
JSS Journal of Statistical Software
February 2005, Volume 13, Issue 4. http://www.jstatsoft.org/

Lisp-Stat to Java to R

Balasubramanian Narasimhan
Stanford University

Abstract

This paper will describe my experiences in moving on from Lisp-Stat to Java to R. I
was introduced to Lisp-Stat in 1989 and used it actively for teaching and research over
the next 10 years. My use of Lisp-Stat culminated in a joint project with Hani Doss and
I on Bayesian Sensitivity Analysis and it remains the largest piece of software I wrote
using Lisp-Stat. At the time the project was completed, the only open statistical system
that could deliver the goods was Lisp-Stat. In this article, I will describe how the power
of Lisp, underlying statistical components and dynamic graphics were exploited in the
project. When development on Lisp-Stat slowed down, Java was coming into its own as an
important language and R became an open source collaborative project. Of course, I have
moved on and I use R for most of my work today. I will touch upon with my experience
with Java and R briefly.

Keywords: Lisp-Stat, Java, R, statistical computing, dynamic graphics.

1. Introduction

When I was invited to participate in this special issue commemorating Lisp-Stat, my initial
reaction was quite tepid. I did not think I would have much worthwhile to say that would add
to what others already knew. Besides, R has now firmly established itself as a high-quality
statistical computing environment and I, along with numerous others, have moved on to R.
The pace of development of R and the associated packages is so rapid that I thought I would
have to google my home directory to improve my Markovian memory to say anything of
substance.

However, I soon realized that although Lisp-Stat is not as popular as R, it still has a dedicated
set of users and a number of substantial packages use it. Important packages like ViSta are
still maintained. I also began to marvel at the kinds of facilities the system presented at
the time. Indeed, they continue to be remarkable today, especially in the realm of dynamic
graphics.

http://www.jstatsoft.org/


2 Lisp-Stat to Java to R

With those thoughts, I decided to discuss some of my work with Lisp-Stat, focus on some pow-
erful aspects of the system and also provide a personal account of my experience. Therefore,
some of the material in this paper should be regarded as very subjective opinion.

This paper is organized as follows. Section 2 details my first introduction to Lisp-Stat. Sec-
tion 3 describes some of the software I wrote using Lisp-Stat and details some educational uses
I put it to. Sections 3.1 and 3.2 describe some larger pieces of software written in a research
context with Hani Doss. Section 4 describes my experience with Java. Finally, section 5
concludes with some thoughts on R and Lisp-Stat.

2. Background

I was a graduate student at Florida State University when Hani Doss, a new professor out
of Stanford, announced that he was going to teach a special topics course. The topics he
had in mind were quite eclectic and covered areas of theoretical, applied and computational
statistics. The final test was to be a student presentation of an important paper in the area.
Knowing my interest in computational statistics, Hani gave me Jerry Friedman’s JASA paper
on Exploratory Projection Pursuit (see Friedman 1987). I believe I did a reasonable job
earning an A. But after the course, Hani and I talked a lot about the computational issues
and graphical issues raised in the paper. It was in this context that Hani recommended the
Lisp-Stat book (Tierney 1990) to me.

I immediately set about poring over the book. My programming knowledge was not partic-
ularly deep, but it was broad. I had written code in a number of other languages, including
assembler, Fortran, C, Pascal and PL/1 (Subset G). But Lisp was completely new to me and
I found the first four chapters very heavy going. I think I took almost three months to get by
those chapters as I had to frequently refer back to things. (At that time, Lisp-Stat was avail-
able only for Macintoshes and Unix platforms and so I ran the examples on our department
Sun server. Typing in code with vi was a pain; I don’t believe Emacs was installed on our
department server.)

It was when I hit Chapter 6 on Object-Oriented Programming that something clicked and I
realized the power of the system. Object-oriented design had always lain dormant at the back
of my head and I viewed regarded statistical models as objects that could be interrogated for
various outputs. Here was a system that embodied that view precisely. After this revelation,
it was quite a pleasant romp through the rest of the book.

I graduated and as an assistant professor at University of Minnesota and at Penn State
University, I used Lisp-Stat heavily in my teaching and research. Although S-PLUS was
also available, the dynamic graphics capability of Lisp-Stat kept my curiosity and interest
throughout.

3. Software

My appointments were primarily in liberal arts campuses where teaching was a high priority
and therefore it was natural for me to use Lisp-Stat to demonstrate concepts taught in class.
Over the next several years, I wrote a number of pieces of software for educational purposes.
These included demonstrations of central limit theorem, confidence intervals, probability dis-
tributions, bivariate normal distribution, Bertrand’s paradox, Gambler’s ruin, Markov Chains,



Journal of Statistical Software 3

Figure 1: Markov Chains in Lisp-Stat

Bernoulli Process approximation to Brownian motion, the alias method for generating dis-
crete random variables Much of this code is available on the UCLA Lisp-Stat archive but I do
confess to not being able to locate the code for the Walker’s Alias method. (I can make all
the source code available to anyone who requests it).

Several of these programs were written as Literate Programs using Noweb (Ramsey 1994).
This was also a time of ferment in the WWW world and tools like hypertex, HyperDVI
were becoming available. Some of my animations made use of them, e.g., the illustration
of Bertrand’s paradox. Figure 1 shows a snapshot of the Markov Chain software that was
written by an undergraduate student Brett MacAlpine as part of a project at the University of
Minnesota, Morris under my direction. The process could be run for a user-specified number
of time steps and a graphical view of the process was displayed. The current state was colored
red. The process could be queried for its history, and clicking on any state would present the
current visitation statistics for the state shown on the right. I used this tool to allow students
to demonstrate several things including gambler’s ruin, the ergodicity theorem etc.

Later, in the 1990’s, as a version for Windows was available and it became convenient to be
able to send the students home with the code or tell them to install it on their own.

Meanwhile, I was also using Lisp-Stat in research. I was interested in using modern compu-
tational tools for judging sensitivity of Bayesian analyses to changes in prior specification. I
describe two applications below.

3.1. Bayesian Poisson regression

In the Bayesian paradigm, there is an unknown parameter θ. One puts a prior distribution
ν on θ. Data Y is observed, and the posterior distribution νY of θ given the data is com-
puted. Unfortunately, the prior distribution ν that is put down is almost always only an
approximation to the true opinion about θ, and therefore, the posterior νY is not an exact
representation of the opinion that one has on θ after having seen the data. If the posterior
does not change much when one changes the prior then one gets a feeling of reassurance—a



4 Lisp-Stat to Java to R

Figure 2: Bayesian Poisson Regression (Ship Data)

different investigator with a slightly different prior may not even bother to recompute the
posterior for his prior. On the other hand, if the posterior changes significantly when one
changes the prior, then it is important to record that fact, so that for example more time is
spent on prior elicitation. Therefore, in almost any problem in which one carries out a serious
data analysis, one wants to calculate the posterior distribution for a large number of prior
distributions, especially in the exploratory stages of the analysis.

Markov chain simulation had just become a hot computational method for obtaining posterior
distributions. It is worth reading Tierney (1994) and Geyer (1992) for some good reviews. In
a typical application the method would require non-negligible computer time to run a single
chain. This meant that it would often preclude consideration of a large number of priors in
the analysis.

In a technical report (Doss and Narasimhan 1994), we introduced a computing environment
within which one can interactively change the prior ν and immediately see the corresponding
changes in the posterior νY . Although this environment was developed for the particular
case of Bayesian Poisson regression, the programs were written explicitly so that they could
be modified to handle a wide range of Bayesian problems requiring use of Markov chain
simulation.

The approach was based on an application of importance sampling. Suppose that one is
interested in the class of priors νh, where h varies over the hyperparameter space H. Suppose
that we are interested not in the entire posterior νh,Y , but in the expectation

∫
t(θ) νh,Y (dθ),

for some function t. For a particular value h0, the Markov chain simulation method produces
a sequence of random variables θ(1), θ(2), . . . , θ(G) with distribution approximately νh0,Y . The
expectation

∫
t(θ) νh0,Y (dθ) can be estimated by the average (1/G)

∑G
g=1 t(θ(g)).



Journal of Statistical Software 5

For a fixed value h0 of the hyperparameter, a Markov chain Markov chain corresponding to
the prior νh0 , can be run producing θ(1), . . . , θ(G). Given h, a new hyperparameter value
of interest, we can compute weights w

(g)
h , g = 1, . . . , G and estimate

∫
t(θ) νh,Y (dθ) by the

weighted average
∑G

g=1 w
(g)
h t(θ(g)). The computation of the weights w

(g)
h , which requires only

knowledge of the sequence θ(g), g = 1, . . . , G and of the two priors νh0 and νh, can be done
rapidly enough fast to permit interactive exploration of the effect of changing the prior.

In actual practice, the importance sampling method based on a single hyperparameter value
h0 works well only for h close enough to h0 so that not just a few of the weights dominate the
average. For this reason it is better to base the inference on the output of k Markov chains,
corresponding to appropriately located hyperparameters h1, . . . , hk. We used the method of
reweighting mixtures described in a technical report by Geyer (1994).

Figure 2 shows an example applied to data from McCullagh and Nelder (1989) on a study of
wave damage to cargo ships. In order to set standards for hull construction, it was necessary to
study the risk of damage associated with the three classifying factors: Ship Type (A–E), Year
of Construction (1960–64, 1965–69, 1970–74, 1975–79) and Period of Operation (1960–74,
1975–79). The response variable is the number of damage incidents (the response variable),
the level of the three classifying factors, and also the covariate “aggregate months of service,”
which is an“offset” (i.e. the parameter corresponding to it is assumed known). McCullagh and
Nelder fit the 9-parameter Poisson regression model with categorical predictors. The figure
shows slides for changing the hyperparameters (the β mean and variance). Once a change
occurs, the posterior densities are recomputed and displayed.

3.2. Bayesian survival analysis

In another paper (Doss and Narasimhan 1998), we considered the following model for censored
data. There are random variables X1, . . . , Xn independently and identically distributed from
some distribution function F . The Xi’s are not necessarily observed. Rather, for each i,
there is a set Ai within which Xi is known to lie. This framework includes several forms of
censoring. Right censoring corresponds to the case where the sets Ai are either singletons
or right-infinite intervals. Interval-censored data corresponds to the case where the sets are
intervals, and current-status data corresponds to the case where each Ai is either a right-
infinite interval or a left-infinite interval.

A Bayesian nonparametric approach based on mixtures of Dirichlet priors offers a reasonable
compromise between purely parametric and purely nonparametric models. If ν is some prior
distribution on Θ and Mθ > 0 for each θ, then if θ is chosen from ν, and then F is chosen from
DMθHθ

, the Dirichlet prior with parameter measure MθHθ, we say that the prior on F is a
mixture of Dirichlets (with parameter ({MθHθ}θ∈Θ, ν)). Often Mθ ≡ M , i.e. the constants Mθ

do not depend on θ. In this case, M can be interpreted as a precision parameter that indicates
the degree of concentration of the prior on F around the parametric family {Hθ; θ ∈ Θ}. For
example, as M → ∞ the distribution of F converges to

∫
Hθ ν(dθ), the standard Bayesian

model for the parametric family {Hθ; θ ∈ Θ} in which θ has prior ν.

For the censored case, there is no closed form expression for the posterior distribution of F
given the data, and one has to use Monte Carlo methods. Using the output runs of several
Markov chains, we were able to present an interactive environment to see how the posteriors
once again change when the priors are perturbed.



6 Lisp-Stat to Java to R

Figure 3 shows the results of applying the software to a dataset from Klein and Moeschberger
(1997) on a retrospective study carried out to compare the cosmetic effects of radiotherapy
alone versus radiotherapy and adjuvant chemotherapy on women with early breast cancer.

This project shows that the combination of mathematics and computations can yield very
powerful results: we were able to move from a nonparametric setting to a parametric one
by just varying the hyperparameters and reweighting. Indeed, this is remarkably impressed
upon the viewer when the precision parameter M is given extreme values. When M is large,
one obtains estimates close to the Bayes estimators and when M is small, one obtains a
nonparametric estimate. This can be seen in the plots of the survival curves which change
their character in the latter situation resembling Kaplan-Meier type curves.

3.3. Summary

Some key requirements in the projects described in sections 3.1 and 3.2 essentially dictated
the use of Lisp-Stat.

Dynamic Graphics It was necessary for us to have an environment that would allow us to
dynamically display the changes in the posterior as the hyperparameters were varied.
Very few systems that existed at the time (1987–1995) provided capabilities for dynamic
graphics that ordinary users could exploit. Indeed, the situation is not very much
different today. Lisp-Stat was, and still is, a superb environment for dynamic animations.

Object Orientation The design of both projects called for object-oriented programming
to ensure manageability and code correctness. The latter might seem like a strong
statement in favor of OO, but it must be noted that we expected the software to be used
in very general contexts and therefore, clear abstract design patterns were necessary. At
least for my style of programming, such patterns find natural expression in an object-
oriented paradigm. Both projects used a master-slave design and reused most of the
methods of scatterplot-proto object.

GUI As our intended audience was not expected to have knowledge of Lisp, we wished to limit
the exposure to Lisp. The graphical user interface elements, dialogs were sufficiently
flexible enough to build a simple GUI, at least for the specific problems the projects
addressed. And this was on all platforms where Lisp-Stat was available!

Dynamic Loading Like S-PLUS, the Lisp-Stat system allowed one to call arbitrary C and
Fortran code from within Lisp, allowing one to speed up critical computations. In the
early 1990’s, yet another performance tweak was introduced, that of allowing native C
types to be stored directly (c-double type was one of them). This yielded some savings
in overhead as passed arguments no longer needed to be copied. In our project, there
were some very large arrays and so the savings were quite substantial.

Statistical Tools There were several systems that provided the capabilities listed above,
but not with some statistical programming support. The Lisp-Stat statistical functions
allowed us to reuse rather than re-implement or rewrite algorithms. This is to be
contrasted with my experience with Java discussed in section 4.

Packaging Package facilities were added later in the development of Lisp-Stat. However,
once they were added, they soon became indispensable. Both the projects above made



Journal of Statistical Software 7

Figure 3: Dynamic exploration of posteriors (Breast Cancer Data)



8 Lisp-Stat to Java to R

heavy use and reuse of a core utility package that took care of all kinds of mundane
details. Indeed, it is no surprise that the package NAMESPACE facility of R closely
resembles that in Lisp-Stat. After all, Tierney wrote both.

The interactive nature of Lisp-Stat, like S-PLUS was, of course, a strength.

Judging by the amount of space Tierney devoted to the first three issues above in his book—
156 pages, about 42% of the book to be precise—it seems reasonable to assume that these
issues were dominant features of the system. Therefore, it is not entirely surprising that they
figured so importantly in our projects; the system seemed tailor-made for such computations.

4. To Java

Near the mid-90’s, development on the Lisp-Stat system was slowing down. GNU/Linux
was becoming increasingly popular and I even wrote an article for Linux Journal on Lisp-
Stat (Narasimhan 1995). Meanwhile, an exciting new technology called Java was taking the
world by storm. It coincided with the growth of the internet and the world wide web. The
language was exciting enough, allowing one, in theory, to write platform independent code.
Java boasted a nice GUI and facilities for graphical primitives. In its initial release, it did not
support IEEE arithmetic. However, to me, it seemed that this system was the future.

The language was much like C with an object-oriented core and it was rather easy to program
in it. The rise of the language coincided with my move to Stanford in 1996 and I was able
to develop some educational applets for teaching purposes. However, writing these applets
required me to reinvent many of the things I had taken for granted in Lisp-Stat; specifically,
basic numerical routines had to be recoded. Here, the open-source nature of Lisp-Stat helped
me out. I was able to lift sections of the C code from Lisp-Stat and massage it into a Java
class for core statistical routines. Over the next two years I used this system heavily and
distributed it widely over the net. However, there are far better designed Java class libraries
today (Hoschek 2002) for numerics.

This system served its purpose, enabling me to do dynamic graphics and some simple stuff,
but to build it into a complete system was a rather daunting task. So I regard this phase of
my forays into Java as an interesting experiment.

Java is an important language and has a number of great packages that make it very powerful.
But to use it in larger projects, I would have had to build something elaborate with it. At
this time, the Omegahat project (see http://www.omegahat.org) was incubating and Java
was used to prototype the Omegahat system. So I joined the group. Today, I use Java mostly
for enhancing R code or as a front-end for running R code at the back-end of web services in
combination with packages like RServ (Urbanek 2003).

5. To R and beyond

In 1998, at the Interface meetings, I organized a session titled Developments in Free Software.
This was, of course, to recognize that R had now become a highly successful open-source
collaboration and was fast emerging as the statistical software to watch. R has only grown
since then and is a great tool for all of us. There was much to like about R, not the least
of which was garbage collection and better memory management than S-PLUS. Tierney had

http://www.omegahat.org


Journal of Statistical Software 9

also joined R core and it was clear that development of Lisp-Stat had come to an end.

I am pretty happy with the state of R and I am amazed at the pace of development. The R
user base is growing and users actively participate by contributing packages. However, when
I do meet up some old comrades in Lisp-Stat we often reminisce at the power that Lisp-Stat
provided to us with joy. Even today, the dynamic graphics facilities in R are not as seamless
as in Lisp-Stat: Tcl/TK, Java, can be used, but one is essentially programming in another
language inside the R system. There are many details of R that are reminiscent of Lisp-Stat:
the packaging system, NAMESPACE and garbage collection.

Several of my friends have remarked that the lack of publishing quality graphics in Lisp-Stat
did not help its popularity. That may be, but I also suspect that the Lisp language was not
popular. The latter was exacerbated by the fact that there was only one book on Lisp-Stat,
while the S language had several and some spoke the language of statisticians. Others have
also mentioned that the lack of user-contributed code and packaging facilities figured as well.
I disagree with the latter at least as a packaging mechanism was introduced in Lisp-Stat,
around 1994, before R even became open source.

Statistical computing is in great shape with high quality software like R. While Duncan Temple
Lang has managed to embed Lisp-Stat within R (see the Omegahat web page), I doubt that
this will revive the Lisp-Stat community in any way.

I cannot resist adding that in preparing for this paper, I reran some of my old Lisp-Stat code
of almost 10 years ago. I was quite surprised that everything still worked flawlessly, without
modification on my latest GNU/Linux server. Perhaps I should not have been!

References

Doss H, Narasimhan B (1998). “Dynamic Display of Changing Posterior in Bayesian Survival
Analysis.” In P Muller, D Sinha, D Dey (eds.), “Practical Nonparametric and Semipara-
metric Bayesian Statistics,” pp. 63–87.

Doss HJ, Narasimhan B (1994). “Bayesian Poisson Regression using the Gibbs Sampler:
Sensitivity Analysis through Dynamic Graphics.” Technical report, Penn State Erie—The
Behrend College.

Friedman JH (1987). “Exploratory Projection Pursuit.” Journal of the American Statistical
Association, 82, 249–266.

Geyer CJ (1992). “Practical Markov Chain Monte Carlo.” Statistical Science, 7, 473–483.

Hoschek W (2002). “The Colt Distribution.” Open Source Libraries for High Performance
Scientific and Technical Computing in Java, URL http://www-itg.lbl.gov/~hoschek/
colt.

Klein JP, Moeschberger ML (1997). Survival Analysis: Techniques for Censored and Trun-
cated Data. Springer-Verlag.

McCullagh P, Nelder JA (1989). Generalized Linear Models. Chapman & Hall, London,
second edition.

http://www-itg.lbl.gov/~hoschek/colt
http://www-itg.lbl.gov/~hoschek/colt


10 Lisp-Stat to Java to R

Narasimhan B (1995). “Introduction to Lisp-Stat.” Linux Journal, 16.

Ramsey N (1994). “Literate Programming Simplified.” IEEE Software, 11(5), 97–105.

Tierney L (1990). Lisp-Stat: An Object-oriented Environment for Statistical Computing and
Dynamic Graphics. Wiley.

Tierney L (1994). “Markov Chains for Exploring Posterior Distributions.” The Annals of
Statistics, 22, 1701–1728.

Urbanek S (2003). “RServe.” URL http://www.rosuda.org.

Affiliation:

Balasubramanian Narasimhan
Department of Statistics and Department of Health Research and Policy
Stanford University
Stanford CA 94305, United States of America
E-mail: naras@stat.stanford.edu
URL: http://www-stat.stanford.edu/~naras/

Journal of Statistical Software Submitted: 2004-05-25
February 2005, Volume 13, Issue 4. Accepted: 2004-12-20
http://www.jstatsoft.org/

http://www.rosuda.org
mailto:naras@stat.stanford.edu
http://www-stat.stanford.edu/~naras/
http://www.jstatsoft.org/

	Introduction
	Background
	Software
	Bayesian Poisson regression
	Bayesian survival analysis
	Summary

	To Java
	To R and beyond

