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Abstract 

Tourism plays an important role in the economies of many Mediterranean countries, since it is a crucial 

driver of economic growth, job creation, and income. For this reason many countries set up a wide variety 

of programs and policies to support the development of this economic sector. It is therefore very 

important, for scholars and policy makers, explaining and forecasting tourism demand. Using air 

passengers flows as proxy variables for tourist arrivals, we set up some VAR model specifications in 

order to investigate the monthly time series 2003-2008 of arrivals to the most important Italian islands, 

Sardinia and Sicily. Our results show a significant inter-temporal relationship among tourism flows. 

Furthermore, our findings reveal that both meteorological variables (atmospheric temperatures and 

raining days) and exchange rates (Dollar-to-Euro and Yen-to-Euro) can improve the explanatory and 

forecasting power of VAR models. 

 

JEL Classification: L93, R58, C32. 
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1. Introduction 
 

Tourism plays an increasingly important role in the economies of many Mediterranean countries, 

since it is a crucial driver of economic growth, job creation, and income. Tourism in Mediterranean 
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countries is mostly based on coastal and island resorts. According to the European Statistics 

Institute (Eurostat), the number of total arrivals to the European-Mediterranean Countries (EMCs), 

i.e. Greece, Spain, France, Italy, Cyprus, Malta, Slovenia, Croatia, and Turkey, in 2007 has been 

estimated equal to 399,532,000. For this reason many countries set up a wide variety of programs 

and policies to support the development of this economic sector. Focusing on Italy, we point out 

that the number of total arrivals in 2007 has been estimated equal to 96,150,000 (24% of the total 

number for EMCs). In particular, Sicily and Sardinia both count for about 7% of the total number 

(5% for Sicily, 2% for Sardinia). It is worth noting that the number of employed persons in tourism 

sector for the EMCs in 2007 has been equal to 9,807,000, 24% of which have been employed in 

Italy (corresponding to a number of 2,322,200). Hence we observe a certain degree of consistency 

between the Italy-to-EMCs arrivals ratio and the Italy-to-EMCs employment ratio. Furthermore we 

observe a similar evidence for all the remaining EMCs too. This evidence may be interpreted as a 

stylized fact: in tourism sector the EMCs adopt a quite homogenous production technology. 

Considering the importance of tourism in EMCs economies, it is important both for policy 

makers and destination managers taking appropriate decisions concerning public investments 

(supply of public goods), and for tourism firms choosing carefully their investments (supply of 

private goods). Since tourism is well known to be a demand-driven economic sector, it may be 

interesting for tourism operators being capable to explain and forecast tourism demand, which is 

usually measured by tourism flows, i.e. arrivals and overnight stays. For this reason, several 

research works propose numerous approaches to tourism demand modeling and forecasting. 

Gil-Alaña, Cuñado and Perez De Gracia (2008) propose some econometric models in order 

to analyze the arrivals to Canary Islands, considering both the cases of deterministic and stochastic 

seasonality in the time series. Comparing all models in terms of their forecasting ability, their 

results show that a model with seasonal dummy and AR(1) errors yields the best results. 

Yorucu (2003) analyzes the forecast accuracy of four forecasting methods (Actual Statics, 

Double Exponential Smoothing, Holt Winters and Autoregressive Moving Averages-ARMA) for 

tourism arrivals to North Cyprus and Malta in the period 1976-1995. Their results show that Holt 

Winters and ARMA methods are the best forecasting methods in most of the cases. 

Cho (2003) proposes three forecasting methods (Exponential Smoothing, ARIMA and 

Artificial Neural Networks) to forecast the number of arrivals to Hong Kong. His analysis shows 

that the Neural Networks approach produces the best forecasts. Song, Smeral, Li and Chen (2008) 

analyze the forecasting accuracy of five alternative econometric models for forecasting the quarterly 

international tourism demand. Their results show that the time-varying parameter model provides 
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the most accurate short-term forecasts, whereas the naïve model performs best in long-term 

forecasting up to two years. 

The above short list of research works shows that there is not a single forecasting technique 

that constantly outperforms the others in all the circumstances (Song and Li, 2008; Song et al, 

2008). Using air passengers flows as proxy variables for tourist arrivals, we set up some Vector 

Autoregressive (VAR) model specifications in order to investigate the monthly time series 2003-

2008 of arrivals to the most important Italian islands, that is Sardinia and Sicily. The choice of 

using air passengers flows as proxy variables for tourist arrivals is quite common in the literature. In 

fact, the ratio between tourist arrivals and the number of total air passengers, which are recorded in 

tourism destinations’ airports, generally is a stable ratio through the time. It is therefore always 

possible to compute tourism arrivals once air passengers arrivals are known. Moreover, the main 

advantage of using air passengers data with respect to other data sources is that generally they are 

recorded by a public authority (ENAC in Italy) and are, consequently, more reliable. In particular, 

we focus our analysis on four major airports: Cagliari and Olbia in Sardina, Catania and Palermo in 

Sicily. We do not take into account Alghero (in Sardinia) and Trapani (in Sicily) because they are 

low-traffic airports, and they have been operating as commercial airports only in the last few years. 

We contribute to the existing empirical literature on tourism demand modeling and 

forecasting in some ways. First, we focus on the two major islands of the Mediterranean area, which 

represent a large share of tourism flows in Europe, in particular in Italy. Furthermore, analyzing two 

islands allows us to observe high-quality data. In fact, tourists can reach these destinations only by 

airplanes or ferries, thus incoming passengers are recorded by a public authority for security 

reasons. The same is not true for other tourism destinations which can be reached, for example, by 

cars and trains. Second, we propose a more parsimonious VAR model specification, which allows 

for gaps in the lag structure. This VAR specification on the one hand yields a relevant degree-of-

freedom saving; on the other hand, it allows to take into account the seasonality of arrivals time 

series. Indeed, both the degree-of-freedom saving and the seasonality are crucial aspects given the 

small sample we had at our disposal and its structural characteristics. Third, we propose three sets 

of exogenous variables (exchange rates, raining days and atmospheric temperatures) to be included 

in our VAR models. Since all these exogenous variables are often used as covariates in structural 

models, we want to test their contribution to forecasting tourism arrivals to Sardinia and Sicily. 

Finally, even if we focus our analysis on Sardinia and Sicily islands, we believe that a VAR 

approach like the one we propose in this paper may be appropriate whenever modeling and 

forecasting any destination tourism flows, given that in VAR models the inter-temporal 

relationships between time series are explicitly modeled. 
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The paper is structured as follows: Section 2 describes the proposed econometric models, 

Section 3 presents the results, while the final Section concludes the paper. 

 

 

2. Econometric Models 
 

We use a Vector Autoregressive approach (VAR) to model and forecast future values of air 

passengers arrivals to Cagliari, Olbia, Catania and Palermo airports, with monthly data relative to 

the period January 2003-December 2008. Several articles (e.g. Sims, 1980) point out that one 

advantage of VAR models over univariate time series models, or over simultaneous equations 

structural models, is that they yield more accurate forecasts. 

The endogenous and exogenous variables we use in our analysis are the following ones: 

• arrivals to Cagliari, Olbia, Catania and Palermo airports, defined as the natural logarithm of the 

monthly air passengers time series for each airport; 

• exchange rates, defined as the natural logarithm of the monthly Yen-to-Euro and Dollar-to-Euro 

exchange rates; 

• raining days in Cagliari, Olbia, Catania and Palermo, defined as the number of raining days per 

month in each airport; 

• atmospheric temperatures in Cagliari, Olbia, Catania and Palermo, defined as the average 

atmospheric temperatures (in Celsius degrees) per month in each airport. 

We select the exogenous variables to be included in our VAR model (exchange rates, 

raining days, atmospheric temperatures) according to theoretical and practical considerations. 

Specifically, we believe that air passengers arrivals are related to lagged exchange rates because of 

international travelers. In fact, the main business activity of these four airports is related to tourism 

flows. Since exchange rates are one of the determinants of international tourism demand, we 

suppose that they can affect international tourist arrivals. Given that the most of international tourist 

arrivals to Sicily and Sardinia is from Europe (in 2007 about 79.69% of the total international 

tourist arrivals were from the European Union), the most relevant exchange rates to be considered 

should be the Dollar-to-Euro and Yen-to-Euro exchange rates. However, as a robustness check, we 

tried several models by taking into consideration both the UK-Pound-to-Euro exchange rate and the 

BCE nominal effective exchange rate, which is based on weighted averages of bilateral Euro 

exchange rates against the 21 major trading partners of the Euro area. In this way, we found that our 

results are robust to the inclusion of these further exchange rates, given that they do not improve 



5 
 

either the explanatory or the predictive power of our model. Furthermore, we use lagged values of 

the exchange rates because generally holidays are planned in advance. 

We also believe that expected meteorological conditions may help in modeling and 

forecasting future values of air passengers arrivals. We therefore use the twelve-months lagged 

values of raining days and atmospheric temperatures as proxy variables for the expected 

meteorological conditions, which is a consistent choice with a naïve expectation scheme. 

Figure 1 shows the plots for each series of log-arrivals. All series exhibit a clear trend and a 

seasonal pattern. This evidence is further confirmed by the month-plots, that show the pattern of 

each specific month for each series of log-arrivals. In particular, arrivals tend to be concentrated 

during the summer (June, July, August and September) and to reach the lowest values during the 

winter (January and February). Furthermore, the month-plots show the existence of a positive trend 

in the arrivals observed in the same month one year apart. 

 

[Insert Figure 1 approximately here] 

 

In order to analyze the statistical significance of the estimated coefficients, all of the 

components in the VAR model are required to be stationary. Hence, in Table 1 we present the unit 

root tests for all the endogenous and exogenous variables. For seasonal variables (log-arrivals, 

raining days and atmospheric temperatures) we performed both the Canova-Hansen test for seasonal 

unit root (Canova and Hansen, 1995) and the KPSS test (Kwiatkowski et al, 1992). For non-

seasonal variables (log-exchange rates) we only performed a KPSS test. We found evidence of a 

unit root for log-exchange rates Dollar-to-Euro and Yen-to-Euro (US/EUR and JP/EUR) but not for 

their first differences. We therefore took the first differences of log-exchange rates in subsequent 

analysis. All remaining variables’ tests did not lead to rejection of the null hypothesis of regular and 

seasonal stationarity after we properly accounted for deterministic trend and seasonal effects where 

needed. Thus we did not take the first differences of log-arrivals, raining days and atmospheric 

temperatures. 

 

[Insert Table 1 approximately here] 

 

In order to determine the appropriate lag length of our VAR model, we employ three 

multivariate information criteria. Table 2 shows the optimal lag order selection according to the 

Akaike (AIC), Schwartz (BIC) and Hannan-Quinn (HQC) information criteria, computed from 
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VARs of orders from 1 to 12. In this case, both AIC and HQC criteria select a VAR(12) as optimal 

model, while BIC criterion chooses a VAR(1) model. 

 

[Insert Table 2 approximately here] 

 

Accordingly, we first propose the following model specification: 

 

tttt uBxyAy ++= −11  (1)
 

where ty  is a 14 ×  vector containing the 4 endogenous variables (i.e. the arrivals to the 4 airports), 

tx  is a 113×  vector containing a constant, a linear trend and 11 seasonal dummies, tu  is a 14 ×  

vector of error terms, 1A  and B  are matrices of coefficients. Since we have 4 equations in the 

model, each with 1 lag of the variables, a total of 68 parameters have to be estimated. Considering a 

model with 12 lags of the variables, we should estimate a total of 244 parameters. For our relatively 

small sample, this would result in consuming many degrees of freedom. Since we are dealing with 

monthly data, characterized by a strong seasonal component, we therefore propose the following 

alternative model specification: 

 

ttttt uBxyAyAy +++= −− 121211  (2)
 

in which we allow for gaps in the lag structure. In fact, we do not include all the consecutive lags 

for any given variable, but only the 1st and the 12th lags. This new model specification needs for 84 

parameters to be estimated for the entire model, allowing to save 160 degrees of freedom. 

 

 

3. Empirical Analysis Results 
 

In this Section we present the main results of our analysis. Table 3 shows F-tests for zero 

restrictions on all lags of each variable in VAR specifications 1 and 2. Since for the first model 

specification we are testing single hypotheses involving one coefficient at a time, these hypotheses 

could also be tested using the usual t-test (yielding the same conclusions). We observe that arrivals 

to all the airports are explained by their own lagged values. Furthermore, results of model 

specification 2 show that arrivals to each airport are partially explained also by lagged values of 

arrivals to other airports. This may suggest a certain degree of inter-temporal interdependence 
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among passengers arrivals. In particular, arrivals to Cagliari airport Granger-cause (Granger, 1969) 

arrivals to all the other airports. Actually, this causality is unidirectional in all cases except from 

one. In fact, arrivals to Catania airport are found to Granger-cause arrivals to Cagliari airport too, 

suggesting a bi-directional feedback between these two airports. Accordingly, it may be said that 

arrivals to Cagliari airport are strongly exogenous in all equations except for Catania airport. 

 

[Insert Table 3 approximately here] 

 

In Table 4 we re-estimate the two model specifications including among regressors three 

sets of exogenous variables. In particular, we include the 3rd lag of the log-difference of two 

exchange rates, Dollar-to-Euro and Yen-to-Euro (US/EUR and JP/EUR), and the 12th lag of raining 

days and atmospheric temperatures in Cagliari, Olbia, Catania and Palermo. Our goal is to test the 

contribution of these exogenous variables to our model. Besides the F-tests for zero restrictions on 

all lags of each variable in VAR model, a Likelihood Ratio test is presented at the bottom of each 

set of estimates. The null hypothesis is that the true parameters values are equal to zero, in all 

equations of VAR models, for the omitted exogenous variables. The results show that all the 

exogenous variables considered, except for raining days in VAR(1) specification, are slightly 

significant (p-value < 0.1) in explaining the log-arrivals to the airports of the analyzed 

Mediterranean islands. Therefore, it seems that these variables convey some information to 

determine the inter-temporal behavior of air passengers arrivals. Considering a lag of three months 

for the log-difference of the exchange rates and twelve months for the meteorological variables may 

seem to be an arbitrary choice. Thus we re-estimated all the models considering different lag orders 

as a robustness check. Since results are not qualitatively different from those we report, we do not 

present them. 

 

[Insert Table 4 approximately here] 

 

Considering the out-of-sample period from January 2009 to May 2009, in Table 5 we 

present some measures of the overall accuracy of arrivals forecasts for each airport. In particular we 

compute the Root Mean Squared Error (RMSE), the Mean Absolute Percentage Error (MAPE) and 

the Theil’s U (Theil, 1966). Letting ty  be the arrivals at time t , tf  a forecast of ty  and ttt fye −=  

the forecast error, the three forecast accuracy measures are defined as: 
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From these definitions we infer that the more accurate are the forecasts the lower are the 

values of these three measures. In particular, Theil’s U has a minimum value of 0, and can be 

thought of as the ratio of the RMSE of the selected model over the RMSE of a naïve model for 

which tt yy =+1  for all t . Since for the naïve model 1=U , values less than 1 denote a forecast 

improvement, while values greater than 1 denote a forecast worsening. Our forecast evaluation 

measures show that the best model for forecasting arrivals to Cagliari and Olbia airports includes 

one lag of the endogenous variables, and the 12th lag of atmospheric temperatures. Arrivals to 

Catania airport are better forecasted including in the model the 3rd lag of the log-difference of 

JP/EUR and US/EUR exchange rates, and the 1st and 12th lags of the endogenous variables. The 

best model to forecast arrivals to Palermo is the simpler model with the 1st and 12th lags of the 

endogenous variables, without any exogenous variables. Overall, considering all the airports and all 

the forecast evaluation measures, the best model for forecasting includes one lag of the endogenous 

variables and the 12th lag of atmospheric temperatures. 

 

[Insert Table 5 approximately here] 

 

 

4. Conclusions 
 

Given the importance of tourism for the economies of many Mediterranean countries, it is important 

for scholars and policy makers being capable to appropriately explain and forecast tourism demand. 

In this paper we used air passengers flows as proxy variables for tourist arrivals, and we set up 

some VAR model specifications in order to investigate the monthly time series of arrivals to 

Sardinia and Sicily in the period 2003-2008. 
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The proposed VAR models allowed us to show the existence of a certain degree of inter-

temporal interdependence among passengers arrivals to all the airports, and that both 

meteorological variables and exchange rates are slightly significant in explaining tourism arrivals. 

However, as far as forecasting accuracy is concerned, our results confirm that there is not a 

single method that constantly outperforms the others. Specifically, our forecast evaluation measures 

show that the best model for forecasting arrivals to Cagliari and Olbia airports includes one lag of 

the endogenous variables and the 12th lag of atmospheric temperatures. The best model for arrivals 

to Catania airport includes the 3rd lag of the log-difference of JP/EUR and US/EUR exchange rates 

and the 1st and 12th lags of the endogenous variables. Arrivals to Palermo airport are better 

forecasted by a simpler model with the 1st and 12th lags of the endogenous variables, with no 

exogenous variables. Overall, the best model for forecasting includes one lag of the endogenous 

variables and the 12th lag of atmospheric temperatures. 

It is common knowledge that time series frequency may affect the model selection. If this is 

the case for tourism arrivals to Sicily and Sardinia airports, future research may explore if non-

linear models are more appropriate when daily data are analyzed. 
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Figure 1. Log-arrivals to Cagliari, Olbia, Catania and Palermo airports (left side) and the corresponding month-plots 
(right side). 
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Table 1. Unit-root tests for all variables. For log-arrivals, raining days and atmospheric temperatures both the Canova-
Hansen test for seasonal unit root (Canova and Hansen, 1995) and the KPSS test (Kwiatkowski et al, 1992) are 
presented. For log-exchange rates and their first differences only a KPSS test is presented. Linear trend (t-test) and 
seasonal effects (F-test for joint significance of seasonal dummies) are tested on the basis of an auxiliary regression. In 
both cases, heteroskedasticity and autocorrelation consistent standard errors are used. 

Log-arrivals Cagliari Olbia Catania Palermo 
Linear Trend 5.152 4.323 5.132 7.894 

Result Linear Trend Linear Trend Linear Trend Linear Trend 
Seasonal 293.080 4926.600 1026.100 493.760 
Result Seasonal effect Seasonal effect Seasonal effect Seasonal effect 
CH test 1.387 1.495 1.506 1.497 
Result Stationary Stationary Stationary Stationary 

KPSS test 0.048 0.030 0.034 0.029 
p-value > 0.1 > 0.1 > 0.1 > 0.1 
Result Trend-stationary Trend-stationary Trend-stationary Trend-stationary 

     
Log-exchange rates JP/EUR US/EUR JP/EUR US/EUR 

First difference No No Yes Yes 
Linear Trend 6.556 8.240 -1.050 -0.590 

Result Linear Trend Linear Trend No Trend No Trend 
KPSS test 0.221 0.190 0.279 0.092 

p-value < 0.01 0.020 > 0.1 > 0.1 
Result Unit root Unit root Stationary Stationary 

     
Raining days Cagliari Olbia Catania Palermo 
Linear Trend 0.067 0.236 -1.944 -0.552 

Result No Trend No Trend No Trend No Trend 
Seasonal 82.850 39.130 10.910 15.930 
Result Seasonal effect Seasonal effect Seasonal effect Seasonal effect 
CH test 1.601 1.542 1.419 1.431 
Result Stationary Stationary Stationary Stationary 

KPSS test 0.059 0.045 0.110 0.044 
p-value > 0.1 > 0.1 > 0.1 > 0.1 
Result Stationary Stationary Stationary Stationary 

     
Atmospheric 
temperatures Cagliari Olbia Catania Palermo 

Linear Trend -0.897 -0.289 -0.203 -0.449 
Result No Trend No Trend No Trend No Trend 

Seasonal 315.010 344.470 117.270 292.310 
Result Seasonal effect Seasonal effect Seasonal effect Seasonal effect 
CH test 1.470 1.562 1.563 1.401 
Result Stationary Stationary Stationary Stationary 

KPSS test 0.031 0.035 0.040 0.036 
p-value > 0.1 > 0.1 > 0.1 > 0.1 
Result Stationary Stationary Stationary Stationary 
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Table 2. Optimal lag order selection according to the Akaike (AIC), Schwartz (BIC) and Hannan-Quinn (HQC) 
multivariate information criteria, computed from VARs of orders from 1 to 12. The symbol ‘*’ indicates the best value 
of the respective information criteria. 
 

Lags AIC BIC HQC 
1 -13.278 -11.128* -12.422 
2 -13.297 -10.641 -12.239 
3 -13.313 -10.151 -12.054 
4 -13.287 -9.619 -11.827 
5 -13.307 -9.133 -11.645 
6 -13.276 -8.596 -11.413 
7 -13.359 -8.173 -11.295 
8 -13.769 -8.077 -11.503 
9 -13.652 -7.454 -11.185 

10 -13.731 -7.027 -11.062 
11 -14.652 -7.443 -11.782 
12 -16.215* -8.499 -13.143* 
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Table 3. F-tests for zero restrictions on all lags of each variable in VAR specifications 1 and 2. Tests are based on 
heteroskedasticity consistent standard errors. 
 

Log-arrivals Cagliari Olbia Catania Palermo 
Lags 1 1 1 1 

All lags of Cagliari F(1,55) 39.039 3.255 0.229 4.208 
 p-value [0.0000] [0.0767] [0.6344] [0.0450] 

All lags of Olbia F(1,55) 0.655 23.158 0.037 0.024 
 p-value [0.4218] [0.0000] [0.8483] [0.8780] 

All lags of Catania F(1,55) 2.902 0.622 36.336 0.053 
 p-value [0.0941] [0.4338] [0.0000] [0.8189] 

All lags of Palermo F(1,55) 1.972 0.086 3.725 19.728 
  p-value [0.1658] [0.7707] [0.0588] [0.0000] 

Lags 1 and 12 1 and 12 1 and 12 1 and 12 
All lags of Cagliari F(2,51) 9.621 6.643 3.330 5.220 

 p-value [0.0003] [0.0027] [0.0437] [0.0087] 
All lags of Olbia F(2,51) 1.001 9.076 0.386 0.690 

 p-value [0.3747] [0.0004] [0.6816] [0.5063] 
All lags of Catania F(2,51) 3.505 0.644 20.588 2.942 

 p-value [0.0375] [0.5293] [0.0000] [0.0618] 
All lags of Palermo F(2,51) 2.370 2.007 1.545 8.218 

  p-value [0.1037] [0.1449] [0.2231] [0.0008] 
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