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Abstract

This document describes how we evaluate the accuracy of the solution of the baseline
sovereign default model using the test proposed by den Haan and Marcet (1994). We show
that the solutions obtained using Chebyshev collocation and cubic spline interpolation ap-
proximate the equilibrium with reasonable accuracy and illustrate the challenges that arise
when the test is applied to the solution obtained using the discrete state space technique.

Implementation of den Haan and Marcet (1994)

In order to save on notation, consider the case in which the shocks affect only the endowment

level, as in Arellano (2008). In a differentiable problem, the Euler equation can be written as

β

∫
[1 − d (b′, y′)] u1 (c(b′, y′)) F (dy′ | y) − u1 (c (b, y)) [q (b′, y) + b′q1 (b′, y)] = 0 (1)

for all states in which the agent is not excluded from capital markets. The function d denotes

the optimal default rule and takes a value of 1 (0) when the agent finds it optimal to default

(repay the debt). The function c denotes the optimal consumption rule. When the agent is not

excluded from capital markets c satisfies

c(b, y) = y + b − b′(b, y)q(b′(b, y), y).
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Following den Haan and Marcet (1994), let ut+1 denote the residual in the Euler equation at

date t + 1, namely

ut+1 = β [1 − d (bt+1, yt+1)] u1 (c(bt+1, yt+1)) − u1 (c (bt, yt)) [q (bt+1, yt) + bt+1q1 (bt+1, yt)] . (2)

If the numerical solution is accurate, the residual ut+1 satisfies

E [ut+1 ⊗ h(xt)] = 0 (3)

for any k-dimensional vector xt that includes current and past values of state variables and any

function h : Rk → Rp.

Under the null hypothesis that equation (3) holds, the probability distribution of the den

Haan and Marcet’s statistic tends to a χ2 with p degrees of freedom.

We implemented the test using h(xt) = 1 and h(xt) = [1, yt, bt]. The statistic was computed

using 5,000 samples of 1,500 periods each. We removed the first 10 periods of each sample, all

periods in which the economy is excluded with the exception of periods in which a default is

declared, and the first 10 periods after the end of an exclusion spell. We did not observe any

significant changes if more initial periods were removed.

Chebyshev collocation and spline interpolation perform well

Figures 1-3 show the distribution of the den Haan and Marcet’s statistic in the simulations

of Aguiar and Gopinath (2006) and Arellano (2008) when the model is solved using Chebyshev

collocation and spline interpolation, and when the residuals are weighted by h(xt) = [1, yt, bt].

Figures 1 and 2 show that the distributions of the den Haan and Marcet’s statistic in simulations

of Aguiar and Gopinath (2006) are close to their theoretical distribution under the null that the

Euler equation is satisfied. The fit is not as good in the right tail of the distribution for the

case of Arellano (2008) (see Figure 3). In that case, the correlation between the residuals and

the residuals weighted by the endowment realization in the previous period is close to 0.99. The

high co-linearity between these two series may reduce the precision of the test. Figure 4 shows

that the fit of the den Haan and Marcet’s statistic in simulations of Arellano (2008) is almost

perfect when the statistic is computed using h(xt) = 1.
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Problems with the implementation of the test when the model is

solved using discrete state space

Figures 5-7 show the distribution of the den Haan and Marcet’s statistic when the solution

is obtained using discrete state space and the residuals are weighted by h(xt) = [1, yt, bt]. The

graphs show that the differences between the distribution of the statistic and its theoretical

distribution under the null are large and do not necessarily diminish with the number of grid

points. The fit is not better when the residuals are weighted by the function h(xt) = [1]. One

might conclude from Figures 5-7 that DSS does not approximate the solution with reasonable

accuracy. However, we found evidence suggesting that the main reason for the large discrepancies

illustrated in Figures 5-7 can be traced back to approximation errors in the calculation of the

residuals of the Euler equation.

The issue that we identified as a likely cause of the problem is that the derivative q1(b
′, y) need

not be well approximated when the problem is solved using the discrete state space technique.

Let
→

b = (b1, ...bNb
) denote the vector of grid points for assets and

→

y = (y1, ...yNy
) denote the

vector of grid points for endowment shocks.

When the model is solved using the discrete state space technique, we use the following

approximation for q1(b
′, y):

q1(bi, yj) =
q (bi+∆, yj) − q (bi−∆, yj)

bi+∆ − bi−∆

, (4)

with ∆ = 1.1

Figure 8 illustrates the nature of the distortions using Model I in Aguiar and Gopinath (2006),

but the same issue is present for other parameterizations of the model. Figure 8 shows the menu

of bond prices and the agent’s optimal choices for the two finest grid configurations used in

the paper. When the number of asset grid points is increased to 7,000 points, we concentrate

the grid points within an intermediate range, as explained in Table 2 of the paper (page 10).

1When the model is solved using Chebyshev collocation or spline interpolation the derivative is approximated
as

q1(b
′, y) =

q (b′ + ǫ, y) − q (b − ǫ, y)

2ǫ
,

with ǫ = 10−5.
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Figure 8 shows how the solution obtained with the finest grid configuration may introduce a

downward bias to q1(b
′, y) when the latter is computed using equation (4) with ∆ = 1. Figure 9

illustrates that the bias in the measurement of q1(b
′, y) may indeed be systematic. Any bias in

the approximation of q1(b
′, y) introduces a bias in the residuals ut+1 and, as a result, equation

(3) is statistically rejected.

Figure 10 provides further evidence of the distortions raised by different approximations of q1.

Figure 10 shows the distribution of the den Haan and Marcet’s statistic in simulations of Arellano

(2008) when the model was computed using discrete state space and our finest grid configuration.

Figure 10 shows that the fit of the den Haan and Marcet’s statistic varies substantially with ∆.
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Figure 1: Cumulative distribution function of the den Haan and Marcet’s statistic in Model I
of Aguiar and Gopinath (2006) when the model is solved with Chebyshev collocation and spline
interpolation and for weights h(xt) = [1, yt, bt].

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cd
f

 

 

Spline
Chebychev
Actual χ2

Figure 2: Cumulative distribution function of the den Haan and Marcet’s statistic in Model II
of Aguiar and Gopinath (2006) when the model is solved with Chebyshev collocation and spline
interpolation and for weights h(xt) = [1, yt, bt].
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Figure 3: Cumulative distribution function of the den Haan and Marcet’s statistic in Arellano
(2008) when the model is solved with Chebyshev collocation and spline interpolation and for
weights h(xt) = [1, yt, bt].
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Figure 4: Cumulative distribution function of the den Haan and Marcet’s statistic in Arellano
(2008) when h(xt) = 1.
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Figure 5: Cumulative distribution functions of the den Haan and Marcet’s statistic in model I of
Aguiar and Gopinath (2006) when the model is solved with discrete state space and for weights
h(xt) = [1, yt, bt]. The first (second) term in each label corresponds to the number of grid points
for assets (endowment shocks).
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Figure 6: Cumulative distribution functions of the den Haan and Marcet’s statistic in model II of
Aguiar and Gopinath (2006) when the model is solved with discrete state space and for weights
h(xt) = [1, yt, bt]. The first (second) term in each label corresponds to the number of grid points
for assets (trend growth shocks).
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Figure 7: Cumulative distribution functions of the den Haan and Marcet’s statistic in Arellano
(2008) when the model is solved with discrete state space and for weights h(xt) = [1, yt, bt]. The
first (second) term in each label corresponds to the number of grid points for assets (endowment
shocks).
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Figure 8: Bond price function faced by the agent and the optimal choice when Model I in Aguiar
and Gopinath (2006) is solved using discrete state space but two different grid specifications. The
graph was computed assuming that the initial endowment is equal to the unconditional mean
and that the initial debt level equals the mean debt observed in the simulations. The evaluation
of q1 at the optimum when q1 is approximated using ∆ = 1 produces a lower value for the finest
grid specification.
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Figure 9: Density function of q1(b
′, y) in the simulations of Model I in Aguiar and Gopinath

(2006). The density was computed using the same sample periods that were used to compute
the den Haan and Marcet’s statistic.
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Figure 10: Cumulative distribution functions of the den Haan and Marcet’s statistic in Arellano
(2008) when the model is solved with discrete state space, our finest grid specification, and
for weights h(xt) = [1, yt, bt]. The graph shows that the distribution of the statistic varies
substantially with the value of ∆.
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