn or _EisFac and
rerunning ei.

RetCode CML return code. zero means everything is ok.

RNbetaBs p×_Esims: randomly horizontally permuted simulations of βb
i . This is essentially

equivalent to betaBs except that it randomly permutes estimation variation also. (Uses
x2 simulations when used with ei2).

RNbetaWs p×_Esims: randomly horizontally permuted simulations of βw
i . This is essen-

tially equivalent to betaWs except that it randomly permutes estimation variation also.
(Uses x2 simulations when used with ei2).

sbetaB p × 1 standard error for the estimate of βb
i , based on the standard deviation of its

posterior. See Section 8.2. (Uses x2 simulations when used with ei2).

sbetaW p× 1 standard error for the estimate of βw
i , based on the standard deviation of its

posterior. See Section 8.2. (Uses x2 simulations when used with ei2).

STbetaBs p× Esims: SORTED simulations of βb
i (e.g., the 80% confidence interval lower

bound is STbetaBs[int(0.1*_Esims)]). See Section 8.2. (Uses x2 simulations when
used with ei2).

STbetaWs p× Esims: SORTED simulations of βw
i (e.g., the 80% confidence interval upper

bound is STbetaWs[int(0.9*_Esims)]). See Section 8.2. (Uses x2 simulations when
used with ei2).

sum prints a summary of district-level information

t p × 1: outcome variable proportion, Ti (e.g., turnout); input to ei. If dbuf is the output
from ei2, then this option gives Vi (e.g., Democratic fraction of the major party vote),
an input to ei2.

Thomsen 2× 1: Estimates of Bb|Bw from Thomsen’s Ecological Logit Model.

titl string: a title with descriptive information. Must have been vput into _Eres prior to
running ei.

truPtile p x 2: percentile of sorted simulates at which the true value falls for βb
i and βw

i .
Requires truth to have been vput into _Eres prior to running ei. See Figure 10.7, page
213. (Uses x2 simulations when used with ei2).

truth p× 2: true values of the precinct-level quantities of interest βb
i ∼ βw

i . Must have been
vput into _Eres prior to running ei.

truthB truth[.,1], the true βb
i . Requires truth to have been vput into _Eres prior to

running ei.

truthW truth[.,2], the true βw
i . Requires truth to have been vput into _Eres prior to

running ei.
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tsims 100×_Esims+1: simulations of Ti given Xi. rows correspond to 100 values of Xi

equally spaced between zero and one, columns are Xi and sorted simulations of Ti|Xi.
See Section 8.5. (Uses x2 simulations when used with ei2).

tsims0 p×_Esims+1: simulations of Ti given observed values of Xi and/or Zb and Zw. The
first column is the actual values of Ti (Uses x2 simulations when used with ei2).

VCaggs 2 × 2: variance matrix of 2 district-level parameters, B̂b and B̂w. See Section 8.3.
(Uses x2 simulations when used with ei2).

VCphi global variance matrix of coefficients phi from gvc(). If _EI_vc is set to {-1 0 }, then
it returns the inverse of the variance matrix.

x p× 1: explanatory variable proportion, Xi (e.g., black voting age population); input to ei.
(for ei2, this is the mean posterior estimate of xi, as, e.g., the black fraction of those
voting).

x2 for ei2 data buffers only, p×_Esims: simulations of the explanatory variable proportion,
xi (e.g., black fraction of voters).

x2rn for ei2 data buffers only, p× _Esims: horizontally randomly permuted simulations of
the explanatory variable proportion, xi (e.g., black fraction of voters). (This is useful
because x2 has only _EI2_m unique columns.)

Zb matrix of covariates for βb
i or 1 for none; as affected by Eeta; input to ei. See Section

9.2.1.

Zw matrix of covariates for βw
i or 1 for none; as affected by Eeta; input to ei. See Section

9.2.1.

6.6. EIREPL

Format: dbuf=eirepl(dbufIN); where dbufIN is a GAUSS data buffer output from ei(),
containing t, x, n, Zb, Zw, and all globals in standard ei format, and where dbuf is an output
data buffer.

Purpose: The purpose of this proc is to make it very easy to replicate results from an
existing data buffer. It extracts and sets all globals from dbufIN, extracts the variables t, x,
n, Zb, and Zw, and then runs ei(). The original results stored in dbufIN are not used. This
procedure has no globals. Note that ei uses simulation to approximate various quantities
and so you should not expect to replicate anything to the last decimal point. If you wish
replication to more decimal points, increase _Esims before running ei() the first time or set
GAUSS’s rndseed.



Journal of Statistical Software 29

Example: This example assumes that you have first run ei and saved a data buffer (called
racevote.fmt in the example below), or you received racevote.fmt from someone else’s
analysis.

new;
library ei; @ initialize ei @
loadm dbuf = racevote; @ load in data buffer @
dbufNew = eirepl(dbuf); @ replicate @

6.7. EISET

Format: eiset;

Purpose: To reset all EI globals to their defaults.

6.8. GRAPHON, GRAPHONS, GRAPHCLR, GRAPHNO, GRAPHWAIT,
GRAPHOFF

Format: graphon; to open a graphics window, graphons; to open a small graphics window,
graphclr; to clear a graphics window already opened, graphno; to leave the graphics window
open and switch output to the text window, graphwait; to pause between graphs, and
graphoff; to wait for a key to be pressed in the text window and then to close the graphics
window. (Use wincloseall; to close the graphics window without a pause.)

Purpose: Use these commands for easy interactive (or batch) window handling for win-
dowing systems only (such as X-windows under Unix or win95). graphclr; should be used
between graphs on a dos system so that one graph is not overlaid on top of the previous one.

Example: After running ei and saving the data buffer on disk in filename racevote.fmt,
a typical interactive session might include the following:

new;
library ei;
loadm dbuf = racevote; @ load in output from ei @
eiread(dbuf,"sum"); @ print summary info @
graphon; @ open graphics window @
eigraph(dbuf,"fit"); @ print graph @
graphclr; @ clear graphics window @
eigraph(dbuf,"bias"); @ print graph @
graphno; @ switch to text window @
eiread(dbuf,"Maggs"); @ print textual info @
graphclr; @ clear & switch to graphics @
eigraph(dbuf,"betabw"); @ print graph @
wincloseall; @ close graphics window @
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6.9. LOADVARS

Format: loadvars file var1 var2..., where file is a string with a file name and is
followed by a list of valid GAUSS variable names, one for each column of file.

Purpose: An ASCII data file is loaded from disk into the variable names listed. The data
file must be delimited by spaces, tabs, or commas. It is often convenient to have one row
per observation and one variable per column, but observations may wrap around to the next
row if desired. If used in a batch file, be sure to clear the variable names listed prior to this
procedure. This procedure is included for the convenience of users; if you are already familiar
with other ways of loading data into GAUSS, they can also be used.

Example: After including these lines at the top of your program, the variables will be in
memory and available for further use. sample.asc is a sample data file that comes with EI.

new;
library ei;
clear t,x,n; @ clear variables in dataset @
loadvars sample.asc t x n; @ load in vars into memory @

6.10. SUBDATV

Format: call subdatv("dataset",vrs); where dataset is a string with the filename of
your GAUSS data set, and vrs is a character vector of variable names to read in or zero to
read them all in.

Purpose: Reads in a GAUSS data set into variable names in memory by the same name. If
used in a batch program, be sure to clear all variable names prior to issuing this command.
This procedure is included for the convenience of users; if you are already familiar with other
ways of loading data into GAUSS, they can also be used.

Example: After including these lines at the top of your program, the variables will be in
memory and available for further use.

new;
library ei;
clear give,dog,a,bone; @ clear variables in dataset @
call subdatv("C:\data\racedogs",0); @ load all variables @
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7. Frequently asked questions

How does EI relate to Goodman’s regression and the method of bounds? The only
commonly used methods before EI were Goodman’s regression and the method of bounds.
Goodman’s regression worked when the assumptions held but, as Leo Goodman made clear,
it did not work when the assumptions were wrong. Within the Goodman framework, the
data alone provided no information about whether the assumptions were right or wrong. The
method of bounds always gave correct ranges into which the quantities of interest fell, but
the ranges were often wider than was desirable (only in part because the wrong method of
computing them was frequently used).
EI combines the two methods (hence resolving most controversies between adherents of these
two popular approaches) and adds some additional features. Instead of there being two
situations, as under Goodman’s approach (i.e., the assumptions applied and the method
worked or they don’t and it doesn’t), we now have five, only the last one of which is a
problem for EI:

1. Under EI, if the assumptions are correct, you get the right answer. For an example, see
Chapter 10 or the Monte Carlos in Chapter 9.

2. If the assumptions are wrong, EI still does “well” (in the sense of small MSE or squared
bias) when the bounds (and other information in the tomography lines) are sufficiently
informative. An important point is that the degree to which the bounds are informative
can easily be assessed from the aggregate data, and so the risks of making ecological
inferences are largely known. As one example, see Chapter 11.

3. If the assumptions are wrong and the bounds are not sufficiently informative, but the
diagnostics are sufficiently informative, then the assumptions can easily be changed,
and EI will do well. The analyses reported in Figure 9.5 (p. 179) and the left graph
in Figure 13.2 (p. 238) for aggregation bias and Figures 9.7 and 9.9 (Pp. 187, 195) for
distributional violations are examples. The third assumption, no spatial autocorrelation,
seems to have minor effects.

4. If the assumptions are wrong and the bounds and the diagnostics are not sufficiently
informative, but the researcher has additional qualitative knowledge of the problem,
then appropriate assumptions can be chosen. In this case, either EI will do well, or
the formal measures of uncertainty produced by EI (standard errors and confidence
intervals, etc., which are based only upon the data and model) can be supplemented and
expanded accordingly. Since the ecological inference problem is about information that
has been aggregated away, only by adding some information is it possible to make reliable
inferences in general. Qualitative information is of course subject to more interpretation
and hence more uncertainty, but reliable inferences permit no other option other than
to add assumptions or other information. The book discusses a lot of ways to bring in
qualitative information (see also Gary King, Robert Keohane, and Sidney Verba. 1994.
Designing Social Inquiry: Scientific Inference in Qualitative Data. Princeton University
Press).

5. If the assumptions are wrong and the bounds and the diagnostics are not sufficiently
informative, and the researcher has no time or resources to collect additional qualitative
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information, then EI will perform poorly. An example of data like this appear in Figure
9.2 (p. 163). Even in this worst case scenario, and the others, EI will be more robust
than Goodman’s. By this I mean that the maximum amount of bias from EI is capped
at a fixed and knowable level, in contrast to Goodman’s approach. The dotted line
(corresponding to τ = 0 for the default model) in Figure 9.6 (p. 180) shows that bias in
EI estimates increases with the degree of aggregation bias for small levels of aggregation
bias; at some point, however, the maximum bias maxes out and increases no further. The
point at which the error maxes out depends on the data. Under Goodman’s approach,
the error linearly increases without limit as aggregation bias increases.

The likelihood of the first four cases coming up relative to the fifth (as compared to the
likelihood of the assumptions applying vs not applying under Goodman’s) summarizes the
advantage of EI. Basically what EI does is to chip off pieces of Goodman’s worst case (the
assumptions not applying). The benefits of EI will therefore quite obviously depend on the
area and application and how much effort is put into collecting qualitative information.

In what precise statistical sense is EI “Robust”? As aggregation bias increases, Good-
man’s regression becomes biased without limit. The bias in EI, in contrast, has a maximum
value that is a function of the bounds. This is easy to see in Figure 9.6, p.180; note how the
mean absolute error for the dotted line at the top, for example, is linear in the low aggregation
bias region (where α < 0.5), but for higher levels of aggregation bias it levels off; in contrast,
the mean absolute error for Goodman’s and any method that does not incorporate the bounds
will increase linearly without limit until the correlation of X and βb

i , β
w
i is 1.

How does EI relate to the neighborhood model? The neighborhood model was de-
signed for the purpose of critiquing the Goodman model, and is not thought of as a plausible
method of producing ecological inferences in its own right (see pp. 43–44). The neighborhood
model’s advantage is that it is in the class of models that are consistent with the method of
bounds for each precinct and thus cannot be rejected solely from information in the aggregate
data (this class of models is described on p. 191). As such, it can be seen as a special case
of EI. Its disadvantage is its assumption that βb

i = βw
i , which is of course appropriate in

some cases and far off in others, but whichever it is it assumes the answer to the question
being asked. A consequence of the neighborhood model assumption having no error term and
supposedly holding exactly is that its standard errors are always zero, which is unreasonable.
If, somewhat more reasonably, the neighborhood model assumption is approximately plau-
sible for a particular application, then it is best to run EI with priors suitably adjusted to
reflect this information. If priors are strong enough and not substantially contradicted by
the likelihood, EI will give similar point estimates to the neighborhood model, but it will
give more reasonable (nonzero) standard errors and confidence intervals for the precinct-level
quantities.

Can EI give the misleading answers? Yes. Nothing in EI, this manual, or A Solution to
the Ecological Inference Problem promises to give you the correct answer every time without
thought. “The method” proposed in the book is not what comes spinning out of EI with all
globals set at their defaults. Appropriate inferences, according to the argument put forward
in the book, require full use of the diagnostics, to evaluate the amount of information lost in



Journal of Statistical Software 33

aggregation (such as how wide the bounds are for different groups of observations) and how
well the model fits and its assumptions apply. Since assumptions about joint distributions
for βb

i and βw
i cannot be rejected if they merely have positive mass over any curve that

connects the bottom left and top right points of a tomography plot (p.191), there is no way
to make certain inferences about individual level behavior from aggregate data alone. The
only solution to this fundamental lack of information is to bring in some of the vast array
of qualitative information available to most social scientists about the problems we study —
including ethnographies, particiant observations, partial survey data, journalistic accounts,
historical studies, prior quantitative research, and the like — the full range of data collection
schemes used in modern social science. Interpreting qualitative information in the context
of statistical inference is of course open to more interpretation and ambiguity than formal
statistical tests, but stopping at quantitative data, especially for this problem, is insufficient.

Considerable thought, analysis, and qualitative information may be necessary to settle on
the right version of the model to run. EI includes dozens of global variables that govern the
main parts of the model; combinations of these globals can produce estimates from millions
of possible specifications, even given identical input variables. The choice among these mod-
els requires the same degree of reasoned analysis and reanalysis, checking assumptions, and
rerunning that the appropriate use of any method does. The actual method of ecological in-
ference proposed in the book requires careful attention to each item in the checklist provided
in the concluding chapter (Chapter 16); since several of the items require the user to consult
qualitative evidence and other substantive knowledge about the problem, this program alone
implements only part of the proposed method. Moreover, even with considerable thought,
some misinformation or lack of information can sometimes lead to incorrect estimates; Chap-
ter 9 provides extensive examples of precisely what can go wrong and under what conditions.
If you have an example where you suspect that EI does not recover the truth, then one of
the problems discussed in that chapter is likely at fault, and so you might consider some of
the alternative approaches and model extensions also given there.

Finally, if you are comparing EI results to an external source of information to judge the
“truth”, consider whether the external source may be biased. For example, an estimate from
survey data is just an estimate and not necessarily be better than an ecological inference. One
of the best academic surveys, the National Election Studies, overestimates turnout by 8-10%
and vote for incumbent House candidates by about 8%. (Even the NES’s “voter validation
studies,” which check each respondent’s turnout from public records, contain errors.) Other
surveys, especially about controversial issues, or politically or personally sensitive topics, often
generate larger biases. The point is that every source of information, ecological and individual,
comes with some potential biases or errors.

See also the questions below on the advantages of EI, computational problems, statistical fit,
and standard error interpretation.

How do I understand EI standard errors? EI standard errors (and other uncertainty
estimates, such as confidence intervals, etc.) are logically very similar to, and can be inter-
preted analogously to, standard errors for least squares regression (LS) coefficients:

1. In LS, the variance of predicted values as estimates of yi, V (ŷi + ε) = V (xib) + σ2 do
not go to zero as n gets larger. In EI, the variances of the precinct-level parameters
(V (βb

i ) and V (βw
i )) do not go to zero as n gets larger.
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2. In LS, V (ŷ), i.e. the “sample” variance of ŷi over i, does not go to zero as n gets larger.
In EI, V (βb) and V (βw), i.e. the “sample” variance of βb

i and βw
i over i, does not go to

zero as n gets larger.

3. In LS, V (b) goes to zero as n gets larger (where b is essentially any scalar function of
ŷi, for all i, such as a LS coefficient). In EI, V (B) goes to zero as n gets larger (where
B is the weighted average of the βi’s over all precincts).

4. In LS, the number of explanatory variables we include tends in common practice to be
an increasing function of the number of observations we have, and so we don’t see very
small standard errors unless there’s a mistake. In EI, covariates are only sometimes used
to correct for some types of aggregation bias and the number included is, in practice,
independent of the number of observations and the number of quantities that may be
of interest.

5. In LS, the variance of a prediction is a function of estimation uncertainty (sampling
error, V (b), where b is the regression coefficient) and fundamental uncertainty (V (εi)).
In EI, V (βb

i ) and V (βw
i ) are functions of estimation uncertainty (V (ψ), where psi are

the 5 parameters of the truncated bivariate normal), and fundamental uncertainty (Σ,
which is composed of three elements of ψ).

6. In LS, it is standard practice is to include in the formal computation of the standard
error only estimation and fundamental variability and to exclude uncertainty due to the
possibility of omitted variable bias, endogeneity, measurement error, selection bias, etc.
It is possible to include these other possible problems in the computation of the stan-
dard error, but few computer programs allow it. In EI, the standard errors include only
estimation and fundamental uncertainty, and exclude possible violations of the 3 model
assumptions that the model in an application may not be robust to (i.e., serious viola-
tions of no aggregation bias, truncated bivariate normality, and spatial independence).
Only by using the diagnostics and bringing in additional qualitative information, not
represented in the aggregate data, can one add assessments of uncertainty to the formal
measures given by the program. Of course, many of the standard problems of regression
do not affect ecological inferences.

How do I get a quick list of options and globals? Use the GAUSS help facility. As
long as the library command (library ei;) has been issued, you can ask for help on any of
the EI commands. For example, in DOS, you can type Alt-H,H,eiread to get all of eiread’s
options.

What computational details should I check? Make sure that the maximization proce-
dure worked properly. For example, make sure that eiread’s retcode is zero. Is the variance
matrix from the normal approximation reasonable? Most importantly, check to make sure the
simulations are coming from the mean posterior contours by comparing eigraph’s tomogp to
estsims (these are both in tomogS); verify that eigraph’s post gives unimodal distributions.
Was the importance sampling successful? Check to make sure that eiread’s resamp is not
much larger than 20 or so (it is not fatal if it is larger, but its worth checking).
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What statistical issues should I check? It is essential to verify that the model fits the
data. First, look at eigraph’s fit: for the X by T graph on the left, verify that the E(Ti|Xi)
line passes through the middle of the points, and the 80% confidence intervals capture around
80% of the points, vertically for each value of X on the horizontal axis. For the tomography
plot of the right of the fit graph, verify that the contours capture the place from where the
“emissions” come from (roughly speaking, where the lines are crossing). Then check eigraph’s
tomogS and verify that the maximum likelihood contours (on the top left, the same as the
tomography plot in the fit graph) and mean posterior contours (on the top right) both fit
the data in roughly the same way. If there are problems here, see the next question in this
FAQ.

Other issues to check are whether there outliers or multiple modes. Is there aggregation
bias? Check the results at the aggregate level (eigraph’s post; eiread’s Paggs) and the
precinct level (e.g., eigraph’s beta or eiread’s betaB and betaW); are these consistent with your
qualitative knowledge? Verify that the relationship between βb

i and Xi and between βw
i and

Xi are consistent with your understanding of your substantive problem (see eigraph’s boundX).
Is there survey, qualitative, or other external information you could have used but didn’t?
Chapter 16 provides a complete checklist that should be used for every serious application.

What global values should I set? Which EI model should I run? EI will enable
you to run any of a large set of related models. No one model from this set or any other will
work all the time. The program defaults are chosen for speed and simplicity, not for what will
be most reasonable empirically. For the latter, I would read Section 9.2.3 (especially Figure
9.6) and consider globals like these:

_Eeta=3;
_EalphaB=0~0.25;
_EalphaW=0~0.25;

What do I do if my model doesn’t fit the data? There are several approaches, de-
pending on the problem. Don’t miss the first item.

1. The most important technical problem with lack of fit occurs because of numerical
issues related to imprecision in the lnCDFbvn function used in the likelihood function
(the volume above the unit square under the bivariate normal, Equation 7.2, p.134).
This imprecision can induce artificial local maxima in the likelihood function, leading
to convergence at the wrong parameter values. It can also create artificial maxima
higher than the correct global maximum. These problems occur most often when the
maximization routine is looking far from optimal value. A good way to fix both problems
is to give the program starting values in the region of the right answer (set _Estval),
and constrain the search to a region that includes these values (set _Ebounds). One
way to find better starting values, it is to pick the parameter values by looking at a
tomography plot, as if we were on the truncated scale. That is, identify the region from
where the “emissions” are coming (roughly, where the tomography lines are crossing)
and record the coordinates for betaB and betaW, the width of the emissions at the
central point, and then a likely correlation (or 0). Then transform these onto the scale
of estimation with Equations 7.4 (p.136), or use eireparinv to do this automatically.
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Then set _Ebounds to regions around those starting values — not too narrow because
you determine the answer (a concern if the parameters turn out to be maximized at
boundary values), and not too wide because you may run into numerical problems.
If this does not work, it will be helpful to narrow _Ebounds. The new grid search
procedure is especially helpful here (set _Estval to 0 or > 5). If it is an especially
difficult problem, you may need to change the tolerance of the lncdfbvn function, with
_EcdfTol.

2. If you have very small values of T , see the FAQ question below.

3. One common problem is coding errors, or small precincts, for which Ti is very close to
0 or 1 (look at the corners of eigraph’s tomog for a count of these); if these values are
outliers, they can have a disproportionate effect on the likelihood results, despite the
fact that in many applications T only gets to the corners when there are data errors.
To delete them from the estimation stage but include them in the simulation stage, you
could set

_Eselect=(t.>0.001).and(t.<0.999);

or perhaps an even narrower range would be wise. You could also delete them from the
data set to skip both stages.

4. Do you suspect extensive aggregation bias? Perhaps you should try the globals _Eeta=3;
_EalphaB=0∼0.1; and _EalphaW=0∼0.1; to start (see Chapter 9).

5. Does eigraph’s tomog suggest multiple modes? Consider specifying Zb or Zw coded to
pick up the modes.

6. Is eiread’s resamp much larger than 20? If so, you might try using a t distribution as the
first approxiation for importance sampling by setting _EisT to 3 or higher, or adjusting
_EisFac (usually downwards or set to −1, especially if tomog fits but tomogP does not)
or _Eisn (always upwards) (e.g., you might try _EisFac=1 or _EisFac=−1).

7. If eigraph’s estsims does not look approximately like tomogp, or if the graphs in post
are bimodal, you need to do something. You may try a different method of computing
the variance matrix. You could also narrow the variance of the priors on σb, σw, and ρ
by setting _Esigma and _Erho. Or more simply, you could use the maximum likelhood
solution and set _EisFac=-2;.

8. If the relationship between Xi and βb
i or βw

i does not correspond to your substantive
knowledge of the problem, consider setting _Eeta=3 and adding a prior on αb and αw

(with _EalphaB and _EalphaW).

9. If you have additional information in the form of survey or qualitative evidence, you
could change the priors, add covariates in Zb or Zw, or divide the data set.

See Chapters 9 and 16 for more detailed suggestions.
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What do I do if the Hessian is not positive definite? If you have covariates, make sure
you didn’t include a constant term or variables that are very highly collinear. Whether you
included covariates or not, what often helps is to narrow the variance of the prior on σb, σw,
and ρ by setting _Esigma and _Erho to smaller numbers than their defaults. Following this
action is also sometimes helpful in getting the model to fit appropriately, if EI took several
tries to compute a valid variance matrix. You should be careful, of course, that a non-positive
definite Hessian doesn’t indicate an impossible estimation problem. Also be careful whenever
eiread’s ghactual is other than {0 1} (if it is, see the global _EI_vc).

What do I need to know about studying voter transition rates? The model applies
as usual, but note how the quantities of interest are parameterized. In the running example,
it is the fraction of blacks who vote, not the fraction of people who are both black and who
vote. If the latter parameterization seems more natural for voter transition applications (e.g.,
the fraction of people who vote Democratic at time 1 and time 2), you need to translate the
output of EI.

Why do I get slightly different results every time? EI uses random simulation to
approximate various statistics. This entails no compromise, and it makes computations easy
that would otherwise be impossible. The only issue is ensuring that you have sufficient random
draws for the level of precision (number of significant digits) you desire. For example, if you
need 2 digits to the right of the decimal point for a table you plan to present, you can check
that the number of simulations is set high enough by running the analysis twice and verifying
that the first two digits do not change. If they do change, increase _Esims and try again
until the two runs give the same answer to two digits. (If you really want exactly the same
numbers for each replication, set the GAUSS random number seed with the GAUSS command
rndseed before running EI, although this would only be useful for testing.) See Chapter 8.

How do I get this program to run faster? A variety of EI options can significantly
increase the speed of the program. In the order in which we suggest you try them, these are,

1. If you have many observations, you can use a random subset in the first stage (by setting
_EselRnd to the fraction of observations to include). Setting this global still results in
all observations still being included in the second stage, the result being that estimates
will still be available for all observations. If a large n is the issue, then this is the best
way to speed estimation without much cost.

2. You can use the asymptotic normal approximation, and eliminate the importance sam-
pling refinement, by setting _EisFac= −1 or to go even faster use _EisFac= −2 to
exclude estimation uncertainty.

3. Choose good starting values (by setting _Estval). For example, if you have many
similar analyses to run, do a typical analysis and use those numbers as starting values
for the others. If you have a guess as to the values of φ on the untruncated scale, you
can use the following command (documented only in eirepar.src) to set the starting
values: e.g., _Estval=eireparinv(0|0|-1|.4|.1).
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4. Buying enough RAM so you do not need to take advantage of the virtual memory
feature of GAUSS is helpful. Or, just buy a really fast computer!

5. If you are willing to live with lower precision, you can draw fewer simulations by setting
_Esims to a number smaller than the default (100).

6. You can set _EdirTol to a larger number. The default is 0.0001; you can try 0.001 or
larger. You could also reduce the maximum number of iterations with _EmaxIter.

7. If you are running many analyses, run one analysis to make sure that the globals are
properly defined and then set _Echeck=0 to turn off global checking. This will only
save a small bit of time and so is only helpful if you are running many analyses. (If you
turn off checking, and you define a global incorrectly, EI will not give a pretty error
message.)

8. For EI2, set _ei2_m= −1.

Why is the program slower when using covariates? EI needs to evaluate the cumu-
lative bivariate normal distribution, which is computationally intensive. If no covariates are
used, only one set of computations need to be done for the entire data set. If any covariates
are used, a new computation must be computed for every observation.

What are the parameter names printed during maximization? Without covariates,
Zb0 and Zw0 are estimates of φ1 and φ2 respectively. With covariates, Zb1, Zb2,. . . , refer to
estimates of the elements of the vector αb and Zw1, Zw2,. . . , are estimates of the elements of
αw. The symbols sigB, sigW, and rho refer to estimates of φ3, φ4, and φ5. Finally, the global
_Eeta allows αb and αw to be set to fixed values, which are etaB and etaW (the default for is
zero for each).

What should I look for during the iterations? The iterations will converge when
direction vector (which, roughly speaking, is the number of digits of precision in locating the
maximum) gets close to all zeros. (If you prefer knowing when it will end, choose the grid
search procedure by setting _Estval=0).

What about data with very small or large values of T? Data with many small or large
Ti cause no problems with the method in theory. Moreover, data like these produce estimates
with very narrow bounds (since the tomography lines cut off the top right or bottom left
corner of the plot). This is good news for estimation, although if the difference between, say,
βb

i = 0.01 and βb
i = 0.005 is substantively large (as for mortality rates), what might otherwise

be considered “narrow” bounds (such as [0,0.05]) could in some cases still be too wide for
particular substantive purposes, so be careful about interpretation. To read the graphs,
it is helpful to zoom in on the relevant regions, by setting globals such as _eigraph_Xlo,
_eigraph_BBhi, etc. Be sure to check and probably reduce the global _EnumTol, since the
default value (0.0001) would define some data sets as unanimous (Ti = 0, 1) for too many
observations. Beware also of other numerical problems with data like these (by verifying the
fit of the contours to the data with eigraph’s tomogS and fit), since the contours must be
fit to a very small area of the tomography plot and so calculating the cdf of the truncated
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bivariate normal can be imprecise. It is often necessary to use better starting values (see
_Estval) and search constraints (_Ebounds) than the defaults. The grid search procedure
can also be helpful (_Estval). Since odds are you want to distinguish between very small
differences in the quantities of interest, you will probably also wish to increase the number of
simulations substantially (_Esims). Finally, posterior densities from EI are rarely normal or
symmetric in the presence of rare events, and in this situation mean posterior point estimates
are not good summaries of EI’s inference in these situations. Better would be to use a density
estimate of the simulations, such as eigraph’s post option.

How do I make inferences in larger tables? For 2 × C tables, see the ei2 in the
reference section of this manual (see Section 8.4). For general R×C tables, you can partition
the data into a series of 2× 2 (or 2×C) tables, each of which this program can analyze. The
results can then be combined to produce estimates of your larger table. See Section 15.1 for
details and the rest of Chapter 15 for more general procedures. (We’re working on an easier
approach for R× C tables.)

What do I do if I have computational problems with EI2? Try _Ei2_m=-1. This
may make the standard errors slightly too small, but it will make the procedure numerically
more reliable and about four times faster. This is the procedure described at the start of
Section 8.4.1 (pp 151–2).

Why does eiread report some precinct-level estimates as missing values? When
Xi = 0 (in the running example, this indicates no blacks in the precinct), βb

i (the fraction of
blacks who vote) is undefined, and its estimate is set at missing. Similarly, if Xi = 1, βw

i is set
to missing. In ei2, if Ti = 0 from the previous stage then Vi should be undefined and both βb

i

and βw
i should be missing (although it is best to remove observations for which Ti = 0 from

the ei2 run.)

How do I test whether Bb−Bw = 0? You can get simulations of this difference (racially
polarized voter turnout in the running example) by doing: aggs=eiread(dbuf,"aggs"); and
diff=aggs[.,1]-aggs[.,2];. Then you can use diff as you might normally use simulations
of βb

i . For example, a point estimate of the aggregate difference is meanc(diff), a standard
error is stdc(diff). You can also see the full posterior distribution by plotting the histogram
with call hist(diff,7) or a kernel density estimate with call dens(diff).

How do I make inferences about aggregated continuous variables? If the individual-
level variables corresponding to Xi and/or Ti are continuous but restricted to the the unit
interval (such as the fraction correct on a test) or rescaled to this interval, then this program
can be used without any changes. Only the interpretation of the estimates change. See
Section 14.3.

How many observations do I need? The answer depends on the problem. For example,
one observation with X1 = 0 will give you a correct answer for βw

1 and a standard error of zero.
On the other hand, two million observations with Xi = 0, won’t be enough to estimate Bb.
Another way to think about this question is that the basic model has five parameters and (like
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a regression model with five parameters) you would probably want at least 30–50 observations
or so. Problems for which the parameters are more highly correlated (like regression problems
with high collinearity among the explanatory variables) will require additional observations
to achieve the same level of confidence. (That is, check the tomography plot to ascertain what
kind of problem you are working with.) You will also want additional observations if your
substantive problem demands answers with more precision. Of course, if you can selectively
add observations that are especially informative, then there may be great power to be had
from collecting just a bit more data.

Has this method been used in Court? A federal district court judge declared that
A Solution to the Ecological Inference Problem “is the best method currently available to
measure racial bloc voting” [i.e., whether blacks and whites vote differently] (Mallory, et
al., v. State of Ohio, et al., USDC Southern District Court of Ohio, case no. C-2-95-381.)
This decision was upheld on appeal before the three judges of the Circuit Court, and similar
language was used to describe the method (in Mallory, et al. v. State of Ohio, et al., United
States Court of Appeals, Sixth Circuit, No. 97-4425, 4/13/99). It was also accepted by the
court in Bill Jones vs. Ca Democratic Party and in a variety of others. In each case, EI was
unchallenged by experts on the opposing side. Since EI starts with Goodman’s regression,
which had previously been declared as the appropriate method by the Supreme Court, and
adds information known to be true (i.e., the bounds), EI has been relatively uncontroversial
in these situations.

What if I find a bug? First try to replicate the problem with the current version of the
program (available at http://GKing.Harvard.Edu). If the problem still exists, copy down
exactly what you see on the screen when the program bombs, and email it along with any
changes in globals to kbenoit@tcd.ie if you think the error was in the EzI front end or
King@Harvard.Edu if the error appears to be in EI. Comments and suggestions for changes
are welcome.
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